CN1711131A - 用于光催化净化和消毒流体的装置和方法 - Google Patents

用于光催化净化和消毒流体的装置和方法 Download PDF

Info

Publication number
CN1711131A
CN1711131A CNA2003801034202A CN200380103420A CN1711131A CN 1711131 A CN1711131 A CN 1711131A CN A2003801034202 A CNA2003801034202 A CN A2003801034202A CN 200380103420 A CN200380103420 A CN 200380103420A CN 1711131 A CN1711131 A CN 1711131A
Authority
CN
China
Prior art keywords
semiconductor
fluid
substrate
light
semiconductor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2003801034202A
Other languages
English (en)
Inventor
加里·M·卡尔米尼亚尼
利·W·弗雷德里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1711131A publication Critical patent/CN1711131A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • B01J35/30
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2495Net-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0209Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0254Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30433Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3221Lamps suspended above a water surface or pipe
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

光催化转化流体流中的污染物的装置和方法。流体通过半透明填充床或开孔、三维网状、流体可渗透的半导体单元。在该单元内,当半导体与光活化光源接触时,通过光催化反应转化污染物。该基底和该半导体光催化剂对活化光都是半透明的,从而允许光穿透进该单元,因此分布光,增加活性比表面积,提高该单元的净转化性能。

Description

用于光催化净化和消毒流体的装置和方法
发明领域
本发明一般涉及一种净化和消毒流体的方法和装置。更具体而言,本发明涉及使用半透明半导体材料使流体中的污染物光催化转化的装置和方法。本发明公开一种装置和方法,包括填充床或刚性、开孔、三维网状、可渗透流体的光催化半导体单元,其对紫外光是部分透明的。
发明背景
异质光催化作用是通用术语,公开在Mills,A.,Le Hunte,S.,“AnOverview of Semiconductor Photocatalysis,”J.PhotoChem.&PhotoBio.A:Chemistry 108(1997)1-35;及Hoffman,M.R.,Martin,S.T.,Choi,W.,Bahnemann,D.W.,“Environmental Applications of SemiconductorPhotocatalysis,”Chem Rev 1995,95,69-96中。特别重要的是形成羟基OH-。羟基是一种高效氧化剂(其相对于SHE(标准氢电极)的氧化还原电势为+2.8eV),其几乎能够氧化所有的有机物。相比而言,更常规的氧化剂氯和臭氧,其氧化还原电势分别为+1.36和+2.07eV。羟基也可杀死和破坏微生物和内毒素。
流体流中的污染物,如有机化合物、氮和硫氧化物、酸性气体、溶解的无机固体及微生物可通过活化半导体的氧化和还原电势发生转化。氧化可以利用如下形式,但不限于:氧化有机化合物、降解微生物、或还原溶解的物质。理想的是,转化产物与母体化合物相比,有害性更小或更易从流体流中除去。
半导体光催化剂已被证实可以破坏流体介质中的有机污染物,其包括但不限于:TiO2、ZrO2、ZnO、CaTiO3、SnO2、MoO3、Fe2O3和WO3。TiO2由于具有化学稳定性、对于UV/可见光光活化具有适合的能带隙结构、相对便宜,而被广泛研究。
TiO2以三种主要的结晶形式存在:金红石型,板钛矿型,锐钛矿型。金红石型TiO2广泛地用作颜料,并发现几乎存在于任何白色物质中,例如,油漆,纸,纺织品,油墨,塑料和化妆品中。锐钛矿型,是低温型,是最光活化的形式。制备含有板钛矿型TiO2光催化剂的一种方法公开于美国专利6,337,301中,在此引入其全部内容作为参考。
包括助催化剂(例如,铂,钯,银和/或其氧化物和硫化物)的二氧化钛的可以提高光催化活性。已公开有各种提高TiO2量子效率的方法,加入各种金属提高少数载体传播长度,Augustynski,J.;Hinden,J.Stalder,C.;J.Electrochem.Soc.1977,124,1063,或实现有效的电荷分离以提高载体寿命,Vogel,R.,Hoyer,P.,Weller,H.,“Quantum-SizedPbS,CdS,Ag2S,Sb2S3 and Bi2S3 Particles as Sensitizers for VariousNanoporous Wide-Bandgap Semiconductors,”J.Phys.Chem.1994,98,3181-3188。
本发明发现,光催化流体净化装置的性能主要是半导体光催化剂活性、被照射的半导体表面的比表面积、装置的传质特性、通过装置的压降、半导体表面的光分布和绝对光强度的函数。所有这些因素在设计光反应器时应同时考虑。为利用半导体表面活性,优选应控制条件,使污染物从流体到半导体表面上的传输速率不是限定因素。由于污染物转化速率随污染物表面浓度的提高而增大,所以流体中和半导体表面的流体之间的浓度梯度优选应最小。装置的传质特性随通过装置的流体速度及流体与半导体表面的接近度而增大。通过改变孔径、填充物直径或其他可确保较小特性长度的物理参数,可以实现优选的传质特性。迫使流体流进通过半导体表面的曲折通道也可提高传质。
根据本发明,绝对转化速率是有机化合物的表面浓度、光强度及被照射的表面积的函数。本发明人认为在光强度中的反应级数<1,基于对可接受反应机理的理论考虑和观察到的实验,这是半级反应。Gerischer,H.,Electrochimica Acta 38,9(1993)和Turchi,C.S.,Ollis,D.F.,Journal of Catalysis 119,483(1989)。基于本发明人的理解,光强度的反应级数小于单位1,需要将从给定光源发出的光尽可能大的传播在表面积上。因此,根据本发明的原理,有效的装置应能使流体和半导体表面间紧密接触,同时应能在尽可能大的表面积上传播活化光。应注意到,如果事实上反应级数在光强度中是单位1,那么对给定光源而言,提高被照射的比表面积,也不能提高性能。
