CN1695251A - 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法 - Google Patents

具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法 Download PDF

Info

Publication number
CN1695251A
CN1695251A CNA02827542XA CN02827542A CN1695251A CN 1695251 A CN1695251 A CN 1695251A CN A02827542X A CNA02827542X A CN A02827542XA CN 02827542 A CN02827542 A CN 02827542A CN 1695251 A CN1695251 A CN 1695251A
Authority
CN
China
Prior art keywords
groove
source
source electrode
base region
vertical mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA02827542XA
Other languages
English (en)
Inventor
B·J·巴利加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Wireless Corp
Original Assignee
Silicon Wireless Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Wireless Corp filed Critical Silicon Wireless Corp
Publication of CN1695251A publication Critical patent/CN1695251A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • H01L29/7832Field effect transistors with field effect produced by an insulated gate with multiple gate structure the structure comprising a MOS gate and at least one non-MOS gate, e.g. JFET or MESFET gate

Abstract

垂直MOSFET包括一个半导体衬底,其中有一些半导体台面,它们被许多深条形沟槽分开。这些条形沟槽沿纵向沿第一方向平行伸过衬底。在这些深条形沟槽内形成一些埋入式绝缘源电极。还提供一些绝缘栅电极,它们平行伸过那些半导体台面并伸入在这些埋入式绝缘源电极内的浅沟槽中。在衬底上做了一个表面源电极。此表面源电极在沿每个埋入式绝缘源电极长度上的多个位置处与每个埋入式绝缘源电极电气连接,这些多处连接降低了有效的源电极电阻并增大了器件的开关速度。

Description

具有伸入较深的以沟槽为基础的源电极的 以沟槽为基础的交叉栅电极的垂直MOSFET及其制造方法
发明领域
本发明涉及半导体开关器件,更具体地说,是关于高功率应用的开关器件及其制造方法。
发明背景
硅双极晶体管已被选作高功率应用的器件,如在汽车驱动电路、电器控制、机器人和灯光整流器等应用中。这是因为双极晶体管可做到能用于40-50A/cm2范围的较大电流密度并支持500-1000V范围的较高阻断电压。
虽然双极晶体管能达到的额定功率很有吸引力,但将它们用于所有的高功率应用还存在几个基本缺陷。首先,双极晶体管是电流控制器件,需要比较大的基极电流(典型为集电极电流的1/5至1/10)以维持晶体管的工作模式。对于还要求高速关断的应用,基极电流更要大些。由于要求比较大的基极电流,用于控制通断的基极驱动电路比较复杂和昂贵。若大电流和高电压同时加在一个器件上(一般在感应式功率电路中有此要求),双极晶体管还容易由于过早损坏。此外,比较难让双极晶体管并联运行,因为电流转向单个晶体管通常发生在高温下,故发射极必需有镇流措施。
硅功率金属氧化物半导体场效应晶体管(MOSFET)是为解决这个基极驱动问题而开发的。在功率MOSFET中,栅电极加上适当的栅偏压就可提供通断控制。例如,在N型增强模式MOSFET中,当加上正栅偏压时,在P型基极区(也叫“沟道区”)形成一个导电性N型转换层沟道,从而使其接通。此转换层沟道电连接N型源极和漏极区,使多数载流子在其间导通。
功率MOSFET的栅电极通过一个中间绝缘层(典型为二氧化硅)与基极区分开。由于栅电极与基极区隔离开,如果需要栅极电流也只需一小的值就能将MOSFET维持在导通状态或将MOSFET从接通状态转变为关断状态或者相反。在转换过程中栅极电流保持很小,因为栅和MOSFET的基极区构成一个电容器。因此在转换过程中只需要充放电(“位移”)电流。由于与绝缘栅电极相关的输入阻抗很高,加在栅极上的电流极小,同时栅极驱动电路很容易实现。此外,因为在MOSFET中的电流导通只通过多数载流子输运而发生,故不存在与过剩多数载流子的复合和贮存有关的延迟。因而,功率MOSFET的开关速度可做到比双极晶体管快几个数量级。与双极晶体管不同,功率MOSFET可设计成在较长时间内承受高的电流密度和加上高电压,而不会发生被称为“二次击穿”的破坏性失效机制。还可以容易地把功率MOSFET并联起来,因为在功率MOSFET上的正向电压降随着温度的增加而增加,从而有助于将各并联器件内的电流分布均匀化。
考虑到这些所希望的特性,已设计出许多功率MOSFET的变型。两种普通的类型为双扩散MOSFET器件(DMOSFET)和UMOSFET器件。B.J.Baliga的教科书“功率半导体器件”(ISBN0-534-94098-6,PWS出版公司,1995)对这些和其它的功率MOSFET作了描述,其内容被引用到这里作参考。此教科书的第七章在335-425页描述了功率MOSFET。硅功率MOSFET的例子(包括具有延伸至N+漏极区的沟道栅电极的累计,转换和延伸沟道FET)在T.Syau,P.Venkatraman和B.J.Baliga的文章中已有描述:“Comparison of Ultralow Specific On-ResistanceUMOSFET Structure:The ACCUFET,EXTFET,INVFET,and conventionalUMOSFETs“,IEEE Transactions on Electron Devices,Vol.41,No.5,May(1994)。如Syau等人所述,实验已证明比电阻在100-250μΩcm2范围内的器件能支持最大25V的电压。不过这些器件的性能受到下面事实的限制:正向阻断电压必须由在沟道底部的栅极氧化物来承受。
图1取自上述Syau等人文章中的图1(d),表示一个普通UMOSFET结构。在阻断工作模式中,这个UMOSFET承受N型漂移层上大部分正向阻断电压,此漂移层必须是掺杂水平较低的以获得最大的阻断电压能力。但低掺杂水平一般会增大接通状态的串联电阻。基于这些高阻断电压和低接通态电阻的竞争性设计要求,已推导出一种功率器件的基本优化数字,它把比电阻(Ron,sp)与最大阻断电压(BV)联系起来。如上述Baliga的教科书373页所述,N型硅漂移区的理想比电阻由下式给定:
     Ron.sp=5.93×10-9(BV)2.5…………………(1)
因此,一个具有60V最大阻断电压的器件,其理想比电阻为170μΩcm2。然而,由于基极区(如N沟槽型MOSFET中的P型基极区)对电阻的额外贡献,已发表的UMOSFET的比电阻一般要高得多。例如,H.Chang在一篇文章中已发布了一种具有730μΩcm2比电阻的UMOSFET,该文的题目是“Numerical and Experimental Comparison of60V Vertical Double-Diffused MOSFETs and MOSFETs with ATrench-Gate Structure”,发表于Solid-State Electronics,Vol.32,No.3,pp.247-251(1989)。但是在这个器件中,要求在漂移区用比理想值低的均匀掺杂浓度,以补偿在阻断高的正向电压时沟槽底角落附近高度集中的场线。美国专利5.637.989,5.742.076和5.912.497也发布了具有垂直电流携带能力的普通功率半导体器件,这几个专利都被引用到这里作为参考。
其中颁发给Baliga的美国专利5.637.989发布了一种优选的硅场效应晶体管,一般把它称为分级式掺杂(GD)UMOSFET。如图2所示(该图是从.898号专利的图3复制的),一个集成式功率半导体器件场效应晶体管(FET)的单元100可能有1μm的宽度“WC”,并包含第一导电型(如N+)衬底的一个高度掺杂漏极层114,第一导电型的一个漂移层112(其中有线性分级式掺杂浓度),一个第二导电型(如P-型)的比较薄的基极层116,和一个第一导电型(如N+)高度掺杂源极层118。此漂移层112可通过在N型漏极层114(厚度为100μm,掺杂浓度大于1×1018cm-3(如1×1019cm-3))上外延生长一个N型原地掺杂单晶硅层(厚度为4μm)而形成。漂移区112也具有一个线性分级式掺杂浓度,在带漏极层114的N+/N结处的最大浓度为3×1017cm-3,且在离N+/N结3μm(即在1μm的深度处)开始的最大浓度为1×1016cm-3,并延续至上表面保持均匀水平,基极层116可将一种P型掺杂物(如硼)注入漂移层112而形成,注入能量100keV,剂量为1×1014cm-2。然后P型掺杂物可能扩散0.5μm的深度进入漂移层112。也可以用50keV能量和1×1015cm-2剂量将砷等N型掺杂物注入。然后N型和P型掺杂物同时分别扩散0.5μm和1.0μm的深度,以形成一个包含漏极层、漂移层、基极层和源极层的复合半导体衬底。
然后在衬底内形成一个条形沟槽,它具有一对沿第三方向(未示)伸展的相对壁120a和一个底部120b。对于一个宽度为1μm的单元100,最好做成在加工末了具有宽度“Wt”为0.5μm。接着在沟槽内形成一个绝缘栅电极,它包含一个栅绝缘区124和一个导电栅极126(例如,多晶硅)。伸到沟槽底120b和漂移层112附近的那部分栅极绝缘区可能有2000左右的厚度“T1”,以防止在沟槽底部出现高电场,并沿沟槽侧壁120a提供基本均匀的电位梯度。伸到基极层116和源极层118对面的那部分栅极绝缘区124可能有500左右的厚度“T2”,以维持器件的阈值电压在2-3V左右。对一个栅偏压15V的单元100的模拟计算证实,可以实现一种垂直硅场效应晶体管,其最大阻断电压能力为60V,比电阻(Rsp.on)为40μΩcm2,后者是一个60V功率MOSFET的理想比电阻(170μΩcm2)的1/4。尽管这些特性极其优秀,图2的晶体管在栅极-漏极总电容(CGD)过大时的高频优质数字(HFOM)却比较低。MOSFET的边缘终止得不适当也可能达不到最大的阻断电压。
1988年12月12日Sony公司发布的日本专利JP63-296282中也披露了另一些以前的MOSFET。其中特别介绍了一种MOSFET,它在沟槽中建立了第一和第二栅电极,并在其间有一个栅极绝缘膜。颁发给Baba等人的美国专利5578508介绍了一种垂直功率MOSFET,它利用一个埋在沟槽内的多晶硅层作为离子注入掩模层,以防止沟道离子注入时离子被注入沟槽中。颁发给Tsang等人的美国专利介绍了一种具有凹陷栅电极的垂直MOSFET。颁发给Temple的美国专利4,941,026介绍了一种垂直沟道半导体器件,它包含一个绝缘栅电极,处在电压承受区的主要部分附近。加上适当的偏压时,控制电极即与电压承受区内的电荷发出的电场相耦合,将与这些电荷相关的电场拉向栅电极并横切流过该器件电流的方向。
颁发给Baliga的美国专利5,998,833和6,388,286介绍了另一些垂直MOSFET,带有以沟槽为基础的栅极和源电极。例如,图3(取自美国专利5,998,833的图3)表示集成式功率半导体器件的一个单元200。此器件包含一个高度掺杂的第一导电型(如N+)漏极层114,一个具有线性分级式掺杂浓度的第一导电型漂移层112,一个比较薄的第二导电型(如P型)基极层116,和一个高度掺杂的第一导电型(如N+)源极层118。在第一和第二面还提供一个源电极128b和一个漏电极130。漂移层112中的掺杂浓度可以是线性分级式。在衬底内提供一个条形沟槽,它有一对相对的侧壁120a和一个底部120b。在沟槽内还形成一个栅极/源极绝缘区125,一个栅电极127(如多晶硅),和一个以沟槽为基础的源电极128a(如多晶硅)。
虽然已有这些研发功率半导体器件的尝试,使它们能在高速下开关,并具有很高的最大阻断电压能力和低比电阻,但仍有需要开发具有改进电特性的功率器件。
发明概要
按本发明一些实施例的垂直MOSFET包含一个半导体衬底,它具有一个第一导电型漂移区,及第一和第二沟槽,这些沟槽沿纵向沿第一方向伸至衬底内。在第一和第二沟槽之间有一个半导体台面,漂移区就伸至台面内。第一和第二埋入式绝缘源极分别伸至第一和第二沟槽的底部附近。还提供了第一和第二个空间隔开的绝缘栅电极。这些栅电极不沿纵向方向伸至各自的沟槽中,而是沿纵向方向按照一个第二方向延伸并与台面重叠。每个栅电极还伸至第一埋入式绝缘源极的一个相应的浅沟槽内和第二埋入式绝缘源极的一个相应的浅沟槽内。第一和第二方向可能是相互垂直的。
形成这些优选垂直MOSFET的方法可能包括在半导体衬底内形成一个第二导电型基极区,此衬底内有一个第一导电型漂移区,后者与基极区构成一个P-N结。在基极区内也形成一个第一导电型源极区。还有一个步骤是在半导体衬底内作出一个深沟槽,它有一个第一侧壁伸至基极区附近。然后将沿深沟槽以第一电绝缘层行程分界。接着用一个以沟槽为基础的源极填充有分界的深沟槽。再对以沟槽为基础的源极进行选择性蚀刻,以在其中形成一些浅沟槽,它们沿着以沟槽为基础的源极长度在空间上是隔开的。在这些浅沟槽的每一个中,让伸至深沟槽第一侧壁上的第一绝缘层的相关第一部分暴露。然后进行另一次蚀刻,除掉已暴露的第一电绝缘层的第一部分,并沿以沟槽为基础的源极的长度方向在多个位置让基极区暴露。然后在已暴露的浅沟槽内的那部分基极区上进行热氧化处理。此热氧化步骤导致在已暴露的基极区部分上形成栅极氧化层。然后在衬底表面上形成一些绝缘的栅电极。每个绝缘栅电极伸过台面进入每个以沟槽为基础的源电极内的相应浅沟槽内。还提供了一个表面源电极,它把以沟槽为基础的源极、源极区和基极区电气上连在一起。
附图简介
图1是一个现有技术的功率器件的剖视图。
图2是另一个现有技术的功率半导体器件和其中的掺杂截面剖视图。
图3是按现有技术的一个集成式功率半导体器件及其中的掺杂截面的剖视图。
图4是按本发明一个实施例的垂直MOSFET的透视图。
图5A-5H是各种中间结构的透视图,它说明按本发明其它一些实施例的形成垂直MOSFET的方法。
优选实施例的描述
现在将参照各附图(其中显示本发明的一些优选实施例)对本发明作较详细的描述。但是,本发明可以用不同的形式实现,故不应认为只限于这里所列举的那些实施例。相反,所提供的实施例是为了使本发明更详尽和完整,并把本发明的范围全部传达给本领域技术人员。为清楚起见各图中各层和区域的厚度都被放大了。还应指出,当说到一层是在另一层或衬底之上时,该层可以是直接处在另一层或衬底上面,或者也可以存在一个中间层。另外,“第一导电型”和“第二导电型”两个术语表示相反的导电类型,如N或P型,但这里所描述和展示的每一个实施例也包括它的辅助实施例。各图中相似的数字表示类似的元件。
现在来看图4和5A-5H,按本发明另一个实施例的一个优选垂直MOSFET包括一个半导体衬底,其中具有一些半导体台面504a,它们被一些沿纵向沿第一方向平行伸过衬底的深条形沟槽所隔开。在那些条形沟槽内提供了一些埋入式绝缘源电极516。还提供了一些绝缘的栅电极520。栅电极520平行伸过那些半导体台面504a并进入处于那些埋入式绝缘源电极516内的浅沟槽中。还提供了一些表面源电极524。此表面源电极524伸到半导体台面504a上并与埋入式绝缘源电极516电气上相连。绝缘栅电极520最好是条形电极,它们沿纵向沿与第一方向正交的第二方向伸过台面504a。
形成图4的垂直MOSFET500的优选方法示于图5A-5H。特别在图5A-5H中的每一个图给出了按本发明各实施例的一个垂直MOSFET的半个单元在各中间加工阶段的右侧透视图和左侧透视图。如图5A所示,所提供的半导体衬底502中有一个第一导电型(图中所示为N型)漂移区504。此漂移区504内可能有均匀的或不均匀的掺杂浓度分布。也可以采用其它的掺杂浓度分布。半导体衬底502可以有上、下相对的表面,且在衬底502下表面附近可提供一个高度掺杂的漏极区506(图示为N+)。本专业技术人员知道,半导体衬底502可通过在高度掺杂的半导体晶片(用作漏极区506)的上表面上外延生长一个原地掺杂漂移区504而形成。
现在来看图5B,在衬底502的上表面上可形成一个第一掩模(未示)。此第一掩模最好作成图形使其中有一个第一开口,由它限定衬底502的工作区。然后将第二导电型基极区掺杂物通过第一开口注入衬底502内。在基极区掺杂物被注入后,可进行较短时间的退火处理,以将已注入基极区的掺杂物部分推入。换一种方式,可以对第一掩模作图形以限定衬底502的非工作部分,然后进行衬底502非工作部分的热氧化处理,在它上面限定一个场氧化物隔离区。接着将第一掩模移开使衬底502的工作部分暴露。然后利用场氧化物隔离区作为基极区注入掩模。
然后可将一个第二掩模(未示)淀积在衬底502的工作部分上。在第二掩模内做一些开口,每个开口使衬底502工作部分上的一个相关区外露,通过此区把第一导电型源极区掺杂物注入。这些开口可以是一些矩形开口,每个开口的宽度是沿着第一方向伸过衬底502,长度是沿着与第一方向正交的第二方向伸过衬底502。在图5A-5H中,第一方向可以是自前至后横跨所示半个单元,第二方向可以是自左至右。
然后进行另一次退火处理,以同时把注入的源极区掺杂物和基极区掺杂物推进到它们在衬底502内的几乎整个也是最后的深度。在这次退火处理完成以后,一些条形源极区510可沿纵向按第二方向平行伸过一个单基极区508。为了抑制所得垂直MOSFET中的寄生双极晶体管效应,每个源极区条510在第一方向的宽度应小于10μm左右。为使沟道的宽度尽可能大,相邻源极区510间在第一方向的间隔“Wbc”可设置为大约1μm以下。
现在参看图5c,在衬底502的工作部分上形成一个第三掩模(未示),此第三掩模的图形是带分隔的矩形开口,其长度沿第一方向伸展。然后利用第三掩模进行选择性蚀刻处理,以在衬底502内造成一些深条形沟槽513,每对相邻的深沟槽之间限定一个漂移区台面504a,漂移区504就伸到此台面之内。如图所示,深条形沟槽513和漂移区台面504a沿纵向沿第一方向伸过衬底502。然后在衬底502上共形淀积一个覆盖电绝缘层514。如图所示,该覆盖电绝缘层514伸到每个沟槽513中并沿每个沟槽的侧壁513a和底部513b形成分界。这个电绝缘层514可包括二氧化硅或其它更好的介质绝缘材料构成。接着将一个覆盖导电层(如N+多晶硅)共形淀积在衬底502上及沟槽513内。然后将此导电层平面化(例如,往回蚀刻)以造成一些以沟槽为基础的源电极516,它们的长度是沿着沟槽513的第一方向伸展。这些以沟槽为基础的源电极516通过沿沟槽513形成分界的电绝缘层514与衬底502电绝缘,并因此而构成埋入式绝缘源电极。
现在参看图5D,这时可以把第四掩模(未示)淀积和作图,以沿每个沟槽513的长度提供一些相隔一定位置的开口。然后进行另一次选择性蚀刻处理,利用第四掩模作为蚀刻掩模在每个埋入式绝缘源电极516内造成一些浅沟槽515。如图所示,作这些浅沟槽515时使电绝缘层514的上部(它们沿沟槽513的侧壁513a形成分界)暴露。接下去进行另一次选择性蚀刻处理,以除掉已暴露的电绝缘层514的上部。这个选择性蚀刻处理(它利用以沟槽为基础的源电极516作为蚀刻掩模)使得部分源极区510和基极区508(它们延伸至已暴露的上侧壁513a附近)暴露。如图5E所示,这时可进行一次热氧化处理,使已暴露的基极和源极区(在已暴露的侧壁513a上)上形成一个栅极氧化物层518a,并沿每个埋入式绝缘源电极516的浅沟槽515的底部和侧壁形成一个栅极-源极绝缘层518b。与衬底(典型为单晶硅)和以沟槽为基础的源电极516(典型为多晶硅)相关的不同材料特性可能使得栅极-源极绝缘层518b比栅极氧化物层518a要厚得多。虽然不一定需要,但还是可以这样来选择以沟槽为基础的源电极516的材料特性,使得以沟槽为基础的源电极516以比衬底较高的速度热氧化。例如,一个产生约40nm(400)厚度栅极-源极氧化层518a的热氧化处理也可以获得厚度约500nm(400)的栅极-源极氧化层518b。
现在参看图5F,这时将一个覆盖栅极导电层(如多酸)淀积并作成一些平行条状栅电极520,后者沿纵向沿第二方向(图示为垂直第一方向)伸过漂移区台面504a和深沟槽513。此作图步骤可利用第五掩模(未示)来进行。每个条形栅电极520沿第二方向伸过一些漂移区台面504a并伸进每个埋入式绝缘源电极516内的相应浅沟槽515内。栅电极520也可以按之字形或其它图形作图,且在栅电极520长度方向和以沟槽为基础的源电极516的长度方向之间的锐角可能在45°-90°左右的范围。
然后可把一个覆盖电绝缘钝化层522淀积在衬底502上,如图5G所示。接着利用第六掩模(未示)在选择性蚀刻处理过程中使源极区510、基极区508和伸展在相邻绝缘栅电极520之间的以沟槽为基础的源电极516的相应部分暴露。现在参看图5H,这里将一个金属化覆盖层共形淀积在衬底上及源极区508、基极区510和埋入式绝缘源电极516的已暴露部分上。然后利用第七掩模(未示)对此金属覆盖层作图以形成一个表面源电极524,它与每个源极区508欧姆接触,还与基极区510和埋入式绝缘源电极516沿着第一方向在多个位置欧姆接触。在每个埋入式绝缘源电极和表面源电极504之间的这些多个触点使有效源电极电阻降低并使开关速度得到改善,因为此电阻是在与跨接在每个栅电极520和相应埋入式绝缘源电极516之间的MOS电容器有关的位移电流路径上。
对图5H的垂直MOSFET进行了二维数字模拟。对每个单元,深沟槽513的深度和宽度分别为5μm和1.8μm,且沿深沟槽513的侧壁513a和底部513b形成分界的电绝缘层514的厚度为350nm(3500)。漂移区504的厚度为6μm。在每个埋入式绝缘源电极516内的浅沟槽515的深度为0.5μm,栅极氧化物518a的厚度为40nm(400)。漂移区504内的线性分级式掺杂截面的斜率为1.5×1020cm-4,漂移区台面504a的宽度为1μm。因而,与每个单元相关的晶格节距为2.8μm。源电极516和栅电极520分别为多晶硅和多酸。根据这些特性,模拟出的击穿电压为85V,通路比电阻(Rsp)低至0.25mΩcm2。比栅极电荷Qt(当Vg=10V时)为4.93×10-7C/cm2,比米勒栅极电荷为8.6×10-8C/cm2。与这些结果相应的优质数字(FOM)为8.3×109(即RspXQt-1=8.3×109)。与此相反,对图1的MOSFET采用同样的参数(但是没有埋入式绝缘源电极)模拟得到85V的击穿电压和高得多的通路比电阻(Rsp)1.2mΩcm2。相应的比栅极电荷Qt(当Vg=10V)为3.0×10-7C/cm2,比米勒栅极电荷为1.0×10-8C/cm2。与这些结果相应的优化数字(FOM)为2.8×109,即为图5H器件的FOM的1/3左右。
以附图和说明介绍了本发明的典型优选实施例,虽然是针对特定的条件,但它们仅仅是用作一般的描述性质而并不表明只限于此,本发明的范围将由下面的权利要求书限定。

Claims (32)

1.一种垂直MOSFET,包括:
半导体衬底,其中有一些半导体台面由一些深条形沟槽隔开,这些沟槽沿纵向按第一方向平行伸过该衬底;
一些处在条形沟槽内的埋入式绝缘源电极;及
一些绝缘栅电极,平行伸过那些半导体台面以及形成在所述埋入式绝缘源电极内的浅沟槽。
2.如权利要求1的垂直MOSFET,其中每个半导体台面包含至少一个基极区,它支持沿着相应一对深条形沟槽相对侧壁的垂直转换层沟道。
3.如权利要求2的垂直MOSFET,还包含在该半导体衬底上延伸的表面源电极,它与上述埋入式绝缘源电极电气相连且与每个半导体台面的至少一个基极区欧姆接触。
4.如权利要求3的垂直MOSFET,其中表面源电极和基极区的欧姆接触形成于那些半导体台面的上表面上。
5.如权利要求1的垂直MOSFET,其中的绝缘栅电极为条形电极,它们沿纵向沿着与第一方向正交的第二方向伸过半导体衬底。
6.一种垂直MOSFET,包括:
半导体衬底,其中有第一导电型漂移区;
第一和第二沟槽,它们沿纵向沿第一方向在衬底内延伸,并在其间形成一个半导体台面,漂移区就伸入该台面内;
第一和第二埋入式绝缘源电极,它们沿纵向沿着第一方向分别伸向该第一和第二沟槽的相邻底部;及
第一和第二空间相隔的栅电极,其中每一个沿纵向沿第二方向伸过台面并伸到第一和第二沟槽的上面部分内。
7.如权利要求6的垂直MOSFET,其中第一和第二栅电极在第一沟槽的上面部分是彼此并排的;且其中每一埋入式绝缘源电极从第一沟槽底部附近向上伸入第一和第二栅电极之间的空间。
8.如权利要求7的垂直MOSFET,其中第一导电型的第一源极区和第二导电型的第二基极区从第一沟槽的一个侧壁至第二沟槽的一个相对侧壁横向伸过台面的一个宽度。
9.如权利要求8的垂直MOSFET,还包括一表面源电极,它与处于第一和第二栅电极之间的空间内第一和第二埋入式绝缘源电极欧姆接触。
10.如权利要求9的垂直MOSFET,其中第一源极区和第一基极区伸到处于第一和第二栅电极之间空间内的一台面表面;且其中表面源电极在台面表面处与第一源极区和第一基极区欧姆接触。
11.如权利要求6的垂直MOSFET,其中第一和第二方向彼此正交。
12.一种垂直MOSFET,包括:
半导体衬底,它具有第一导电型的漂移区;
第一和第二沟槽,它们沿纵向沿第一方向在衬底内延伸,并在其间形成一第一台面,该漂移区延伸到该台面中;
第三沟槽,它沿纵向沿第一方向伸入衬底内,并形成第二和第三沟槽之间延伸的第二半导体台面;
第一、第二和第三绝缘区,它们分别沿第一、第二和第三沟槽的底部和侧壁形成分界;
第一、第二和第三埋入式绝缘源电极,它们分别沿纵向在第一、第二和第三沟槽内延伸;及
第一绝缘栅电极,它沿纵向沿着与第一方向正交的第二方向伸过第一和第二台面并延伸进入第二沟槽。
13.如权利要求12的垂直MOSFET,还包括第二绝缘栅电极,它与第一绝缘栅电极隔开并沿纵向沿第二方向伸过第一和第二台面并伸入第二沟槽。
14.如权利要求13的垂直MOSFET,还包括第一导电型的第一和第二空间隔开的源极区,它们延伸入第二台面内并分别与第一和第二绝缘栅电极相对。
15.如权利要求14的垂直MOSFET,还包括表面源电极,它与处于第一和第二绝缘栅电极之间的空间内的第一和第二源极区欧姆接触。
16.如权利要求15的垂直MOSFET,还包括第二导电型的基极区,它沿纵向沿第一方向伸到第二台面内,并与处于第一和第二绝缘栅电极之间的空间内的表面源电极欧姆接触。
17.如权利要求16的垂直MOSFET,其中第一和第二源极区伸入基极区并与之形成相应的P-N结,结的长度小于10μm。
18.如权利要求17的垂直MOSFET,其中第一和第二源极区的相对两端彼此相隔约2μm以下的距离。
19.一种垂直MOSFET,包括:
半导体衬底,其内有一些半导体台面,这些台面被一些沿纵向沿第一方向平行伸过该半导体衬底的深条形沟槽隔开,每个半导体台面中至少有一个基极区和至少一个源极区;
一些伸入那些深条形沟槽内的埋入式绝缘源电极,其中第一埋入式绝缘源电极有一些浅沟槽,浅沟槽安排在沿第一深条形沟槽长度上的一些相隔位置上;及
一些绝缘栅电极,它们沿着与第一方向成一个非零角度的第二方向平行伸过那些半导体台面,其中每一个所述绝缘栅电极伸到槽位于第一埋入式绝缘源电极内的相应浅沟足够深,使得当垂直MOSFET加上偏压工作在正向接通模式时,在第一深条形沟槽附近延伸的第一半导体台面内的相应基极区中建立至少一个相应的垂直转换层沟道。
20.如权利要求19的垂直MOSFET,其中所述绝缘栅电极为之字形。
21.如权利要求19的垂直MOSFET,其中非零角度约为90°。
22.如权利要求19的垂直MOSFET,还包括一个表面源电极,它与那些埋入式绝缘源电极电气相连,并与第一半导体台面内的基极区欧姆接触。
23.一种垂直MOSFET,包括:
半导体衬底,其中有一些半导体台面,它们被一些沿纵向沿第一方向平行伸过该半导体衬底的深条形沟槽隔开,每个半导体台面包括一漂移区,一在漂移区上的过渡区,一在过渡区上的基极区,和一在基极区上的源极区;
一些伸入那些深条形沟槽内的埋入式绝缘源电极,其中所述第一埋入式绝缘源电极有一些浅沟槽,所述浅沟槽安排在沿第一深条形沟槽长度上的一些相隔位置上;及
一些绝缘栅电极,它们沿着与第一方向成一个非零角度的第二方向平行伸过那些半导体台面,其中每一个绝缘栅电极伸到位于第一埋入式绝缘源电极内的相应浅沟槽足够深,使得当垂直MOSFET加上偏压工作在正向接通模式时,在第一深条形沟槽附近延伸的第一半导体台面内的相应基极区中至少建立一相应的垂直转换层沟道。
24.一种形成垂直MOSFET的方法,包括以下各步骤:
在半导体衬底内形成一第二导电型基极区,此衬底中有一第一导电型漂移区,它与基极区构成P-N结;
在基极区形成一第一导电型源极区;
在半导体衬底内形成一深沟槽,它有一在基极区附近延伸的第一侧壁;
用电绝缘层沿深沟槽形成分界;
用一以沟槽为基础的源电极重新填充此有分界的深沟槽;
选择性蚀刻以沟槽为基础的源电极以在其中形成一浅沟槽,并将在深沟槽第一侧壁上延伸的第一电绝缘层的第一部分暴露;
选择性蚀刻该第一电绝缘层第一部分,以使深沟槽第一侧壁的上部暴露并让基极区显露出来;
用栅绝缘层沿浅沟槽形成分界,此栅绝缘层在深沟槽第一侧壁已暴露的上部上延伸,和浅沟槽的底部和侧壁;
形成栅电极,该栅电极在半导体衬底的表面上延伸并伸入有分界的浅沟槽内;及
形成表面源电极,它与以沟槽为基础的源电极、源极区和基极区电气上连在一起。
25.如权利要求24的方法,其中形成表面源电极的步骤之前进行以下步骤:
在半导体衬底上形成一个覆盖钝化层;
对此覆盖钝化层作图以在其中形成接触孔,使以沟槽为基础的源电极、源极区和基极区暴露。
26.如权利要求24的方法,其中以沟槽为基础的源电极由多晶硅形成;且其中沿浅沟槽形成分界的步骤包括以第一速度热氧化第一侧壁的已暴露上部,以高于第一速度的第二速度热氧化浅沟槽的底部和侧壁。
27.如权利要求26的方法,其中热氧化步骤包括热氧化以沟槽为基础的源电极的上表面,以在其上形成一表面氧化层;且其中形成表面源电极的步骤之前进行以下步骤:选择性蚀刻在栅电极附近延伸的表面氧化层的一部分,以使以沟槽为基础的源电极上表面的一部分暴露。
28.如权利要求24的方法,其中沿浅沟槽形成分界的步骤包括以第一速度热氧化第一侧壁的已暴露部分,并以至少大致等于第一速度的第二速度热氧化浅沟槽的底部和侧壁。
29.一种形成垂直MOSFET的方法,包括以下步骤:
形成半导体衬底,其中有一漂移区、在漂移区上的一过渡区、在过渡区上的一基极区和在基极区上的一个源极区;
在半导体衬底内形成一深沟槽,深沟槽有一第一侧壁在基极区、过渡区和漂移区附近延伸;
在深沟槽内形成一以沟槽为基础的源电极;
在该以沟槽为基础的源电极内形成一个浅沟槽,使沿第一侧壁伸展的基极区和源极区暴露;
在已暴露的基极区形成一栅极氧化物绝缘层;
形成一栅电极,它在半导体衬底的上表面上延伸并延伸入浅沟槽内;并
形成一表面源电极,它与以沟槽为基础的源电极、源极区和基极区电气连接在一起。
30.如权利要求28的方法,其中形成表面源电极的步骤之前进行以下步骤:
在半导体衬底上形成一覆盖钝化层;及
对此覆盖钝化层作图从而使其中形成一些接触孔,以使以沟槽为基础的源电极、源极区和基极区暴露。
31.如权利要求29的方法,其中形成栅电极的步骤包括形成多个条形栅电极,栅电极沿与深沟槽长度方向垂直的方向伸过以沟槽为基础的源电极;且其中表面源电极在跨于多个条形栅电极之间的一些位置与以沟槽为基础的源电极、源极区和基极区电气相连。
32.如权利要求29的方法,其中以沟槽为基础的源电极通过第一电绝缘层与第一侧壁分开;且其中形成浅沟槽的步骤包括利用以沟槽为基础的源电极作为蚀刻掩模,选择性蚀刻已被浅沟槽暴露的第一电绝缘层的一部分。
CNA02827542XA 2001-11-26 2002-11-19 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法 Pending CN1695251A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/995,019 2001-11-26
US09/995,019 US6621121B2 (en) 1998-10-26 2001-11-26 Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes

Publications (1)

Publication Number Publication Date
CN1695251A true CN1695251A (zh) 2005-11-09

Family

ID=25541305

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA02827542XA Pending CN1695251A (zh) 2001-11-26 2002-11-19 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法

Country Status (7)

Country Link
US (2) US6621121B2 (zh)
EP (1) EP1449258A1 (zh)
JP (1) JP2005510880A (zh)
KR (1) KR20040058318A (zh)
CN (1) CN1695251A (zh)
AU (1) AU2002363937A1 (zh)
WO (1) WO2003046996A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416313B (zh) * 2006-04-06 2010-12-01 夏普株式会社 功率ic器件及其制造方法
CN102184952A (zh) * 2010-02-23 2011-09-14 成都芯源系统有限公司 一种垂直电容耗尽型功率器件及制作方法
CN101325196B (zh) * 2007-06-11 2012-05-23 万国半导体股份有限公司 带有集成高功率分立场效应晶体管和低压控制器的升压变换器
CN103904119A (zh) * 2014-03-28 2014-07-02 中国科学院微电子研究所 一种具有纵向屏蔽栅的Trench MOSFET及其加工方法
CN106876446A (zh) * 2017-03-23 2017-06-20 深圳基本半导体有限公司 一种大功率槽栅门级t‑mosfet结构设计
CN110890277A (zh) * 2018-09-07 2020-03-17 无锡华润上华科技有限公司 沟槽式金属氧化物半导体肖特基势垒晶体管制备方法
CN114023804A (zh) * 2021-07-06 2022-02-08 娜美半导体有限公司 具有多阶梯外延层结构的屏蔽栅沟槽式半导体功率器件
CN116799070A (zh) * 2023-08-28 2023-09-22 江苏应能微电子股份有限公司 具有三重resurf结构的分离栅沟槽MOS器件及工艺

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859502C2 (de) * 1998-12-22 2000-12-07 Siemens Ag Sperrschicht-Feldeffekttransistor mit höher dotiertem Verbindungsgebiet
JP2001085685A (ja) * 1999-09-13 2001-03-30 Shindengen Electric Mfg Co Ltd トランジスタ
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6683346B2 (en) * 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
JP4421144B2 (ja) * 2001-06-29 2010-02-24 株式会社東芝 半導体装置
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7786533B2 (en) * 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
JP4117385B2 (ja) * 2002-05-21 2008-07-16 独立行政法人 宇宙航空研究開発機構 宇宙線破壊耐量を有する半導体装置
US6921699B2 (en) * 2002-09-30 2005-07-26 International Rectifier Corporation Method for manufacturing a semiconductor device with a trench termination
DE10317383B4 (de) * 2003-04-15 2008-10-16 Infineon Technologies Ag Sperrschicht-Feldeffekttransistor (JFET) mit Kompensationsgebiet und Feldplatte
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
GB0327791D0 (en) * 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench insulated gate field effect transistor
GB0327792D0 (en) * 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench insulated gate field effect transistor
US7279743B2 (en) 2003-12-02 2007-10-09 Vishay-Siliconix Closed cell trench metal-oxide-semiconductor field effect transistor
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
US6927451B1 (en) * 2004-03-26 2005-08-09 Siliconix Incorporated Termination for trench MIS device having implanted drain-drift region
US8564051B2 (en) * 2004-04-09 2013-10-22 International Rectifier Corporation Power semiconductor device with buried source electrode
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US8183629B2 (en) * 2004-05-13 2012-05-22 Vishay-Siliconix Stacked trench metal-oxide-semiconductor field effect transistor device
US6906380B1 (en) * 2004-05-13 2005-06-14 Vishay-Siliconix Drain side gate trench metal-oxide-semiconductor field effect transistor
DE102004026233B4 (de) * 2004-05-28 2015-02-12 Infineon Technologies Ag Trenchtransistor
KR100582374B1 (ko) * 2004-09-08 2006-05-22 매그나칩 반도체 유한회사 고전압 트랜지스터 및 그 제조 방법
US7192814B2 (en) * 2004-09-16 2007-03-20 Semiconductor Components Industries, L.L.C. Method of forming a low capacitance semiconductor device and structure therefor
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US20060255401A1 (en) * 2005-05-11 2006-11-16 Yang Robert K Increasing breakdown voltage in semiconductor devices with vertical series capacitive structures
WO2006127914A2 (en) 2005-05-26 2006-11-30 Fairchild Semiconductor Corporation Trench-gate field effect transistors and methods of forming the same
JP2006344760A (ja) * 2005-06-08 2006-12-21 Sharp Corp トレンチ型mosfet及びその製造方法
TWI400757B (zh) * 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
US20070012983A1 (en) * 2005-07-15 2007-01-18 Yang Robert K Terminations for semiconductor devices with floating vertical series capacitive structures
DE102005046406B4 (de) 2005-09-28 2010-02-25 Infineon Technologies Ag Halbleiteranordnung mit einem elektrischen Verbraucher und einer Halbleitereinrichtung zur Steuerung der Stärke eines elektrischen Stroms
DE102006003932B4 (de) * 2006-01-26 2010-09-16 Infineon Technologies Austria Ag Feldeffekthalbleiterbauelement mit einem Minoritätsladungsträger emittierenden Sourcegebiet in eine Bodyzone
US7807536B2 (en) * 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US8471390B2 (en) * 2006-05-12 2013-06-25 Vishay-Siliconix Power MOSFET contact metallization
US7750447B2 (en) 2007-06-11 2010-07-06 Alpha & Omega Semiconductor, Ltd High voltage and high power boost converter with co-packaged Schottky diode
US20080038890A1 (en) * 2006-08-10 2008-02-14 General Electric Company Method for improved trench protection in vertical umosfet devices
JP5105160B2 (ja) * 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
US9437729B2 (en) * 2007-01-08 2016-09-06 Vishay-Siliconix High-density power MOSFET with planarized metalization
US8101995B2 (en) * 2007-02-08 2012-01-24 International Rectifier Corporation Integrated MOSFET and Schottky device
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7557406B2 (en) * 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7859037B2 (en) * 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8021563B2 (en) * 2007-03-23 2011-09-20 Alpha & Omega Semiconductor, Ltd Etch depth determination for SGT technology
US7521332B2 (en) * 2007-03-23 2009-04-21 Alpha & Omega Semiconductor, Ltd Resistance-based etch depth determination for SGT technology
US9947770B2 (en) 2007-04-03 2018-04-17 Vishay-Siliconix Self-aligned trench MOSFET and method of manufacture
US8368126B2 (en) * 2007-04-19 2013-02-05 Vishay-Siliconix Trench metal oxide semiconductor with recessed trench material and remote contacts
US8456141B2 (en) 2007-06-11 2013-06-04 Alpha & Omega Semiconductor, Inc. Boost converter with integrated high power discrete FET and low voltage controller
US20090020813A1 (en) * 2007-07-16 2009-01-22 Steven Howard Voldman Formation of lateral trench fets (field effect transistors) using steps of ldmos (lateral double-diffused metal oxide semiconductor) technology
US20090026533A1 (en) * 2007-07-24 2009-01-29 Force-Mos Technology Corporation Trench MOSFET with multiple P-bodies for ruggedness and on-resistance improvements
US9484451B2 (en) * 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
US8207037B2 (en) * 2007-10-31 2012-06-26 Semiconductor Components Industries, Llc Method for manufacturing a semiconductor component that includes a field plate
US8274109B2 (en) * 2007-12-26 2012-09-25 Infineon Technologies Ag Semiconductor device with dynamical avalanche breakdown characteristics and method for manufacturing a semiconductor device
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7786535B2 (en) * 2008-01-11 2010-08-31 International Business Machines Corporation Design structures for high-voltage integrated circuits
US7790543B2 (en) * 2008-01-11 2010-09-07 International Business Machines Corporation Device structures for a metal-oxide-semiconductor field effect transistor and methods of fabricating such device structures
US7790524B2 (en) * 2008-01-11 2010-09-07 International Business Machines Corporation Device and design structures for memory cells in a non-volatile random access memory and methods of fabricating such device structures
US7772651B2 (en) * 2008-01-11 2010-08-10 International Business Machines Corporation Semiconductor-on-insulator high-voltage device structures, methods of fabricating such device structures, and design structures for high-voltage circuits
US7804124B2 (en) * 2008-05-09 2010-09-28 International Business Machines Corporation Device structures for a memory cell of a non-volatile random access memory and design structures for a non-volatile random access memory
US7700428B2 (en) * 2008-05-09 2010-04-20 International Business Machines Corporation Methods of fabricating a device structure for use as a memory cell in a non-volatile random access memory
US8581342B2 (en) 2008-06-20 2013-11-12 Infineon Technologies Austria Ag Semiconductor device with field electrode and method
JP5452003B2 (ja) * 2008-09-23 2014-03-26 三菱電機株式会社 半導体チップの製造方法および半導体モジュールの製造方法
US8304314B2 (en) * 2008-09-24 2012-11-06 Semiconductor Components Industries, Llc Method of forming an MOS transistor
US8796764B2 (en) 2008-09-30 2014-08-05 Infineon Technologies Austria Ag Semiconductor device comprising trench gate and buried source electrodes
US8362548B2 (en) * 2008-11-14 2013-01-29 Semiconductor Components Industries, Llc Contact structure for semiconductor device having trench shield electrode and method
US8552535B2 (en) * 2008-11-14 2013-10-08 Semiconductor Components Industries, Llc Trench shielding structure for semiconductor device and method
US7915672B2 (en) * 2008-11-14 2011-03-29 Semiconductor Components Industries, L.L.C. Semiconductor device having trench shield electrode structure
US20100123193A1 (en) * 2008-11-14 2010-05-20 Burke Peter A Semiconductor component and method of manufacture
US8415739B2 (en) * 2008-11-14 2013-04-09 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US7897462B2 (en) * 2008-11-14 2011-03-01 Semiconductor Components Industries, L.L.C. Method of manufacturing semiconductor component with gate and shield electrodes in trenches
JP5422252B2 (ja) 2009-04-23 2014-02-19 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US8330214B2 (en) * 2009-05-28 2012-12-11 Maxpower Semiconductor, Inc. Power semiconductor device
US9443974B2 (en) 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
US9425305B2 (en) * 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9431530B2 (en) * 2009-10-20 2016-08-30 Vishay-Siliconix Super-high density trench MOSFET
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US9306056B2 (en) 2009-10-30 2016-04-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US8604525B2 (en) 2009-11-02 2013-12-10 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
US8247296B2 (en) * 2009-12-09 2012-08-21 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
US8021947B2 (en) * 2009-12-09 2011-09-20 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
DE102011003456A1 (de) 2011-02-01 2012-08-02 Robert Bosch Gmbh Halbleiteranordnung mit reduziertem Einschaltwiderstand
US8461646B2 (en) 2011-02-04 2013-06-11 Vishay General Semiconductor Llc Trench MOS barrier schottky (TMBS) having multiple floating gates
CN102637737B (zh) * 2011-02-10 2015-04-15 上海华虹宏力半导体制造有限公司 沟槽式场效应管及其制备方法
WO2012158977A2 (en) 2011-05-18 2012-11-22 Vishay-Siliconix Semiconductor device
JP5530992B2 (ja) * 2011-09-16 2014-06-25 株式会社東芝 電力用半導体装置
US8492226B2 (en) 2011-09-21 2013-07-23 Globalfoundries Singapore Pte. Ltd. Trench transistor
US9054133B2 (en) 2011-09-21 2015-06-09 Globalfoundries Singapore Pte. Ltd. High voltage trench transistor
JP5720582B2 (ja) * 2012-01-12 2015-05-20 トヨタ自動車株式会社 スイッチング素子
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
CN104350602B (zh) * 2012-05-29 2017-03-15 三菱电机株式会社 绝缘栅型双极晶体管
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
JP6072445B2 (ja) 2012-06-28 2017-02-01 株式会社 日立パワーデバイス 半導体装置およびそれを用いた電力変換装置
US8772865B2 (en) 2012-09-26 2014-07-08 Semiconductor Components Industries, Llc MOS transistor structure
JP5799047B2 (ja) * 2013-03-22 2015-10-21 株式会社東芝 半導体装置、及びその製造方法
JP2014187141A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 半導体装置
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US20150108568A1 (en) * 2013-10-21 2015-04-23 Vishay-Siliconix Semiconductor structure with high energy dopant implantation
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
EP3183753A4 (en) 2014-08-19 2018-01-10 Vishay-Siliconix Electronic circuit
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
US10541300B2 (en) 2016-05-26 2020-01-21 General Electric Company Semiconductor device and method of making thereof
US10998438B2 (en) 2018-03-01 2021-05-04 Ipower Semiconductor Self-aligned trench MOSFET structures and methods
US10777661B2 (en) 2018-03-01 2020-09-15 Ipower Semiconductor Method of manufacturing shielded gate trench MOSFET devices
US11251297B2 (en) 2018-03-01 2022-02-15 Ipower Semiconductor Shielded gate trench MOSFET devices
CN109411354A (zh) * 2018-11-23 2019-03-01 深圳真茂佳半导体有限公司 一种半导体器件及其制作方法
JP7180402B2 (ja) * 2019-01-21 2022-11-30 株式会社デンソー 半導体装置
US11289596B2 (en) * 2019-02-25 2022-03-29 Maxpower Semiconductor, Inc. Split gate power device and its method of fabrication
CN113519054B (zh) * 2019-03-01 2024-03-26 艾鲍尔半导体 制造屏蔽栅极沟槽mosfet装置的方法
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates
US11217690B2 (en) * 2019-09-16 2022-01-04 Infineon Technologies Austria Ag Trench field electrode termination structure for transistor devices
US11469313B2 (en) 2020-01-16 2022-10-11 Ipower Semiconductor Self-aligned trench MOSFET and IGBT structures and methods of fabrication
US11158735B2 (en) * 2020-02-05 2021-10-26 Infineon Technologies Austria Ag Charge compensation MOSFET with graded epi profile and methods of manufacturing thereof
CN111524798B (zh) * 2020-04-03 2022-05-03 电子科技大学 一种具有纵向线性变掺杂的深槽横向耐压区的制备方法
DE102020119875A1 (de) * 2020-07-28 2022-02-03 Technische Universität Darmstadt, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zum Führen geladener Teilchen
US11393907B2 (en) 2020-08-12 2022-07-19 Infineon Technologies Austria Ag Transistor device with buried field electrode connection
CN113394298B (zh) * 2021-06-23 2023-06-16 电子科技大学 一种超低比导通电阻的ldmos器件及其制造方法
CN113410309A (zh) * 2021-06-23 2021-09-17 电子科技大学 一种低比导通电阻的分立栅mosfet器件及其制造方法
CN113964196B (zh) * 2021-10-20 2023-01-20 重庆平创半导体研究院有限责任公司 一种耗尽型功率半导体结构、串联结构和加工工艺
CN114628497B (zh) * 2022-05-16 2022-08-05 成都蓉矽半导体有限公司 一种集成栅控二极管的碳化硅mosfet元胞版图结构

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849789A (en) 1972-11-01 1974-11-19 Gen Electric Schottky barrier diodes
US4705759B1 (en) 1978-10-13 1995-02-14 Int Rectifier Corp High power mosfet with low on-resistance and high breakdown voltage
JPS5553462A (en) 1978-10-13 1980-04-18 Int Rectifier Corp Mosfet element
US4593302B1 (en) 1980-08-18 1998-02-03 Int Rectifier Corp Process for manufacture of high power mosfet laterally distributed high carrier density beneath the gate oxide
US4419811A (en) 1982-04-26 1983-12-13 Acrian, Inc. Method of fabricating mesa MOSFET using overhang mask
NL8203870A (nl) 1982-10-06 1984-05-01 Philips Nv Halfgeleiderinrichting.
GB2151844A (en) 1983-12-20 1985-07-24 Philips Electronic Associated Semiconductor devices
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
JP2570742B2 (ja) 1987-05-27 1997-01-16 ソニー株式会社 半導体装置
GB2206994A (en) 1987-06-08 1989-01-18 Philips Electronic Associated Semiconductor device
US5229633A (en) 1987-06-08 1993-07-20 U.S. Philips Corporation High voltage lateral enhancement IGFET
JP2771172B2 (ja) 1988-04-01 1998-07-02 日本電気株式会社 縦型電界効果トランジスタ
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5216807A (en) 1988-05-31 1993-06-08 Canon Kabushiki Kaisha Method of producing electrical connection members
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US5132753A (en) 1990-03-23 1992-07-21 Siliconix Incorporated Optimization of BV and RDS-on by graded doping in LDD and other high voltage ICs
JP2606404B2 (ja) * 1990-04-06 1997-05-07 日産自動車株式会社 半導体装置
JP2861243B2 (ja) 1990-04-27 1999-02-24 日本電気株式会社 ダイナミック型ランダムアクセスメモリセル
US5126807A (en) 1990-06-13 1992-06-30 Kabushiki Kaisha Toshiba Vertical MOS transistor and its production method
US5113236A (en) 1990-12-14 1992-05-12 North American Philips Corporation Integrated circuit device particularly adapted for high voltage applications
US5362979A (en) 1991-02-01 1994-11-08 Philips Electronics North America Corporation SOI transistor with improved source-high performance
US5246870A (en) 1991-02-01 1993-09-21 North American Philips Corporation Method for making an improved high voltage thin film transistor having a linear doping profile
EP0497427B1 (en) 1991-02-01 1996-04-10 Koninklijke Philips Electronics N.V. Semiconductor device for high voltage application and method of making the same
GB9106108D0 (en) 1991-03-22 1991-05-08 Philips Electronic Associated A lateral insulated gate field effect semiconductor device
JPH05160407A (ja) 1991-12-09 1993-06-25 Nippondenso Co Ltd 縦型絶縁ゲート型半導体装置およびその製造方法
DE69317004T2 (de) 1992-03-26 1998-06-10 Texas Instruments Inc Hochspannungstruktur mit oxydisolierter Source und RESURF-Drift-Zone in Massivsilizium
US5213986A (en) 1992-04-10 1993-05-25 North American Philips Corporation Process for making thin film silicon-on-insulator wafers employing wafer bonding and wafer thinning
US5430314A (en) 1992-04-23 1995-07-04 Siliconix Incorporated Power device with buffered gate shield region
US5640034A (en) 1992-05-18 1997-06-17 Texas Instruments Incorporated Top-drain trench based resurf DMOS transistor structure
US5233215A (en) 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
US5910669A (en) 1992-07-24 1999-06-08 Siliconix Incorporated Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
US5316959A (en) 1992-08-12 1994-05-31 Siliconix, Incorporated Trenched DMOS transistor fabrication using six masks
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
US5323040A (en) 1993-09-27 1994-06-21 North Carolina State University At Raleigh Silicon carbide field effect device
JP3383377B2 (ja) 1993-10-28 2003-03-04 株式会社東芝 トレンチ構造の縦型のノーマリーオン型のパワーmosfetおよびその製造方法
US5396085A (en) 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate
US5498898A (en) 1993-12-28 1996-03-12 Nippon Steel Corporation Semiconductor device using element isolation by field shield
US5424231A (en) 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
DE69525003T2 (de) 1994-08-15 2003-10-09 Siliconix Inc Verfahren zum Herstellen eines DMOS-Transistors mit Grabenstruktur unter Verwendung von sieben Masken
JPH0897411A (ja) 1994-09-21 1996-04-12 Fuji Electric Co Ltd 横型高耐圧トレンチmosfetおよびその製造方法
JP3395473B2 (ja) 1994-10-25 2003-04-14 富士電機株式会社 横型トレンチmisfetおよびその製造方法
US5688725A (en) 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
US5674766A (en) 1994-12-30 1997-10-07 Siliconix Incorporated Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
JP3325736B2 (ja) 1995-02-09 2002-09-17 三菱電機株式会社 絶縁ゲート型半導体装置
US5962893A (en) * 1995-04-20 1999-10-05 Kabushiki Kaisha Toshiba Schottky tunneling device
US5661322A (en) 1995-06-02 1997-08-26 Siliconix Incorporated Bidirectional blocking accumulation-mode trench power MOSFET
US5648670A (en) 1995-06-07 1997-07-15 Sgs-Thomson Microelectronics, Inc. Trench MOS-gated device with a minimum number of masks
US5679966A (en) 1995-10-05 1997-10-21 North Carolina State University Depleted base transistor with high forward voltage blocking capability
US5648671A (en) 1995-12-13 1997-07-15 U S Philips Corporation Lateral thin-film SOI devices with linearly-graded field oxide and linear doping profile
US5637898A (en) 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
KR0175277B1 (ko) 1996-02-29 1999-02-01 김광호 중첩된 필드플레이트구조를 갖는 전력반도체장치 및 그의 제조방법
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
US5710451A (en) 1996-04-10 1998-01-20 Philips Electronics North America Corporation High-voltage lateral MOSFET SOI device having a semiconductor linkup region
US5612567A (en) 1996-05-13 1997-03-18 North Carolina State University Schottky barrier rectifiers and methods of forming same
US5744994A (en) 1996-05-15 1998-04-28 Siliconix Incorporated Three-terminal power mosfet switch for use as synchronous rectifier or voltage clamp
US5742076A (en) 1996-06-05 1998-04-21 North Carolina State University Silicon carbide switching devices having near ideal breakdown voltage capability and ultralow on-state resistance
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5710455A (en) 1996-07-29 1998-01-20 Motorola Lateral MOSFET with modified field plates and damage areas
US5753938A (en) 1996-08-08 1998-05-19 North Carolina State University Static-induction transistors having heterojunction gates and methods of forming same
SE9704149D0 (sv) * 1997-11-13 1997-11-13 Abb Research Ltd A semiconductor device of SiC and a transistor of SiC having an insulated gate
US5918137A (en) 1998-04-27 1999-06-29 Spectrian, Inc. MOS transistor with shield coplanar with gate electrode
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6452230B1 (en) 1998-12-23 2002-09-17 International Rectifier Corporation High voltage mosgated device with trenches to reduce on-resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416313B (zh) * 2006-04-06 2010-12-01 夏普株式会社 功率ic器件及其制造方法
CN101325196B (zh) * 2007-06-11 2012-05-23 万国半导体股份有限公司 带有集成高功率分立场效应晶体管和低压控制器的升压变换器
CN102184952A (zh) * 2010-02-23 2011-09-14 成都芯源系统有限公司 一种垂直电容耗尽型功率器件及制作方法
CN103904119A (zh) * 2014-03-28 2014-07-02 中国科学院微电子研究所 一种具有纵向屏蔽栅的Trench MOSFET及其加工方法
CN103904119B (zh) * 2014-03-28 2016-08-17 北京中科新微特科技开发股份有限公司 一种具有纵向屏蔽栅的Trench MOSFET及其加工方法
CN106876446A (zh) * 2017-03-23 2017-06-20 深圳基本半导体有限公司 一种大功率槽栅门级t‑mosfet结构设计
CN110890277A (zh) * 2018-09-07 2020-03-17 无锡华润上华科技有限公司 沟槽式金属氧化物半导体肖特基势垒晶体管制备方法
CN114023804A (zh) * 2021-07-06 2022-02-08 娜美半导体有限公司 具有多阶梯外延层结构的屏蔽栅沟槽式半导体功率器件
CN116799070A (zh) * 2023-08-28 2023-09-22 江苏应能微电子股份有限公司 具有三重resurf结构的分离栅沟槽MOS器件及工艺
CN116799070B (zh) * 2023-08-28 2023-11-17 江苏应能微电子股份有限公司 具有三重resurf结构的分离栅沟槽MOS器件及工艺

Also Published As

Publication number Publication date
JP2005510880A (ja) 2005-04-21
US6621121B2 (en) 2003-09-16
AU2002363937A1 (en) 2003-06-10
EP1449258A1 (en) 2004-08-25
US20020036319A1 (en) 2002-03-28
WO2003046996A1 (en) 2003-06-05
US6764889B2 (en) 2004-07-20
US20040016963A1 (en) 2004-01-29
KR20040058318A (ko) 2004-07-03

Similar Documents

Publication Publication Date Title
CN1695251A (zh) 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法
US5637898A (en) Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
KR100628938B1 (ko) 개선된 고주파 스위칭 특성 및 항복 특성을 갖는 전력용반도체 장치들
JP4198469B2 (ja) パワーデバイスとその製造方法
EP0633611B1 (en) Semiconductor device comprising an insulated-gate bipolar field-effect device
US6717230B2 (en) Lateral device with improved conductivity and blocking control
US5323040A (en) Silicon carbide field effect device
US6781194B2 (en) Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
US6365462B2 (en) Methods of forming power semiconductor devices having tapered trench-based insulating regions therein
CN1171318C (zh) 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管
CN1586009A (zh) 场效应晶体管半导体器件
JP2004095954A (ja) 半導体装置
CN105027290A (zh) 自适应电荷平衡的mosfet技术
US6084254A (en) Lateral bipolar mode field effect transistor
US5912497A (en) Semiconductor switching devices having buried gate electrodes and methods of forming same
CN116190438A (zh) 一种AlGaN/GaN垂直型高电子迁移率晶体管及其制作方法
US20230411510A1 (en) Power field-effect transistor and manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication