CN1819297B - 侧壁有源接脚存储器及其制造方法 - Google Patents

侧壁有源接脚存储器及其制造方法 Download PDF

Info

Publication number
CN1819297B
CN1819297B CN2005101248240A CN200510124824A CN1819297B CN 1819297 B CN1819297 B CN 1819297B CN 2005101248240 A CN2005101248240 A CN 2005101248240A CN 200510124824 A CN200510124824 A CN 200510124824A CN 1819297 B CN1819297 B CN 1819297B
Authority
CN
China
Prior art keywords
electrode
impedance material
programmable impedance
sidewall
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005101248240A
Other languages
English (en)
Other versions
CN1819297A (zh
Inventor
龙翔澜
陈士弘
陈逸舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN1819297A publication Critical patent/CN1819297A/zh
Application granted granted Critical
Publication of CN1819297B publication Critical patent/CN1819297B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/068Patterning of the switching material by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/52Structure characterized by the electrode material, shape, etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask

Abstract

本发明涉及一种形成具有复合层的存储单元的方法。此复合层具有一第一电极、覆盖此第一电极的一绝缘层与覆盖此绝缘层的一第二电极。形成一侧壁间隙壁,此侧壁间隙壁包括一个具有可程序化阻抗材料与第一电极及第二电极形成电连接。通过沉积覆盖在复合层侧壁上的可程序化阻抗材料层、各向异性地蚀刻此可程序化阻抗材料层,以除去非侧壁的部分与根据一图案选择性地蚀刻此可程序化阻抗材料层,以定义该侧壁间隙壁的宽度。在实施例中,该宽度约小于等于40纳米。

Description

侧壁有源接脚存储器及其制造方法
技术领域
本发明涉及一种可程序化阻抗材料的高密度存储装置及其制造方法,特别是涉及一种以相变化为依据的存储材料。 
背景技术
硫属化合物(Chalcogenide)广泛运用于可擦写的光盘片上。此材料具有至少两种固相变化,通常为结晶相(amorphous)及非晶相(crystalline)。激光脉冲波用于光盘片上以转换相位且在相变化后读取硫属化合物材料上的光学特性。 
应用电流脉波也可使硫属化合物达成相变化,此特性使用可程序化阻抗形成非挥发性存储器电路。 
发展的方向之一为朝向使用小量的可程序化阻抗材料,特别是在微小细孔当中。而关于发展微小细孔的专利有:Ovshinsky,″Multibit Single Cell Memory Element Having Tapered Contact,″美国专利第5,687,112号,issued  November 11,1997;Zahorik等人,″Method of Making Chalogenide[sic]Memory Device,″美国专利第5,789,277号,issuedAugust 4,1998;Doan等人,″Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same,″美国专利第6,150,253号,issued November 21,2000。 
申请人于美国专利申请书刊载No.US-2004-0026686-A1上揭露了一相变化存储单元,其相变化元件包括了在电极/电介质/电极的复合层上的一侧壁。数据的储存通过电流在相变化材料的结晶相与非晶相之间转变而达成。电流加热此材料且在两状态之间造成变化。施加一低电流使得状态由非晶相改变至结晶相;施加一高电流,则使得状态由结晶相改变至非晶相,于此称为重置(reset)。降低使相变化材料由结晶相改变至非晶相的重置电流的大小实为必要。降低重置电流的大小的方法即为减少相变化材料元件(element)在存储单元中的大小及减少于电极及相变化材料间接触面积的大小。 
因此,形成具有小量可程序化阻抗材料的存储单元的方法及结构的设计机会大大提升。 
发明内容
本发明包括形成狭窄侧壁间隙壁及接脚的存储单元的装置及方法,该狭窄侧壁间隙壁或接脚具有可程序化阻抗材料。 
本发明的实施例之一就是在提供一种形成存储单元的方法,包括形成一电极复合层。该电极复合层具有一第一电极,一绝缘层配置于第一电极之上,一第二电极配置于绝缘层之上,在电极复合层的至少一绝缘层上具有一侧壁。一侧壁间隙壁包括一可程序化阻抗材料,与第一电极及第二电极电连接。该侧壁间隙壁具有一长度、一宽度与一厚度。长度沿着侧壁从第一电极延展至第二电极,宽度与长度垂直,而厚度取决于用以形成侧壁间隙壁的相变化材料的厚度。间隙壁以沉积可程序化阻抗材料在电极复合层上而形成,各向异性蚀刻可程序化阻抗材料以移除非侧壁的区域,且依据一图案选择性地蚀刻可程序化阻抗材料用以界定该侧壁间隙壁的宽度。在本实施例中,宽度小于50纳米且优选地为40纳米或小于40纳米。 
选择性蚀刻可程序化阻抗材料依据一图案以界定具有狭小宽度的侧壁间隙壁,一技术包括形成一具有光刻图案的蚀刻光掩模以界定一光刻宽度,然后缩减蚀刻光掩模以提供一缩减光掩模以界定一用以定义侧壁间隙壁宽度的图案。在一例子中,蚀刻光掩模包括一光致抗蚀剂,该光致抗蚀剂被含氧(oxygen based)的等离子体各向异性蚀刻以形成一缩减光掩模。在另一例子中,蚀刻光掩模包括一使用光刻工艺形成的硬掩模,此硬掩模被蚀刻以缩减宽度以形成缩减光掩模。 
在存储单元中的相变化接脚的工作区的三维尺寸优选的是小于50纳米,且皆小于用以形成存储单元的光刻工艺的最小特征尺寸。此三维尺寸通过相变化材料的薄膜厚度、电介质的薄膜厚度及缩减光掩模所界定。因此,存储单元的尺寸(即为相变化材料的体积)非常小(小于F3,其中F为用以制造存储单元的工艺的最小光刻特征尺寸)。相变化材料的存储单元包括一在电极复合层的侧壁上的狭窄接脚。接触区域位于至少一上电极及下电极,且相变化材料接脚的高度由次光刻程通过电极层的厚度所定义,且光致抗蚀剂图案缩减工艺用以界定接点的宽度。小存储单元及小接点区域允许提供具有非常小的重置电流及低能源消耗的存储器。 
根据本发明的实施例之一,提出一种存储装置包括电极复合层,此电极复合层包括一第一电极、一电介层及一第二电极、一间隙壁。电介层配置于第一电极之上,第二电极配置电介层之上。电极复合层具有一侧壁至少覆盖在至该绝缘层。具有可程序化阻抗材料的间隙壁在侧壁上与第一电极及第二电极电连接。间隙壁具有一长度、一宽度及一厚度,长度沿着侧壁从第一电极延展至第二电极,宽度与长度垂直。在本实例中所揭露的技术,间隙壁的宽度及厚度少于40纳米。可程序化阻抗材料包括一相变化材料,为可逆地可程序化。 
根据本发明的另一实施例,提出一种存储器阵列,包括多个具有通道晶体管的存储装置,排列于高密度的行列的阵列中。在半导体基板上,通道晶体管包括源极及漏极,以及一栅极耦接至沿着存储单元的列的字线。存储单元形成于集成电路的通道晶体管之上,具有从相对应的通道晶体管漏极延展至在个别存储装置的下电极的多个接点插塞结构。图案化金属层提供多个接点,涂布在一电介填充层上,该电介填充层涂布在该些存储单元上,该些接点与在该些位线中的具有相对应该些位线的各该些存储单元的该些上电极接触。在本实施例中,二列的存储单元共有源接点,此源接点具有一共源线耦接至源接点,且大致上与阵列中的字线平行。 
根据本发明的再一实施例,提出一种形成相变化接脚的方法。此相变化接脚可形成一非常小的接脚在一集成电路或其它装置上。此接脚的尺寸小于最小特征尺寸,第一代光刻工艺即可提供。举例来说,小尺寸的接脚可形成于其它型式的薄膜复合层之上,例如是薄膜电介质的复合层,具有或不具有接触接脚的电极层。纳米技术装置使用非相变化材料以提供非常小的接脚结构,比如是金属、电介质、有机材料、半导体等。 
为让本发明的上述目的、特征、和优点能更明显易懂,以下配合附图以及优选实施例,以更详细地说明本发明。 
附图说明
图1绘示一侧壁有源接脚存储单元10的透视图。 
图2绘示一存储阵列的示意图。 
图3绘示依照本发明优选实施例的集成电路的简化方块图。 
 图4绘示多个侧壁有源接脚相变化随机存取存储单元100-103的剖面图。 
图5绘示结构99在前段工艺后形成标准的互补金氧半导体元件依照本实施例在图2的阵列中的字线、共源线及通道晶体管。 
图6A绘示光掩模图案的上视图。 
图6B绘示电极复合层60、65的剖面图。 
图7绘示一结构在沉积后,例如是溅射,一锗锑碲的顺应性层170或其它可程序化阻抗材料涂布于电极复合层60、65。 
图8A绘示蚀刻侧壁的平面图。 
图8B绘示侧壁171及172的剖面图。 
图9绘示电介质填充工艺。 
图10绘示氧化膜化学机械研磨工艺应用于平坦化表面,且暴露出锗锑碲侧壁171及172的顶端181及182。 
图11绘示光致抗蚀剂图案修整用以形成次光刻光掩模以修减侧壁171及172。 
图12A绘示侧壁存储单元宽度蚀刻的平面图。 
图12B绘示蚀刻移除暴露的锗锑碲留下一狭窄的侧壁接脚124于电极复合层的剖面图。 
图13绘示工艺的下一步骤的平面图。 
图14绘示填充小接缝及氧化沉积的步骤。 
图15绘示为位线的导孔成形及金属化且位线接触存储单元。 
图16绘示在锗锑碲层侧壁蚀刻的沉积后一电极复合层的剖面图。 
图17为绘示用以形成掺杂区域115、116、117的工作区300的展开图。 
图18绘示用以界定一电极复合层的矩形306。 
图19为绘示用以形成光致抗蚀剂掩模(或硬掩模)的光刻掩模的展开图。 
图20为绘示用以定义配置插塞的导孔位置的光掩模的展开图。 
图21绘示一具有二电极复合层310、311的位置及出现于上左边的成对存储单元中的侧壁有源接脚312、313的8个存储单元阵列结构。 
简单符号说明 
5、201:接脚 
6:第一电极 
7:第二电极 
8、151、160、165、180、195:电介层 
9:电介质 
10、35、36、100、101、102、103:侧壁有源接脚存储单元 
23、24、62:字线 
32、33、150:下电极 
34、37、152、202:上电极 
28、305:共源线 
41、42、64:位线 
50、51、52、53:通道晶体管 
55:存储器阵列 
56:列译码器 
58、67:总线 
59:感应放大器/数据输入结构 
63:行译码器 
68:偏压配置电源电压 
69:偏压配置状态机 
71:数据输入线 
72:数据输出线 
74:其它电路系统 
75:集成电路 
99:结构 
110:半导体基板 
111、112:电介沟槽 
116:共源区域 
115、117:漏极区域 
113、114:多晶硅字线 
118、127:电介填充层 
141、120、196、197、303、304、324、325、326、327、328、329、330、331:接点插塞结构 
119:共源线 
121:薄膜下电极 
122:薄膜电介层 
123、123A:薄膜上电极 
124、124A、312、313:侧壁接脚 
125:薄氧化层 
126:钨插塞 
129、130、131、132:接点 
153:保护上电介层 
155:第一矩形 
156:第二矩形 
60、65、310、311:电极复合层 
61、66、171、172:垂直侧壁 
170:顺应性层 
173:表面 
181、182:顶端 
185、186:矩形延展部 
187、188:光掩模 
W1、W2:宽度 
190:接缝 
193、194:隔热填充物 
198:图案化金属层 
203:残留层 
210:狭窄区域 
301、302、335、336、337、338:多晶硅线 
300、320、321、322、323:工作区 
306:矩形 
307:光刻掩模 
308:导孔图案 
316:边缘 
339、340:金属线 
具体实施方式
以下的详细说明皆佐以图示以供参考。并且本实例所揭露的内容用以支持本发明,并不会对本发明的范围进行限缩,且本发明的欲保护范围以权利要求所界定。具有通常知识者可依本实施例的说明做适当变化。 
请参照图1,其绘示一侧壁有源接脚存储单元10的透视图。此存储单元包括一狭窄的侧壁间隙壁。请参照在电极复合层的侧壁上的接脚5。此电极复合层包括一第一薄膜电极6及一电极间电介层8(inter-electrode dielectric layer)所隔开的一第二薄膜电极7。在本实施例中一电介质9覆盖于此一电极复合层上。接脚5包括了一可程序化阻抗材料比如是一相变化材料。接脚5具有一工作区(active region,亦称活性区或有源区),相变化材料形成于此工作区中。此工作区具有在一第一电极6及一第二电极7之间的长度L,且L的长度取决于一电介层8的厚度。接脚5的工作区则具有一厚度T,而T的厚度取决于形成在电极复合层的侧壁上薄膜的厚度。电极复合层经由一光刻工艺或其它形式的光刻工艺形成,所以其宽度约与光刻工艺中的最小特征尺寸(minimum feature size)相等。至于进阶的光刻工艺,电极复合层的宽度W大约是90纳米。接脚5的工作区具有一宽度,该宽度小于电极复合层光刻工艺界定的最小特征尺寸。在本实例中,接脚5的工作区宽度大约为40纳米或小于40纳米。 
如上所述,接脚5的工作区的长度L取决于电介层8的薄膜厚度,在本实施例中此厚度的范围大约在20纳米至50纳米之间。同样地,接脚5的工作区的厚度T取决于形成侧壁接脚的材料的薄膜厚度。在本实施例中此厚度的范围在大约在10纳米至50纳米间。因此接脚5的三维尺寸在本发明的实施例中皆小于50纳米,且优选地为约40纳米或小于40纳米。 
在本实施例中,可程序化阻抗材料包括一相变化材料,比如是Ge2Sb2Te5或其它以下提到的材料。在接脚5之内的材料容积非常小,其中相变化在图1所示的结构中被感应。因本实施例中的接脚5工作区的长度L、宽度W及厚度T皆小于40纳米,所以工作区的体积小于64x 10-24m3。因此,改变相变化的重置电流的量很小。 
本实施例中,存储单元的侧壁接脚5包括以相变化为依据的存储器材料,此材料包括以硫属化合物为根据的材料或其它材料。硫族元素(chalcogens)包括下列四种元素其中之一,氧(O)、硫(S)、硒(Se)、碲(Te)在周期 表中形成了部分的第6A族元素。硫属化合物包括了具有带正电或自由基的硫族元素。硫属化合物合金包括硫属化合物与其它材料例如是过渡金属的组合。硫属化合物合金在周期表第6A栏的元素中通常包括一个或多个元素,例如为锗(Ge)和锡(Sn)。硫属化合物合金的组合包括一个或多个的锑(Sb),镓(Ga),铟(In)和银(Ag)。很多相变化存储器材料在科技文献中被揭露,包括的金合有:Ga/Sb,In/Sb,In/Se,Sb/Te,Ge/Te,Ge/Sb/Te,In/Sb/Te,Ga/Se/Te,Sn/Sb/Te,In/Sb/Ge,Ag/In/Sb/Te,Ge/Sn/Sb/Te,Ge/Sb/Se/Te以及Te/Ge/Sb/S。在Ge/Sb/Te的家族合金中,有相当广泛范围的合金化合物可供应用。此化合物可以TeaGebSb100-(a+b)表示,其中a及b代表组成元素的原子的100%中原子的百分比。有研究者曾指出,最有用的合金当中的锡平均浓度在沉积物中优选地低于70%,通常低于60%。且一般范围从最低约23%的锡至约50%的锡,而最佳约为48%至58%的锡。锗(Ge)的浓度大约在5%以上,而在沉积物中其范围平均约从8%至30%,通常维持在低于50%。锗的浓度范围最佳的约为8%至40%。在此化合物中主要组成元素的残留为锑(Sb)(Ovshinsky美国专利第5,687,112号,10-11栏)。另一位研究者指出其它适用的特殊合金,包括Ge2Sb2Te5、GeSb2Te4及GeSb4Te7.(Noboru Yamada,“Potential of Ge-Sb-Te Phase-Change Optical Disks for High-Data-Rate Recording”,SPIE v.3109,pp.28-37(1997))。一般来说,过渡金属例如是铬(Cr),铁(Fe),镍(Ni),铌(Nb),钯(Pd),铂(Pt)和混合物及其合金可与锗/锑/碲(Ge/Sb/Te)结合以形成具有可程序化阻抗特性的相变化合金。可用的存储器材料在Ovshinsky美国专利第5,687,112号,11-13栏中有详细说明,此些实例于此一同并入参考。 
相变化材料可在第一结构状态(first structural state)与第二结构状态(second structural state)之间转换。其中在第一结构状态中相变化材料为非晶相,而在第二结构状态中为结晶相且此结晶相在存储单元的有源通道区域中维持原本的排列。此些相变化材料至少为双定态的材料。非晶态指的是一较无组织的结构,相较于一单晶体更无组织,而非晶态所具有的特性例如是相对于非晶态有较高的电阻率。而结晶态指的是较有组织的结构,相较于一非晶态更有组织。而结晶态所具有的特性例如是相对于非晶态有较低的电阻率。相变化材料可在区域排列(local order)内电性转换不同两种状态,区域排列在光谱中横跨完全非晶态及完全结晶态。而其它材料的特性会被结晶 态与非晶态之间的变化影响,包括了原子的排列,自由电子密度及启动能。此相变化材料可在不同固相、两固相的混合或更固态的固相间转换,在完全非晶态与完全结晶态之间提供一灰色阶段(gray scale)。在相变化材料间的电性特质可对应地调整变更。 
相变化材料可应用电流脉波使其从一相位改变至另一相位。一较短较高的振幅脉波会使得相变化材料改变至一般的非晶相,而一较长较低的振幅脉波则会使得相变化材料改变至一般的结晶相。较短较高的振幅脉波的能量高得足以使结晶结构键结破裂,而短得足以防止原子重新结合至一结晶态。适当的脉波图表可由经验决定,并不须过度的实验,特别是一特定的相变化合金。 
以下所揭露的内容,其中相变化材料指称为锗锑碲(GST),而其它型式的相变化材料同样可使用。而于此揭露的Ge2Sb2Te5为一适当材料以形成存储单元。 
具有效用的可程序化阻抗材料的特性,像是相变化材料包括一材料具有可程序化的阻抗且可逆的特性,比如具有经由电流感应即互相可逆的至少二固相。此至少二固相包括了一非晶相及一结晶相。然而,在操作中,可程序化阻材料无法完全转化为非晶相或结晶相其中之一。中间相位或二相位的混合在材料特性上有显着的不同。此二固相应为双定态且具有不同的电性特性。可程序化阻抗材料可为硫属化合物材料,硫属化合物材料包括锗锑碲,或者可程序化阻抗材料可为以上所述其它相变化材料之一。 
请参照图2,其绘示一存储阵列的示意图。如图2所示,共源线28(common source line)、字线23(word line)及字线24大致上平行排列于Y方向。位线41(bit line)及42大致上平行排列于X方向。因此,Y译码器及在方块45中的字线驱动器耦接至字线23及24。X译码器及在方块46中的一组感应放大器耦接至位线41及42。共源线28耦接至通道晶体管50、51、52及53的源极。通道晶体管50的栅极耦接至字线23。通道晶体管51的栅极耦接至字线24。而通道晶体管52的栅极耦接至字线23。通道晶体管53的栅极耦接至字线24。因具有上电极元件34的侧壁有源接脚存储单元35,通道晶体管50的漏极耦接至下电极32。此上电极元件34耦接至位线41。同样地,因具有上电极37的侧壁有源接脚存储单元36,通道晶体管51的漏极耦接至下电极33。上电极元件37耦接至字线41。通道晶体管52及53 同样地耦接至于字线42上,相对应的侧壁接脚存储单元。共源线28上有二列的存储单元,在示意图中其排列方向为Y方向。在其它的实施例中,通道晶体管可由其它可在阵列中控制电流以在阵列中选取装置以读写数据的结构取代。 
请参照图3,其绘示依照本发明优选实施例的集成电路的简化方块图。集成电路75包括一存储器阵列55,在一半导体基板上,侧壁有源接脚相变化存储单元用以提供此存储器阵列55。列译码器56与多个字线62耦接,且沿着存储器阵列的列排列。行译码器63与沿着存储器阵列55的行排列的多个位线64耦接,且此些位线64用以在存储器阵列55中的侧壁接脚有源存储单元里读写数据。地址的提供从总线58至行译码器63及列译码器56,方块59中的感应放大器及数据输入结构经由数据总线67耦接至行译码器63。数据从集成电路75的输出/输入端口经由数据输入线71流入,或者从其它数据源经内部或外部至集成电路75及至方块59中的数据输入结构。在以图佐证的本实施例中,其它电路系统包括在集成电路中,且集成电路例如是一般用途处理器(general purpose processor)或是特殊用途应用电路系统(special purpose application circuitry),或者是具有由薄膜熔丝的相变化存储单元阵列所支持的单芯片系统设计功能的模块组合。数据从方块59中的感应放大器至输入/输出端口经由数据输出线72后流出,或是从感应放大器至其它数据目的由内部或外部至集成电路75。 
本实施例所提供的控制器为使用偏压配置状态机69控制偏压配置电源电压68的应用,例如为读、写、清除、清除验证及写入验证电流。此控制器可使用现有特殊用途逻辑电路系统。在另一实施例中,此控制器包括了一般用途处理器。此用途处理器可于相同集成电路上提供,且此集成电路用以执行一计算机程序以控制设备的运作。 
请参照图4,其绘示多个侧壁有源接脚相变化随机存取存储单元100-103的剖面图。存储单元100-103形成于半导体基板110上。隔离结构(isolation structures)例如是浅沟槽隔离(STI)电介沟槽111及112。电介沟槽111及112隔离了数对成列的存储单元通道晶体管。此通道晶体管由基板110上的共源区域116及漏极区域115及117所形成。多晶硅字线113及114形成通道晶体管的栅极。电介填充层118形成于多晶硅字线113及114之上。接点插塞(contact plug)结构141及120个别接触通道晶体管的漏极,且共源线 119沿着阵列中的一列与共源区域接触。共源线119与共源区域116接触。接点插塞结构120与存储单元101的下电极121接触。存储单元101,如存储单元101、102及103,包括一薄膜下电极121,一薄膜电介层122、一薄膜上电极123及一包括锗锑碲或其它相变化材料的侧壁接脚124。一电介填充层127涂布在存储单元100-103上。钨插塞126接触上电极123。一图案化的金属层提供了接点129、130、131、132,以上涂布在电介填充层127上。一般来说,接点129至132为图2所示的为译码电路而延展的单位线。一薄氧化层125涂布在上电极123。此薄氧化层125如下所述用以加工(process)边缘。 
在具代表性的实施例当中,图案化金属层(接点129-132)包括铜金属化工艺。其它的金属化工艺,包括铝及铝合金同样可被利用。上电极及下电极(比如是121、123)包括氮化钛(TiN)或氮化钽(TaN),具有10至30纳米的厚度。另外,上下电极也可为氮化铝钛(TiAlN)或氮化铝钽(TaAlN),或为包括一种或多种元素,由钛(Ti)、钨(W)、钼(Mo)、铝(Al)、钽(Ta)、铜(Cu)、(Pt)、铱(Ir)、镧(La)、镍(Ni)、钌(Ru)及氧(O)中任选。而电介层可为氧化硅(silicon Oxide)、氧氮化硅(silicon oxynitride)、氮化硅(silicon nitride)、三氧化二铝(Al2O3)、其它低介电质电介层或一ONO或SONO的多层结构。另外,电介层也可包括一种或多种元素,由硅(Si)、钛(Ti)、铝(Al)、钽(Ta)、氮(N)、氧(O)及碳(C)。而电介层的厚度为10至200纳米且优选的是50纳米或小于50纳米。而第二电极可为氮化钛(TiN)或氮化钽(TaN)。 
请参照图5,其绘示结构99在前段工艺后形成标准的互补金氧半导体(CMOS)元件依照本实施例在图2的阵列中的字线、共源线及通道晶体管。如图5所示,共源线119位于掺杂区域116在半导体基板上方,其中掺杂区域116与在图标左边的第一晶体管的源极及在图示右边的第二通道晶体管相对应。在本实例中,共源线119延展至结构99的上表面。在其它实施例中,共源线并无延展与表面接触。掺杂区域115与第一通道晶体管的漏极相对应。一字线包括多晶硅113及一硅掩模(未绘示于图中)用以作为第一通道晶体管的栅极。插塞120接触掺杂区域115且提供一导通路径至结构99的表面,用以接触如下所述的存储单元电极。第二通道晶体管的漏极由掺杂区域117所提供。一字线包括多晶硅线114及硅化物掩模(未绘示于图中),用以作 为第二晶体管的栅极。插塞141接触掺杂区域117且提供一导通路径至结构99的上表面,用以接触如下所述的存储单元电极。独立沟槽111及112从相邻的两晶体管结构中将二耦接至插塞120及141的晶体管结构分开。图5中的结构99提供一用以形成存储单元元件的基板,以下为更详细的说明。 
在形成结构99中的插塞120、141及源线119后,再形成一多层薄膜结构包括下电极150、上电极152、电介层151及保护上电介层153。下电极150具有小于50纳米的厚度,且优选在范围10至30纳米。上电极152也具有小于50纳米的厚度,且优选在范围10至30纳米,且上下电极可为不同的厚度。举例来说,上电极152的厚度可稍微大于下电极150的厚度,使用钨插塞技术或其它相似技术,为了增进加工边缘以达到信赖接触。上电介质153提供加工边缘予机械化学研磨使用以平坦化,修整侧壁间隙壁蚀刻。其它实施例省去上电介质153。 
请参照图6A及图6B。图6A绘示光掩模(mask)图案的上视图,其中包括用以蚀刻图5的多层薄膜结构的第一矩形155及第二矩形156,以形成电极复合层60、65。图6B绘示电极复合层60、65的剖面图。电极复合层60包括下电极121、电介层122及上电极123。电极复合层60具有一侧壁61。同样地,电极复合层65具有侧壁66。反应性离子蚀刻(Reactive ion etching,REI)用以尽可能形成垂直侧壁61、66。虽未绘示于图中,反应性离子蚀刻可能过度蚀刻至电介填充层118。在一般的工艺中,其过度蚀刻约为20纳米。此工艺使用基本配方(recipe)三氯化硼(BCl3)及/或氯气(Cl2)。 
请参照图7,其绘示一结构在沉积后,例如是溅射,一锗锑碲的顺应性层170或其它可程序化阻抗材料涂布于电极复合层60、65。锗锑碲可在摄氏250度的温度下使用未瞄准的溅射以沉积。当使用Ge2Sb2Te5为相变化材料时,此结果使薄膜在电极复合层上具有大约60至80纳米的厚度,而侧壁大约为20至30纳米的厚度,以及在电极复合层间的厚度约60至80纳米。工艺中的许多实施例可在平坦表面上溅射整个芯片至40到100纳米。 
请参照图8A,其绘示蚀刻侧壁的平面图。此蚀刻通过蚀刻工艺将锗锑碲层从平坦表面上移除,且分别留下侧壁171、172在电极复合层60及65上,且完全包围电极复合层60及65。各向异性的配方三氯化硼(BCl3)及/或氯气(Cl2)的反应性离子蚀刻工艺可被使用。图8B绘示侧壁171及172的剖面图。因为轻微的过度蚀刻,二侧壁的顶端微低于电介层160的顶端, 其为确保侧壁171及172完全脱离结构99的表面173。 
请参照图9,其绘示电介质填充工艺。此工艺包括一低温线性氧化物,一氮化硅层或一氧化硅层(未绘示于图中),且在具有相变化材料的侧壁上,约使用小于摄氏200度的工艺温度。其它适合的工艺应用使用等离子体辅助化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)的二氧化硅。在形成线性氧化物后,电介层180的填充使用高温工艺例如是二氧化硅或其它相似材料的高密度等离子体化学气相沉积(HDP-CVD)。 
请参照图10,其绘示氧化膜化学机械研磨(chemical mechanical polishing,CMP)工艺应用于平坦化表面,且暴露出锗锑碲侧壁171及172的顶端181及182。在电极复合层上的电介层用以确保进行化学机械研磨时不会触碰上方的电极材料,例如是氮化钛(TiN),且使上方电极材料免去反应性离子蚀刻工艺及其它蚀刻步骤。 
请参照图11,其绘示光致抗蚀剂图案缩减(photoresist pattern trimming)用以形成次光刻光掩模以缩减侧壁171及172。光致抗蚀剂图案的形成是利用光刻技术。此技术包括了将图案由一光掩模或一组光掩模转移至光致抗蚀剂层。此光致抗蚀剂层包括了在电极复合层60及65上的矩形延展部185及186,如虚线外框所示。在光致抗蚀剂形成后,延展部185及186的宽度接近最小特征尺寸,使得光刻工艺形成延展部185及186。接着,延展部185及186的宽度W1通过光致抗蚀剂缩减减少至次光刻工艺的宽度W2且留下一狭窄修减后的光掩模187及188。例如,含氧等离子体(oxide plasma)用以各向异性蚀刻光致抗蚀剂以修整图案化光致抗蚀剂的宽度及厚度,直到本实施中的宽度W2小于50纳米,且直到在0.2微米(200纳米)最小特征尺寸的光刻工艺环境中的宽度W2约为40纳米。 
在其它实施例中,一硬掩模层(未绘示于图中)例如是氮化硅(SiN)或二氧化硅(SiO2)的低温沉积层,可设置于光致抗蚀剂图案及电极复合层60、65的表面之间,以预防蚀刻损坏存储单元。假如光致抗蚀剂或者锗锑碲的选择性蚀刻在缩减工艺后的厚度不够,则硬掩模通过硬掩模改善。 
请参照图12A,其绘示侧壁存储单元宽度蚀刻的平面图依照缩减后的光掩模187及188,使用一以氯为基础的反应离子蚀刻因此电介层180未被蚀刻。蚀刻移除了暴露的锗锑碲,留下了一狭窄的侧壁接脚124在电极复合层上,如图12B的剖面图所示。一接缝190包围在电介层180上的电极复合层 60及65。此电介层180优选地延展至完全移除锗锑碲的结构99的上表面173。在此工艺的实施例中,所有在接缝190中的锗锑碲皆必须移除。接缝190中锗锑碲的显着部分已被移除,因此在上下电极中的电流可集中在一电极复合层的电介层的狭窄接脚上。 
请参照图13,其绘示工艺的下一步骤的平面图。其中包括了移除光掩模(trimmed photoresist mask)187、188及硬掩模层(假如有)。于本实施例的工艺中,在电极复合层60及65上的侧壁接脚124及124A具有约为40纳米或小于40纳米的次光刻宽度W。 
请参照图14,其绘示填充小接缝及氧化沉积的步骤。因移除侧壁而留下的接缝190(图13)可使用原子层沉积以填充电性及/或隔热填充物193及194。在本实施例中,原子层沉积用以沉积电介材料例如是二氧化铝(AlO2)或二氧化铪(HfO2)及其它类似的材料。在其它实施例中,接缝可在玻璃或低介电值的材料上使用无机旋转而通过氧化硅的旋涂法填充。另一种方法,接缝被密封形成一大致上排他的空间,为存储单元提供优选的隔热。接下来,一上氧化沉积层覆盖电极复合层具有一电介层195。此电介层195被平坦化用以预备随后的金属化法。上氧化沉积层优选地由离子体辅助化学气相沉积(PECVD)所形成或其它低温工艺。 
请参照图15,其绘示为位线的导孔成形及金属化且位线接触存储单元。在电介层195蚀刻导孔且填充钨或其它导通材料以形成插塞196及197,且与在电极复合层60及65的上电极123及123A导通。一图案化金属层198提供位线在平面图上延以译码电路。如上所述,插塞120及141在电极复合层60及65的下电极与通道晶体管的漏极115及117之间提供连接。字线113、114由多晶硅栅极在通道晶体管上所形成。而共源区域116及共源线119用以感应电流从位线经由存储单元至通道晶体管且至共源线。 
请参照图16,其绘示在锗锑碲层侧壁蚀刻的沉积后一电极复合层的剖面图。例如为电极复合层60,在其它实施例中,锗锑碲层仅在复合电极层的四周部分蚀刻,留下残留层203在电极复合层的周围的接缝(190,请参照图12B)底部。在图16中,接脚201具有次光刻宽度,且此接脚接触延伸至电介层的上电极202,因此电流集中在相变化材料接脚的狭窄区域210。 
图17至图21为绘示上述工艺中所使用的光掩模的展开图。图17为绘示用以形成掺杂区域115、116、117的工作区300的展开图。在本实施例中, 工作区的宽度大约为0.4微米。另外,用以形成字线113、114(如图4所示)的多晶硅线301、302也在图中。多晶硅线301、302与工作区交错且通常在掺杂区域前形成。在本实例中,多晶硅线301、302的宽度大约是0.18微米。在此例中,通道晶体管具有一晶体管宽度约0.4微米且一晶体管长度约为0.18微米。同样在图17中绘示钨共源线305的展开图且在303与304与插塞接触,用以形成共源线119及图4的插塞120、141。在本实施例中,共源线305大约为0.2微米宽,且钨插塞大约为0.2微米平方。在本实施例中,钨插塞303、304被配置在离工作区300的边缘约0.1微米,离多晶硅线301、302的一侧约0.16微米。 
请参照图18,其绘示用以界定一电极复合层的矩形306,例如是用以形成图4中的存储单元101的复合层。在本实施例中,矩形约为0.4微米宽,且约为0.55微米长。受制于光掩模校准变异(subject to mask alignment),矩形306的边缘316从钨插塞303的边缘至多晶硅线301大约为0.25微米。同样的,矩形306的边缘316从共源线305的边缘至多晶硅线301大约为0.25微米。 
图19为绘示用以形成光致抗蚀剂掩模(或硬掩模)的光刻掩模的展开图。因光刻工艺具有0.2微米最小特征尺寸,光刻掩模307具有约0.2微米的宽度。如图19所示,在图案形成后,光刻掩模307如上所述被缩减以定义出一侧壁工作区的宽度。在本实施例中,此光掩模延展至电极复合层的边缘在0.15微米的范围内。受制于光掩模校准变异,此电极复合层由矩形306所定义,且配置靠近于矩形306的中心。 
图20为绘示用以定义配置插塞的导孔位置的光掩模的展开图,例如为图4中的插塞126,用以使上电极与金属化位线接触。在本实施例中,导孔图案308约为0.28微米平方,且离覆盖多晶硅线301的矩形306的边缘316,以及离定义电极复合层的边缘约0.06微米。 
图21绘示一具有二电极复合层310、311的位置及出现于上左边的成对存储单元中的侧壁有源接脚312、313的8个存储单元阵列结构。工作区320、321、322、323绘示于图中。存储单元电极复合层310、311配置于第一工作区的接点插塞324、325上;存储单元电极复合层(未绘示于图中)配置于第二工作区321的插塞326、327上;存储单元电极复合层(未绘示于图中)配置于第三工作区322的插塞328、329上;存储单元电极复合层(未绘示 于图中)配置于第四工作区323的插塞330、331上。多晶硅字线335、336沿着个别存储单元的列配置于工作区320及322上。同样地,多晶硅字线337、338沿着个别存储单元的列配置于工作区321及323上。金属线339在覆盖工作区320及322的多晶硅字线335及336之间延展,也就是在耦接至多晶硅线字线335、336的二列存储单元之间延展。相同地,金属线340在覆盖工作区321及323的多晶硅字线337及338之间延展,也就是在耦接至多晶硅线字线337、338的二列存储单元之间延展。在展开图中,工作区320、321之间分开约0.26微米。同样地,工作区320及322也是分开约0.26微米。 
以上佐以图17至图21为参考的尺寸,为具有最小特征尺寸约0.2微米的光刻工艺的典型代表,且用以提供存储单元的生产过程可依照实际情况做适当变化。 
综上所述,虽然本发明以优选实施例揭露如上,然而其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围应当以后附的权利要求所界定者为准。 

Claims (21)

1.一种形成一存储单元的方法,包括:
形成一第一电极,一绝缘层配置于该第一电极之上,及一第二电极配置于该绝缘层之上,且该绝缘层具有一侧壁;
在一侧壁上形成一间隙壁,该间隙壁包括一可程序化阻抗材料,该可程序化阻抗材料与该第一电极及该第二电极电连接,该间隙壁具有一长度、一宽度及一厚度,该长度沿着该侧壁从该第一电极延展至该第二电极,该宽度与该长度垂直,而该厚度取决于该可程序化阻抗材料形成在该侧壁的薄膜厚度,且其中形成该间隙壁包括:
沉积一可程序化阻抗材料层于该侧壁上;
各向异性蚀刻可程序化阻抗材料层以移除除该侧壁外的部分区域的可程序化阻抗材料;及
依据一图案选择性地蚀刻可程序化阻抗材料以界定该间隙壁的该宽度,该宽度小于40纳米;
其中该选择性地蚀刻包括形成一蚀刻光掩模,该蚀刻光掩模具有一光刻图案以定义一光刻宽度,以及修减或各向异性地蚀刻该蚀刻光掩模,以提供一修减后光掩模以定义该图案,该图案用以定义该宽度。
2.如权利要求1所述的方法,其中该各向异性蚀刻包括使用一等离子体蚀刻工艺。
3.如权利要求1所述的方法,其中该各向异性蚀刻包括使用一反应性离子蚀刻工艺。
4.如权利要求1所述的方法,其中该绝缘层在该第一电极及该第二电极间具有一厚度,且其中该间隙壁、该第一电极及该第二电极具有个别的厚度,且该些厚度小于40纳米。
5.如权利要求1所述的方法,其中该可程序化阻抗材料包括一硫属化合物。
6.如权利要求1所述的方法,其中该可程序化阻抗材料具有至少二固相,且该二固相通过感应一电流而可逆。
7.如权利要求1所述的方法,其中该可程序化阻抗材料具有至少二固相,该二固相包括一非晶相及一结晶相。
8.如权利要求1所述的方法,其中该可程序化阻抗材料包括Ge2Sb2Te5
9.如权利要求1所述的方法,其中该可程序化阻抗材料包括一种或多种材料选自锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫或是金。
10.一种形成一间隙壁存储单元的方法,包括:
形成一第一电极,一绝缘层配置于一第一电极之上,及一第二电极配置于该绝缘层之上,且该绝缘层具有一使用光刻工艺的侧壁;以及
在一侧壁上形成一间隙壁,该间隙壁包括一可程序化阻抗材料,该可程序化阻抗材料与该第一电极及该第二电极电连接,该间隙壁具有一长度、一宽度及一厚度,该长度沿着该侧壁从该第一电极延展至该第二电极,该宽度与该长度垂直,而该厚度取决于该可程序化阻抗材料形成在该侧壁的薄膜厚度,且其中形成该间隙壁包括:
沉积一可程序化阻抗材料层于该侧壁上;
各向异性蚀刻可程序化阻抗材料层以移除除该侧壁以外的部分区域的可程序化阻抗材料;及
依据一图案选择性地蚀刻可程序化阻抗材料,此可程序化阻抗材料具有一尺寸小于一光刻工艺中的0.2微米最小特征尺寸,以定义该间隙壁的宽度且该宽度小于该0.2微米最小特征尺寸,
其中该选择性地蚀刻包括形成一蚀刻光掩模,该蚀刻光掩模具有一光刻图案以定义一光刻宽度,以及修减或各向异性地蚀刻该蚀刻光掩模,以提供一修减后光掩模以定义该图案,该图案用以定义该宽度。
11.如权利要求10所述的方法,其中该可程序化阻抗材料包括一硫属化合物。
12.如权利要求10所述的方法,其中该可程序化阻抗材料具有至少二固相,且该二固相通过感应一电流而可逆。
13.如权利要求10所述的方法,其中该可程序化阻抗材料具有至少二固相,该二固相包括一非晶相及一结晶相。
14.如权利要求10所述的方法,其中该可程序化阻抗材料包括Ge2Sb2Te5
15.如权利要求10所述的方法,其中该可程序化阻抗材料包括一种或多种材料选自锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫或是金。
16.一种集成电路,包括:
一半导体基板;
多个通道晶体管形成的一阵列,该阵列具有多个电极,该电极于该半导体基板上包括多个掺杂区域用以与该些通道晶体管的各个漏极连接至一参考电势;
多条字线沿着通道晶体管阵列中相对应的列耦接至该些通道晶体管的栅极;
多个可程序化存储单元的一阵列,该些可程序化存储单元在该阵列中分别包括一下电极,一绝缘层配置在该下电极上,该绝缘层具有一侧壁,一上电极配置于该绝缘层上,及一可程序化阻抗材料间隙壁沿着该绝缘层的侧壁且与该上电极及该下电极电连接,该间隙壁具有一长度、一宽度及一厚度,该长度在该绝缘层沿着该侧壁从该下电极延展至该上电极,该宽度与该长度垂直,且其中该宽度及该厚度小于40纳米;
多条位线配置在该些存储单元之上,且该些位线分别沿着该些可程序化存储单元的一阵列中的多个存储单元的多个栏排列;
多个接点插塞结构,该些接点插塞结构连接各个存储单元的下电极与该通道晶体管阵列中相对的通道晶体管的漏极;以及
一图案化金属层,提供多个接点,涂布在一电介填充层上,该电介填充层涂布在该些存储单元上,该些接点与在该些位线中的具有相对应该些位线的各该些存储单元的该些上电极接触。
17.如权利要求16所述的集成电路,其中,该间隙壁包括一可程序化阻抗材料,该可程序化阻抗材料具有至少二固相,且该二固相通过感应一电流而可逆。
18.如权利要求17所述的集成电路,其中该至少二固相包括一非晶相及一结晶相。
19.如权利要求17所述的集成电路,其中该间隙壁、该下电极及该上电极具有不同的厚度,该些厚度小于用以形成该集成电路的光刻工艺的0.2微米最小特征尺寸。
20.如权利要求16所述的集成电路,其中该可程序化阻抗材料包括Ge2Sb2Te5
21.如权利要求16所述的集成电路,其中该可程序化阻抗材料包括一种或多种材料选自锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫或是金。
CN2005101248240A 2004-11-22 2005-11-22 侧壁有源接脚存储器及其制造方法 Expired - Fee Related CN1819297B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63012304P 2004-11-22 2004-11-22
US60/630,123 2004-11-22
US11/285,473 2005-11-21
US11/285,473 US7608503B2 (en) 2004-11-22 2005-11-21 Side wall active pin memory and manufacturing method

Publications (2)

Publication Number Publication Date
CN1819297A CN1819297A (zh) 2006-08-16
CN1819297B true CN1819297B (zh) 2013-08-21

Family

ID=36919097

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2005101248240A Expired - Fee Related CN1819297B (zh) 2004-11-22 2005-11-22 侧壁有源接脚存储器及其制造方法
CNA2005101248255A Pending CN1917248A (zh) 2004-11-22 2005-11-22 在集成电路或其它装置上制造小型接脚的方法
CN2010105838799A Pending CN102088059A (zh) 2004-11-22 2005-11-22 在集成电路或其它装置上制造小型接脚的方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNA2005101248255A Pending CN1917248A (zh) 2004-11-22 2005-11-22 在集成电路或其它装置上制造小型接脚的方法
CN2010105838799A Pending CN102088059A (zh) 2004-11-22 2005-11-22 在集成电路或其它装置上制造小型接脚的方法

Country Status (3)

Country Link
US (2) US7608503B2 (zh)
CN (3) CN1819297B (zh)
TW (2) TW200623474A (zh)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6612695B2 (en) * 2001-11-07 2003-09-02 Michael Waters Lighted reading glasses
US7547945B2 (en) * 2004-09-01 2009-06-16 Micron Technology, Inc. Transistor devices, transistor structures and semiconductor constructions
US7608503B2 (en) * 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
US7427770B2 (en) 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7867851B2 (en) 2005-08-30 2011-01-11 Micron Technology, Inc. Methods of forming field effect transistors on substrates
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) * 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7479649B2 (en) * 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
CN100524878C (zh) * 2005-11-21 2009-08-05 旺宏电子股份有限公司 具有空气绝热单元的可编程电阻材料存储阵列
US7599217B2 (en) * 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7521364B2 (en) * 2005-12-02 2009-04-21 Macronix Internation Co., Ltd. Surface topology improvement method for plug surface areas
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7432206B2 (en) * 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) * 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7700441B2 (en) 2006-02-02 2010-04-20 Micron Technology, Inc. Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7812334B2 (en) 2006-04-04 2010-10-12 Micron Technology, Inc. Phase change memory elements using self-aligned phase change material layers and methods of making and using same
US9178141B2 (en) 2006-04-04 2015-11-03 Micron Technology, Inc. Memory elements using self-aligned phase change material layers and methods of manufacturing same
US7554144B2 (en) 2006-04-17 2009-06-30 Macronix International Co., Ltd. Memory device and manufacturing method
US7928421B2 (en) * 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US7324366B2 (en) * 2006-04-21 2008-01-29 International Business Machines Corporation Non-volatile memory architecture employing bipolar programmable resistance storage elements
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) * 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7732800B2 (en) 2006-05-30 2010-06-08 Macronix International Co., Ltd. Resistor random access memory cell with L-shaped electrode
US7696506B2 (en) * 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7602001B2 (en) * 2006-07-17 2009-10-13 Micron Technology, Inc. Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells
TWI305042B (en) * 2006-08-16 2009-01-01 Ind Tech Res Inst Phase-change memory devices and methods for fabricating the same
US7772632B2 (en) 2006-08-21 2010-08-10 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US7638357B2 (en) * 2006-08-25 2009-12-29 Micron Technology, Inc. Programmable resistance memory devices and systems using the same and methods of forming the same
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7589995B2 (en) 2006-09-07 2009-09-15 Micron Technology, Inc. One-transistor memory cell with bias gate
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
US20080078983A1 (en) * 2006-09-28 2008-04-03 Wolfgang Raberg Layer structures comprising chalcogenide materials
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US20080137400A1 (en) * 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7682868B2 (en) * 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) * 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US8344347B2 (en) * 2006-12-15 2013-01-01 Macronix International Co., Ltd. Multi-layer electrode structure
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
KR100801084B1 (ko) * 2007-01-08 2008-02-05 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치 및 그 제조 방법
US7433226B2 (en) * 2007-01-09 2008-10-07 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on multiple programmable resistive memory cell
US7440315B2 (en) * 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7525176B2 (en) 2007-01-30 2009-04-28 International Business Machines Corporation Phase change memory cell design with adjusted seam location
US7663135B2 (en) 2007-01-31 2010-02-16 Macronix International Co., Ltd. Memory cell having a side electrode contact
US7619311B2 (en) * 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) * 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) * 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US7884343B2 (en) 2007-02-14 2011-02-08 Macronix International Co., Ltd. Phase change memory cell with filled sidewall memory element and method for fabricating the same
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US8610098B2 (en) * 2007-04-06 2013-12-17 Macronix International Co., Ltd. Phase change memory bridge cell with diode isolation device
US7755076B2 (en) 2007-04-17 2010-07-13 Macronix International Co., Ltd. 4F2 self align side wall active phase change memory
WO2008132701A1 (en) * 2007-05-01 2008-11-06 Interuniversitair Microelektronica Centrum Vzw Non-volatile memory device
CN101312230B (zh) * 2007-05-25 2010-10-13 财团法人工业技术研究院 相变化存储装置及其制造方法
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US7745807B2 (en) * 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US8513637B2 (en) * 2007-07-13 2013-08-20 Macronix International Co., Ltd. 4F2 self align fin bottom electrodes FET drive phase change memory
US7777215B2 (en) 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7884342B2 (en) * 2007-07-31 2011-02-08 Macronix International Co., Ltd. Phase change memory bridge cell
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US9018615B2 (en) * 2007-08-03 2015-04-28 Macronix International Co., Ltd. Resistor random access memory structure having a defined small area of electrical contact
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7642125B2 (en) * 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US7551473B2 (en) * 2007-10-12 2009-06-23 Macronix International Co., Ltd. Programmable resistive memory with diode structure
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US7804083B2 (en) * 2007-11-14 2010-09-28 Macronix International Co., Ltd. Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
US7646631B2 (en) * 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
TW200926356A (en) * 2007-12-11 2009-06-16 Ind Tech Res Inst Method for fabricating phase-change memory
US7768812B2 (en) 2008-01-15 2010-08-03 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8338812B2 (en) 2008-01-16 2012-12-25 Micron Technology, Inc. Vertical spacer electrodes for variable-resistance material memories and vertical spacer variable-resistance material memory cells
US7879643B2 (en) * 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US8426838B2 (en) 2008-01-25 2013-04-23 Higgs Opl. Capital Llc Phase-change memory
US7879645B2 (en) * 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8084842B2 (en) * 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) * 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
CN101981720B (zh) * 2008-04-01 2013-10-23 Nxp股份有限公司 垂直相变存储单元
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US7859887B2 (en) * 2008-04-11 2010-12-28 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7830698B2 (en) * 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7723180B2 (en) * 2008-04-11 2010-05-25 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US8048474B2 (en) * 2008-04-11 2011-11-01 Sandisk 3D Llc Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing
US7812335B2 (en) * 2008-04-11 2010-10-12 Sandisk 3D Llc Sidewall structured switchable resistor cell
US7791057B2 (en) * 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) * 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US9343665B2 (en) * 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US7919768B2 (en) * 2008-07-11 2011-04-05 Industrial Technology Research Institute Phase-change memory element
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) * 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) * 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US8604457B2 (en) 2008-11-12 2013-12-10 Higgs Opl. Capital Llc Phase-change memory element
KR20100076274A (ko) * 2008-12-26 2010-07-06 주식회사 하이닉스반도체 상변화 메모리 소자 및 그 제조방법
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8084760B2 (en) * 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8829646B2 (en) * 2009-04-27 2014-09-09 Macronix International Co., Ltd. Integrated circuit 3D memory array and manufacturing method
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8350316B2 (en) * 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8198160B2 (en) 2010-04-19 2012-06-12 Jun Liu Vertical transistor phase change memory
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8289763B2 (en) 2010-06-07 2012-10-16 Micron Technology, Inc. Memory arrays
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US9082954B2 (en) 2010-09-24 2015-07-14 Macronix International Co., Ltd. PCRAM with current flowing laterally relative to axis defined by electrodes
US8351242B2 (en) 2010-09-29 2013-01-08 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8526213B2 (en) 2010-11-01 2013-09-03 Micron Technology, Inc. Memory cells, methods of programming memory cells, and methods of forming memory cells
US8796661B2 (en) * 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8497182B2 (en) 2011-04-19 2013-07-30 Macronix International Co., Ltd. Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US8779592B2 (en) * 2012-05-01 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Via-free interconnect structure with self-aligned metal line interconnections
US8981330B2 (en) 2012-07-16 2015-03-17 Macronix International Co., Ltd. Thermally-confined spacer PCM cells
US8841649B2 (en) * 2012-08-31 2014-09-23 Micron Technology, Inc. Three dimensional memory array architecture
US8729523B2 (en) 2012-08-31 2014-05-20 Micron Technology, Inc. Three dimensional memory array architecture
CN103972385B (zh) * 2013-02-01 2017-06-20 厦门博佳琴电子科技有限公司 一种嵌入式相变化存储器及其制造方法
US9214351B2 (en) 2013-03-12 2015-12-15 Macronix International Co., Ltd. Memory architecture of thin film 3D array
US8916414B2 (en) 2013-03-13 2014-12-23 Macronix International Co., Ltd. Method for making memory cell by melting phase change material in confined space
JP6162031B2 (ja) * 2013-11-26 2017-07-12 株式会社日立製作所 相変化メモリおよび半導体記録再生装置
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9159412B1 (en) 2014-07-15 2015-10-13 Macronix International Co., Ltd. Staggered write and verify for phase change memory
US9537092B2 (en) * 2015-03-23 2017-01-03 Globalfoundries Singapore Pte. Ltd. Integrated circuits with memory cells and methods of manufacturing the same
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US9793323B1 (en) 2016-07-11 2017-10-17 Macronix International Co., Ltd. Phase change memory with high endurance
JP6316371B2 (ja) * 2016-10-13 2018-04-25 Nissha株式会社 圧力センサ
US10121826B1 (en) * 2017-04-28 2018-11-06 Winbond Electronics Corp. Semiconductor device and method of fabricating the same
US10461125B2 (en) 2017-08-29 2019-10-29 Micron Technology, Inc. Three dimensional memory arrays
US11088323B2 (en) 2018-08-30 2021-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode last scheme for memory cell to prevent metal redeposit
CN112420919A (zh) * 2019-08-23 2021-02-26 联华电子股份有限公司 可变电阻式存储器的结构及其制作方法
US20220407000A1 (en) * 2021-06-16 2022-12-22 Macronix International Co., Ltd. Memory with laminated cell
FR3124891A1 (fr) * 2021-06-30 2023-01-06 Stmicroelectronics (Crolles 2) Sas Mémoire à changement de phase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208038A1 (en) * 2002-10-31 2004-10-21 Dai Nippon Prtg. Co., Ltd. Phase change-type memory element and process for producing the same

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) * 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) * 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
US5958358A (en) * 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
USRE37211E1 (en) * 1994-12-13 2001-06-12 Milwaukee Electric Tool Corporation Clutch mechanism for reciprocating saws
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6147395A (en) * 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US7023009B2 (en) * 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6759315B1 (en) * 1999-01-04 2004-07-06 International Business Machines Corporation Method for selective trimming of gate structures and apparatus formed thereby
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100574715B1 (ko) * 2001-01-30 2006-04-28 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6730928B2 (en) * 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6605527B2 (en) * 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6586761B2 (en) * 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6749971B2 (en) 2001-12-11 2004-06-15 Advanced Micro Devices, Inc. Method of enhancing clear field phase shift masks with chrome border around phase 180 regions
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6732651B2 (en) * 2002-03-22 2004-05-11 Oxy-Dry Corporation Printing press with infrared dryer safety system
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6620715B1 (en) 2002-03-29 2003-09-16 Cypress Semiconductor Corp. Method for forming sub-critical dimension structures in an integrated circuit
US6670628B2 (en) 2002-04-04 2003-12-30 Hewlett-Packard Company, L.P. Low heat loss and small contact area composite electrode for a phase change media memory device
JP3624291B2 (ja) * 2002-04-09 2005-03-02 松下電器産業株式会社 不揮発性メモリおよびその製造方法
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
JP4408012B2 (ja) * 2002-07-01 2010-02-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) * 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) * 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) * 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7067865B2 (en) * 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
TW200504423A (en) * 2003-07-17 2005-02-01 Ind Tech Res Inst Apparatus for improving uniformity used in backlight module
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) * 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6808991B1 (en) 2003-11-19 2004-10-26 Macronix International Co., Ltd. Method for forming twin bit cell flash memory
US6937507B2 (en) * 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US6924178B2 (en) * 2003-12-08 2005-08-02 International Business Machines Corporation Oxide/nitride stacked in FinFET spacer process
US7354847B2 (en) * 2004-01-26 2008-04-08 Taiwan Semiconductor Manufacturing Company Method of trimming technology
KR100564608B1 (ko) * 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) * 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) * 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
US7087471B2 (en) * 2004-03-15 2006-08-08 International Business Machines Corporation Locally thinned fins
US7365385B2 (en) * 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
US7608503B2 (en) * 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) * 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US7214958B2 (en) * 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7166533B2 (en) * 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
US7534647B2 (en) * 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US20070037101A1 (en) * 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US20070111429A1 (en) * 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7635855B2 (en) * 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7450411B2 (en) * 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7786460B2 (en) * 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7414258B2 (en) * 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) * 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) * 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7599217B2 (en) * 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) * 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) * 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) * 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US8062833B2 (en) * 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208038A1 (en) * 2002-10-31 2004-10-21 Dai Nippon Prtg. Co., Ltd. Phase change-type memory element and process for producing the same

Also Published As

Publication number Publication date
US20060110878A1 (en) 2006-05-25
TWI355045B (en) 2011-12-21
TW200623474A (en) 2006-07-01
CN1819297A (zh) 2006-08-16
US7608503B2 (en) 2009-10-27
TWI354386B (zh) 2011-12-11
US20060108667A1 (en) 2006-05-25
TW200633145A (en) 2006-09-16
CN102088059A (zh) 2011-06-08
CN1917248A (zh) 2007-02-21

Similar Documents

Publication Publication Date Title
CN1819297B (zh) 侧壁有源接脚存储器及其制造方法
US7598512B2 (en) Thin film fuse phase change cell with thermal isolation layer and manufacturing method
CN100563040C (zh) 相变化存储单元及其制造方法
CN1967897B (zh) 管型相变化存储器形成方法
US7910907B2 (en) Manufacturing method for pipe-shaped electrode phase change memory
CN102760833B (zh) 薄膜板相变随机存取存储器电路及其制造方法
US7414258B2 (en) Spacer electrode small pin phase change memory RAM and manufacturing method
US7929340B2 (en) Phase change memory cell and manufacturing method
US7579613B2 (en) Thin film fuse phase change RAM and manufacturing method
US8173987B2 (en) Integrated circuit 3D phase change memory array and manufacturing method
CN100544016C (zh) 具有绝热衬垫的薄膜保险丝相变化单元及其制造方法
US7514288B2 (en) Manufacturing methods for thin film fuse phase change ram
CN101908553B (zh) 一种存储器装置及其制造方法
US7989251B2 (en) Variable resistance memory device having reduced bottom contact area and method of forming the same
US20070111429A1 (en) Method of manufacturing a pipe shaped phase change memory
CN101552282A (zh) 相变存储器件及其制造方法
US8981330B2 (en) Thermally-confined spacer PCM cells
CN100573899C (zh) 自我对准的嵌入式相变存储器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20191122

CF01 Termination of patent right due to non-payment of annual fee