由于直到近来已知的半导体表面对UV光仍是不透明的,所以通常利用几何学或波导传播光。Dong的美国专利5,516,492使用多个弯曲的板,而Say的美国专利6,063,343使用一系列垂直于灯轴的封闭填充板,以提供高被照射的比表面积。Anderson的美国专利6,285,816使用波导分布光上述方法依靠几何学或光学分布光至半导体薄膜上,而不依靠半透明基底/半导体薄膜对分布辐射。
许多对半导体光催化作用的早期研究涉及到如下方法:使用不透明二氧化钛(TiO2)浆料或洗涤涂覆在玻璃管上或其内的TiO2,光降解有机化合物及其在水中的中间体。这些使用TiO2的方法限制了商业应用。例如。TiO2浆料严重限制了从纯净水中除去TiO2粒子。尽管洗涤涂覆在玻璃上的TiO2避免了对除去浆料的限制,但是这也具有本身的问题,即不充足的表面积在合理时间内有效地破坏了有机物。此外,水性涂料与玻璃粘合不稳,从而TiO2在水流中损耗,同时光催化活性降低。
Kraeutler和Bard制造了一种光催化反应器,其含有锐钛矿结晶型的TiO2粉末的水性浆料,并研究了饱和羧酸的分解。J.ACS 100(1978)5985-5992。其他研究者使用UV-照射的TiO2浆料,来研究有机污染物在水中的光催化降解。
Mathews通过洗涤涂覆TiO2(Degussa P25TM)粒子至7毫米长硼硅酸盐玻璃管(盘绕成65圈的螺旋)的内侧发明了一种薄膜反应器。他监测到水杨酸、苯酚、2-氯苯酚、4-氯苯酚、苯甲酸、2-萘酚、萘及荧光素在水中的破坏。J.Physical Chemistry 91(1987)3328-3333。Berman的美国专利5,766,455将不透明涂料洗涤涂覆在玻璃纤维网上上。这些装置都没有使用透明基底/半导体对。
Robertson等人的美国专利4,892,712公开了通过溶胶-凝胶法将锐钛矿型TiO2粘附到纤维玻璃网基底上。这种网绕光源盘绕,光源在石英玻璃圆柱体内,可发射波长为340~350纳米(nm)的UV光。与本发明不同,Robertson的网不是刚性的,半导体与网缺少永久粘合,也不能说明基底半导体对的透明度。
PI.R.Bellobono教授制备了固定23%二氧化钛(Degussa P-25)的光催化膜。可控制量的适合单体和聚合物(含有待固定和受专利光催化系统而光引发的半导体)被光学接枝到非纺织聚酯薄绢上。光合成膜的最终多孔度被控制在2.5-4.0微米。他将这种膜商业命名为“Photoperm”TM。“Effective Membrane Processes.New Perspectives,”R.Paterson,ed.,BHR,Mech.Eng.Publ.,London(1993),257-274。这种方法在1995年于意大利取得专利权,意大利专利号IT1252586。与本发明不同,Bellobono的装置是不稳定,不耐久的,并且由于低流体渗透性表现出超压降。
Cittenden等人公开了一种破坏流体中有机化合物的方法和装置。参见所述1995American Society of Mechanical Engineers(ASME)International Solar Energy Conference,Maui,Hawaii,USA。不透明TiO2涂层通过洗涤涂覆与35×60网孔的硅胶基底粘合。基底放在允许UV光穿透的塑料管内。水流中的有机污染物沿轴向通过塑料管i。与含有半透明半导体涂层的本发明不同,Cittenden的发明不耐久,光催化涂层不是半透明的,并具有极受限制的流体渗透性。
制备陶瓷钛膜的另一种方法是使用精制溶胶-凝胶法。J.MembraneScience 30(1988)243-258,及Anderson的美国专利5,006,248。这些膜是多孔的,并对UV照射透明。它们从钛醇盐制得,然后焙烧形成锐钛矿型晶体结构。与本发明不同,Anderson的发明具有极受限制的流体渗透性。
因此,尽管现有技术中已做出各种尝试,通过提高半导体被照射的比表面积和提高UV光穿透来提高量子产率,但是对于有效、耐久的光催化净化装置的商业发展及在可接受的压降特性和使用方法方面仍有严重限制。
发明概述
本发明的目的基本上是改进现有技术,提供一种高效、耐久、经济、商用的装置,用于快速光催化净化和消毒流体。本发明的一个实施方案是一种反应器,其包括半透明填料、支撑在填料上的半透明半导体涂层及一个或多个光源。光源位于填充床内,使得光可通过多个半导体涂层透射。当流体流过填充床时被净化。
方法的有效性部分地由传质效率决定,传质效率是污染物从流体流传输到光催化表面的速率,而污染物可在光催化表面被破坏。由半透明填料/半导体对构成的实施方案提供了较高比表面积,并使表面与处理的流体充分接触。与基底(填料)相关的特性长度保持在尽可能小,被通过装置可允许的流体压降所限制。
另一个考虑的问题是光在装置中的半导体表面上的分布。由于半导体涂层对活化的光是半透明的,所以部分光子被涂覆在基底上或基底中的光催化剂所吸收,而其余光子通过邻近的光催化表面。因此,支撑材料的量分数应最小,并且对活化光子有较高透明度。为增强体积照明,在使用基底的实施方案中,基底材料优选由玻璃或对光活化波长透明或半透明的其他材料制成。半导体涂层也应对光表现出较高透射性,以提供较大的被照射表面积。在将基底与半导体粘合或化学结成一体的实施方案中,此单元也优选由透明或半透明材料制成。
用于本发明中的透明/半透明网状或填充床半导体单元基本上是对现有技术的突破,允许商业上使用流体净化光催化技术,这是因为通过平衡传质、被照射的表面积、辐射分布和压降的问题,同时提供耐外性,且装置易制造和维护,而可以最优化装置性能的原因。光催化半导体单元提供了较高表面积的透明结构,其上可粘合或结合半透明半导体光催化剂。
附图简要说明
图1表明填充床环形反应器。
图2表明带有网状泡沫基底和多个灯的环形反应器。
图3表明矩形结构并带有多个灯的填充床。
图4表明使用LED作为光源的填充床圆柱形反应器。
图5表明使用LED作为光源的另一个反应器。
图6表明半透明基底/半导体对的透射曲线。
图7阐明在不透明和半透明对间的区别。
图8表明对于半透明基底/半导体对相对于不透明系统而言,在光强度中半级反应速率对系统性能(量子效率)的作用。
优选实施方案详细说明
本发明涉及由光催化剂涂覆的填充床构成的半导体单元或三维网状、半透明、可渗透的半导体单元在净化和消毒流体的反应器装置和方法中的用途。本发明可以用于例如半导体业和制药业中,清洁环境用,家用,净化空气用。本领域所属技术人员应该理解,本发明可以在多种不同的行业和应用中净化流体。
在优选的实施方案中,本发明公开一种净化流体(主要是空气和水)的装置和方法,通过将流体供应至填充床或刚性、三维网状、开孔材料,解决了现有技术中的问题,其中填充床或开孔材料的特征是流体可渗透、高表面积的半透明基底,其上永久粘合半透明光催化半导体层,或在其中结合。本发明所述的材料及在光催化净化和消毒流体中的装置和方法进一步以高传质效率和较低压降为特征。
