CN1668359A - 用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法 - Google Patents

用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法 Download PDF

Info

Publication number
CN1668359A
CN1668359A CNA038166089A CN03816608A CN1668359A CN 1668359 A CN1668359 A CN 1668359A CN A038166089 A CNA038166089 A CN A038166089A CN 03816608 A CN03816608 A CN 03816608A CN 1668359 A CN1668359 A CN 1668359A
Authority
CN
China
Prior art keywords
energy
breast
treatment
tissue
organ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038166089A
Other languages
English (en)
Other versions
CN1668359B (zh
Inventor
艾伦·J·芬恩
约翰·蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imunon Inc
Original Assignee
Celsion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celsion Corp filed Critical Celsion Corp
Publication of CN1668359A publication Critical patent/CN1668359A/zh
Application granted granted Critical
Publication of CN1668359B publication Critical patent/CN1668359B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves

Abstract

公开了一种通过用聚焦能量选择性照射器官组织来治疗癌性或良性器官病症的方法。该方法包括下述步骤:将E-电场探测器传感器插入器官组织的适当深度,监测器官附近皮肤表面的温度(如果使用聚焦能量的话),将两个或多个能量施用器置于器官周围,设置输送至每个能量施用器的初始功率水平,设置输送至每个能量施用器的初始相对相位,从而将能量聚焦于位于所述器官组织中的E-电场探测器(如果使用聚焦能量的话),将能量输送至两个或多个能量施用器,从而用聚焦能量选择性照射器官组织和治疗至少一个癌性和良性器官病症,在治疗过程中根据监测的皮肤温度调整输送至每个能量施用器的功率水平,监测输送至所述能量施用器的能量,在治疗过程中测定输送至所述能量施用器的总能量并实时显示总能量,和在通过所述能量施用器将期望的总能量剂量输送至所述器官时完成治疗。用微波能量施用器可将聚焦的或非聚焦的能量用作优选的能量源。然而,可以一起使用能量施用器如电磁、超声、辐射电频和激光的任何组合以形成聚焦的能量。非聚焦的能量可以与聚焦的能量结合以增强温热疗法。几种适于乳腺癌治疗的应用方案包括晚期和早期乳腺癌的治疗,乳腺癌的预防,和良性乳腺疾病和原位管癌的治疗。

Description

用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法
发明背景
一般而言,本发明涉及用于施用聚焦能量的最低限度侵入性方法,诸如适应性微波定相阵列高温,该方法可用于治疗扁平乳房组织中的管癌和腺癌及管内增生,以及良性损伤诸如纤维腺瘤和囊肿。另外,依照本发明的方法可用于治疗包含未检测到的高含水量显微病理学改变细胞的健康组织,从而预防癌性、癌前期、或良性乳房损伤的发生或复发。
为了用高温治疗原发性乳腺癌,必须对大体积的组织加热,诸如乳房的四分之一或更多。众所周知,所有乳腺癌中大约90%源自输乳管组织(乳管),其余癌症大多源自腺组织小叶(乳袋)(Harris等人,The New England Journal of Medicine,第327卷,第390-398页,1992年)。乳腺癌常常涉及乳房的大片区域,对此,当前的保守治疗具有局部失败的极大风险,Schnitt等人,Cancer,第74(6)卷,第1746-1751页,1994年。对于早期乳腺癌,称为T1(0-2cm)或T2(2-5cm)癌症,整个乳房都处于危险之中,而且常常通过乳房保留手术并联合全乳照射进行处理,从而破坏乳房组织中任何可能的显微(在不借助显微镜或乳房X线摄影术的情况下肉眼看不见)癌细胞(Winchester等人,CA-A Cancer Journal for Clinicians,第42卷,第3期,第134-162页,1992年)。具有广泛管内成分(EIC)的侵入性管癌(其中癌症已蔓延至整个导管)的成功治疗是特别困难的,因为必须治疗乳房的大部分。美国每年进行超过800,000例可疑损伤的乳房穿刺活检,其中大约180,000例检测到癌症,其余是非恶性的,诸如纤维腺瘤和囊肿。
通过加热来治疗乳腺癌在许多情形中可以是有效的,而且在大多数情况中必须能够在乳房的广泛分开区域中同时实现热处理。加热大体积的乳房能够破坏乳房中的许多或所有显微癌细胞,并降低或预防癌症的复发——相同方法也用于放射疗法,其中用X射线照射整个乳房以杀死所有显微癌细胞。在肿块切除术之前加热肿瘤并杀死大部分或所有肿瘤细胞可以在肿块切除术过程中降低存活癌细胞无意播种的可能性,从而减少乳房的局部复发。有时候,患病乳房包含分布在乳房中的两个或多个肿瘤块,称为多病灶癌症,而且同样必须使加热场达到乳房的广泛分开区域。局部晚期乳腺癌(称为T3)(Smart等人,A Cancer Journal for Clinicians,第47卷,第134-139页,1997年)的尺寸可以是5cm或更大,而且常常通过乳房切除术进行处理。局部晚期乳腺癌的手术前高温处理可以使肿瘤充分缩小,从而能够进行外科肿块切除术——与当前使用的手术前化学疗法的情形相似。局部晚期乳腺癌的手术前高温处理可以完全破坏肿瘤,消除对任何手术的需要。
众所周知,与低含水量的组织(诸如脂肪乳房组织)中发生的加热相比,微波能量能够优先加热高含水量的组织(诸如乳房肿瘤和囊肿)。许多临床研究已证实了,通过微波波段中的电磁能量吸收诱发的高温(升高的温度)显著增强放射疗法在人体恶性肿瘤治疗中的效果(Valdagni等人,International Journal of Radiation OncologyBiology Physics,第28卷,第163-169页,1993年;Overgaard等人,International Journal of Hyperthermia,第12卷,第1期,第3-20页,1996年;Vernon等人,International Journal ofRadiation Oncology Biology Physics,第35卷,第731-744页,1996年;van der Zee等人,Proceedings of the 7th InternationalCongress on Hyperthermic Oncology,罗马,意大利,1996年4月9-13日,第2卷,第215-217页;Falk和Issels,Hyperthermiain Oncology,International Journal of Hyperthermia,第17卷,第1期,第1-18页,2001年)。可以通过升高的温度直接杀死耐辐射细胞诸如S期细胞(Hall,《Radiobiology for the Radiologist》,第4版,JP Lippincott公司,费城,第262-263页,1994年;Perez和Brady,《Principles and Practice of Radiation Oncology》,第2版,JB Lippincott公司,费城,第396-397页,1994年)。常常在几段治疗时间里使用微波辐射装置施行高温处理,其中将恶性肿瘤加热至大约43℃达大约60分钟。已知,温度每超过大约43℃一度,杀死肿瘤细胞所需要的时间降低一半(Sapareto等人,InternationalJournal of Radiation Oncology Biology Physics,第10卷,第787-800页,1984年)。因此,43℃处理60分钟可以缩短至45℃仅大约15分钟,这常常称为等同剂量(t43℃等同时间)。同样,已经在临床上证实了温热疗法增强化学疗法的效果(Falk和Issels,2001年)。在使用非侵入性微波施用器进行处理的过程中已证明,在预防周围表面健康组织由于非期望热点而招致疼痛或损伤时,难以对半深层肿瘤进行适当加热。组织中特异吸收率(SAR)是用于表征组织加热的常用参数。SAR与指定时间间隔的温度升高成正比,而对于微波能量而言,SAR也与电场平方乘以组织电导率成正比。绝对SAR的单位是瓦特每千克。
非耦合阵列或非适应性定相阵列高温处理系统典型地能够加热表面肿瘤,但是它们在用于加热深层肿瘤或深层组织时受到限制,因为它们趋向于过度加热居间表面组织,这能够引起疼痛和/或烧伤。描述用于深层组织高温的非适应性定相阵列的第一份发表报告是一项理论研究(von Hippel等人,Massachusetts Institute ofTechnology,Laboratory for Insulation Research,TechnicalReport,第13期,AD-769 843,第16-19页,1973年)。授予Rodler的美国专利号3,895,639描述了双通道和四通道非适应性定相阵列高温电路。高温系统的最新发展使用最初针对微波雷达系统而开发的适应性定相阵列技术,将热量投递有效靶向深层组织(Skolnik,《Introduction to Radar Systems》,第2版,McGraw-Hill Book公司,1980年,第332-333页;Compton,《Adaptive Antennas.Concepts and Performance》,Prentice Hall,新泽西州,第1页,1988年;Fenn,IEEE Transactions on Antennas and Propagation,第38卷,第2期,第173-185页,1990年;美国专利号5,251,645;5,441,532;5,540,737;5,810,888)。
Bassen等人,Radio Science,第12卷,第6(5)期,1977年11月-12月,第15-25页显示,可以使用电场探测器来测量组织中的电场模式,具体而言,就是显示了所测量的电场在中央组织具有病灶峰的几个实例。这篇论文还讨论了实时测量活样品中的电场的概念。然而,Bassen等人没有发展使用电探测器实时测量电场以适应性聚焦定相阵列的概念。
适应性定相阵列高温系统利用E-电场反馈测量而将它的微波能量聚焦在深层组织上,同时消除可能过度加热周围健康身体组织的任何能量。临床前研究指出,适应性微波定相阵列具有投递深层热量的潜力,而避免躯干深部(Fenn等人,International Journal ofHyperthermia,第10卷,第2期,3月-4月,第189-208页,1994年;Fenn等人,The Journal of Oncology Management,第7卷,第2期,第22-29页,1998年)和乳房(Fenn,Proceedings of theSurgical Applications of Energy Sources Conference,1996年;Fenn等人,International Journal of Hyperthermia,第15卷,第1期,第45-61页,1999年;Gavrilov等人,International Journalof Hyperthermia,第15卷,第6期,第495-507页,1999年)表面组织温度过高。
使用微波能量在深层乳房组织中实现高温的最困难方面是对预定深度进行充分加热,同时保护皮肤免于烧伤。使用侵入性和非侵入性电场探测器的非侵入性多施用器适应性微波定相阵列可以用于在肿瘤位置生成适应性聚焦的波束,而在健康组织中形成适应性零位(null),正如美国专利号5,251,645、5,441,532、5,540,737、和5,810,888中所述(都收入本文作为参考)。理想的是,聚焦微波照射束集中于肿瘤,而最低限度的能量投递至周围健康组织。为了在处理过程中控制微波能量,将温度传感反馈探测器(Samaras等人,Proceedings of the 2nd International Symposium,埃森,德国,1977年6月2-4日;Urban和Schwarzenberg,巴尔的摩,1978年,第131-133页)插入肿瘤,然而常常难以将探测器准确置于肿瘤中。在对蔓延至整个乳房管组织或腺组织的癌瘤投递高温时存在额外困难,因为温度传感反馈探测器缺乏精确限定的靶位。在其它情况中,仅仅期望避免将探测器(或是温度或是E-电场)插入乳房组织以降低感染或癌细胞蔓延(在探测器穿过肿瘤区域时)的风险。
用于治疗已经检测到的良性囊肿的标准医学护理由什么都不做至囊肿引流而变化。之所以存在不处理囊肿的医学可接受立场的原因是清除囊肿的唯一已知方法涉及侵入性外科手术。手术切割和去除囊肿的替换方案是囊肿引流。囊肿引流通过刺破囊肿并排除囊肿中的液体而实现。尽管这种方法可以暂时减轻与囊肿有关的疼痛,但是,如果引流流程未能清除整个囊肿的话,囊肿可能又长回原样。因此,需要非侵入性消除这些良性囊肿。
通过本发明代理人用于加热癌性乳房病症的方法解决了上述缺点,该方法包括下列步骤:将E-电场探测器传感器插入乳房,监测皮肤表面的温度,将两个微波施用器置于乳房的对立面,设置输送至每个微波施用器的初始微波功率和相位,从而将场聚焦在插入的E-电场传感器上,根据监测的皮肤温度调整投递至乳房的微波功率,并监测投递至被处理的乳房的微波能量剂量,在已通过微波施用器投递了期望的总微波能量剂量时结束处理。
此外,本发明受让人的上述方法已应用于诸如温度反馈传感器没有精确限定的位置可以放置或期望避免将温度探测器插入乳房组织的情况。在受让人所教导的优选方法中,只需要一个最低限度侵入性E-电场传感器。由此,在晚期乳腺癌(如5-8cm的肿瘤)的情况中,该方法能够破坏很大部分的乳腺癌细胞并缩小肿瘤或损伤(即温热缩小至如2-3cm),从而取代外科肿块切除术的外科乳房切除术。在备选方案中,能够破坏整个晚期乳腺癌损伤,而且可能不需要手术。在早期乳腺癌或小型乳房损伤中,受让人的方法可以通过加热(即温热肿块切除术)破坏所有乳腺癌细胞或良性损伤,从而避免外科肿块切除术。另外,该方法可以用于增强放射疗法或者用于热敏脂质体的靶向药物投递(如美国专利号5,810,888所述)和/或靶向基因疗法投递。受让人的方法可以与最近开发的含化学疗法制剂诸如阿霉素的温度敏感性脂质体制剂(如美国专利号6,200,598,“TemperatureSensitive Liposomal Formulation”,2001年3月13日授予Needham所述)一起使用,其中药物试剂在大约39-45℃的温度释放。
上述受让人的方法破坏癌性细胞,同时不伤害正常的乳房的腺组织、管组织、结缔组织、和脂肪组织。因此,依照本发明的温热肿块切除术避免了对这些健康组织的伤害,是一种乳房保护技术。
虽然受让人的方法可以使用适应性微波定相阵列技术来实现,但是聚焦能量一般可以用于加热并消融组织区域。聚焦能量可以包括电磁波、超声波、或射电频率波。也就是说,能够聚焦而加热并消融组织区域的任何能量。
虽然上述受让人的方法非侵入性的由乳房组织消除囊肿,但是由于外部聚焦的微波和用于压迫乳房组织的机械压力引起了其它问题。因此,需要对这种非侵入性温热疗法癌症治疗的安全性进行改进。
发明概述
申请人用他们的通过使用聚焦能量选择性照射器官组织来治疗癌性或良性器官病症的发明方法克服了现有技术的缺点。依照本发明的方法可以包括下列步骤:将E-电场探测器传感器插入器官组织的适当深度,监测器官附近皮肤表面的温度,将两个或多个能量施用器置于器官周围,设置输送至每个能量施用器的初始功率水平,设置输送至每个能量施用器的初始相对相位,从而将能量聚焦于位于器官组织中的E-电场探测器,将能量输送至两个或多个能量施用器,从而用聚焦能量选择性照射器官组织并治疗至少一个癌性和良性器官病症,在治疗过程中根据监测的皮肤温度调整输送至每个能量施用器的功率水平,监测输送至能量施用器的能量,在治疗过程中测定输送至能量施用器的总能量并实时显示总能量,和在通过能量施用器将期望的总能量剂量投递至器官时结束处理。将要治疗的器官优选乳房,在优选的方法中,能量施用器围绕乳房(或其它器官)成一个环。
依照本发明,通过用能量选择性照射器官组织来治疗癌性或良性器官病症的优选方法可以包括下列步骤:将增强加热的物质注射到器官组织的适当深度,监测器官附近皮肤表面的温度,将至少一个能量施用器置于器官周围,设置输送至每个至少一个能量施用器的初始功率水平,将能量输送至至少一个能量施用器,从而用能量选择性照射器官组织并治疗至少一个癌性和良性器官病症,在治疗过程中根据监测的皮肤温度调整输送至每个至少一个能量施用器的功率水平,监测输送至至少一个能量施用器的能量,在治疗过程中测定输送至至少一个能量施用器的总能量并实时显示总能量,和在通过至少一个能量施用器将期望的总能量剂量投递至器官时结束治疗。也就是说,申请人设想,依照本发明的方法可以使用一个施用器来实现,而且任何能量都可以聚焦在癌性或良性器官病症上。
依照本发明,将微波吸收垫和金属屏蔽附着在微波温热疗法施用器和乳房压迫浆(breast compression paddle)上。在受让人的方法中添加的这些安全防范措施降低了在用于乳房肿瘤(恶性或良性)治疗的受到压迫的乳房组织的适应性定相阵列温热疗法过程中主要微波施用器口径场以外的乳房基部、胸壁区域、和头部及眼部附近的电场强度和温度。
为了将侵入性皮肤进入点的数量降至最少,受让人的方法使用了在一个导管中联合的E-电场和温度传感器。结果是,只需要一个最低限度侵入性皮肤进入点,导致患者舒适度提高且感染风险降低。
另外,适应性微波定相阵列温热疗法可以作为早期乳腺癌的单独热治疗。或者,适应性微波定相阵列温热疗法可以联合化学疗法方案和/或基于基因的修饰剂而用于局部晚期乳腺癌中的原发性乳房肿瘤的治疗。或者,乳房温热疗法的单独加热治疗可以作为手术前手段用于降低肿块切除术患者第二次或第三次切割(额外手术)的比率。适应性微波温热疗法的额外用途可以是改进乳腺癌预防,其中温热疗法与他莫昔芬(Tamoxifen)或其它抗雌激素药物一起使用,用于阻断雌激素结合乳腺癌雌激素受体和用于通过加热直接杀死癌细胞。
考虑描述和附图后,其它目标和优点将变得清楚。
附图简述
通过阅读下面的详述并参照附图可以更好的理解本发明,其中相同编号始终指示相同元素,而且其中:
图1是女性乳房的详细侧视图;
图2显示了乳房管组织和腺组织中管癌和小叶癌发展的例子;
图3显示了三项不同研究的正常乳房组织和乳房肿瘤的介电常数和电导率的测量值。标以B(Burdette)的研究是穿过乳房皮肤的测量,这说明了其它研究即C和J之间的差异;
图4显示了乳房脂肪、腺/结缔组织、良性纤维腺瘤、和乳腺癌的测量含水量(来自Campbell和Land,1992年);
图5显示了依照本发明用于加热受到压迫的乳房的系统;
图6显示了处于俯卧体位的患者,乳房受到压迫且E-电场探测器插入乳房的期望病灶深度;
图7显示了作为受到压迫的乳房组织厚度的函数计算的病灶微波能量;
图8显示了用于加热乳房的电脑模拟两个对面微波波导施用器的三维视图;
图9显示了中央病灶的均匀正常乳房组织中915MHz特异吸收率(SAR)加热模式的计算侧视图;
图10显示了中央病灶的均匀正常乳房组织中915MHz SAR加热模式的计算顶视图;
图11显示了中央病灶的均匀正常乳房组织中915MHz SAR加热模式的计算端视图;
图12显示了存在两个模拟乳房肿瘤时915MHz SAR加热模式的计算顶视图,其中每个乳房肿瘤的直径是1.5cm,相距5cm。50% SAR周线沿着指示选择性加热的肿瘤排列;
图13显示了存在两个模拟乳房肿瘤时915MHz SAR加热模式的计算线性切割(穿过图12的中心面),其中每个乳房肿瘤的直径是1.5cm,相距5cm。SAR具有顶峰,其沿着指示选择性加热的肿瘤排列;
图14图解了依照本发明的乳房温热疗法系统并添加了安全特征,包括波导施用器顶部的微波吸收垫和覆盖波导孔隙顶端部分的金属屏蔽;
图15是显示具有微波吸收垫、金属屏蔽、空气间隙、及联合的E-电场聚焦和温度探测器的简单T形乳房幻影的侧视图;
图16是显示具有微波吸收垫、金属屏蔽、空气间隙、及联合的E-电场聚焦和温度探测器的乳房形幻影的侧视图;
图17显示了压迫浆,该浆的垂直面上有一个矩形窗口,浆顶面附着了一个微波吸收垫;
图18显示了波导施用器的侧视图,压迫浆上部背向乳房皮肤的表面添加了金属屏蔽;
图19显示了通过适应性定相阵列施用器加热的没有屏蔽和吸收垫的简单T形幻影的测量温度对时间的曲线图;和
图20显示了通过适应性定相阵列施用器加热的装有屏蔽和吸收垫的简单T形幻影的测量温度对时间的曲线图。
优选实施方案的详述
乳房组织的介电性质
图1显示了女性乳房的详细侧视图(《Mammography-A User’sGuide》,National Council on Radiation Protection andMeasurements,NCRP报告第85期,1987年8月1日,第6页)。乳房中腺组织和脂肪组织的数量可以广泛变化,由主要是脂肪组织至极其密集的腺组织。乳腺癌细胞(高含水量细胞)常常在输乳管和腺组织小叶中形成,如图2所示(修改自《Dr.Susan Love’s Breast Book》,Addison Wesley,马萨诸塞州,1990年,第191-196页)。管中异常细胞生长的最初迹象称为管内增生,随后是非典型性(withatipia)管内增生。当管变得几乎充满时,该状况称为原位管内癌(DCIS)。这三种状况称为癌前期。最后,当管癌穿过管壁时,该损伤称为侵入性管癌。癌症在乳房腺小叶中以相同方式形成。所有上述细胞常常称为是高含水量的,除了乳房中的纯粹脂肪组织(低含水量)和纯粹腺/结缔组织(低至中含水量)。
工业、科学、医学(ISM)波段902-928MHz的微波照射常常用于商业性临床高温系统,而且是本文考虑的主要频率波段。几乎很少有关于女性乳房组织的详细微波加热信息——然而,众所周知,乳腺癌相对于周围的脂肪乳房组织得到选择性加热。四篇重要的论文是:1)Chaudhary等人,Indian Journal of Biochemistry andBiophysics,第21卷,第77-79页,1984年;2)Joines等人,MedicalPhysics,第21卷,第4期,第547-550页,1994年;3)Surowiec等人,IEEE Transactions on Biomedical Engineering,第35卷,第4期,第257-263页,1988年;和4)Campbell和Land,Physicsin Medicine and Biology,第37卷,第1期,第193-210页,1992年。另一篇论文Burdette,AAPM Medical Physics Monographs,第8期,第105-130页,1982年已测量了乳房组织的数据,然而,这些数据是通过皮肤测量的,可能不能代表乳房组织自身。介电性质常常以介电常数和电导率的形式给出,正如图3关于正常乳房组织和乳房肿瘤所示。在915MHz,清除来自Burdette研究的数据后,正常乳房的平均介电常数是12.5,而平均传导率是0.21S/m。相反,乳房肿瘤的平均介电常数是58.6,而平均传导率是1.03S/m。注意:来自Chaudhary等人(C)和Joines等人(J)研究的数据是在室温(25℃)测量的。应当注意,一般而言,随着温度的升高,介电常数降低,而电导率升高。正常乳房和乳房肿瘤的介电参数分别与低含水量的脂肪组织和高含水量的肌肉组织相似。应当注意,正常乳房组织包含脂肪组织、腺组织、和结缔组织的混合物。Gabriel等人,Phys.Med.Biol.,第14卷,第2271-2293页,1996年的论文提出了关于17种组织类型(包括皮肤、肌肉、和脂肪)的详细信息。Surowiec的论文含有选定腺组织、管组织、脂肪组织、和癌性组织的详细信息,但是他们只是测量了20kHz-100MHz范围内的参数。有可能根据在100MHz测量得到的数据来估计乳房组织在915MHz的电性能。申请人不知道在感兴趣的频率即915MHz测量得到的任何纯粹的乳房管组织和腺组织的介电参数数据。
Campbell和Land的论文已测量了3.2GHz的介电参数数据,以及乳房脂肪组织、腺组织、和结缔组织、良性肿瘤(包括纤维腺瘤)、和恶性肿瘤的含水量百分比。它们的含水量百分比测量数据可用于评估乳房组织的相对可加热性,也就是说,较高含水量组织比较低含水量组织加热更快。测量的含水量(以重量计)的数值范围如下:乳房脂肪组织(11-31%)、腺组织和结缔组织(41-76%)、良性肿瘤(62-84%)、和恶性肿瘤(66-79%),其中选定数值描述于图4。由此,根据含水量,预计良性乳房损伤和乳房肿瘤的加热将显著快于乳房腺组织、结缔组织、和脂肪组织。典型地,对于3.2GHz的电导率而言,它们的测量值的最佳选择如下:乳房脂肪组织(0.11-0.14S/m)、腺组织和结缔组织(0.35-1.05S/m)、良性肿瘤(1.0-4.0S/m)、和恶性肿瘤(3.0-4.0S/m)。因此,良性和恶性肿瘤的电导率趋向于比腺组织和结缔组织可高达约四倍,而且比纯粹的脂肪高达约30倍。这些数据符合图3所示Chaudhary等人和Joines等人在915MHz测量得到的电导率数据。
此外,Chaudhary,1984年已测量了正常乳房组织在3GHz的电导率数据,此处的电导率是0.36S/m,符合Campbell和Land在3.2GHz测量的正常腺组织和结缔组织的范围(0.35-1.05S/m)。由此,从获得的最佳数据,乳房脂肪组织是低含水量的,腺组织和结缔组织是低至中含水量的,而乳房肿瘤是高含水量的。因此,预计良性和恶性肿瘤细胞的加热将比周围的脂肪组织、腺组织、管组织、和结缔组织细胞快得多,而且温度显著更高。也就是说,在这种治疗中,只有显微和可见肿瘤细胞优先加热,所有的周围脂肪组织、腺组织、管组织、和结缔组织免于热损伤。
组织电导率是用微波能量加热组织的主要控制参数。组织电导率也称为组织离子电导率,单位是西门子每米(S/m)。电导率是组织特性的函数,主要是含水量、离子含量、和温度(F.A.Duck,《PhysicalProperties of Tissue》,Academic出版社,1990年,第6章,第167-223页)。电导率随着组织含水量、离子含量、和温度的升高而升高。例如,生理盐水的离子电导率高于纯水。温盐水的离子电导率高于冷盐水。据报导,侵入性或浸润性乳腺癌细胞是中等至略微分化,意味着它们逐渐丧失发挥正常细胞功能的能力。随着癌细胞丧失它们的功能性,它们的体积能够膨胀,并且吸收更多的水,从而提高含水量百分比。癌细胞的水中离子在细胞的离子电导率中发挥重要作用。离子即带电微粒,或是带正电或是带负电。组织中的重要离子包括钾(K+)、钙(Ca2+)、钠(Na+)、和氯(Cl-)。钙离子的电子比质子少两个,因而带正电(2+)。钙能够吸引并占有两个氯(Cl-)离子。钾只能吸引并占有一个氯(Cl-)离子。溶于水后,氯化钙(CaCl2)中的钙和氯离子将解离或分开且迁移率升高,从而提高水溶液的离子电导率。乳房X线照片上出现的紧密成簇的钙沉积物(称为微钙化)常常与癌症有关(S.M.Love,《Dr.Susan Love’s Breast Book》,第3版,Persus Publishing,2000年,第130-131页)。乳管中微钙化的微小簇常常归于癌前期。大块的钙常常与良性损伤有关,诸如纤维腺瘤。乳房中出现的有些钙化来自离开骨骼的钙,它们随着血流移动并随机沉积在乳房中。
已经测量了乳房囊肿流体中蛋白质和离子成分(B.Gairard等人,“Proteins and Ionic Components in Breast Cyst Fluids”,《Endocrinology of Cystic Breast Disease》,A.Agneli等人编,Raven出版社,纽约,1983年,第191-195页;H.L.Bradlow等人,“Cations in Breast Cyst Fluid”,《Endocrinology of CysticBreast Disease》,A.Agneli等人编,Raven出版社,纽约,1983年,第197-201页)。乳房囊肿流体含有钠(Na+)、钾(K+)、氯(Cl-)、钙(Ca2+)、磷酸根(PO4 -)、和镁(Mg2+)离子。Bradlow列举了三类乳房囊肿流体:
第一类:高水平的钾(K+)和中水平的钠(Na+)和氯(Cl-);
第二类:高水平的钾(K+)和钠(Na+)和中水平的氯(Cl-);和
第三类:高水平的钠(Na+)、中水平的氯(Cl-)、和低水平的钾(K+)。
当与周围正常健康乳房组织的加热相比,高含水量和高离子含量的乳房囊肿应当容许微波的优先加热。
存在几类囊肿:形成可触知肿瘤的肥大囊肿、含有浓厚(增稠)乳汁的囊肿——所谓的乳腺囊肿、由输乳管扩张发展而成的囊肿、由脂肪坏死导致的囊肿、与管内乳头瘤有关的囊肿——所谓的“乳头状囊腺瘤”、和通过施用雌激素诱导的囊肿。肥大(非常大)囊肿能够快速发展,并获得持久的中等体积,尽管体积会随着时间有所缩小,甚至消失。相当多的肥大囊肿是在经前或经期发现的,并且迅速增大,变得疼痛和触痛。肥大囊肿有时与急性炎症的症状有关,即疼痛、触痛、和上覆皮肤略微发红。针吸囊肿流体后,炎症的症状迅速减退。抽吸完成后,只剩下纤维化的囊壁。然而,渗入周围乳房组织的囊肿流体能够产生急性激惹。肥大囊肿在30-54岁年龄组是最常见的,占到大约95%的病例。为囊肿病症动手术的外科医生探查乳房越广泛,可能发现的囊肿越多。
纤维腺瘤(非常常见的良性结块,也称为纤维瘤)是平且硬的,而且尺寸可以由5mm至约5cm变化。根据小型样品的测量结果,纤维腺瘤具有高含水量(平均78.5%,n=6)(Campbell和Land,“Dielectric Properties of Female Human Breast Tissue Measuredin vitro at 3.2GHz”,Phys Med Biol,第37(1)卷,第193-210页,1992年),而且与周围健康乳房组织相比应当易于通过微波能量加热。这些良性损伤常常在乳房X线摄影术和超声上是独特的,而且如果需要的话能够通过手术切除。有些患者具有多个纤维腺瘤,乳房保留手术因而变得不切实际。下文给出了来自Campbell和Land研究的其它良性肿瘤测量含水量的有限数据。
良性纤维化肿瘤:Campbell和Land研究中一名患者(26岁)的中值含水量是66.5%,示意高含水量。纤维化指可以作为修复或反应过程发生的纤维组织的形成。纤维性乳房疾病是一类特殊的纤维化,它在局部乳房部分中抑制和消除小叶腺泡和乳管二者,并形成可触知肿瘤。纤维化异常坚固(但是不如癌症坚硬),而且常常需要局部切除;然而,常常不能精确限定疾病的界限,因为损伤形状是不规则的盘状,而非像囊肿那样是圆形的。
良性fibroadrosis肿瘤:Campbell和Land研究中一名患者(27岁)的中值含水量是73.5%,示意高含水量。
良性上皮增殖(也称为乳头瘤病)肿瘤:Campbell和Land研究中一名患者(40岁)的中值含水量是61%,示意高含水量。乳头瘤病是管上皮的乳头增殖,它部分填充较小管且其程度使之扩张。乳头瘤病常常是显微的,而且常常伴随囊性病、肿瘤adnosis、多发性乳头瘤、或一些其它肿瘤形成损伤。
良性adnosis肿瘤:Campbell和Land研究中一名患者(43岁)的中值含水量是38%,示意低含水量。良性adnosis是乳房小叶腺泡增殖,或是显微或是以明确肿瘤出现。这些肿瘤(良性adnosis)与周围正常乳房组织相比不能显著加热,但是只测量了一份数据样品,因而不能代表其它良性adnosis肿瘤。
总之,诸如囊肿、纤维腺瘤、纤维化、fibroadrosis、和上皮增殖(也称为乳头瘤病)等良性损伤似乎是高含水量和/或高离子含量,而且应当易于通过微波能量加热。良性adnosis损伤可能不能像具有高含水量和/或高离子含量的囊肿那样快速加热;然而,这也不确定,因为作为依据的数据只限于一名患者。
在晚期乳腺癌(如5-8cm的肿瘤)的情况中,受让人的发明方法能够通过单独加热或联合化学疗法加热来破坏大部分的乳腺癌细胞。通过缩小肿瘤或损伤(即温热缩小至如2-3cm),有可能用手术肿块切除术取代外科乳房切除术。理想的是,可以破坏整个晚期乳腺癌损伤(即温热乳房切除术或温热化学乳房切除术),而且可能不需要任何手术。正如下文所讨论的,可以用受让人的发明方法破坏早期乳腺癌或小型乳房损伤。也就是说,可以用温热(即温热肿块切除术)破坏所有乳腺癌细胞或良性损伤从而避免外科肿块切除术。
温热疗法可以用作初次(或第二次或第三次)肿块切除术之前的单独热治疗以降低对再次切割(额外手术)的需要,这种需要存在于在肿块切除术标本中检测到阳性边缘(癌性细胞)的情况。大约30%的肿块切除术标本具有需要第二次切割的阳性边缘。由于依照本发明的方法从靶区的外部向内加热组织(与从内部向外加热的RF消融术相反),因此依照本发明的方法解决了边缘的问题。由此,可以在手术之前运用依照本发明的温热疗法治疗,预计消融边缘的癌细胞。结果是,在初次手术(肿块切除术)后,测试切除组织周围的区域(边缘),预计边缘中的癌症减少,从而避免对第二次(或第三次)切割的需要。依照本发明的温热疗法治疗理论上可以用作温热肿块切除术,取代侵入性肿块切除术手术流程。由此,可以通过依照本发明的温热疗法治疗显著减少或整个破坏乳房中癌症的数量。
还设想了依照本发明的温热疗法治疗可以与基于基因的修饰剂联合使用,从而使其组织中具有异常(突变)基因(诸如BRCA1、BRCA2、或其它基因)的患者受益。已经显示这些异常基因的存在增加患者患上癌症的风险,因而消除这些基因应当降低患者患上癌症的风险。单独加热的温热疗法治疗或温热疗法与化学疗法和/或基于基因的修饰剂联合加热应当通过破坏边缘中的任何癌性细胞而降低乳腺癌复发从而提供不含癌症的组织,或者破坏或修复对癌症或其它疾病负有责任的突变基因。另外,该方法可以联合使用如美国专利号5,810,888中所述热敏脂质体和/或用于治疗乳房损伤的靶向基因疗法以增强放射疗法和/或靶向药物投递从而帮助破坏边缘中的癌性或异常细胞。乳腺癌从乳管中开始,然后向外侵入周围乳房组织,随后通过淋巴和血管(血液)系统蔓延到乳房以外。由此,单独的温热疗法治疗或与化学疗法和/或基于基因的修饰剂的联合应当通过杀死乳房淋巴和血管系统中的癌细胞或突变基因而降低乳房或其它器官中的乳腺癌复发。
依照本发明的热治疗疗法可以单独使用或联合化学疗法和/或基于基因的修饰剂以预处理其它器官,诸如前列腺、肝、卵巢、等,其中异常或突变基因的存在可能导致较高的癌症发生。另外,根据管灌洗或其它诊断技术的测定,当器官中存在非典型细胞时,单独加热的温热疗法或温热疗法与化学疗法和/或基于基因的修饰剂的联合的使用可能是有益的。
早期乳腺癌的温热疗法
在一小群早期乳腺癌患者中,使用Celsion公司Microfocus APA1000乳房温热疗法系统进行的2期临床温热疗法治疗,无论是一次还是两次单独加热治疗,显著降低存活肿瘤细胞的百分比,大约70-90%。在某些患者中,单独加热的温热疗法可以在预定的肿块切除术之前完全破坏乳腺癌细胞,从而避免手术并预防乳腺癌的局部复发。在其他患者中,单独加热的温热疗法可以通过提供不含癌细胞的边缘而降低对第二次或第三次肿块切除术的需要。这些单独加热的治疗生成可高达大约200分钟的等同温热剂量(相对于43℃),峰值肿瘤温度48.3℃且微波能量剂量250千焦。可能需要额外的温热疗法治疗、更高的等同温热剂量、和更高的乳房肿瘤温度来完成乳腺癌的单独加热摘除术。可能需要49-50℃范围内或可高达55℃的肿瘤温度而用400分钟的等同温热剂量和可高达500千焦的微波能量剂量来完成肿瘤摘除术。使用这些有效的温热和微波能量剂量时,可能必需提供额外安全性方法以保护乳房皮肤和邻近健康组织诸如胸壁区域免于任何热损伤。
原位管癌(DCIS)的温热疗法
原位管癌,也称为DCIS和管内癌,是治疗上的主要困境。根据《Cancer Facts and Figures 2001》,American Cancer Society,Inc.,亚特兰大,佐治亚州,预计2001年诊断了大约41,000例DCIS新病例。另外,预计有192,200例侵入性乳腺癌新病例。在预计的238,600例新诊断的乳腺癌中,80.6%是侵入性的,17%是DCIS、其余(2.4%)是LCIS(原位小叶癌)(Cancer Facts and Figures 2001)。由于取样误差,DCIS的针吸活组织检查诊断可能低估了侵入性疾病的存在。作为取样误差的结果,可能难以获得疾病进展的精确诊断。研究报告指出,16%至20%通过针吸活组织检查诊断的DCIS患者随后在手术切除后诊断出侵入性疾病(D.P.Winchester、J.M.Jeske、R.A.Goldschmidt,“The Diagnosis and Management of DuctalCarcinoma In-Situ of the Breast”,CA Cancer J Clin,50:184-200,2000)。由此,为了确定合适的治疗策略,手术切除是DCIS患者目前需要的。例如,初步诊断DCIS并在肿块切除术和病理学后随后确定为侵入性癌症后,可能需要活检并处理淋巴结(特别是岗哨淋巴结)。此时,可能还需要适合该阶段的系统疗法。对DCIS患者的任何病理学评估的主要目标是确定继发侵入的风险水平,从而提供适当的治疗并避免可能的治疗过度或不足。
根据对DCIS病的乳房X线摄影术和病理学评估,在有些病例中可能实现乳房保存手术而具有可接受的装饰效果。然而,对完全手术切除和放射疗法治疗的DCIS患者的长期跟踪显示多达19%或更多的DCIS患者经历局部复发,而且可高达50%的这些局部复发是侵入性的。对于只用肿块切除术治疗的DCIS患者而言,复发率可以高达26%。
为了推定对与局部复发有关的存活率的影响,考虑下列各项:对于手术和标准手术后放射疗法后具有阴性边缘的DCIS患者而言,至少80%将实现长期局部控制。也就是说,根据长期跟踪,大约20%的患者将经历局部复发。在此20%中,10%将具有非侵入性复发,而10%将具有侵入性复发。具有非侵入性复发的患者实际上将实现100%的局部控制并通过乳房切除术治愈。具有侵入性局部复发的患者通过乳房切除术将经历75%的五年存活率;也就是说,25%将不会存活超过五年。由此,对于通过乳房保存治疗管理的DCIS患者而言,10%的患者将在稍后的日子具有非侵入性复发,然后必须进行乳房切除术。具有侵入性复发的另一个10%必须进行乳房切除术,而且那些患者中的25%将在五年内死亡。由此,因DCIS而接受乳房保存治疗(肿块切除术和放射)的患者中大约2.5%将在局部复发五年内死亡。基于每年41,000例DCIS患者,这些患者中的2.5%即1,025名DCIS患者将在侵入性复发五年内死亡。鉴于这些百分比,大多数患者将选择乳房保存方案;然而,这些患者将经历来自乳房保存的放射疗法的显著副作用。还应当注意,放射疗法的流程昂贵且费时(常常需要20至30次分级治疗)。
用于治疗原位管癌(DCIS)的一种新方法在肿块切除术后使用温热疗法(一次或两次治疗)以提供与肿块切除术后放射疗法的复发率相等或更低的复发率,且副作用更少。预计温热疗法的费用将低于放射疗法的费用,从而导致节省总体健康花费。温热疗法还可以与常规放射疗法一起进行几次以增加破坏原位管癌(DCIS)的效力。
完整乳房中局部晚期乳腺癌的温热化学疗法
依照本发明,对于晚期乳腺癌而言,加热和化学疗法可以一起用于破坏和/或缩小原发性乳腺癌,从而将乳房切除术候选患者转变成更加保守的肿块切除术手术。在某些情形中,患者可能需要手术前化学疗法作为他们乳腺癌治疗方案的一部分。这将需要NSABP B-18中依照标准手术前和手术后化学疗法投递施行的四个循环或疗程的化学疗法(Fisher等人,J.Clinical Oncology,第15(7)卷,第2483-2493页,1997年;和Fisher等人,J.Clinical Oncology,第16(8)卷,第2672-2685页,1998年)。每21天施用一个循环的60mg/m2阿霉素(adriamycin)(多柔比星(Doxorubicin))和600mg/m2环磷酰胺制剂(Cytoxan)(环磷酰胺(Cyclophosphamide))。在化学疗法的每个循环开始时通过临床检查和超声成像测量肿瘤大小。依照本发明的一个实施方案,可以在施行手术前AC化学疗法的第一个、第二个、和第三个疗程的同一天里或在施行AC化学疗法的36小时内施行一段时间的聚焦微波定相阵列温热疗法。然后将在手术前施行AC化学疗法的剩余(第四个)循环而无温热疗法,从而容许足够时间来解决任何皮肤相关温热疗法作用(例如皮肤水泡)。直至完成了化学疗法的第四个循环才能做出对乳房的最后评估,确定是进行乳房切除术还是更加保守的乳房手术。用于乳腺癌的其它联合化学疗法治疗,诸如多柔比星与多西他赛(Docetaxel)或FAC(5-氟尿嘧啶、多柔比星、和环磷酰胺),可以联合用于乳腺癌的肿瘤新辅助治疗的温热疗法。申请人还设想了温热疗法能够在化学疗法之前施行从而在注入化学疗法之前缩小乳腺癌。
已知手术前AC化学疗法将引起大约80%的乳腺癌肿瘤有所缩小。肿瘤缩小常常在第一个疗程的AC化学疗法完成后看到,而且常常在第一个疗程的AC化学疗法完成后大约21天通过超声成像观察到。没有足够的证据来证明温热疗法与AC化学疗法的联合引起的肿瘤缩小程度将像AC化学疗法自身那样大。由此,在另一个实施方案中,为了看见显著缩小,可能需要在施行温热疗法之前施行至少一个剂量的化学疗法。若使用三个疗程的温热疗法,则将在施行手术前化学疗法的第二个、第三个、和第四个疗程的同一天里或36小时内施行温热疗法。若使用两个疗程的温热疗法,则可以在施行手术前化学疗法的第二个与第三个疗程、或第三个与第四个疗程、或化学疗法的第二个与第四个疗程的同一天里或36小时内施行温热疗法。
在投递化学疗法后施行温热疗法,使得肿瘤温度达到约43至46℃,而且肿瘤在每次治疗中接收大约50至100分钟的等同温热剂量和大约100至300千焦的微波能量剂量。当化学疗法的第四个和最后一个疗程结束时,根据患者参加研究时使用的相同方针(即肿瘤的大小和位置、乳房的大小、患者的健康状况、和患者的年龄)做出决定,患者是接受乳房切除术还是部分乳房切除术(肿块切除术)以保存乳房。手术前温热化学疗法方案后,将对所有患者给予通常的标准护理(包括药物和辐射)。凭内科医师的判断,雌激素受体阳性的患者将接受他莫昔芬,10mg/次,每天两次,达5年,由化学疗法最后一次剂量后的那天开始。另外,将对乳房组织和淋巴结进行放射疗法作为符合条件患者的标准护理的一部分。
良性乳房损伤的温热疗法
最近使用Celsion公司Microfocus APA 1000乳房温热疗法系统对恶性乳房损伤进行的2期临床温热疗法处理揭示了单独加热处理对乳腺癌和良性乳房损伤(囊肿)的显著破坏。根据这些临床处理,完全消除良性乳房损伤可能需要大约47至50℃范围内或可高达大约55℃的肿瘤温度。上述肿瘤温度连同可高到360分钟的等同温热剂量和可高达400千焦的微波能量剂量一起应当能够消除良性乳房损伤。依照本发明的一个优选流程,由于常常对遭受良性乳房损伤疼痛的患者施用止痛剂(220mg奈普生钠片剂),因此将连同镇痛剂一起给予一次或多次温热疗法治疗以降低疼痛。
用于预防原发性乳腺癌的温热疗法和药物疗法
当前用于预防乳腺癌的标准护理是预防性乳房切除术(手术切除乳房)或他莫昔芬处理。他莫昔芬(和其它药物像雷洛昔芬(raloxifene))是抗雌激素药物,它具有针对雌激素受体的亲和力且防止雌激素结合乳腺癌。在NSABP P-1乳腺癌预防试验中,13,175名参与者接受他莫昔芬(20mg/天,达5年)或安慰剂。总体而言,在他莫昔芬(商品名Nolvadex)组中观察到侵入性乳腺癌的风险降低了49%(Fisher B等人,“Tamoxifen for Prevention of BreastCancer:Report of the National Surgical Adjuvant Breast andBowel Project P-1 Study”,Journal of National CancerInstitute,第90卷,第1371-1388页,1998年;Morrow M和JordanVC等人,“Tamoxifen for the Prevention of Breast Cancer inHigh-risk Woman”,Annals Surg.Oncol.,第7(1)卷,第67-71页,2000年)。一种新的假说是,他莫昔芬预防治疗中添加的温热疗法可能通过增加对雌激素与乳腺癌雌激素受体的阻断数量而进一步增加侵入性乳腺癌风险的降低。可以通过破坏或修饰雌激素受体和/或通过加热直接杀死乳腺癌来实现对雌激素的阻断数量。在这样的一次假设临床试验中,温热疗法和他莫昔芬组中的患者将接受标准剂量的他莫昔芬(20mg/天,达5年),并且在这5年里以规则间隔接受温热疗法。由于设想这种假设临床试验中的患者将不会具有精确定义的损伤,因此靶区将仅仅是乳房的上部,其中由乳头至乳房上缘测量到所有乳腺癌中大约70%的存在(Mammography-A User’s Guide,NCRP报告第85期,National Council on Radiation Protection andMeasurements,贝塞斯达,第7页,1987年)。对于靶向乳房上部的温热疗法治疗,乳房压迫将采取头—尾(头—脚)体位,而E-电场聚焦探测器将置于距乳房头侧大约0.5至1.5cm处(由乳房中央深度开始测量)。将在施用他莫昔芬的过程中相距大约1年时间间隔的多次治疗中每次对乳房施用大约180千焦(100瓦特,总计30分钟)的微波能量剂量。这一假设临床试验的对照组将包括只接受他莫昔芬治疗的患者。两个通道中每个的初始微波能量可以是大约50瓦特,根据Celsion公司的I期和II期适应性定相阵列乳房温热疗法临床研究中对大约35名乳腺癌患者的治疗,这已经证实是安全功率水平的。可以监测皮肤温度传感器,并调整两个通道的微波功率,从而在温热疗法治疗过程中保持皮肤温度低于大约41℃。
在依照本发明用于早期乳腺癌、局部晚期乳腺癌、良性乳房损伤、和乳腺癌预防之一的温热疗法治疗中,优选的是在治疗过程中保持皮肤温度低于大约40至42℃。然而,如上所述,肿瘤温度可以达到大约43至50℃范围内或更高。
在Celsion Microfocus 1000外部聚焦适应性定相阵列微波系统的I期和II期临床测试中,申请人注意到,在一些病例中,乳房基部附近、接近胸壁的皮肤组织的加热比期望的更加强烈。另外,还发现,对乳房组织的机械压迫有时在压力最强的压迫板的边缘引起非温热水泡。因此,本发明提供了对受让人的适应性定相阵列微波系统的改进,从而减轻和/或减少这些副作用。
用于加热管癌和腺癌以及周围乳房组织的方法
图5显示了使用具有E-电场和温度反馈的适应性微波定相阵列高温系统加热完整乳房中癌瘤的优选系统。为了在微波频率可靠加热深层组织,必须用受到适应性定相阵列算法控制的两个或多个附着施用器100包围躯体(乳房)。病灶190所示黑色圆形代表将要处理的肿瘤或健康组织。在优选实施方案中,E-电场反馈探测器175用于聚焦微波辐射,而附着于乳房表面皮肤的温度反馈传感器410用于调整微波功率水平从而将肿瘤加热至期望温度。双通道适应性定相阵列用于加热受压迫乳房中的深层组织,与X射线乳房X线摄影术的几何学相似。优选的是,将E-电场探测器与适应性定相阵列快速加速梯度搜索算法一起用于将微波辐射靶向肿瘤部位,正如授予Fenn的美国专利号5,810,888中所公开的。
另外,优选将空气冷却波导施用器装置用于提供能够加热含有管癌和腺癌的大体积乳房组织的加热模式。用于冷却波导孔隙的空气可以是经过冷冻的、经过空调处理的、或室温的。根据高含水量组织与乳房脂肪组织之间在915MHz的介电参数差异,预计高含水量管癌和腺癌组织的加热比正常乳房组织更加快速。由此,处理区域将集中在高含水量(癌性和癌前期)癌组织和良性损伤,诸如纤维腺瘤和囊肿,而不伤害正常(健康)乳房组织。
将躯体或乳房压迫在两个压迫板200之间,所述压迫板由电介质制成,诸如能够透过微波的树脂玻璃。乳房压迫对于完整乳房高温治疗而言具有许多潜在优势。乳房压迫导致实现深层微波加热所需要的穿透深度减小,并降低血流,这也能改进加热组织的能力。将乳房压迫成扁平表面改进微波施用器与乳房组织之间的介面和电场偶合,并容许一对施用器治疗广泛的乳房大小。在高温治疗过程中用空气冷却乳房压迫板有助于避免潜在的皮肤表面热点。压迫乳房且患者采取俯卧体位,诸如20至40分钟stereotactic针吸乳房活组织检查流程(Bassett等人,A Cancer Journal for Clinicians,第47卷,第171-190页,1997年)中所采用的,使得压迫装置中的乳房组织数量最大化。适度压迫能够固定乳房组织,从而消除任何潜在的患者运动并发症(motion complication)。压迫板200(可以包含小孔隙)与X射线和超声成像技术相容,从而精确定位中央腺/管区并帮助安置侵入性E-电场探测器传感器。压迫的数量可以由大约4至8cm而变化,从而在20至40分钟或更长时间的高温治疗过程中调节患者耐受。乳房X线摄影术中乳房压迫的患者舒适性研究指出,在560名接受检查的女性中,只有8%觉得乳房X线摄影术是痛苦的(定义为非常不舒服或难以容受)。在该研究中,平均压迫厚度是4.63cm,标准偏差(1个σ)1.28cm(Sullivan等人,Radiology,第181卷,第355-357页,1991年)。由此,在适度乳房压迫下高温治疗20至40分钟或更长时间是可行的。
在高温处理之前,将乳房压迫到两个压迫板200之间,并将一个侵入性E-电场反馈传感器175插入乳房的中央腺/管/肿瘤组织部位(病灶190)中,与微波施用器100的极化平行。随着使用适应性定相阵列梯度搜索算法调整移相器以获得最大反馈信号,使用E-电场探测器175来监测焦点E-电场振幅。将非侵入性温度探测器410贴在或以其它方式固定在乳房皮肤表面以监测皮肤温度。常常使温度探测器与E-电场极化成直角,从而不会被微波能量加热。本发明的双施用器适应性定相阵列与E-电场反馈探测器一起容许调整移相器,从而能够生成集中E-电场,允许聚焦组织中某一深度的加热。
图6和14-17显示了应用于用于治疗乳房肿瘤(恶性的和良性的)的外部聚焦适应性微波定相阵列温热疗法的安全性方法的实施方案。
在图6例示的一种优选方法中,患者采取俯卧且乳房穿过治疗桌210的孔摆动,并用扁平塑料压迫板200压迫待处理乳房220,这能够固定乳房组织、降低血流、并减小微波辐射所需要的穿透深度。治疗桌210可以与stereotactic成像乳房针吸活组织检查桌相似,诸如由Fischer Imaging(丹佛,科罗拉多州)制造的,其中桌子是金属的且覆盖软垫以使患者舒适。为了乳房成像目的,金属床担当坚固的支撑结构。为了乳房温热疗法,金属桌210还担当微波辐射的屏蔽,从而充分保护整个躯体(特别是患者的头和眼)免于来自微波施用器100的任何偏离的微波辐射。可以用铝或钢或者用具有金属箔或金属网覆盖层的塑料制造金属桌210。桌垫212可以是泡沫材料,而且可以包含微波吸收材料,用于额外屏蔽来自施用器的偏离微波辐射。
乳房压迫板由透过微波的塑料材料制成,而且可以包含一个或多个矩形或圆形孔隙,从而容许对乳房组织成像并将最低限度侵入性E-电场反馈探测器175安置于期望病灶深度。E-电场反馈探测器175的插入可以遵循超声变换器的指引来进行。为了提供针对微波场的皮肤损伤的额外保护,通过一个或多个冷气扇(未显示)提供气流180。
如图5所示,将两个或多个温度反馈探测器传感器410附着于乳房皮肤表面并生成温度反馈信号400。将两个微波空气冷却波导施用器100置于压迫板200的对面。915MHz微波振荡器105在节点107处分开并供应移相器120。相位控制信号125控制微波信号的相位,范围是0至360电度(electrical degree)。来自移相器120的微波信号流入微波功率放大器130,它受到电脑生成控制信号135的控制,它设置初始微波功率水平。将耦合的915MHz微波功率输送至两个波导施用器100,同时调整每个通道的移相器120而将微波能量最大化并聚焦在E-电场探测器传感器175处,使得微波功率在病灶部位190处达到最大。然后开始治疗。
在高温治疗过程中,输送至每个施用器100的微波功率水平测量为反馈信号500,并且手工或自动调整功率控制以控制由皮肤传感器410测量的皮肤温度和等同温热剂量以避免可以引起皮肤烧伤或水泡的高温。在治疗过程中根据需要提供压迫板200调整乳房压迫的数量以为患者提供舒适。每次调整乳房压迫或乳房复位时,重新调整/重新聚焦移相器120,使得E-电场探测器传感器175接受最大功率。在治疗过程中,自开始治疗起,在电脑250中计算输送至微波施用器的总微波能量并显示在电脑显示器260上。在将期望数量的总微波能量输送至微波施用器100时,治疗完成。作为候选实施方案中,将根据通过E-电场探测器175接收的电场反馈信号450计算的总微波能量用于控制治疗长度。为了测定治疗的效力,在施用微波总能量剂量之前和之后通过包括X射线和磁共振成像的乳房X线摄影术手段对乳房组织成像,,以及来自乳房针吸活组织检查的病理学结果。
作为一个候选实施方案,用两个置于对面皮肤表面的非侵入性E-电场探测器185取代一个侵入性E-电场探测器175。通过调整微波移相器120将通过两个非侵入性E-电场探测器测量的总功率降至最低(如美国专利号5,810,888中所述),在乳房的中部生成聚焦E-电场探测器。通过这个实施方案,不再有因插入探测器而引起感染的风险,不再有因切开皮肤并插入探测器的程序而引起乳房皮肤结疤的风险,而且避免因探测器穿过肿瘤床而引起癌细胞蔓延的任何风险。同样,由于在这种方法实施方案中温度和E-电场探测器二者都可以置于乳房皮肤上,因此这种方法将在没有限定一个区域的情况中运转良好。
优选的是,定相阵列的每个通道(在节点107的任一侧)包含一个电子可变微波功率放大器130(0至100W)、一个电子可变移相器120(0至360度)、和空气冷却的线性极化矩形波导施用器100。施用器100可以是由Celsion公司(哥伦比亚,马里兰州)制造的型号TEM-2。一对优选TEM-2金属波导施用器的矩形孔隙的尺寸是6.5cm×13.0cm。
虽然优选实施方案公开了大约915MHz的微波能量,但是微波能量的频率可以在100MHz与10GHz之间。微波能量的频率可以选自902MHz与928MHz的范围。事实上,可以使用较低频率的能量来消除或预防癌性组织。
在一个优选的实施方案中,输送至每个波导施用器的初始微波功率在20与60瓦特之间。在对组织的整个处理中,可以在0-150瓦特的范围里调整输送至每个波导施用器的微波功率,从而投递期望的微波能量剂量并避免过度加热皮肤。
使用施用器100矩形波导区域侧壁的介电负载来获得TEM施用器微波辐射的良好阻抗匹配条件(Cheung等人,“Dual-beam TEM施用器for direct-contact heating of dielectricallyencapsulated malignant mouse tumor”,Radio Science,第12卷,第6(S)期增刊,第81-85页,1977年;Gautherie编,《Methodsof external hyperthermic heating》,Springer-Verlag,纽约,第33页,1990年)。Cheung等人1977年的论文显示了顺序加热小鼠肿瘤的双重对立非耦合微波施用器的范例——他们的实验中没有使用E-电场探测器。通过安装在多孔导电屏后面的风扇(未显示)手段实现通过波导孔隙的空气冷却,所述多孔导电屏担当平行面而反映波导的输入单极供给的地平面。考虑到与波导侧壁接触的介电板的厚度,对于TEM-2施用器而言,空气冷却的有效横截面大小是大约6.5cm×9.0cm。根据高含水量肿瘤组织与正常乳房组织之间在915MHz的介电参数差异,预计高含水量管癌和腺癌以及良性损伤的加热比正常乳房组织更加迅速。由此,50%的SAR区域将集中在高含水量(癌性、癌前期、和良性损伤,包括纤维腺瘤和囊肿)组织,而不伤害正常组织。
在一个优选的实施方案中,外径(OD)0.9mm且中央导体延伸1cm的侵入性E-电场共轴单极探测器(半硬RG-034),可以用于测量针对组织的电场的幅度,并提供反馈信号,用于在治疗之前确定电子移相器的必要相对相位。这一类型的共轴馈电(coaxially-fed)单极探测器已经用于精确测量受压迫乳房幻影中的线性极化电场(Fenn等人,International Symposium on Electromagnetic Compatibility,1994年5月17-19日,第566-569页;Journal of Hyperthermia,第10卷,第2期,第189-208页,1994年3月-4月)。将这种线性极化E-电场探测器插入1.5mm OD的特氟隆导管。在治疗过程中使用热电偶探测器(Physitemp仪器公司,T形铜—康铜,封闭在0.6mmOD的特氟隆导管中)来测量肿瘤中的局部温度。这些温度探测器具有100ms的响应时间和0.1℃的精确度。
受到挤压的存活乳房组织加热测试
作为FDA批准的由受让人Celsion公司进行的在1999年12月开始的I期临床研究的一部分,用适应性微波定相阵列治疗乳房肿瘤的最大尺寸由3至6cm变化的几名志愿患者,其中将E-电场和温度探测器插入乳房组织。患者接受40分钟的高温治疗,并且在大约一周后经历乳房切除术。这项临床研究包括测量输送至微波施用器的功率,这用于计算投递的微波能量剂量,但是不用于控制治疗时间。关于这项I期临床研究的更详细信息发表于Gardner等人,“FocusedMicrowave Phased Array Thermotherapy for Primary BreastCancer”即用于预防性乳腺癌的聚焦微波定相阵列温热疗法,AnnalsSurg.Oncol.,第9(4)期,第326-332页,2002年5月6日。
将E-电场探测器与授予Fenn的美国专利号5,810,888中公开的适应性定相阵列快速加速梯度搜索算法一起使用,从而将微波辐射靶向肿瘤部位。在治疗过程中将由肿瘤中的侵入性温度探测器感应到的温度用作实时反馈信号。使用这种反馈信号来控制可变功率放大器的微波输出功率水平,这设置并维持肿瘤部位的病灶温度在43至46℃范围内。在电脑控制下使用数字—模拟转换器(digital-to-analogconverter)适应性的调整输送至定相阵列的两个通道的功率和相位。
乳房压迫板由丙烯酸材料(树脂玻璃)制成,这是低损失介电材料,而且对微波场几乎透明。压迫板含有方形图案(孔隙),每边大约5.5cm,这适应小型超声转换器(标称长度4cm),以便于安置最低限度侵入性探测器(E-电场和温度)。图案还容许改善气流以冷却皮肤。
根据来自这些最近的使用适应性微波定相阵列治疗的微波高温临床测试的结果,申请人认识到,在压迫至4.5至6.5cm的存活乳房组织中,138kJ(千焦或相当于千瓦秒)与192kJ之间的微波能量剂量产生范围为相对于43℃ 24.5分钟至67.1分钟的等同温热剂量,如下文表1所列。
表1:在四项受压迫存活乳房组织测试中投递的等同温热剂量(分钟)和总微波能量(千焦)
       在肿瘤中测量的T43℃等同温热剂量(分钟)    总微波能量剂量(千焦)
  测试1    41.0    192.0
  测试2    24.5    162.0
  测试3    67.1    186.0
  测试4    47.8    138.0
  平均值    45.1    169.5
由此,总微波能量剂量可以用于估计所需要的加热时间。也就是说,申请人认识到,非侵入性等同温度感应手段能够取代侵入性温度探测器,而且总微波能量剂量能够可靠的用于控制治疗时间。在表1中,平均温热剂量是45.1分钟,而平均总微波能量是169.5千焦。在这四项测试中,最大能量值(192.0kJ)只比平均值高13%,而最小能量值(138.0kJ)只比平均值低14%。如上所述,这些测试中所使用的乳房压迫降低了血流,这有可能消除血流对治疗所需要的微波能量的影响,而且可能有助于解释这些测试中所需要的能量的小幅变化。申请人还认识到,这四项研究的治疗后成像通常显示显著破坏肿瘤,而对皮肤、乳房脂肪、和正常腺、管、和结缔组织的损伤很小或没有。
依照该方法的一个优选实施方案,输送至波导施用器以确定完成治疗的总微波能量在25千焦至250千焦之间。将破坏任何癌性或癌前期组织的微波能量剂量的总量将是大约175千焦。但是,在某些条件下,所需要的微波能量剂量可能低达25千焦。在依照本发明的另一个实施方案中,可能采用可高达400千焦的较高微波能量剂量以完成破坏癌性肿瘤细胞。
下文表2列出了四项测试的乳房组织压迫厚度。应当注意,最小的压迫厚度(4.5cm)对应于投递的最小能量剂量(138kJ),这些都是在测试4中发生的。正如申请人认识到的且下文将在理论上证明的,对于预防或破坏癌性、癌前期、或良性损伤的有效治疗而言,较小的压迫厚度可能需要较小的微波能量剂量(相对于较大压迫厚度而言)。
表2:在四项受压迫存活乳房组织测试中的乳房压迫厚度
    乳房压迫厚度(cm)
   测试1     6.5
   测试2     6.5
   测试3     6
   测试4     4.5
根据这些临床研究,显然重要的是要选择投递至每个施用器的合适初始微波功率水平(P1、P2),以及两个施用器之间的合适微波相位从而将能量聚焦于待治疗区域。由受压迫乳房实验获得了四项测试的下列数据,如表3所列:
表3:初始微波功率和初始微波相位从而在受压迫存活乳房组织中聚焦辐射
 初始微波功率P1、P2(瓦) 相对微波相位(度)
测试1  30 -90
测试2  30 -180
测试3  40 -180
测试4  40 -10
正如在表1和表3中可以看到的,每个施用器的初始微波功率30至40瓦足以实现显著的温热剂量。另外,施用器之间的初始相对微波相位由-10电度至-180电度变化,而且不遵循任何明确趋势,证明了有必要始终用E-电场传感器聚焦微波辐射。
对于可比较的压迫厚度,即分别为测试2和测试3中的6.5cm和6.0cm,在治疗的前几分钟里保持微波功率水平恒定以测定肿瘤中的线性温度升高——这有效提供对SAR的测量。发现,对于30瓦的功率而言,在肿瘤中实现温度升高1℃需要2.5分钟。对于40瓦的功率而言,实现温度升高1℃只需要1.5分钟。
在高温治疗过程中,有必要监测皮肤温度,使得它们不会升高而显著超过大约41℃达超过几分钟。可以计算皮肤的等同温热剂量(Sapareto等人,Internat ional Journal of Radiation OncologyBiology Physics,第10卷,第787-800页,1984年),而且可以用作反馈信号。典型地,必须避免投递超过少许分钟的等同温热剂量。在治疗过程中通过手动或自动电脑控制调整输送至施用器的个别功率(P1、P2)而实现对依照本发明的过高皮肤温度的避免。
申请人认识到,多普勒超声可以用于在治疗之前和治疗过程中测量肿瘤和周围乳房组织中的血流,从而计划并调整微波能量剂量。例如,当乳房受到压迫和/或将肿瘤加热至治疗性温度时,肿瘤血流速度降低,此时需要较少的能量剂量。或者,可以测量来自针吸活组织检查的乳房肿瘤组织的含水量和介电参数,并用于在治疗前确定所需要的微波能量剂量。例如,肿瘤中的较高含水量和较高电导率将降低所需要的微波能量剂量的数量。除了上述变量以外,肿瘤的大小也影响所需要的微波能量剂量。较大肿瘤比较小肿瘤更加难以加热,而且需要更大的微波能量剂量。可以进行初步治疗计划阶段,包括低剂量投递微波能量以评估肿瘤的可加热性,随后是整个所需微波能量剂量的完全治疗。
简化的微波辐射理论
躯体近场中来自高温施用器的微波能量以球面波的形式辐射,且电场振幅部分随距施用器的径向距离γ的倒数而部分改变。另外,振幅作为躯体组织衰减常数α与体内距离d(或深度)倒数的乘积的指数函数而衰减。电场相位随距离依照相位传播常数β与距离d的乘积而线性变化。为了简化,这里在施用器辐射近似平面波的假设下分析两个对面施用器。在数学上,平面波电场对组织深度的关系是E(d)=E0exp(-αd)exp(-iβd),其中E0是表面电场(一般由振幅和相角表示),i是虚数(《Field and Hand,An Introduction to the PracticalAspects of Clinical Hyperthermia》,Taylor & Francis,纽约,第263页,1990年)。
915MHz微波频率的平面波电磁能在高含水量组织诸如管或腺乳房肿瘤中的衰减速率是大约3dB/cm,而在正常乳房组织中是大约1dB/cm。由此,与辐射深层组织的能量相比,单个辐射施用器具有通过插入表面身体组织而吸收的其微波能量的显著份额,有可能在表面组织中产生热点。由于空气或水对皮肤表面的冷却对组织的保护只能达到最大深度大约0.25至0.5cm,为了避免热点,有必要引入与第一个施用器具有相同微波辐射振幅的第二个相位耦合施用器。第二个相位耦合施用器在理论上与单个施用器相比能够将投递至深层组织的功率(以及由此的能量)增加四倍(《Field and Hand》,第290页,1990年)。
来自两个或多个施用器(称为定相阵列)的电磁辐射的相位特征可能对投递至不同组织的功率分布具有显著影响。均匀组织中的相对特异吸收率(SAR)近似电场振幅的平方|E|2。SAR与指定时间间隔的温度升高成正比。下文详细描述了一种简化情况,即均匀乳房组织,其中微波辐射聚焦于中央组织部位。正如Fenn等人,InternationalSymposium on Electromagnetic Compatibility即国际电磁相容性讨论会,仙台,日本,第10卷,第2期,1994年5月17-19日,第566-569页,1994年的论文中所述,可以忽略乳房幻影中多个微波信号反射的影响。
均匀的正常乳房组织(近似介电常数12.5且电导率0.21S/m(由Chaudhary等人,1984、Joines等人,1994平均得到的数值))中的波长在915MHz是大约9.0cm,而微波损失是1dB/cm。衰减常数α是0.11弧度/cm,且传播常数β是0.69弧度/cm。(对于4.5cm幻影厚度而言,单个施用器辐射在左侧的电场如下:表面是E0,中央部位(2.25cm深度)是-i0.8E0(其中i表示90度相移),而右侧表面是-0.6E0。)。联合两个相位耦合施用器产生的电场数值在两个表面都是0.4E0,而在中央部位(2.25cm深度)是-i1.6E0。由此,对于乳房而言,表面处的SAR与中央SAR相比显著较低,即16倍。通过微波场传播4.5cm乳房组织经历的180度相移部分相消或完全消除以0度相移进入组织的场。由于远离中央病灶的微波的破坏性干扰,预计表面乳房组织的温度较低。对面皮肤表面的较低SAR的测量和执行将微波能量有效聚焦在乳房深处。
依照本发明的适应性定相阵列系统使用由普通振荡器105供给的两个微波通道,它们含有两个电子可调移相器120,从而将微波能量聚焦于E-电场反馈探测器175。本发明的适应性定相阵列系统相对于非适应性定相阵列具有显著优势。根据两个波分别是180度异相(out-of phase)、完全同相、或部分异相,具有两个通道的非适应性定相阵列在理论上能够产生零、最大、或中等数值的E-电场。也就是说,依照本发明,可以在治疗之前或治疗过程中将输送至微波施用器的微波相位调整至-180度与180度之间,从而在乳房组织中产生聚焦场。
因为依照本发明的适应性定相阵列在组织中存在所有散射结构时将E-电场自动聚焦,所以与授予Turner的美国专利号4,589,423中描述的手动调整或预先治疗计划控制定相阵列相比,这种阵列应当提供更加可靠的深层聚焦加热。另外,依照本发明优选实施方案的适应性定相阵列系统不使用侵入性金属温度探测器,它可能散射或改变肿瘤部位的E-电场。
微波能量的计算
电能消耗常常以千瓦时为单位进行表述。在数学上,通过施用器投递的微波能量W的表述如下(Vitrogan,《Elements of Electric andMagnetic Circuits》,Rinehart出版社,旧金山,第31-34页,1971年):
                  W=Δt∑Pi。    (1)
在上面的方程式中,Δt表示测量微波的恒定时间间隔(以秒计),而求和∑覆盖整个治疗过程且第i个时间间隔的功率(以瓦计)以Pi表示。
微波能量W以瓦秒为单位,这也称为焦耳。例如,在三个连续的60秒时间间隔里,若微波功率分别是30瓦、50瓦、和60瓦,则在180秒里投递的总微波能量的计算是W=60(30+50+60)=8,400瓦秒=8,400焦耳=8.4kJ。
为了更好的理解通过两个对面施用器在不同厚度(由D表示)的均匀乳房组织中央部位沉积的每个单位时间的聚焦能量W’(其中’表示撇号),考虑以下计算。假设P1和P2分别表示输送至两个施用器的功率。由每个施用器辐射的电场与输送至施用器的功率的平方根成正比。假设对称,那么来自两个施用器的辐射场在中央聚焦部位处同相。假设来自每个施用器的功率相等,即P1=P2=P,且以平面波照射,那么中央深度每个单位时间的聚焦能量表述成
W’(D)=|E|2=4Pexp(-αD)。    (2)
方程式(2)用于计算厚度由4cm至8cm变化且衰减常数等于0.11弧度/cm的正常乳房组织中央深度每个单位时间的聚焦915MHz能量,正如表4和图7所示。
表4:用于两个对面(dual-opposing)915MHz平面波的模拟正常乳房组织中中央病灶的相对微波能量
    压迫厚度(cm)     病灶处的相对能量
    4.00     0.643
    4.25     0.626
    4.50     0.608
    4.75     0.592
    5.00     0.576
    5.25     0.560
    5.50     0.545
    5.75     0.530
    6.00     0.516
    6.25     0.502
    6.50     0.488
    6.75     0.475
    7.00     0.462
    7.25     0.449
    7.50     0.437
    7.75     0.425
    8.00     0.413
对于给定的功率水平,随着病灶部位向皮肤移动,病灶处发生的能量升高。
等同温热剂量的计算
计算相对于43℃的累计或总等同温热剂量为总和(Sapareto等人,International Journal of Radiation Oncology BiologyPhysics,第10卷,第787-800页,1984年):
t43℃等同分钟=Δt∑R(43-T),    (3)
其中∑是治疗过程中一系列温度测量的求和,T是一系列温度测量(T1、T2、T3、……),Δt是测量间的恒定时间间隔(单位是秒并转换成分钟),R在T>43℃时等于0.5而在T<43℃时等于0.25。等同温热剂量计算可用于评估对乳房组织和皮肤的任何可能热损伤。
模拟乳房组织中详细的微波特异吸收率计算
为了评估正常乳房组织和含有肿瘤的正常乳房组织在暴露于微波辐射时的加热模式,使用有限差时间范畴理论(finite-differencetime-domain theory)和电脑模拟来计算三维特异吸收率(SAR)加热模式(Taflove,《Computational Electrodynamics:Thefinite-difference time-domain method》,Artech House公司,诺伍德,马萨诸塞州,第642页,1995年)。如图7所示,这些模拟是通过模仿在915MHz运行的两个对面TEM-2波导施用器(Celsion公司,哥伦比亚,马里兰州)而进行的。施用器通过耦合相联合而将辐射束聚焦于6cm厚的均匀正常(脂肪与腺的混合物)乳房组织的中央部位。假设施用器的辐射穿透模仿在适应性定相阵列乳房高温系统中用于乳房压迫的板的树脂玻璃薄片。
以高介电常数材料将每一个金属波导加载到侧壁上,这用于波导孔隙内辐射的匹配和定形。如图8所示,将波导施用器以y轴方向的E-电场队列线性极化。3mm厚的树脂玻璃平板毗邻每个施用器并与波导孔隙平行。在两个对面TEM-2施用器之间的是6cm厚的均匀正常乳房组织幻影。其余体积充满模拟空气(model air)的立方体单元(cubic cell)。
通过将电场振幅平方并乘以组织电导率来计算SAR分布。SAR常常描述成相对于最大SAR值100%的水平(50%常常称为有效加热区)。SAR与每个单位时间的温度初始升高成正比,而忽略血流和热传导的影响。
如图9至13所示,计算均匀正常乳房组织在三个主平面(xy、xz、yz)中的SAR模式。图9显示了均匀正常乳房组织的SAR侧视图(xy面,z=0)模式(75%和50%围线)。该模式通常是钟形,而且在TEM-2施用器之间集中。图10显示了顶视图(xz面,y=0)SAR模式(75%和50%围线)。该模式展示了小椭圆形的75%SAR区被三叶椭圆形50%SAR区包围。75%SAR区小尺寸是由于这类施用器的辐射电场的模式形状。图11显示了SAR模式的端视图(yz面,x=0)(75%和50%围线)。该模式展示了小圆形75%SAR区被三叶椭圆形50%SAR区包围,近似波导孔隙的大小。
图9至11所示结果显示了大体积的深层乳房组织能够被装有TEM-2波导施用器的适应性定相阵列加热,而表面组织基本上不被加热。暴露于这种大型加热场的任何高含水量组织将相对于周围正常乳房组织而言优先加热。为了证明选择性(优先)加热,将两个直径1.5cm的球形模拟肿瘤(介电常数58.6,电导率1.05S/m)相距5cm包埋在正常乳房组织中,而且图12显示了顶视图的FDTD计算。将这一结果与图10进行比较,显然SAR模式有显著变化,而且两个高含水量肿瘤区得到选择性加热。为了显示选择性加热的锐度,图13显示了沿z轴x=0的计算SAR模式。在两个肿瘤处有尖峰,再次证明高含水量癌瘤相对于周围正常乳房组织的选择性加热。预计良性乳房损伤诸如纤维腺瘤和囊肿也将获得类似结果。
图14显示了图5的外部聚焦适应性定相阵列温热疗法系统,并将两种安全方法应用于波导施用器100。在优选的实施方案中,宽度1至2cm的薄金属屏蔽条605覆盖矩形波导孔隙600的顶部,从而阻断偏离辐射达到乳房基部胸壁区域附近。薄微波吸收垫610(例如0.125英寸厚的Cuming微波公司MT-30片状吸收器,衰减40dB/英寸)覆盖波导施用器100(例如Celsion公司TEM-2波导施用器)的整个顶面。微波吸收垫610能够削弱或遏制任何微波表面电流,从而能够将朝向乳房基部和胸壁区域的微波能量再次辐射。将微波吸收垫610粘在或以其它方式固定在波导施用器的顶面。
图15显示了外部聚焦适应性定相阵列温热疗法施用器100的侧视图,用于在微波加热实验中模拟乳房的简单T形乳房幻影700的两侧有乳房压迫板(桨)200。施用器100有垫610且有微波屏蔽条605,而且压迫板200与幻影T700之间置有额外的绝缘垫620,代表支持乳房组织的胸壁或肌肉。优选由树脂玻璃或其它塑料材料制成T形幻影包围圈,而且作为压迫板200的一部分。在一个优选的实施方案中,压迫板200的上部“T”部分在垫610与垫620之间延伸一定距离,如图15所示。T形乳房幻影700的上部含有肌肉等同幻影组织(M.Gauthrie编,《Methods of External Hyperthermic Heating》,Springer Verlag,第11页(Chou formulation),1990年),而下部含有脂肪团乳房等同幻影组织(J.J.W.Lagendijk和P.Nilsson,“Hyperthermia Dough:A Fat and Bone Equivalent Phantom to TestMicrowave/Radiofrequency Hyperthermia Heating Systems”,Physics in Medicine and Biology,第30卷,第7期,第709-712页,1985年)。垫620软得舒适,而且含有微波吸收材料以降低偏离微波能量。
施用器100的设计使得在施用器与乳房组织之间提供缺口区635。缺口区635容许来自指向缺口外部通气管或风扇的气流冷却接近乳房两侧基部和胸壁区域的区域。在一个优选的实施方案中,具有外展或圆锥形管口的塑料通气管,诸如Lockwood Products公司(莱克奥斯韦戈,俄勒冈州)制造的,可以用于引导气流进入缺口区635以冷却乳房区域。
在一个优选的实施方案中,光纤温度传感器探测器415和E-电场微波聚焦探测器175彼此平行,且共同位于一个导管内。将光纤温度传感器的尖端置于肿瘤部位或病灶部位190内,并将E-电场聚焦探测器175置于在压迫板之间测量的肿瘤的相同深度。肿瘤中的光纤温度传感器探测器可以是fluroroptic型的,是非金属的,且不干扰微波能量(M.Gauthrie编,《Methods of External HyperthermicHeating》,Springer Verlag,第119页,1990年)。金属的E-电场聚焦探测器175由直径0.020英寸的很薄的金属共轴电缆(UT-20)组成。E-电场聚焦探测器175的尖端部分由越过共轴电缆外护层(outjacket)延伸大约1cm共轴电缆中央引线组成。将E-电场聚焦探测器的尖端置于距光纤温度传感器尖端大约0.5cm处。
图16显示了更加实际形状的乳房幻影710,其中乳房是弯曲的。对于这种幻影,可以使用填充可压缩脂肪幻影材料并符合乳房形状的塑料袋(聚乙烯)制成弯曲的乳房部分。可压缩超声乳房成像幻影也可以用于微波实验。在图16中,标以7和8的位置位于皮肤表面,接近乳房基部,胸壁区域附近。另外,正如此图所例示的,金属共轴E-电场聚焦探测器175的一部分(皮肤进入点以下部分)未受到乳房组织的屏蔽,而且直接暴露于由两个波导施用器100辐射的微波能量。微波能量有可能过度加热暴露的金属共轴电缆,在E-电场聚焦探测器进入皮肤处导致皮肤烧伤。在这种情况中,希望在微波聚焦流程完成后在加热乳房前清除E-电场聚焦探测器175。优选的E-电场聚焦探测器175是中央引线延伸形成单极天线的共轴电缆。然而,还可以使用与金属或碳材料平行传输线相连的单极或偶极天线制成聚焦探测器。或者,聚焦探测器可以是微波—光转换器与光纤电缆相连的单极或偶极天线以避免皮肤进入点的金属加热影响。光学调制器可以是例如Mach Zehnder调制器。
图17显示了具有压迫板200和垫620的改进安全性方法的详细三维视图。压迫板边缘210是皮肤损伤的潜在来源,因为板的垂直和水平面形成直角,而且边缘毗邻胸壁和乳房组织。因此,将微波吸收垫620置于边缘210与胸壁之间。微波吸收垫620担当两个目的。首先,垫含有软泡沫材料,并在乳房受到压迫板边缘210的压迫时衬垫乳房皮肤免于擦伤或压力。其次,垫含有微波吸收材料以削弱来自施用器100而可能过度加热附近组织的任何偏离微波辐射。压迫板200或桨可以含有一个或多个矩形开口205,从而在将E-电场聚焦探测器和温度探测器插入乳房肿瘤区域时允许超声转换器接触皮肤而对乳房组织成像。在依照本发明的另一个实施方案中,图18显示了波导施用器100和压迫板200的侧视图,其中金属屏蔽条615粘在或以其它方式附着在压追板200背向乳房皮肤的表面上。
屏蔽实验结果
如上所述,图15显示了用于治疗乳房肿瘤的外部聚焦适应性定相阵列微波温热疗法的几何学。在测试时,使用两个在915MHz辐射的Celsion公司TEM-2微波施用器来诱发温热疗法。为了简化,用由T形树脂玻璃盒组成的幻影来代表患者组织,所述树脂玻璃盒在下部含有模拟乳房组织而在上部含有模拟肌肉组织。另外,由肌肉幻影组织(直径大约1.5cm)组成的模拟乳房肿瘤位于位置1。这些实验中使用了7个温度探测器(用1号至7号表示)。探测器1是光纤温度探测器,其余探测器是热电偶探测器,测试模拟乳房组织皮肤以外的温度。探测器1位于期望的病灶部位190,这里是模拟肿瘤位置所在。探测器2和3位于压迫桨的顶角,在主要微波场以外。探测器4和5位于微波场中央,这里是最大场强所在。探测器6和7位于探测器4和5的上面,预计这里的场强较低。将E-电场聚焦探测器175也置于与探测器位置1相同的深度以聚焦微波能量。将E-电场聚焦探测器175和光纤温度探测器1插入公用导管(特氟隆,外径1.65mm)。
进行了两项实验,其中每个通道的微波功率是70瓦,而且将阵列中的移相器适应性聚焦于6cm厚的乳房幻影中的中央探测器位置1。在第一项实验中,没有使用微波吸收器或金属屏蔽,如图5所示。在第二项实验中,使用了覆盖孔隙顶部(2cm)的微波吸收垫和金属条屏蔽,如图15所示。在每项实验中,对前30秒钟的加热计算每个测量传感器的初始温度斜率(℃/分钟)。
表5:无吸收器和无屏蔽的测量温度斜率
 温度传感器   温度斜率(无吸收器、无屏蔽)
 1(模拟肿瘤部位)   3.8℃/分钟
 2(胸壁表面部位,左侧)   4.4℃/分钟
 3(胸壁表面部位,右侧)   5.2℃/分钟
 4(左侧皮肤表面,场中央)   0.8℃/分钟
 5(右侧皮肤表面,场中央)   1.0℃/分钟
 6(左侧皮肤表面,场中央以上)   0.8℃/分钟
 7(右侧皮肤表面,场中央以上)   1.6℃/分钟
胸壁表面部位的加热比模拟肿瘤部位快。这图示于图19。
表6:乳房压迫板上部和波导施用器上部有吸收器且用屏蔽覆盖施用器顶部的测量温度斜率
  温度传感器   温度斜率(有吸收器和屏蔽)
  1(模拟肿瘤部位)   5.6℃/分钟
  2(胸壁表面部位,左侧)   1.8℃/分钟
  3(胸壁表面部位,右侧)   2.4℃/分钟
  4(左侧皮肤表面,场中央)   2.2℃/分钟
  5(右侧皮肤表面,场中央)   1.6℃/分钟
  6(左侧皮肤表面,场中央以上)   0.8℃/分钟
7(右侧皮肤表面,场中央以上) 1.2℃/分钟
如表6结果所示,模拟肿瘤部位的加热显著快于表面部位,包括胸壁区域。这图示于图20。
因此,通过这些安全性改进,肿瘤加热得更快,而且传感器位置2和3的温度斜率是未使用安全性改进时的一半。这两项实验的加热结果清楚显示了,覆盖波导施用器顶部的微波吸收垫和金属屏蔽条在降低胸壁附近表面加热方面的效力。传感器位置4和5的温度斜率随安全性改进而增加,但是仍然比肿瘤温度斜率低至少两倍。额外的气流和冷却的空气可能有助于进一步降低表面加热。
除了上文所述微波实施方案以外,申请人还设想,其它实施方案可以采用任何类型的聚焦能量,包括电磁、超声、射电频率、激光、或本领域熟练技术人员知道的其它聚焦能量来源。也就是说,在依照申请人的发明的方法中可以采用能够聚焦而加热并消融组织区域的任何能量或不同能量的组合。虽然聚焦能量可以是主要的加热源,但是它可以联合注射增加或增强靶区(肿瘤)加热的物质。所述物质可以是盐水或与金属或其它导电物质混合的水,诸如金属手术乳房夹,使得该物质增强投递至靶区的热量。
由于注射的物质增强靶区的加热,因此这是获得选择性加热靶区的候选方法。因此,申请人设想了,非聚焦能量在联合注射盐水或与金属混合的水时能够有效加热靶区以消融癌性细胞和/或良性细胞。由此,该实施方案中采用的能量施用器可以是投递非聚焦能量的施用器。在依照本发明只使用非聚焦能量的这种实施方案中,E-电场探测器将不是必需的。
虽然已经参照本发明的优选实施方案具体显示并描述了本发明,但是本领域熟练技术人员可以理解,可以在其中进行形式和细节的多种变化而不违背所附权利要求限定的本发明的精神和范围。例如,尽管本文所述高温系统是关于乳腺癌和良性乳房损伤的治疗,但是本发明可用于治疗其它类型的癌症,诸如前列腺、肝、肺、和卵巢,以及良性疾病,诸如良性前列腺增生(BPH)。类似的,可以理解,本文公开的安全性方法可用于人体其它附件和部分诸如腿和臂以及躯干的微波或射电频率温热疗法处理。
还可以理解,可以使用较大或较小数目的阵列天线施用器或单个天线施用器而获得相似的结果。另外,本文公开的方法可用于非耦合多施用器处理系统——在非耦合系统中,场聚焦探测器将不是必需的。在乳房或其它器官的压迫是不希望或不适当的情况中,可以省略压迫步骤。若未使用压迫步骤,则可以不采用吸收垫和其它金属屏蔽特征。本文描述的有些方法和技术也适用于超声高温系统,特别是用于反馈控制的能量剂量的用途。该方法可用于增强放射疗法或使用热敏脂质体的靶向药物投递和/或靶向基因疗法。本发明还可用于非医学高温系统,诸如用于加热工业或食品材料的那些。

Claims (25)

1.一种通过用聚焦能量选择性照射器官组织来治疗癌性或良性器官病症的方法,该方法包括下列步骤:
a)将E-电场探测器传感器插入所述器官组织的适当深度;
b)监测所述器官附近皮肤表面的温度;
c)将两个或多个能量施用器置于所述器官周围;
d)设置输送至每个能量施用器的初始功率水平;
e)设置输送至每个能量施用器的初始相对相位,从而将能量聚焦于位于所述器官组织中的E-电场探测器;
f)将能量输送至两个或多个能量施用器,从而用聚焦能量选择性照射器官组织和治疗至少一个癌性和良性器官病症;
g)在治疗过程中根据监测的皮肤温度调整输送至每个能量施用器的功率水平;
h)监测输送至所述能量施用器的能量;
i)在治疗过程中测定输送至所述能量施用器的总能量并实时显示总能量;和
j)在通过所述能量施用器将期望的总能量剂量输送至所述器官时完成治疗。
2.权利要求1的方法,其中所述聚焦能量是电磁、超声、射电频率、和激光波的至少一种。
3.权利要求1的方法,其中通过所述能量施用器输送至所述器官的期望总能量剂量是大约25千焦至大约500千焦。
4.权利要求1的方法,其中通过所述能量施用器输送至所述器官的期望总能量剂量是大约200千焦至大约500干焦。
5.权利要求1的方法,其中对于单独加热的治疗,所述能量施用器产生高达大约400分钟的相等热量剂量,且峰值肿瘤温度高达大约55℃。
6.权利要求1的方法,还包括联合通过步骤a)-j)实现的加热治疗的至少一种化学疗法治疗和热敏脂质体治疗,其中对于加热与化学疗法治疗的联合或加热与热敏脂质体治疗的联合,所述能量施用器产生大约50至100分钟的相等热量剂量,且峰值肿瘤温度高达大约46℃。
7.权利要求1的方法,其中所述器官指乳房,且输送至乳房的能量剂量是大约200至400千焦。
8.一种通过用聚焦能量选择性照射乳房组织来治疗癌性或良性乳房病症的方法,该方法包括下列步骤:
a)将乳房压迫在两个压迫板之间;
b)将E-电场探测器传感器施加到乳房组织的一个适当深度和乳房皮肤表面;
c)监测乳房皮肤表面的温度;
d)将两个或多个能量施用器置于受压迫乳房周围,从而以一个环包围乳房;
e)将聚焦能量输送至两个或多个能量施用器,从而用聚焦能量选择性照射乳房组织和治疗至少一个癌性和良性乳房病症;和
f)在治疗过程中根据监测的皮肤温度调整输送至每个能量施用器的功率。
9.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中所述聚焦能量是微波能量,而且还包括在将微波能量施用于乳房组织后维持对乳房的压迫的步骤,从而在乳房皮肤表面温度冷却后在治疗的乳房组织中积累附加的热量剂量。
10.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中与用聚焦能量对乳房组织的选择性照射联合使用化学疗法、包括基于基因的修饰剂的基因疗法、包含热敏脂质体的化学疗法、和放射疗法之
11.依照权利要求8的用于治疗癌性或良性乳房病症的方法,还包括将阿霉素(多柔比星)和环磷酰胺制剂(环磷酰胺)施用四个循环的步骤,其中在由施用一个循环的亚德里亚霉素/癌得星起大约36小时内进行高达三个循环的步骤a)-f)。
12.依照权利要求11的用于治疗癌性或良性乳房病症的方法,其中每个循环施用大约60mg/m2阿霉素(多柔比星)和大约600mg/m2环磷酰胺制剂(环磷酰胺),而且每个循环之间经过大约21天。
13.依照权利要求8的用于治疗癌性或良性乳房病症的方法,还包括施用多达四个循环的大约60mg/m2阿霉素(多柔比星)和大约600mg/m2环磷酰胺制剂(环磷酰胺)的步骤,其中大约每21天施用一个循环;和
其中步骤a)-f)是一个循环的温热疗法治疗,而且在完成阿霉素/环磷酰胺制剂的第一个循环后或将阿霉素/环磷酰胺制剂的第一个循环注入患者血流后大约21天施行至少一次温热疗法治疗。
14.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中步骤a)-f)是一个循环的温热疗法治疗,而且在肿块切除术后联合化学疗法、放射疗法、和基于基因的修饰剂疗法的至少一种使用温热疗法以治疗残余的原位管癌。
15.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中步骤a)-f)是一个循环的温热疗法治疗,而且在肿块切除术后使用温热疗法治疗以治疗残余的原位管癌。
16.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中步骤a)-f)是一个循环的温热疗法治疗,而且在切除癌性或良性乳房病症前施行一个循环的温热疗法,从而在手术前治疗将要手术切除的癌性或良性病症周围的边缘以减少边缘中癌性细胞、突变细胞、和异常细胞的至少一种的数量,从而降低额外切除的比率。
17.依照权利要求16的用于治疗癌性或良性乳房病症的方法,其中联合温热疗法治疗使用热敏脂质体治疗以增强对边缘中癌性细胞、突变细胞、和异常细胞的至少一种的破坏。
18.依照权利要求8的用于治疗癌性或良性乳房病症的方法,还包括联合多达四个循环的温热疗法治疗施用多柔比星和多西他赛、和FAC(5-氟尿嘧啶、多柔比星、和环磷酰胺)之一的步骤,其中步骤a)-f)是温一个循环的热疗法治疗。
19.依照权利要求8的用于治疗癌性或良性乳房病症的方法,其中步骤a)-f)是一个循环的温热疗法治疗,而且单独使用温热疗法治疗作为用于早期乳腺癌的治疗。
20.一种通过将权利要求8的步骤a)-f)定义的温热疗法治疗与阻断雌激素结合雌激素受体的药物联合并通过加热直接杀死乳腺癌来预防乳腺癌的方法,其中在五年时间里以大约一年的时间间隔联合通过阻断或修饰雌激素受体之一来阻断雌激素结合乳腺癌雌激素受体的药物进行温热疗法治疗。
21.依照权利要求20的用于预防乳腺癌的方法,其中所述阻断雌激素的药物是他莫昔芬。
22.依照权利要求21的用于预防乳腺癌的方法,其中五年期间他莫昔芬的施用剂量是大约20mg/天。
23.一种通过用能量选择性照射器官组织来治疗癌性或良性器官病症的方法,该方法包括下列步骤:
a)将增强加热的物质注射到器官组织的适当深度;
b)监测器官附近皮肤表面的温度;
c)将至少一个能量施用器置于器官周围;
d)设置输送至每个至少一个能量施用器的初始功率水平;
e)将能量输送至至少一个能量施用器,从而用能量选择性照射器官组织并治疗至少一个癌性和良性器官病症;
f)在治疗过程中根据监测的皮肤温度调整输送至每个至少一个能量施用器的功率水平;
g)监测输送至至少一个能量施用器的能量;
h)在治疗过程中测定输送至至少一个能量施用器的总能量并实时显示总能量;和
i)在通过至少一个能量施用器将期望的总能量剂量输送至器官时完成治疗。
24.依照权利要求23的方法,其中所述物质是金属或者与金属或其它电导体混合的盐水和水的一种。
25.依照权利要求23的方法,其中所述能量是电磁、超声、射电频率、和激光波的至少一种。
CN038166089A 2002-07-12 2003-07-11 用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法 Expired - Fee Related CN1668359B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/193,110 2002-07-12
US10/193,110 US6690976B2 (en) 2000-04-13 2002-07-12 Thermotherapy method for treatment and prevention of breast cancer and cancer in other organs
PCT/US2003/021655 WO2004007020A2 (en) 2002-07-12 2003-07-11 Thermotherapy method for treatment and prevention of breast cancer and cancer in other organs

Publications (2)

Publication Number Publication Date
CN1668359A true CN1668359A (zh) 2005-09-14
CN1668359B CN1668359B (zh) 2010-04-28

Family

ID=30114467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038166089A Expired - Fee Related CN1668359B (zh) 2002-07-12 2003-07-11 用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法

Country Status (8)

Country Link
US (1) US6690976B2 (zh)
EP (1) EP1523370A1 (zh)
JP (1) JP2005532868A (zh)
CN (1) CN1668359B (zh)
AU (1) AU2003253877A1 (zh)
CA (1) CA2491924C (zh)
MX (1) MXPA05000565A (zh)
WO (1) WO2004007020A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232832A (zh) * 2010-04-23 2011-11-09 西门子公司 在通过微波测温的核磁共振检查中的特定吸收率估计
WO2017214974A1 (en) * 2016-06-17 2017-12-21 Johnpro Biotech Inc. Method for treating tumor
CN112203606A (zh) * 2018-09-28 2021-01-08 皇家飞利浦有限公司 消融治疗规划系统

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7141049B2 (en) * 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US6768925B2 (en) * 2000-04-13 2004-07-27 Celsion Corporation Method for improved safety in externally focused microwave thermotherapy for treating breast cancer
GB0111986D0 (en) * 2001-05-16 2001-07-04 Optomed As Cryosurgical apparatus and methods
US20040206738A1 (en) * 2001-12-28 2004-10-21 Ge Medical Systems Global Technology Company, Llc Mammography patient contact temperature controller
US8481082B2 (en) * 2002-02-14 2013-07-09 Gholam A. Peyman Method and composition for hyperthermally treating cells
US6807446B2 (en) * 2002-09-03 2004-10-19 Celsion Corporation Monopole phased array thermotherapy applicator for deep tumor therapy
ATE398974T1 (de) 2002-11-27 2008-07-15 Medical Device Innovations Ltd Coaxiale gewebeablationsprobe und verfahren zum herstellen eines symmetriergliedes dafür
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
SE527164C2 (sv) * 2003-05-14 2006-01-10 Spectracure Ab Anordning och metod för terapi och diagnostik innefattande optiska komponenter för distribution av strålning
US20070122529A1 (en) * 2003-08-21 2007-05-31 Advanced Nutri-Tech Systems Inc. Fruit sponge
EP1537871A1 (en) * 2003-12-04 2005-06-08 Aventis Pharma S.A. Enoxaparin for the treatment of cancer
ATE489034T1 (de) 2004-05-26 2010-12-15 Medical Device Innovations Ltd Gewebenachweis- und ablationsgerät
US7670282B2 (en) * 2004-06-14 2010-03-02 Pneumrx, Inc. Lung access device
WO2006009688A2 (en) * 2004-06-16 2006-01-26 Pneumrx, Inc. Intra-bronchial lung volume reduction system
US7766891B2 (en) * 2004-07-08 2010-08-03 Pneumrx, Inc. Lung device with sealing features
EP1781182B1 (en) * 2004-07-08 2019-11-13 PneumRx, Inc. Pleural effusion treatment device
NZ582466A (en) 2004-07-30 2011-09-30 Adeza Biomedical Corp Oncofetal fibronectin as a marker for disease and other conditions and methods for detection of oncofetal fibronectin
US20060079774A1 (en) * 2004-10-08 2006-04-13 Wendell Anderson Microwave biopsy probe
JP4874259B2 (ja) 2004-11-23 2012-02-15 ヌームアールエックス・インコーポレーテッド 標的部位にアクセスするための操縦可能な装置
EP1835929B8 (en) 2005-01-06 2016-07-27 Novo Nordisk A/S Anti-kir combination treatments and methods
WO2006077567A1 (en) * 2005-01-18 2006-07-27 Msq Ltd. Improved system and method for heating biological tissue via rf energy
US20060199159A1 (en) * 2005-03-01 2006-09-07 Neuronetics, Inc. Head phantom for simulating the patient response to magnetic stimulation
US8765116B2 (en) * 2005-03-24 2014-07-01 Medifocus, Inc. Apparatus and method for pre-conditioning/fixation and treatment of disease with heat activation/release with thermoactivated drugs and gene products
US7942873B2 (en) * 2005-03-25 2011-05-17 Angiodynamics, Inc. Cavity ablation apparatus and method
DE102005022608B3 (de) * 2005-05-11 2007-01-11 Karl Storz Gmbh & Co. Kg Lichtsystem zur photodynamischen Diagnose und/oder Therapie
US20060264832A1 (en) * 2005-05-20 2006-11-23 Medtronic, Inc. User interface for a portable therapy delivery device
US8550743B2 (en) 2005-09-30 2013-10-08 Medtronic, Inc. Sliding lock device
US7565207B2 (en) * 2005-11-22 2009-07-21 Bsd Medical Corporation Apparatus for creating hyperthermia in tissue
US8170643B2 (en) * 2005-11-22 2012-05-01 Bsd Medical Corporation System and method for irradiating a target with electromagnetic radiation to produce a heated region
AU2006325835A1 (en) * 2005-12-14 2007-06-21 Global Resource Corporation Device producing and use of microwave energy for thermotherapy
EP1969088A2 (en) * 2005-12-14 2008-09-17 Mobilestream Oil Inc. Microwave-based recovery of hydrocarbons and fossil fuels
GB2435039B (en) * 2006-02-02 2010-09-08 John Frederick Novak Method and apparatus for microwave reduction of organic compounds
US8888800B2 (en) 2006-03-13 2014-11-18 Pneumrx, Inc. Lung volume reduction devices, methods, and systems
US8157837B2 (en) * 2006-03-13 2012-04-17 Pneumrx, Inc. Minimally invasive lung volume reduction device and method
US9402633B2 (en) 2006-03-13 2016-08-02 Pneumrx, Inc. Torque alleviating intra-airway lung volume reduction compressive implant structures
CN100518684C (zh) * 2006-06-30 2009-07-29 南京福中信息产业集团有限公司 冷循环微波肿瘤治疗仪
US9517240B2 (en) 2006-09-26 2016-12-13 The Regents Of The University Of California Methods and compositions for cancer prevention and treatment
WO2008039482A2 (en) * 2006-09-26 2008-04-03 The Regents Of The University Of California Methods and compositions for cancer prevention and treatment
US8048069B2 (en) * 2006-09-29 2011-11-01 Medtronic, Inc. User interface for ablation therapy
US8945114B2 (en) * 2007-04-26 2015-02-03 Medtronic, Inc. Fluid sensor for ablation therapy
US8323694B2 (en) * 2007-05-09 2012-12-04 Nanoprobes, Inc. Gold nanoparticles for selective IR heating
US8423152B2 (en) * 2007-05-14 2013-04-16 Bsd Medical Corporation Apparatus and method for selectively heating a deposit in fatty tissue in a body
US9387036B2 (en) * 2007-05-14 2016-07-12 Pyrexar Medical Inc. Apparatus and method for selectively heating a deposit in fatty tissue in a body
US20090306646A1 (en) * 2007-05-14 2009-12-10 Bsd Medical Corporation Apparatus and method for injection enhancement of selective heating of a deposit in tissues in a body
US9861424B2 (en) 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
US20110230568A1 (en) * 2008-07-24 2011-09-22 Childrens Medical Center Corporation Heating of polymers and other materials using radiation for drug delivery and other applications
WO2010011319A2 (en) * 2008-07-24 2010-01-28 Children's Medical Center Corporation Magnetic heating for drug delivery and other applications
US20110212027A1 (en) * 2008-07-24 2011-09-01 Children's Medical Center Corporation Radiative heating for drug delivery and other applications
US9173669B2 (en) 2008-09-12 2015-11-03 Pneumrx, Inc. Enhanced efficacy lung volume reduction devices, methods, and systems
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US8968210B2 (en) * 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US20100087808A1 (en) * 2008-10-03 2010-04-08 Vivant Medical, Inc. Combined Frequency Microwave Ablation System, Devices and Methods of Use
US20100100090A1 (en) * 2008-10-17 2010-04-22 Medicold Limited Thermotherapy application and control system
CN104622599B (zh) 2009-05-18 2017-04-12 纽姆克斯股份有限公司 细长的肺减容装置在部署过程中的横截面变化
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US10828100B2 (en) * 2009-08-25 2020-11-10 Covidien Lp Microwave ablation with tissue temperature monitoring
US20110123452A1 (en) * 2009-11-25 2011-05-26 Nanoprobes, Inc. Metal oligomers and polymers and their use in biology and medicine
US8882759B2 (en) * 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US9204922B2 (en) 2010-12-01 2015-12-08 Enable Urology, Llc Method and apparatus for remodeling/profiling a tissue lumen, particularly in the urethral lumen in the prostate gland
US8951266B2 (en) 2011-01-07 2015-02-10 Restoration Robotics, Inc. Methods and systems for modifying a parameter of an automated procedure
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
CN102728002A (zh) * 2011-06-20 2012-10-17 广东中能加速器科技有限公司 可移动卧式术中放射治疗机
US10390838B1 (en) 2014-08-20 2019-08-27 Pneumrx, Inc. Tuned strength chronic obstructive pulmonary disease treatment
JP2019526304A (ja) * 2016-06-29 2019-09-19 ニラマイ・ヘルス・アナリティックス・ピーブイティー・エルティーディ 胸部サーモグラフィ画像による悪性腫瘍性組織のホルモン受容体状態の分類
US20180264285A1 (en) * 2017-03-18 2018-09-20 Rodney D. Smith Breast Cup System and Method for Hyperthermic Anaerobic Cell Apoptosis
US20210198753A1 (en) * 2018-06-21 2021-07-01 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems and methods for determining a treatment course of action
JP7017493B2 (ja) * 2018-09-27 2022-02-08 富士フイルム株式会社 乳房撮影装置とその作動方法、並びに画像処理装置とその作動プログラムおよび作動方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895639A (en) 1971-09-07 1975-07-22 Rodler Ing Hans Apparatus for producing an interference signal at a selected location
US4341227A (en) 1979-01-11 1982-07-27 Bsd Corporation System for irradiating living tissue or simulations thereof
US4798215A (en) 1984-03-15 1989-01-17 Bsd Medical Corporation Hyperthermia apparatus
US4672980A (en) 1980-04-02 1987-06-16 Bsd Medical Corporation System and method for creating hyperthermia in tissue
US4397313A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Multiple microwave applicator system and method for microwave hyperthermia treatment
US4397314A (en) 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4556070A (en) 1983-10-31 1985-12-03 Varian Associates, Inc. Hyperthermia applicator for treatment with microwave energy and ultrasonic wave energy
DK312884A (da) 1984-06-27 1985-12-28 Joergen Bach Andersen Applicator
JPS62149347U (zh) * 1986-03-13 1987-09-21
JPH0317888Y2 (zh) * 1986-10-16 1991-04-16
JPH04276263A (ja) * 1991-02-27 1992-10-01 Lti Imd Usa Inc シールドされた電磁型トランスデューサ
IT1247029B (it) 1991-06-19 1994-12-12 S M A Segnalamento Marittimo E Apparecchiatura a microonde per ipertermia clinica nella termoterapia endogena
US5441532A (en) 1991-06-26 1995-08-15 Massachusetts Institute Of Technology Adaptive focusing and nulling hyperthermia annular and monopole phased array applicators
US5251645A (en) 1991-06-26 1993-10-12 Massachusetts Institute Of Technology Adaptive nulling hyperthermia array
US5540737A (en) 1991-06-26 1996-07-30 Massachusetts Institute Of Technology Minimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas
DE69214672T2 (de) * 1991-12-20 1997-04-03 Technomed Medical Systems Schallwellen aussendende,thermische effekte und kavitationseffekte erzeugende vorrichtung fur die ultraschalltherapie
US6245347B1 (en) * 1995-07-28 2001-06-12 Zars, Inc. Methods and apparatus for improved administration of pharmaceutically active compounds
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US5810888A (en) 1997-06-26 1998-09-22 Massachusetts Institute Of Technology Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery
US6126619A (en) * 1997-09-02 2000-10-03 Transon Llc Multiple transducer assembly and method for coupling ultrasound energy to a body
US6200598B1 (en) 1998-06-18 2001-03-13 Duke University Temperature-sensitive liposomal formulation
US6391026B1 (en) * 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
US6163726A (en) 1998-09-21 2000-12-19 The General Hospital Corporation Selective ablation of glandular tissue
US6436061B1 (en) * 1999-12-29 2002-08-20 Peter D. Costantino Ultrasound treatment of varicose veins
US6470217B1 (en) * 2000-04-13 2002-10-22 Celsion Corporation Method for heating ductal and glandular carcinomas and other breast lesions to perform thermal downsizing and a thermal lumpectomy
EP1647305B1 (en) * 2000-06-20 2010-12-29 Boston Scientific Corporation System for heating a body organ
JP2002011021A (ja) * 2000-06-29 2002-01-15 Olympus Optical Co Ltd 加熱治療装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232832A (zh) * 2010-04-23 2011-11-09 西门子公司 在通过微波测温的核磁共振检查中的特定吸收率估计
CN102232832B (zh) * 2010-04-23 2016-01-20 西门子公司 在通过微波测温的核磁共振检查中的特定吸收率估计
WO2017214974A1 (en) * 2016-06-17 2017-12-21 Johnpro Biotech Inc. Method for treating tumor
CN112203606A (zh) * 2018-09-28 2021-01-08 皇家飞利浦有限公司 消融治疗规划系统

Also Published As

Publication number Publication date
CN1668359B (zh) 2010-04-28
US20020193849A1 (en) 2002-12-19
AU2003253877A1 (en) 2004-02-02
MXPA05000565A (es) 2005-04-28
EP1523370A1 (en) 2005-04-20
WO2004007020A2 (en) 2004-01-22
JP2005532868A (ja) 2005-11-04
US6690976B2 (en) 2004-02-10
CA2491924C (en) 2014-09-09
CA2491924A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
CN1668359B (zh) 用于治疗和预防乳腺癌和其它器官中的癌症的温热疗法
CN1681556B (zh) 改善乳房癌外部聚焦微波温热治疗安全性的方法
ES2449481T3 (es) Aparato de termoterapia para el tratamiento y prevención de cáncer en pacientes hombres y mujeres y ablación cosmética de tejido
CN100460031C (zh) 利用微波治疗乳房损害的设备
Fenn An adaptive microwave phased array for targeted heating of deep tumours in intact breast: animal study results
US6904323B2 (en) Non-invasive apparatus and method for providing RF energy-induced localized hyperthermia
CN1681454A (zh) 施以温热治疗阻止肿瘤生长的方法
CN1437494A (zh) 加热前列腺以治疗和防止前列腺肿瘤的生长和扩散的系统和方法
Fenn Breast cancer treatment by focused microwave thermotherapy
Zhu et al. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model
Takook Optimizing Microwave Hyperthermia Antenna Systems
Samarrai Microwave ablation of solitary breast cancer for elderly women & Neurostimulation of the celiac plexus as a treatment for overweight and obesity: an exploration of the steps needed for a clinical study
Plewako et al. Electromagnetic Hyperthermia—Foundations and Computer Modelling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: XIAO'SIYIN( CANADA ) CO.,LTD.

Free format text: FORMER OWNER: CELSION CORP.

Effective date: 20071109

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20071109

Address after: Toronto

Applicant after: Celsion Corp

Address before: American Maryland

Applicant before: Celsion Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100428

Termination date: 20190711

CF01 Termination of patent right due to non-payment of annual fee