本发明的一个实施方案表明在图1中。反应器由圆柱形室30构成,其带有一个或多个流体入口22和一个或多个流体出口24。圆柱形室30由耐流体腐蚀作用的材料制成,例如对于水应用而言是不锈钢合金,对于空气应用而言是铝合金或塑料。入口22和出口24设计成可沿轴向流过反应器。灯套26对于相关照射波长是透明的,并平行于圆柱形室中心的流动轴。一床半透明半导体涂覆的半透明填料28位于圆柱形室30和灯套26间的环带内。所需要的光源(图未示)置于灯套中心。
根据本发明,选择圆柱形室的半径,控制在穿过未吸附单元的灯套处进入半导体单元的光的分数。在圆柱形室壁处的光通量与灯套处的光通量之比优选为0.001-0.2,更优选为0.05-0.10。对于给定比例而言,通过填料的尺寸和半导体涂层的透明度确定半径。选择填料的尺寸、形状和类型以平衡传质、压降和成本。较小特性长度的填料可以提高传质并降低装置重量,但是会使压降增大。一些类型填料比其他类型有更大的比表面积,但是这些材料更复杂成本更高。选择光源,以对特定半导体在考虑到活化和透明度因素时提供适合的波长。较高线性能量密度的光源是优选的,然而,也应考虑灯的成本和效率(涉及到动力费用)。
本发明的另一个实施方案表明在图2中。此实施方案与图1所示的相似,除了基底是半导体涂覆的网状结构29(如网状泡沫)或使用立体印刷制成的结构,并且在装置中使用多个光源(图未示)。更多的光源只不过使每个反应器产生较多的流体。
本发明的另一个实施方案表明在图3中。此实施方案使用半导体涂覆的填料38的矩形填充床,并由密封网40支撑,带有多个灯34。通过填充床的流体流36垂直于包括灯34的平面。在退出和进入平面及壳体外壁处的光强度与灯套处的光强度之比优选为0.001-0.2,更优选为0.05-0.1。对于给定反应器体积和产量,所用的灯的数量决定了污染物转化性能;当使用更多的灯时,性能可以提高,反应器重量可以降低,但是所用的动力成本增大。
本发明的另一个实施方案表明在图4中。此实施方案使用半导体涂覆的填料38的圆柱形填充床,沿外周照射,用LED作为光源42。显然,也可以使用网状基底。圆柱体44由耐流体腐蚀和耐因LED发射的光而降解的材料制成。确定壳体直径,与填料直径和半导体涂层的光透射相符,以使反应器中心的光强度与外径的光强度之比为0.001-0.2。此实施方案对于低产量需求或使通过装置的流体广泛再用的应用而言是理想的,例如在用于处理饮用水的装置中。LED由于较长的寿命、高效率、低热负载、提高的设计适应性及低电压动力需求而优于常规灯。
图5表明点式反应器10的实施例,LED用作光活化光。污染的水源通过入口22流进反应器。水流过被LED光14光活化的网状半导体单元18。支撑/接线板16固定LED光。提供石英板20以从水流中隔离LED光。净化的水通过出口24退出反应器。点式反应器外壳12可由如下材料制成:各种热塑性塑料(聚丙烯等),或金属(304不锈钢,316不锈钢等),或对LED光源降解是惰性并耐水腐蚀的其他材料。
点式反应器可以使用网状或填充床半导体单元,其被可在370nm或更小时发出UV能量的LED光活化。点式反应器也可以使用被掺杂而将能量隙迁移到可见光波长的半导体单元。在此实施例中,使用发射可见光波长的LED。后面的结构可能更有效地利用LED能量。
点式反应器因净化水的较低和间歇需求被设计成商业化,如家中饮用水。这种反应器优于现有技术,因为其仅使用较小百分比的能量,且在不使用时不会将热量传递至产物水中,这避免了在使用产物水之前冲洗系统至环境温度的需求。此外,使用LED的反应器仅需要较低的电能,从而使其对使用者和包括水、电在内的环境都是安全的,使反应器通史在便携式应用中使用,如电池动力选择。
尽管此前从没有用于本发明的目的,但是由各种材料制得的透明填料和三维网状、开孔的基底都有文献描述,并可从商业上得到。这种材料包括氧化铝、氧化锆、氧化钛、氧化硅、熔融氧化硅、玻璃、硅树脂和有机聚合物。在一个优选的实施方案中,使用如下的基底材料:其对光是透明或半透明的,对于1cm厚度透射的光大于80%。选择基底,以对于半导体所需的活化光得到所需的透明度。对于TiO2和波长为365±25nm的光而言,可以使用例如石灰苏打玻璃、硼硅酸盐玻璃或石英基底。基底材料可以是填料形式,并可置于柱子或其他容器中。在优选的实施方案中,基底材料可以是半透明的随机或规则或堆积的填料,并且可以包括球体、圆柱体、Raschig环,Lessing环,分离环,Berl鞍形填料,Intalox鞍形填料,及各种其他鞍形填料,Pall环,Flexi环,Cascade环,Hy-Pak环,Tellerettes,各种编织或纺织线网结构,或对365nm±25nm的UV辐射吸收<20%/cm且具有较高比表面积、结构完全性和所需的流体流动特性的各种排列或结构的材料。制备网状基底的多种方法之一公开于现有技术中:Fischer的美国专利3,052,967;Walz的3,946,039;Morris的4,568,595;及Park等人的5,441,919。基底也可使用立体印刷法或选择性激光烧蚀法或本领域所属技术人员熟悉的其他方法来制备。选择基底的特性长度和物理外观以最大化传质特性,同时对于给定流体、流速和应用而言,保持压降低于可接受水平。对填料而言,特性长度优选为0.05-2cm,更优选为0.4-1cm,对网状结构而言,为0.1-0.5cm。
许多技术被用来将半导体沉积在基底上或沉积于其中,包括但不限于,浸涂,溶胶-凝胶法,化学气相沉积,气溶胶涂覆,蒸发沉积,无机粘合剂,有机/无机粘合剂。文献和现有技术中解释了将半透明半导体层与基底永久粘合所必须的步骤。参见,例如专利,Ohmori等人的美国专利6,337,301;Hayakawa等人的美国专利6,013,372,及Heller等人的美国专利6,093,676;文献,Jiaguo Yu等人的“Preparation,Microstructure and Photocatalytic Activity of Porous TiO2 AnataseCoating by Sol-Gel Processing,”J Sol-Gel Science and Technology 17(2000)163-171;E.Stathaios等人的“Nanocrystallite Titanium Films Madeby Said Sol-Gel method Using Reverse Micelles,”J Sol-Gel Science andTechnology 10(1997)83-89。化学气相沉积参考Gordon的美国专利5,389,401,和Giovanni等人的“Metal Organic CVD of NanostructuredComposite TiO2-Pt Thin Films:A Kinetic Approach,”Chem.VaporDeposition 5(1999)13-20。另一个方法是从气溶胶化的半导体液体冷凝,由G.Yang和Pratim Biswas在“Deposition of Multifunctional TitantiaFilms by Aerosol Routes,”J.Am.Ceramic Soc.82(1999)10中公开。尽管这些是粘附半导体薄膜的流行方法,但不限于它们和现有技术中其他方法的变体上。
在另一个实施方案中,基底由与半导体层同样的材料制成,这两种材料化学结合。
适用的半导体光催化剂包括但不限于:TiO2、ZrO2、ZnO、CaTiO3、SnO2、MoO3、Fe2O3和WO3。尽管可以使用各种半透明半导体涂层,但是TiO2具有有效的作用。在一个优选实施方案中,板钛矿型TiO2及非水解锆化合物用作涂层材料,并具有有效作用。各种其他材料组合可以用作有用的涂层材料,如单独TiO2的多晶型混合物或与氧化锆和/或氧化锡的混合物包括,但不限于,板钛矿型和锐钛矿型TiO2的下列混合物;板钛矿型、锐钛矿型及金红石型TiO2的混合物;板钛矿型TiO2和二氧化锆的混合物;板钛矿型和锐钛矿型TiO2和二氧化锆的混合物;板钛矿型、锐钛矿型及金红石型TiO2和二氧化锆的混合物;锐钛矿型TiO2;锐钛矿型TiO2和二氧化锆的混合物;板钛矿型TiO2和二氧化锡(SnO2)的混合物;板钛矿型和锐钛矿型TiO2和二氧化锡的混合物;板钛矿型、锐钛矿型及金红石型TiO2和二氧化锡的混合物;锐钛矿型TiO2和二氧化锡的混合物;及金红石型TiO2。助催化剂,如Pt、Ag或Fe及这些金属的氧化物和硫化物可用于提高转化率,或迁移半导体的吸收光谱。其他公知的半导体和助催化剂可用于本发明中。
活化光波长因半导体光催化剂的不同而不同。200-400nm UV光用于TiO2;TiO2对于波长365±25nm的UV是透明的。例如,在较长波长时,半导体光催化剂更透明,从而能更有效地利用给定量的光,但需要更大的反应器尺寸。选择给定应用的特定波长,以平衡各种问题,包括动力成本和反应器尺寸/重量问题。较短或较长波长都可用于不同半导体,或者以某种方式改变TiO2以改变其吸收特性,即使用助催化剂或可见光活化的染料。优选的涂层是半透明的,并可透射60-95%的光,优选透射70-90%的光,更优选透射75-85%的光。半导体涂层优选是0.1-1.0μm厚。
通过加入各种助催化剂可以提高多种半导体表面的光催化活性,包括过渡金属,如但不限于,铂、钯、钌、铱、铑、金、银、铜、锡、铁、钴、钒、铌、锆及锌。这些金属及其氧化物、硫化物或其他化合物的组合对于本领域所属技术人员是公知的。可选择地,通过加入助催化剂或用化合物如光活化染料改变半导体表面,半导体的能带隙能量可以迁移到可见光谱(400nm-700nm)。Zang等人表明,加入铂(IV)卤化物可将TiO2需要的366nm~400nm能带隙能量迁移到可见光谱。“Amorphous Microporous Titania Modified Platinum(IV)Chloride-ANew Type of Hybrid Photocatalyst for Visible Light Detoxification,”JPhys.Chem.B 102(1998)10765-10771。用铁或铬掺杂得到相似的结果。“Visible Light Induced Water Cleavage in Colloidal Solutions ofChromium-doped Titanium Dioxide Particles,”J ACS 104(1982)2996-3002,E.Borgarello等人。其他本领域所属技术人员公知的助催化剂可用于本发明中。
本发明装置和方法实施方案的进一步增强包括使用一组或一套基底/半导体对的组合,每一对具有自身的特定参数和增强效果。一套中的每一元件被设计成在特定的TOC成分中操作,例如,但不限于,极性/非极性成分,疏水/亲水成分,芳香族/脂肪族成分,醇/酸成分和化学/生物成分。一套中的各元件用于一系列组合,其中水通过第一元件,然后通过另一个元件。这种增强通过完全集合对污染物组合的破坏能力扩大了本发明的范围,即使一套中的各元件不能单独实现可接受的全部TOC破坏水平。
本申请公开的装置可串联或并联连接,以适合增大的产量,或使污染物具有较高的单向转化率。
本申请公开的装置用的基底可被设计成允许除去,从而基底/半导体光催化剂可用最小的努力替换。
本申请公开的装置进一步增强是涂覆或抛光反应器室/壳体的内表面以反射残余光,即没有在通过多个半导体涂层的第一通道被吸收,而通过半导体单元返回。
本申请公开的装置进一步增强包括在反应器的入口和/或出口加上分配器系统,以确保通过半导体单元的流体流均匀分布。
优选的光源包括,但不限于,低、中和高压力汞和氙灯,紫外光LED,或任何其他活化半导体的光源,包括太阳光。
尽管本文描述并阐明了本发明的特定实施方案,但应该理解,本领域所属技术人员很容易做出各种修改和变化,而这种修改和变化未脱离本发明的精神和范围。因此,将要保护的本发明可以与具体所述不同的方式实施。
实施例:
实施例1-TiO2涂层涂覆到石灰苏打玻璃载片上的三个1-英寸样品上,涂层厚度约为300-500nm。对于样品1,使用标准溶胶凝胶法涂覆半透明100%锐钛矿型TiO2光催化涂层。Sitkiewitz,S.D.,Heller,A.,New J.Chem 20,233-241(1996)。使用Marc Anderson博士的精制溶胶凝胶法制备样品2的半透明100%锐钛矿型TiO2光催化涂层。美国专利5,006,248。样品3的光催化涂层含有板钛矿型和锐钛矿型TiO2及锆化合物的混合物,每100重量份的金属氧化物粒子含有约3~200重量份的ZrO2。样品1-3的半透明涂层对365nm辐射透明度大于75%。
用于比较样品1-3光活性的量度是对水杨酸的氧化速率。对于每个样品而言,载片浸在20ml 10ppm的水杨酸中,用强度为575μW/cm2的254mn光照射。溶液中的氧浓度保持在饱和。以水杨酸浓度作为时间的函数来监测,得到的数据用于计算每个测试的半衰期。半衰期是指用于使水杨酸浓度降低到一半的时间,假定为一级动力学。半衰期越短,水杨酸被氧化的越快。因此,较短的半衰期证实TiO2涂层具有提高的光催化活性。
样品1-3的光活性结果列在下面。
  样品   涂层  半衰期(min)
  1   100%锐钛矿型(标准溶胶凝胶)  253
  2   100%锐钛矿型(精制溶胶凝胶)  168
  3   板钛矿型和锐钛矿型TiO2及ZrO2  54
样品3(板钛矿型/锐钛矿型混合物)的半衰期比样品1的半衰期约短5倍,比样品2的半衰期约短3倍。因此,板钛矿型/锐钛矿型涂层的光活性优于锐钛矿型涂层。
实施例2-使用浸涂方法将含有氧化锆及板钛矿型和锐钛矿型TiO2的半透明涂层涂覆到石英载片上。如图6所示,对普通“背光”UV源的发射波长365nm而言,光有明显的透射。由于光子能量增大,所以半导体涂层吸收较大分数的入射能量。对本发明而言,在普通操作条件下,有机化合物的氧化速率可以表达为:
速率=kA((1-T)I)nΘ有机化合物[摩尔或质量/时间]  (1)
其中:
k=速率常数;
A=被照射的表面积;
T=入射光通过光催化层的透射分数;
I=入射光强度;
Θ=有机化合物的表面浓度;及
n=光强度通常为0.5时的反应级数。
对于普通不透明光催化涂层而言,T基本上为0,反应速率与I成正比。
标准UV源在254、310和365nm有较强的发射。对于普通不透明薄膜而言,在254和365nm的所有入射光都可被薄膜吸收,254mn波长是优选的,因为其可将光子吸收定位到接近薄膜-流体界面,而光子尽可能深地吸收到薄膜中,而相对远离流体,这不是有助于有机化合物的氧化。通过使用图6的信息及方程1,很显然,如果代替使用365nm照射TiO2薄膜,那么反应速率将被提高。由于相对于光强度反应速率小于单位1,如图7所示,对于给定入射光子通量而言,在很大面积内传播的光子将提高反应速率。
比较使用254nm光和不透明薄膜的系统及使用365nm辐射和半透明催化剂层和基底的系统。对于两种系统中相同光子通量而言,365nm系统相对于254nm系统的反应速率比可以表达为:
其中层数是各催化剂涂覆的表面被渗透的数值。如图8所示,对于吸收20%365nm入射光的催化剂薄膜而言,使用超过3种催化剂薄膜的系统比1种不透明涂层有更大的反应速率。
实施例3-制备并测试半导体光催化剂涂覆的玻璃球。板钛矿型和锐钛矿型TiO2及ZrO2被涂覆到6mm苏打石灰玻璃球上。每层涂层对365nm光的透明度约为85%。这些球的填充床被置于半径为2.2cm的测试室中。相对湿度为40%的空气以40cm3/s的流速通过该床。2ppm(v/v)的甲醛被用作测试污染物。365nm UV源以7.0mW/cm2从上方照射测试室。作为球浓度的函数测试甲醛的单向转化率。
实验结果列于表1中。这些结果表明,当加入更多的球层时,床深度增加,甲醛的单向转化率增加。由于每个涂层的照射下降,总系统体积性能随床深度增大而下降,量度表示为keffa/V(转化率归一化的空速)。
K eff a V = ln ( C / C 0 ) F / V - - - ( 3 )
其中:
Keff=有效速率常数
a=比面积
C,C0=在反应器出口和入口的污染物浓度
F=流速
V=反应器体积
然而,当相同光转化更多污染物时,量子效率随床深度提高而增大。此外,如先前讨论的那样,在光强度时反应速率级数n<1,由于效率提高,keffa/V不随床深度线性下降。因此,对于给定光输出,提高床深度允许产生更多流体或转化率更大。这些结果与基于实施例2所述的分析所预测的一致。
表1
  床深度,#球   甲醛单向转化率,%   Keffa/V,min-1
  1   58   305
  2   74   230
  3   85   219
  4   90   197
实施例4-使用计算机模型从反应动力学、传质、光分布和流体力学角度模拟图2所示结构的反应器。在化学加工业中普遍使用这种模拟,以评估可能的反应器设计。对于使用板钛矿型和锐钛矿型TiO2及ZrO2涂覆的苏打-石灰球体作为填料的模拟反应器而言,计算甲醛在空气中的转化率。通过实验确定反应的动力学参数。用于产生动力学数据的涂层透明度在365nm时为81%。基于发射测量法,制备Voltarc技术F18T8/BL9/HO/BP灯。使用的甲醛浓度为2ppm、相对湿度为40%。反应器表面的尺寸为61×46cm。灯在反应器各处均匀分开。灯套直径为2.6cm。测定流速、灯数量、固定量深度的球体直径、以及固定球体直径的填充深度对单向甲醛转化率和压降变化的影响。
表2显示提高通过反应器的空气流对性能的影响。产量增加使单向转化率降低且产生较高压降。然而,因为在更高流速下改良的传质,这种降低比起基于仅降低停留时间所预期的要小。能使系统性能在流速和体积差上被归一化的keffa/V量度表明,当流速增加时相对性能增强。通过权衡压降和性能及其他问题(如噪音)来确定给定反应器的操作流速。
表2
  反应器深度,cm   填充球体直径,cm   空气流速,m3/min   灯数   单向转化率,%   Keffa/V,min-1  ΔP,inWC
  5.5   0.3   1.4   6   96   292   0.15
  2.8   85   345   0.4
  4.2   74   367   0.7
  5.7   64   378   1.1
表3显示降低灯数量对单向转化率的影响。对于给定填充尺寸和反应器尺寸而言,将灯增至8个,将对归一化性能(如keffa/V所述)有近乎线性的提高。各灯的光穿透反应器,从而增加床中各处的反应速率,而不仅是接近灯套处的反应速率。随着灯数量增加,由于灯要占体积、而降低了活性反应器体积、并增大了气体通过床的速度,所以压降会有较小但明显的改变。实际用于反应器的灯数量将通过比较灯和平衡成本及增强的性能而确定。
表3
  反应器深度,cm   填充球体直径,cm   空气流速,Nm3/min   灯数   单向转化率,%   Keffa/V,min-1   ΔP,inWC
  5.5   0.3   2.83   8   92   551   0.4
  7   90   475
  6   85   383
  5   77   290
  4   65   205
  3   50   133
表4显示对于具有固定填充深度的反应器而言,提高球形填料直径的影响。在这种情况下,较大的填充尺寸和增加的床深度平衡以使绝对甲醛去除有较小变化,但因为需要更大尺寸反应器来达到同样结果,所以归一化性能降低。即使床变厚,随着填充尺寸增加,压降也降低。对反应器中填充直径的选择应考虑到压降和反应器尺寸(更重要的是重量)之间的平衡。
表4
  反应器深度,cm   填充球体直径,cm   空气流速,Nm3/min   灯数   单向转化率,%   Keffa/V,min-1   ΔP,inWC
  5.5   0.3   2.83   6   85   383   0.4
  6.5   0.4   86   341   0.3
  7.5   0.5   87   302   0.25
  8.5   0.6   87   231   0.2
  表5显示增加反应器深度尺寸而固定填充尺寸的影响。这里可观察到绝对性能增强和归一化性能之间的平衡。对于给定数量的灯而言,性能边界增加随着反应器变大和压降增加而变弱。
表5
  反应器深度,cm   填充球体直径,cm   空气流速,Nm3/min   灯数   单向转化率,%   Keffa/V,min-1   ΔP,inWC
  3.7   0.3   2.83   6   75   416   0.27
  5.5   85   383   0.40
  6.7   88   351   0.49
  7.9   89   310   0.57
上述实施例通常是概念上的设计研究,目的是为在既定条件下最好地使用本发明。这些实施例说明了在设计光催化反应器过程中对于设计变量的评估。
实施例5-在小的实验体系中考察丙酮在超纯水中的氧化。超纯水(>17MΩ-cm)中加入40ppb的丙酮,并通过一床被照射的光催化剂所涂覆的6mm玻璃球体。水中溶解的氧为8.6ppm。床直径为4.5cm、深度为3cm,且从上方用365nm的紫外线照射。基底上的涂层允许透射80%的365nm光。床顶部的UV通量为10mW/cm2。在这些条件下测得丙酮氧化的keffa/V为0.6min-1
与各种其他填料相比,球体作为基底不是很有效,因为与惰性玻璃床一样,其比表面积较低,且床空间部分较低。例如,较小直径、较高效率、支撑材料如4mm Ber1鞍形填料将使keffa/V值>2min-1。尽管效率较低,在从水中去除较低浓度有机材料的应用中(如半导体漂洗水的净化),这种6mm的球体对于去除丙酮将提供有用的性能。

Claims (36)

1.一种光催化转化流体流中的污染物的装置,所述装置包括:
具有流体入口和流体出口的反应器外壳;
至少一个与所述流体入口和所述流体出口流体连通的半导体单元,所述半导体单元包括具有半透明半导体光催化表面的透明或半透明、三维基底,所述流体流与所述表面接触;及
与所述至少一个半导体单元光学近似并连通的光发射装置,所述光发射装置提供波长相应于所述半导体吸收光谱半透明区的光;
其中所述光发射装置和所述光催化表面协同工作,以通过光催化反应除去所述流体流中的污染物。
2.如权利要求1所述的装置,其中所述基底/半导体对被排列和构造成使得每一光源的光通过多个半导体层。
3.如权利要求1所述的装置,其中所述光催化表面和所述基底包括相同材料。
4.如权利要求1所述的装置,其中光催化材料加到所述基底中。
5.如权利要求1所述的装置,其中所述光催化表面包括与所述基底结合的半透明材料层。
6.如权利要求3、4或5中任一项所述的装置,其中所述光催化材料或所述光催化表面包括至少一种助催化剂。
7.如权利要求6所述的装置,其中所述至少一种助催化剂材料选自铂、钯、钌、铱、铑、金、银、铜、锡、铁、钴、钒、铌、锆和锌,或其氧化物或硫化物。
8.如权利要求5所述的装置,其中每层中所述光催化表面是0.1-1μm厚,表面厚度足以通过60-95%的入射光。
9.如权利要求1所述的装置,其中所述光催化表面选自TiO2、ZrO2、ZnO、CaTiO3、SnO2、MoO3、Fe2O3和WO3
10.如权利要求1所述的装置,其中所述光催化表面含有一种或多种TiO2的多晶型物。
11.如权利要求1所述的装置,其中所述基底是半透明、多孔、开孔、三维网状、流体可渗透的结构。
12.如权利要求11所述的装置,其中所述至少一个半导体单元的孔尺寸约为10~200个孔/平方英寸。
13.如权利要求11所述的装置,其中所述至少一个半导体单元的孔尺寸从所述至少一个半导体单元的光催化表面上的约10个孔/平方英寸变至所述至少一个半导体单元内部的约200个孔/平方英寸。
14.如权利要求1所述的装置,其中所述基底是透明/半透明填料,例如特征长度>0.1cm的球体、圆柱体、Raschig环,Pall环,Lessing环,分离环,Berl鞍形填料,Intalox鞍形填料或Tellerettes。
15.如权利要求1所述的装置,其中所述基底包括选自氧化铝、氧化锆、氧化钛、氧化硅、熔融氧化硅、玻璃、硅树脂及有机聚合物的材料。
16.如权利要求1或权利要求10所述的装置,其中至少一个半导体单元对波长为340~390nm的光是部分透明的。
17.如权利要求1或权利要求9所述的装置,其中至少一个半导体单元对于波长相应于所述半导体吸收光谱半透明区的光是部分透明的。
18.如权利要求1所述的装置,其中所述光发射装置选自光发射二极管、低压汞灯、中压汞灯、高压汞灯、氙灯及太阳。
19.一种光催化转化流体流中的污染物的方法,所述方法包括:
提供包括流体入口和流体出口的反应器外壳;
提供至少一个与所述流体入口和所述流体出口流体连通的半导体单元,所述半导体单元包括具有半透明半导体光催化表面的透明或半透明、三维基底,所述流体流与所述表面接触;
提供与所述至少一个半导体单元光学近似并连通的光发射装置;
将波长相应于所述半导体吸收光谱半透明区的光导向所述半导体单元;及
转化所述流体流中的污染物。
20.如权利要求19所述的方法,其中所述基底/半导体对被排列和构造成使得每一光源的光通过多个半导体层。
21.如权利要求19所述的方法,其中所述光催化表面和所述基底包括相同材料。
22.如权利要求19所述的方法,其中光催化材料加到所述基底中。
23.如权利要求19所述的方法,其中所述光催化表面包括与所述基底结合的半透明材料层。
24.如权利要求21、22或23中任一项所述的方法,其中所述光催化材料或所述光催化表面包括至少一种助催化剂。
25.如权利要求24所述的方法,其中所述至少一种助催化剂材料选自铂、钯、钌、铱、铑、金、银、铜、锡、铁、钴、钒、铌、锆和锌,或其氧化物或硫化物。
26.如权利要求23所述的方法,其中每层中所述光催化表面厚度足以通过60-95%的入射光。
27.如权利要求19所述的方法,其中所述光催化表面选自TiO2、ZrO2、ZnO、CaTiO3、SnO2、MoO3、Fe2O3和WO3
28.如权利要求19所述的方法,其中所述光催化表面含有一种或多种TiO2的多晶型物。
29.如权利要求19所述的方法,其中所述基底是半透明、多孔、开孔、三维网状、流体可渗透的结构。
30.如权利要求29所述的方法,其中所述至少一个半导体单元的孔尺寸约为10~约200个孔/平方英寸。
31.如权利要求29所述的方法,其中所述至少一个半导体单元的孔尺寸从所述至少一个半导体单元的光催化表面上的约10个孔/平方英寸变至所述至少一个半导体单元内部的约200个孔/平方英寸。
32.如权利要求19所述的方法,其中所述基底是透明/半透明填料,例如特征长度>0.1cm的球体、圆柱体、Raschig环,Pall环,Lessing环,分离环,Berl鞍形填料,Intalox鞍形填料或Tellerettes。
33.如权利要求19所述的方法,其中所述基底包括选自氧化铝、氧化锆、氧化钛、氧化硅、熔融氧化硅、玻璃、硅树脂及有机聚合物的材料。
34.如权利要求19或权利要求28所述的方法,其中至少一个半导体单元对波长为340~390nm的光是部分透明的。
35.如权利要求19或权利要求27所述的方法,其中至少一个半导体单元对于波长相应于所述半导体吸收光谱半透明区的光是部分透明的。
36.如权利要求19所述的方法,其中所述光发射装置选自光发射二极管、低压汞灯、中压汞灯、高压汞灯、氙灯及太阳。
CNA2003801034202A 2002-11-15 2003-11-14 用于光催化净化和消毒流体的装置和方法 Pending CN1711131A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/294,909 US6902653B2 (en) 1999-11-22 2002-11-15 Apparatus and method for photocatalytic purification and disinfection of fluids
US10/294,909 2002-11-15

Publications (1)

Publication Number Publication Date
CN1711131A true CN1711131A (zh) 2005-12-21

Family

ID=32324331

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2003801034202A Pending CN1711131A (zh) 2002-11-15 2003-11-14 用于光催化净化和消毒流体的装置和方法

Country Status (5)

Country Link
US (1) US6902653B2 (zh)
EP (1) EP1567259A4 (zh)
CN (1) CN1711131A (zh)
AU (1) AU2003294265A1 (zh)
WO (1) WO2004045756A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076614A (zh) * 2008-05-02 2011-05-25 巴斯夫欧洲公司 光催化活性TiO2成型体
CN106110885A (zh) * 2016-07-29 2016-11-16 苏州健龙环保科技有限公司 高效空气净化光触媒过滤网及其制备方法
CN108136060A (zh) * 2015-10-13 2018-06-08 日机装株式会社 流体杀菌装置以及流体杀菌方法
CN108348854A (zh) * 2015-09-16 2018-07-31 Am技术有限公司 包括光催化涂层和照明系统的封闭空间

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007453A1 (en) * 2001-04-13 2004-01-15 John Scahill Photocatalytic air purifier
US6884399B2 (en) * 2001-07-30 2005-04-26 Carrier Corporation Modular photocatalytic air purifier
US7307704B2 (en) * 2004-04-19 2007-12-11 Carrier Corporation Light delivery control system and method
US20060078653A1 (en) * 2004-10-07 2006-04-13 Ching-Fuh Lin Preservation structure and preservation repository using the same
CN100425330C (zh) * 2005-03-31 2008-10-15 鸿富锦精密工业(深圳)有限公司 光催化增强装置
US8344238B2 (en) * 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
WO2007026363A2 (en) * 2005-09-01 2007-03-08 Megair Ltd. Method and apparatus for treating biologically contaminated air
US7935655B2 (en) * 2005-11-04 2011-05-03 Kent State University Nanostructured core-shell electrocatalysts for fuel cells
US20070131872A1 (en) * 2005-12-09 2007-06-14 Shearer Jon D Water-purification device for a potable water system
WO2008060309A2 (en) * 2006-01-12 2008-05-22 University Of Arkansas Technology Development Foundation Tio2 nanostructures, membranes and films, and applications of same
US20090280027A1 (en) * 2006-03-27 2009-11-12 Hayman Jr John J Photocatalytic air treatment system and method
US20070251812A1 (en) * 2006-03-27 2007-11-01 Hayman John J Jr Photocatalytic air treatment system and method
ES2376661T3 (es) * 2006-06-01 2012-03-15 Carrier Corporation Sistemas para la eliminación de contaminantes de flujos de fluido.
EP2043761A4 (en) 2006-06-01 2011-11-30 Carrier Corp DEACTIVATING PHOTO CATALYSTS
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
WO2007146671A2 (en) * 2006-06-06 2007-12-21 Fluid Lines Ultaviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
AT503936B1 (de) * 2006-09-07 2008-02-15 Univ Graz Tech Reinigungsvorrichtung mit porösem, photokatalytisch aktivem schüttgut
JP2010520497A (ja) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド フォトニック結晶ファイバおよびそれを製造する方法
EP2118029B1 (en) * 2007-02-28 2017-07-12 Corning Incorporated Method for manufacturing extruded glass structures
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US8753522B2 (en) 2007-04-03 2014-06-17 Evoqua Water Technologies Llc System for controlling introduction of a reducing agent to a liquid stream
US9365435B2 (en) * 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US9365436B2 (en) * 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US8741155B2 (en) 2007-04-03 2014-06-03 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US7820100B2 (en) * 2007-05-17 2010-10-26 Garfield Industries, Inc. System and method for photocatalytic oxidation air filtration using a substrate with photocatalyst particles powder coated thereon
TW200848155A (en) * 2007-06-14 2008-12-16 Univ Nat Taiwan Optical fiber photocatalytic reactor and process for the decomposition of nitric oxide using said reactor
WO2008156813A1 (en) 2007-06-20 2008-12-24 Uvcleaning Systems, Inc. Ultraviolet photoreactor for the purification of fluids
US20090041632A1 (en) * 2007-08-08 2009-02-12 Novapure Systems Inc. Air Purifier System and Method
BRPI0817416A2 (pt) * 2007-10-03 2014-10-07 3M Innovantive Properties Company Processo limitador da multiplicação de microorganismos
NL1035089C2 (nl) * 2007-11-19 2009-05-20 Stichting Wetsus Ct Of Excelle Inrichting en werkwijze voor desinfectie van een fluïdum.
CN100505333C (zh) * 2007-11-29 2009-06-24 北京航空航天大学 一种微网格结构光催化剂的制备方法
US20090145855A1 (en) * 2007-12-06 2009-06-11 Novapure Systems Inc. Water Purifier System and Method
EP2254839B1 (en) * 2008-02-27 2014-07-16 Pure Green Technologies B.V. Device and method for disinfecting a fluid
FR2935908B1 (fr) * 2008-09-12 2011-01-14 Centre Nat Rech Scient Photocatalyseurs a base de mousses tridimentionnelles structurees en carbure et notamment en beta-sic
US20100314551A1 (en) * 2009-06-11 2010-12-16 Bettles Timothy J In-line Fluid Treatment by UV Radiation
KR20120103539A (ko) * 2009-06-24 2012-09-19 바스프 에스이 광촉매 정수 방법
US8591730B2 (en) 2009-07-30 2013-11-26 Siemens Pte. Ltd. Baffle plates for an ultraviolet reactor
EP2380659A1 (de) * 2010-04-21 2011-10-26 De Dietrich Process Systems GmbH Füllkörper vom Pallringtyp
US20110305603A1 (en) * 2010-06-11 2011-12-15 Sigma Prime Solar Llc Embedded Photocatalyst for Hydrogen Perioxide Protection
WO2012012766A2 (en) * 2010-07-23 2012-01-26 Uvcleaning Systems, Inc. Solar-activated photochemical purification of fluids
US8585980B2 (en) 2010-09-07 2013-11-19 Puradigm, Llc Enhanced photo-catalytic cells
US8585979B2 (en) 2010-09-07 2013-11-19 Puradigm, Llc Enhanced photo-catalytic cells
SE536086C2 (sv) * 2010-10-20 2013-04-30 Wallenius Water Ab Metod och anordning för rening av opaka vätskor med ljus
US20120134879A1 (en) * 2010-11-29 2012-05-31 Mohamed Tarifi Ultraviolet disinfection process and apparatus
EP2527301B1 (en) 2011-05-26 2016-04-27 Evoqua Water Technologies GmbH Method and arrangement for a water treatment
US20130008775A1 (en) * 2011-07-05 2013-01-10 Osman Ahmed Photocatalytic Panel and System for Recovering Output Products Thereof
TW201434763A (zh) 2012-12-10 2014-09-16 Nitto Denko Corp 消毒水裝置
CN103523855A (zh) * 2013-10-15 2014-01-22 上海纳米技术及应用国家工程研究中心有限公司 负载型光催化降解方法及负载型光催化实时在线降解装置
WO2016040875A1 (en) * 2014-09-12 2016-03-17 Nitto Denko Corporation Multivalence semiconductor photocatalytic materials
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
CA2918564C (en) 2015-01-21 2023-09-19 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
CN107614103A (zh) * 2015-05-29 2018-01-19 林科闯 光触媒装置及系统
DE102016105276A1 (de) * 2016-03-22 2017-09-28 Dr. Schneider Kunststoffwerke Gmbh Luftreinigungsvorrichtung
WO2018022358A1 (en) * 2016-07-26 2018-02-01 Empire Technology Development Ultraviolet fluid treatment apparatuses, systems, and related methods
IL269957B (en) * 2017-04-18 2022-08-01 Breakthrough Tech Llc Sulfur production
US11958765B2 (en) * 2017-09-28 2024-04-16 Sonata Scientific LLC Combined VOC mitigating and antimicrobial systems
US11857924B2 (en) * 2017-09-28 2024-01-02 Sonata Scientific LLC Photocatalytic fluidized bed reactor systems
US10793454B1 (en) * 2018-02-22 2020-10-06 United States Of America As Represented By The Secretary Of The Air Force Water treatment system with ultraviolet LEDs and photo-catalysts
US20210316269A1 (en) * 2018-08-07 2021-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous flow reactor for reacting an educt
ES1241901Y (es) * 2019-10-02 2020-08-06 Biozeo Soluciones Naturales Sl Acondicionador fisico y quimico de agua
CN111530505A (zh) * 2020-05-26 2020-08-14 霸州市纽莱客家具有限公司 一种用于室内家具净化的光触媒
CH717554A2 (fr) * 2020-06-19 2021-12-30 Admajora Sa Élément filtrant pour la purification et la désinfection de l'air et de l'eau.
TWI726799B (zh) * 2020-08-24 2021-05-01 膜旺能源科技有限公司 含觸媒膜管之廢水淨化系統

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866A (en) * 1849-11-13 Improvement in seed-drills
US23800A (en) * 1859-04-26 Penholder
US3358A (en) * 1843-11-24 Improvement in the method of making wrought-iron cannon
JPS62193696A (ja) 1986-02-20 1987-08-25 Nomura Micro Sci Kk 超純水の製造法
US4966759A (en) 1987-09-04 1990-10-30 Nutech Energy Systems Inc. Fluid purification
US5256616A (en) 1989-09-25 1993-10-26 Board Of Regents, The University Of Texas System Materials and methods for photocatalyzing oxidation of organic compounds on water
US5069885A (en) 1990-04-23 1991-12-03 Ritchie David G Photocatalytic fluid purification apparatus having helical nontransparent substrate
US5137607A (en) 1990-04-27 1992-08-11 Wisconsin Alumni Research Foundation Reactor vessel using metal oxide ceramic membranes
US5126111A (en) 1990-12-05 1992-06-30 Nutech Energy Systems Inc. Fluid purification
US5302356A (en) 1992-03-04 1994-04-12 Arizona Board Of Reagents Acting On Behalf Of University Of Arizona Ultrapure water treatment system
US5395522A (en) 1993-02-23 1995-03-07 Anatel Corporation Apparatus for removal of organic material from water
US5501801A (en) * 1993-11-30 1996-03-26 Board Of Control Of Michigan Technology University Method and apparatus for destroying organic compounds in fluid
US5736055A (en) 1995-05-16 1998-04-07 Photo-Catalytics, Inc. Cartridge for photocatalytic purification of fluids
US5637231A (en) 1995-06-07 1997-06-10 Huron Valley Technology, Inc. Method and apparatus for using ozone in a pressure vessel to treat stream of pollutants
US5919422A (en) 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
AU2292897A (en) * 1996-04-11 1997-10-29 Novartis Ag Pesticidal compositions
US5766455A (en) 1996-04-30 1998-06-16 Zentox Corporation Fibrous matte support for the photopromoted catalyzed degradation of compounds in a fluid stream
DE69728452T3 (de) 1996-08-30 2014-06-12 Showa Denko K.K. Teilchen, wässrige Dispersion und Film aus Titanoxid und seine Herstellung
WO1998011020A1 (fr) 1996-09-13 1998-03-19 Hoya Corporation Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition
US5790934A (en) 1996-10-25 1998-08-04 E. Heller & Company Apparatus for photocatalytic fluid purification
US6030526A (en) 1996-12-31 2000-02-29 Uv Technologies, Inc. Water treatment and purification
US6136186A (en) 1997-01-31 2000-10-24 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
US6117337A (en) 1997-01-31 2000-09-12 Lynntech, Inc. Enhanced photocatalytic oxidation of organics using a porous titanium dioxide membrane
US5868924A (en) 1997-02-14 1999-02-09 Barnstead/Thermolyne Corporation Water purifier
US6054227A (en) 1997-03-14 2000-04-25 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
KR20010005862A (ko) 1997-04-01 2001-01-15 오쯔까 유우지로 광촉매, 그의 제조방법 및 다기능 부재
US5866752A (en) * 1997-09-29 1999-02-02 Goozner; Robert E. Destruction of volatile organic carbons
AU1390899A (en) 1997-11-11 1999-05-31 Board Of Regents Of The University Of Oklahoma, The Method and reactor cell for the photooxidation of gases
US6135838A (en) 1998-10-07 2000-10-24 Chung Shan Institute Of Science And Technology Method of making UV lamp for air cleaning
US6414213B2 (en) 1999-01-07 2002-07-02 Showa Denko K.K. Titanium oxide particle-coated interior member or indoor equipment
US6524447B1 (en) * 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US6534176B2 (en) 1999-12-10 2003-03-18 Asahi Glass Company, Limited Scaly silica particles and hardenable composition containing them
US7021421B2 (en) 2000-06-07 2006-04-04 Showa Denko Kabushiki Kaisha Transparent noise-barrier wall
CA2444385A1 (en) * 2001-04-12 2002-10-24 Titan Technologies Apparatus and method for phtocatalytic purification and disinfection of water and ultrapure water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076614A (zh) * 2008-05-02 2011-05-25 巴斯夫欧洲公司 光催化活性TiO2成型体
CN108348854A (zh) * 2015-09-16 2018-07-31 Am技术有限公司 包括光催化涂层和照明系统的封闭空间
CN108136060A (zh) * 2015-10-13 2018-06-08 日机装株式会社 流体杀菌装置以及流体杀菌方法
CN106110885A (zh) * 2016-07-29 2016-11-16 苏州健龙环保科技有限公司 高效空气净化光触媒过滤网及其制备方法

Also Published As

Publication number Publication date
AU2003294265A1 (en) 2004-06-15
EP1567259A2 (en) 2005-08-31
EP1567259A4 (en) 2007-03-14
WO2004045756A2 (en) 2004-06-03
WO2004045756A3 (en) 2004-10-07
US6902653B2 (en) 2005-06-07
US20030150707A1 (en) 2003-08-14
AU2003294265A8 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
CN1711131A (zh) 用于光催化净化和消毒流体的装置和方法
US6524447B1 (en) Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
Sundar et al. Progression of Photocatalytic reactors and it’s comparison: A Review
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
Kibanova et al. Efficiency of clay− TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant
CN101288839B (zh) 透光性管状蜂巢式光催化反应器
Zhang et al. Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation
Kuspanov et al. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications
JP2004528171A (ja) 水及び超純水の光触媒浄化及び殺菌のための装置並びに方法
Ghosh-Mukerji et al. Selective photocatalysis by means of molecular recognition
CN100425330C (zh) 光催化增强装置
CN103373750A (zh) 一种可见光去除有机物和重金属离子的光源装置及其制备方法
Birnie et al. Photocatalytic reactors: design for effective air purification
Muscetta et al. Photocatalytic applications in wastewater and air treatment: A patent review (2010–2020)
JP5897251B2 (ja) 浄水システム
Zamani et al. Spinning disc photoreactor based visible-light-driven Ag/Ag2O/TiO2 heterojunction photocatalyst film toward the degradation of amoxicillin
CN109621716A (zh) 一种适用泡沫状或网状光催化剂降解有机污染物的反应器
Yang et al. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light
CN1331586C (zh) 高效消除空气或水中环境污染物的复合光催化反应系统
TW200817086A (en) Method and apparatus for effecting a chemical reaction
Qureshi et al. Wastewater Treatment: Synthesis of Effective Photocatalysts Through Novel Approaches
Dutta Wastewater treatment using TiO2-based photocatalysts
US20220169537A1 (en) Photoreactor and formulations for environmental remediation and methods of use thereof
Zamani et al. Photocatalytic degradation of penicillin v Using Bi2O3/Ag/TiO2 thin film in a spinning disc photoreactor under blue LED illumination

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication