CN1826683A - 使用自组装单层的硅结晶法 - Google Patents

使用自组装单层的硅结晶法 Download PDF

Info

Publication number
CN1826683A
CN1826683A CNA2004800207124A CN200480020712A CN1826683A CN 1826683 A CN1826683 A CN 1826683A CN A2004800207124 A CNA2004800207124 A CN A2004800207124A CN 200480020712 A CN200480020712 A CN 200480020712A CN 1826683 A CN1826683 A CN 1826683A
Authority
CN
China
Prior art keywords
substrate
layer
sam
silicon
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800207124A
Other languages
English (en)
Inventor
J·G·库亚德
R·R·小汉考克
M·A·刘易斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN1826683A publication Critical patent/CN1826683A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3482Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Abstract

包括衬底的显示器件,在所述衬底上设置有晶体或多晶半导体材料层,其中所述衬底具有低于所述层的形成温度的应变点。所述晶体或多晶材料是通过以下方法构建,所述方法包括在衬底上提供自组装单层(SAM)、在SAM上沉积材料层和使所述层基本结晶。

Description

使用自组装单层的硅结晶法
相关申请
本申请要求2003年7月18日提交的美国专利申请No.10/622,606的优先权。
背景技术
通常在显示器件中,将电子部件(component)结合到用于显示器件的玻璃衬底上很有用。在平面显示(FPD)器件例如液晶显示器(LCD)中尤其如此。在LCD器件中,用电压调制(modulate)一层液晶材料,所述电压用电子部件(包括晶体管阵列)来控制。通常,所述阵列的晶体管是薄膜晶体管(TFT),且是金属氧化物半导体(MOS)器件。
所述LCD显示器通常包括玻璃衬底、设置(dispose)在玻璃衬底上的晶体管和下面的一层液晶(LC)材料。所述晶体管以图案阵列(patterned array)排布,并由外围电路(peripheral circuitry)驱动以提供所需的转换电压(switching voltage)使LC材料分子以所希望的方式取向(orient)。此外,所述阵列的晶体管通常由半导体材料在玻璃衬底上或上方直接形成。
因为与无定形材料相比,半导体载流子在晶体和多晶材料中的迁移率(mobility)通常更大,所以在LCD显示器的玻璃衬底上面或上方生长晶体结构并从那里构建晶体管是很有利的。然而,由于均匀性和光洁度(smoothness),半导体薄膜通常以无定形态沉积,然后转化为多晶结构。通常,这些晶体结构是多晶结构。
已知的半导体晶体生长方法通常需要无定形半导体材料层在相对高的温度下或较长时间的退火。由于晶体生长的退火温度对于半导体晶体形成在其上的衬底太高,或为了加快制造时间,已经探索其它的技术来满足这一需求。这些技术包括激光退火。
尽管已试图用各种技术来在玻璃衬底上形成多晶硅,但是在得到的材料性质和经济可行性方面都存在缺陷。因此,需要一种至少克服已知技术的缺陷,在衬底上制造半导体材料的方法及由此形成的结构。
发明内容
按照示范性的实施方式,显示器件包括具有单晶或多晶材料设置于其上的衬底,其中所述衬底具有低于所述单晶或多晶材料形成温度的应变点(strainpoint)。
按照另一个示范性的实施方式,在衬底上构建单晶或多晶材料的方法包括在衬底上提供自组装单层(SAM),在SAM上沉积层并基本使所述层结晶。
附图说明
结合附图,从下面的详细描述中可以很好地理解本发明。要强调的是,各种特征不一定是按比例的。实际上,为了清楚地讨论,各种特征的尺寸可任意地增加或减小。
图1是根据本发明示范性实施方式的LCD显示器的剖面图。
图2a-2e是根据本发明示范性实施方式的在玻璃衬底上形成晶体结构的图示过程的剖面图。
图3是根据本发明示范性实施方式的在玻璃衬底上形成晶体结构的图示过程的流程图。
详细描述
以下的详细描述是为了阐明而非限制的目的,阐明揭示具体细节的示范性实施方式,以为示范性实施方式提供充分的理解。然而,对于本领域的技术人员来说,很明显本发明可以以其它不偏离这些具体细节的实施方式来实施。在其它情况下,省略了对已熟知的器件和方法的详细描述,以突出对本发明的描述。
图1示出了根据本发明示范性实施方式的LCD显示器100的剖面图。显示器100可以是平面显示器、平视显示器或类似的器件。要注意的是,所描述的实施方式可在没有具体提到的应用中实施。也就是说,具体揭示的实施方式是为了说明而非限制这些实施方式的应用。
显示器100包括衬底101,所述衬底101可以是适合用于视频显示器件的玻璃材料。示例性的材料包括但不限于康宁股份有限公司(Corning Incorporated)的Code1737和Eagle2000TM玻璃,还有其它的硅酸硼和硅酸铝玻璃。在衬底101上形成单晶或多晶(poly)材料的层102。在一个示例性实施方式中,层102是单晶或多晶半导体,例如硅。任选的阻挡层(未示出)可以在衬底101和层102之间形成。由该层102来构建电子器件(未示出)。按照示范性实施方式,所述电子器件是用于选择性开或关电压源的MOS晶体管。
使用自组装单层(SAM)来构建层102,选择自组装单层来引入能降低结晶温度和加快晶种的成核速度的晶种效应(seeding effect)。该技术能在比已知的晶体生长技术更低的温度和更短的时间内形成相对大的颗粒尺寸,和/或更高的薄膜均匀性。该技术在构建单晶或多晶材料(例如硅)的应用中特别有优势,但是对于构建过程仍然有温度限制。例如,在玻璃衬底不能经受用已知的热生长技术生长硅晶体所需温度的情况下。构建层102的具体细节及其优点会结合本文说明性的实施方式来描述。
液晶(LC)材料层103设置于层102上方,并在其中具有透明的导电材料(未示出),例如ITO。所述导电层使电压能够选择性地应用到所述LC材料103,由此光入射在其上由LC材料103调节。最后在液晶材料层103上设置另一玻璃层104来完成显示器100的结构。要注意的是,既没有示出也没有描述LCD器件的整体功能所需的其它元件(element),因为这些元件对于这些说明性的实施方式的理解不是至关重要的。然而,这些元件是本领域技术人员已知的。
接下来的描述主要是在LCD器件100的玻璃衬底上构建多晶或单晶硅层(例如层102)的示范性的实施方式。然而,随着这些描述的继续,会变的很清楚,所述示范性的方法通常可用于在衬底上构建其它的晶体(单晶或多晶)材料层,或在其它的应用中在衬底上构建单晶或多晶硅,或两者都有。
例如,所述衬底可以是锗的氧化物,所述晶体层可以是锗。或者,所述玻璃衬底可以是硅或锗的氧化物,在其上形成SiGe晶体结构。另外,所述衬底可以是晶体硅,在其上形成晶体氧化物(crystalline oxide)结构。此外,所述层可以用在除LCD显示器以外的其它应用中,例如有机发光二极管(OLED)显示器和绝缘体上外延硅(silicon-on-insulator)(SOI)电子应用中。
特征性地,示范性实施方式的方法产生单晶薄膜或多晶薄膜。有利地,所述晶体颗粒具有优选的取向。说明性地,所述取向是平行于衬底的六角形面(例如,Si<111>)。最后,因为颗粒的较高的有序度,所述晶体材料的载流子整体上比已知方法构建的薄膜具有更均一的迁移率。
图2a-2e是按照示范性的实施方式在玻璃衬底上构建单晶或多晶硅层的过程200的剖面图。
最初,如图2a所示,在玻璃衬底201上形成保护层202。说明性地,玻璃衬底是例如图1LCD显示器件的衬底。说明性地,保护层102是氮化硅、二氧化硅或二者的组合。所述层202通常通过化学气相沉积(CVD)来沉积到厚度为100-500纳米。
接下来,如图2b所示,在保护层202上设置SAM层203。说明性地,SAM层203是结合到玻璃衬底201的有机分子材料,并通过例如浸涂来沉积。选择SAM层203的有机材料结构是由于其类似于晶体(例如Si)的晶体间距(crystallinespacing),所述SAM层203的有机材料结构有利地形成在玻璃衬底201上。为了这一目的,所述SAM层203由密集的、高度有序排列的长链烃分子构成,所述长链烃分子形成六角形结构。
所述SAM有序结构有用地含有Si原子204,该Si原子204结合到玻璃衬底201或保护层202的表面的未结合的氧轨道。SAM的烃链205如图所示。依靠SAM层203的分子结构,在玻璃衬底的表面上以基本与结晶硅一样的周期性排列形成暴露的官能团206的晶种层。换句话说,硅原子204是SAM层203的SAM分子的一部分。SAM分子的次序造成了基本与硅晶体平面相同的暴露的官能团206的次序。这样,暴露的官能团形成周期性潜力(potential)(晶种层),用于通过后续的沉积的无定形Si来结晶。要注意的是,SAM的分子间距决定晶种效应。晶种效应对烃链205之间的间距最敏感,对连接硅原子204之间的间距不太敏感。
按照示范性的实施方式,用于构建晶体材料的SAM材料所需的性质是烃链205的分子次序和间距,尤其是SAM末端的暴露的官能团206的次序和间距(下面充分讨论)。选择SAM分子的次序和间距来基本与硅晶格的次序和间距匹配,这样可以接着构建硅晶体结构。本领域一般技术人员容易理解,根据本文所述的示范性实施方式的构建原则,通过选择具有适当间距的SAM材料,可以实现在衬底上构建其它的晶体结构(例如多晶或单晶Ge或SiGe),所述衬底在已知技术中不可用于构建这些晶体材料。
按照示范性的实施方式,用于形成单晶或多晶硅的SAM层203说明性地包括成分为R-(CH2)N-Si-R’3的材料。这种分子的例子可包括十一碳烯基三氯硅烷(C11H21Cl3Si)或二十二碳烯基三乙氧基硅烷(C28H58O3Si)。要注意的是,在提到的示范性实施方式中,为了形成单晶硅或其它的单晶材料,特定SAM材料的长程(long-range)有序性是有利的。这通过链长N=8-20来实现,最高有序度N=16左右。
SAM层203与衬底201/保护层202的表面的连接可通过几种途径实现。当衬底201是玻璃时,可使用硅烷化学达到这一目的。还需要注意的是,如上所述断裂(cleave)R’基团以使Si原子204连接到玻璃的氧上。通常使用烷氧基硅烷或三卤硅烷,硅烷被水解(hydrolize)并缩合形成硅烷聚合物。上述硅烷可含有或被修饰后含有活性官能团,这样SiH4可以反应以形成用于硅生长的碱性层。合适的连接基团的例子包括三氯硅烷(-SiCl3)、甲氧基硅烷(-Si(OCH3)3)和乙氧基硅烷(-Si(OCH2CH3)3)。
修饰玻璃衬底表面的其它方法将使用带正电的物质,例如季铵、鏻或锍。选择带正电的基团是因为玻璃衬底的表面硅醇是酸性的(pH~3-5)且赋予玻璃很多的负电荷。这些也是高度取向的体系,含有所需的侧挂官能团用于以上述的任何机理与SiH4反应。
一般来说,为了按照示范性的实施方式形成单晶或多晶硅,由硅终端(silicon-terminated)的有机分子或官能位(例如对于硅连接优选的烯烃)终端的有机分子构成SAM材料很有用。
按照示范性的实施方式,在CVD沉积硅的过程中,(例如结合下面对图2c和2d的实施方式的描述)SAM203的侧挂(pendent)官能团必须与来自SiH4的等离子体物质(通常用于沉积硅)相互作用和结合。所述的相互作用的本质或具体地说是机理,是基于通常与起始原料有关的反应。
所述SiH4等离子体定义上是由此产生原子团(radical)的高能体系。这些原子团就是设计SAM系统时需要考虑的物质。含有原子团的通常的有机官能团是碳双键或烯烃。因为SiH4同时具有硅和氢,无需第二试剂就可完成对双键的加成。随着在衬底的表面上形成碳甲硅烷基氢化物,发生正常的硅生长。
另一个说明(address)等离子体的原子团性质的侧挂官能团涉及自旋标记物(spin label)或自旋捕获物(spin trap)的使用。这些是通常用于电子自旋共振(ESR)研究的具有孤对电子的稳定的有机基团(例如N-氧基)。这些分子可与其它原子团相互作用形成完全自旋成对物质。同样地,所述自旋捕获物可与SiH4等离子体相互作用形成N-硅氧烷基氢化物基团,然后如上所述,允许正常的硅生长。
SiH4基团的另一个性质是当其暴露于空气时是高度自燃的。这显示了结合到硅上的氢的氢化物性质。因为氢是带一个负电荷的,其它的反应途径可包括具有路易斯碱的不稳定氢的SAM。即有机基团,例如醇、胺、硫醇等可以与SiH4反应,分别产生硅烷基醚、胺和硫醇。如前所述,硅烷基氢化物结合到表面上,发生正常的硅生长。
在示范性的实施方式中,SAM的R’基团的断裂(cleavage)是在SAM材料203的沉积过程中进行的,使Si原子204结合到玻璃衬底201的氧上。约为1mM-10mM的SAM材料的稀溶液溶解在有机溶剂(例如己烷、环己烷或甲苯)中。用溶剂清洗过玻璃衬底201、UV曝光和/或氧等离子体后,将玻璃衬底浸在SAM溶液中长达1小时。然后移去所述衬底,清洗并干燥。所述烃链205是R-(CH2)N。这些烃链和硅原子204一起结合到玻璃衬底上,并提供高度有序的排列,它们是后面一步硅晶体形成的晶种。
SAM层203的分子之间的间距部分地受烃链的长度控制。还可通过氟化所有或部分的链(即将CH2转化为CF2)或通过加入侧链烃链(side hydrocarbon chain)来进一步修饰所述分子间距。在一个示范性的实施方式中,所述分子间距基本上等于半导体原子在其六角形平面的平面内间距(in-plane spacing),或具有整数关系(例如2:1)。
在沉积SAM层203结束后,在物理沉积无定形硅过程之前,可以进行溶液甲硅烷基化或烯烃终端(alkene termination)作为晶种化过程(seeding process)。例如,在完成图2b的加工程序后,在催化剂(例如氯铂酸)的存在下,进行HSi(OR)3(其中R是甲基或乙基)化。该程序形成图2c所示的结构,Si(OR)3示于207。或者,暴露的官能团206(如图2b所示,说明性地,是烷基部分207)被SiHx原位还原。
在这两种情况之一中,Si原子208被设置在SAM层的末端,如图2d所示,实现了晶种层。为了这一目的,由于SAM层203含有的分子与Si晶体晶格中的分子排列方式基本相同并且间距类似,当沉积硅208时,硅208如所示连接到晶种硅原子上,并形成相当有序的结构。使用熟知的技术,例如等离子增强的化学气相沉积(PECVD)、催化CVD、溅射涂敷(sputtering)或类似的方法进行硅208的沉积。
硅208的沉积结束之后,所述玻璃衬底可以退火,以使硅208中任何无定形区域更充分地结晶。所述退火步骤是在约400℃到约小于600℃的温度下在惰性或还原气氛中进行约2-72小时。所述退火步骤的参数仅仅是说明性的。例如,退火温度的上限取决于衬底201,并设定温度来避免损坏衬底201。一般来说,选择用于SAM的材料取决于将要形成的所需晶体(例如Si、SiGe、Ge),所述退火步骤使用炉内退火,而非其它更昂贵、不可靠的方法(例如准分子激光退火)进行。
所述的退火步骤还导致烃链205的完全热解。说明性地,所得到的硅晶体结构209是多晶或单晶硅,取决于所用的SAM次序的长度。
说明性地,多晶硅的颗粒尺寸在约1微米-约2微米的级别上,相应的载流子的场效应迁移率在约50平方厘米/伏秒-约50平方厘米/伏秒的级别。此外,因为硅晶体结构209的结晶受SAM层203而非随机成核的控制,载流子的迁移率具有高度的均一性。载流子迁移率的变化小于约±10%。
较大的颗粒尺寸和较高的载流子迁移率对于提高显示器的性能是有利的,并使得显示器衬底上的驱动电路容易集成。此外,如上所述的高迁移率硅的使用还促进了OLED器件在显示屏(display panel)上的使用,OLED器件比LCD具有更高的迁移率和均一性要求。当然,当硅209是单晶且如上所述长在SAM模板(template)上时,场效应迁移率可以高达600平方厘米/伏秒或更大。
除了上述示范性实施方式的益处外,所述示范性实施方式的方法和得到的结构促进了开关和驱动电路的集成和LCD及OLED应用中显示器上OLED器件的集成。由于所提供的载流子迁移率,这些器件具有改善的性能,减小的像素尺寸/提高的像素质量。此外,可以减少(如果没有被该方法消除的话)用于驱动和开关电路的外部芯片固定(mounting)的需求。此外,按照示范性的实施方式所用的有机SAM材料比其它模板工艺(例如金属硅化物工艺)产生更小的污染硅的风险。示范性实施方式的这些和其它优点还可在根据这些实施方式构建的其它晶体结构中实现。
图3是按照示范性的实施方式构建显示器件,例如显示器100的说明性的工艺程序300的流程图。要注意的是,所述工艺程序、材料和处理参数,在很多情况下,基本与结合上面的图2a-2e所描述的示范性实施方式的过程相同。已经到了可以实施图3的示范性实施方式的工艺的程度,这些将不再重复。
所述玻璃衬底在301中提供,在步骤302中在其上设置阻挡层。所述阻挡层用来阻止污染物从衬底向器件区域内迁移。所述阻挡层通常由氮化硅、二氧化硅或两者的组合构成,并通常通过化学气相沉积(CVD)沉积到厚度为100-500纳米。沉积阻挡层之后,在步骤303中在衬底上沉积SAM材料。SAM沉积之后,在步骤304中沉积硅层。接着在步骤305中,在相对低温下热退火,基本消除了任何的无定形硅,而形成晶体硅,并热解SAM层。这导致在步骤306中在衬底表面上形成基本为大颗粒的多晶硅或单晶硅。
结合示范性实施方式的讨论,已经对本发明进行了详细的描述。很清楚,对于本领域技术人员来说,具有本发明优点的本发明的改变形式是很明显的。这样的修改和变化仍包括在本发明权利要求的范围内。

Claims (25)

1.一种在衬底上构建单晶或多晶材料的方法,包括:
在所述衬底上沉积自组装单层(SAM);
在SAM上沉积层;和
使所述层基本结晶。
2.如权利要求1所述的方法,其特征在于,使所述层基本结晶的步骤还包括使衬底退火。
3.如权利要求2所述的方法,其特征在于,所述退火是在小于所述衬底的应变点的温度下进行的。
4.如权利要求1所述的方法,其特征在于,所述材料是半导体。
5.如权利要求4所述的方法,其特征在于,所述半导体选自基本由硅、锗和硅-锗构成的组中。
6.如权利要求4所述的方法,其特征在于,所述衬底是半导体氧化物。
7.如权利要求1所述的方法,其特征在于,所述层是氧化物。
8.如权利要求1所述的方法,其特征在于,所述SAM材料包括分子,所述分子具有基本上与所述材料的晶格的次序和间距相匹配的次序和间距。
9.如权利要求1所述的方法,其特征在于,所述使所述层基本结晶的步骤形成了多晶材料。
10.如权利要求1所述的方法,其特征在于,所述使所述层基本结晶的步骤形成了单晶材料。
11.如权利要求9所述的方法,其特征在于,所述多晶材料是多晶硅。
12.如权利要求10所述的方法,其特征在于,所述单晶材料是单晶硅。
13.如权利要求9所述的方法,其特征在于,所述SAM层是化合物R-(CH2)N-Si-R’3,且R’基团在向衬底上提供SAM层的过程中断裂。
14.如权利要求10所述的方法,其特征在于,所述SAM层是化合物R-(CH2)N-Si-R’3,且R’基团在向衬底上沉积SAM层的过程中断裂。
15.如权利要求2所述的方法,其特征在于,所述的衬底退火基本上热解SAM。
16.一种设备,包括:
其上设置有单晶或多晶材料的衬底,其中所述衬底的应变点低于所述单晶或多晶材料的形成温度。
17.如权利要求16所述的设备,其特征在于,所述设备是显示器件。
18.如权利要求16所述的设备,其特征在于,所述材料是半导体。
19.如权利要求17所述的设备,其特征在于,所述显示器件选自平板显示器(FPD)。
20.如权利要求18所述的设备,其特征在于,所述半导体选自基本由硅、锗和硅-锗构成的组中。
21.如权利要求18所述的设备,其特征在于,所述半导体材料的载流子的迁移率约为50平方厘米/伏秒-约600平方厘米/伏秒。
22.如权利要求18所述的设备,其特征在于,其中至少一个电子器件是由半导体形成的。
22.如权利要求21所述的设备,其特征在于,所述迁移率的均一性在约±10%的级别。
23.如权利要求16所述的设备,其特征在于,所述材料的颗粒具有优选的取向。
24.如权利要求16所述的设备,其特征在于,所述材料是颗粒尺寸约为1微米到约2微米的多晶硅。
CNA2004800207124A 2003-07-18 2004-06-22 使用自组装单层的硅结晶法 Pending CN1826683A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/622,606 US7071022B2 (en) 2003-07-18 2003-07-18 Silicon crystallization using self-assembled monolayers
US10/622,606 2003-07-18

Publications (1)

Publication Number Publication Date
CN1826683A true CN1826683A (zh) 2006-08-30

Family

ID=34063232

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800207124A Pending CN1826683A (zh) 2003-07-18 2004-06-22 使用自组装单层的硅结晶法

Country Status (8)

Country Link
US (1) US7071022B2 (zh)
EP (1) EP1649499A2 (zh)
JP (1) JP2006528427A (zh)
KR (1) KR20060040694A (zh)
CN (1) CN1826683A (zh)
CA (1) CA2532638A1 (zh)
TW (1) TWI264769B (zh)
WO (1) WO2005010964A2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913649B2 (en) * 2003-06-23 2005-07-05 Sharp Laboratories Of America, Inc. System and method for forming single-crystal domains using crystal seeds
US9725805B2 (en) 2003-06-27 2017-08-08 Spts Technologies Limited Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
US20050271893A1 (en) * 2004-06-04 2005-12-08 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US7282738B2 (en) * 2003-07-18 2007-10-16 Corning Incorporated Fabrication of crystalline materials over substrates
CN1839172A (zh) * 2003-08-20 2006-09-27 陶氏康宁公司 咔唑基官能环硅氧烷,硅氧烷组合物,和有机发光二极管
EP1737162B1 (en) * 2004-05-10 2012-10-24 Panasonic Corporation Wireless node apparatus and multihop wireless lan system
US20060292846A1 (en) * 2004-09-17 2006-12-28 Pinto Gustavo A Material management in substrate processing
US7390739B2 (en) * 2005-05-18 2008-06-24 Lazovsky David E Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region
US7749881B2 (en) * 2005-05-18 2010-07-06 Intermolecular, Inc. Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region
US20060060301A1 (en) * 2004-09-17 2006-03-23 Lazovsky David E Substrate processing using molecular self-assembly
US8084400B2 (en) * 2005-10-11 2011-12-27 Intermolecular, Inc. Methods for discretized processing and process sequence integration of regions of a substrate
US8882914B2 (en) 2004-09-17 2014-11-11 Intermolecular, Inc. Processing substrates using site-isolated processing
US7879710B2 (en) * 2005-05-18 2011-02-01 Intermolecular, Inc. Substrate processing including a masking layer
WO2006058034A2 (en) * 2004-11-22 2006-06-01 Intermolecular, Inc. Molecular self-assembly in substrate processing
DE102005039517A1 (de) * 2005-08-20 2007-02-22 Carl Zeiss Smt Ag Phasenverzögerungselement und Verfahren zur Herstellung eines Phasenverzögerungselementes
TWI260747B (en) * 2005-08-24 2006-08-21 Quanta Display Inc A method for forming a thin film transistor, and a method for transforming an amorphous layer into a poly crystal layer of a single crystal layer
US7902063B2 (en) 2005-10-11 2011-03-08 Intermolecular, Inc. Methods for discretized formation of masking and capping layers on a substrate
US7955436B2 (en) * 2006-02-24 2011-06-07 Intermolecular, Inc. Systems and methods for sealing in site-isolated reactors
US8776717B2 (en) 2005-10-11 2014-07-15 Intermolecular, Inc. Systems for discretized processing of regions of a substrate
US7871933B2 (en) 2005-12-01 2011-01-18 International Business Machines Corporation Combined stepper and deposition tool
US20070202614A1 (en) * 2006-02-10 2007-08-30 Chiang Tony P Method and apparatus for combinatorially varying materials, unit process and process sequence
US8772772B2 (en) * 2006-05-18 2014-07-08 Intermolecular, Inc. System and method for increasing productivity of combinatorial screening
KR101138869B1 (ko) * 2006-12-22 2012-05-14 삼성전자주식회사 유기발광 디스플레이의 단위 화소부 구동소자의 제조방법
US8011317B2 (en) * 2006-12-29 2011-09-06 Intermolecular, Inc. Advanced mixing system for integrated tool having site-isolated reactors
JP5825515B2 (ja) * 2011-08-11 2015-12-02 株式会社ブイ・テクノロジー 自己組織化方法及びそれを使用したエピタキシャル成長方法
US9030221B2 (en) * 2011-09-20 2015-05-12 United Microelectronics Corporation Circuit structure of test-key and test method thereof
US9474777B2 (en) 2013-12-30 2016-10-25 Development Center For Biotechnology Plant extract and the process for treating hepatic fibrosis and liver cancer
KR102149907B1 (ko) 2016-03-03 2020-08-31 어플라이드 머티어리얼스, 인코포레이티드 주기적 공기-물 노출에 의한 개선된 자기-조립 단분자층 차단
EP3449500A4 (en) 2016-04-25 2020-04-22 Applied Materials, Inc. CHEMICAL DISTRIBUTION CHAMBER FOR SINGLE-ASSEMBLED SINGLE-LAYER TREATMENTS
US10358715B2 (en) 2016-06-03 2019-07-23 Applied Materials, Inc. Integrated cluster tool for selective area deposition
US20220098044A1 (en) * 2020-05-13 2022-03-31 Nanostar, Inc. Passivation of freshly milled silicon

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147826A (en) 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
JPH07502479A (ja) 1991-11-22 1995-03-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 自己集合性単一層を使って固体無機表面に共有結合した半導体微少結晶
US5455072A (en) 1992-11-18 1995-10-03 Bension; Rouvain M. Initiation and bonding of diamond and other thin films
KR0171923B1 (ko) 1993-02-15 1999-02-01 순페이 야마자끼 반도체장치 제작방법
US5352485A (en) 1993-04-08 1994-10-04 Case Western Reserve University Synthesis of metal oxide thin films
TW264575B (zh) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JPH0817730A (ja) * 1994-07-01 1996-01-19 Sharp Corp 半導体装置の多結晶薄膜およびその製造方法
JP2954039B2 (ja) 1996-09-05 1999-09-27 日本電気株式会社 SiGe薄膜の成膜方法
JP2967112B2 (ja) * 1996-09-05 1999-10-25 工業技術院長 有機薄膜の製造方法
JP3844552B2 (ja) 1997-02-26 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6241817B1 (en) 1997-05-24 2001-06-05 Jin Jang Method for crystallizing amorphous layer
US6066547A (en) 1997-06-20 2000-05-23 Sharp Laboratories Of America, Inc. Thin-film transistor polycrystalline film formation by nickel induced, rapid thermal annealing method
KR100291482B1 (ko) * 1997-06-24 2001-06-01 시부키 유키오 이산화티탄 결정배향막을 갖는 재료 및 그 제조방법
US5940693A (en) 1997-07-15 1999-08-17 Sharp Laboratories Of America, Inc. Selective silicide thin-film transistor and method for same
DE19802977A1 (de) 1998-01-27 1999-07-29 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung einer einkristallinen Schicht auf einem nicht gitterangepaßten Substrat, sowie eine oder mehrere solcher Schichten enthaltendes Bauelement
JP4058794B2 (ja) * 1998-03-23 2008-03-12 セイコーエプソン株式会社 半導体発光素子の製造方法
JP2001051301A (ja) 1999-08-13 2001-02-23 Sony Corp 液晶表示パネルの製造方法
US6586116B1 (en) * 2000-02-09 2003-07-01 Hitachi Global Storage Technologies Netherlands, B.V. Nonmetallic thin film magnetic recording disk with pre-seed layer
US6596116B2 (en) 2000-08-23 2003-07-22 Joseph Macedo Methods for applying decorative designs to a continuous laminate
US6620710B1 (en) * 2000-09-18 2003-09-16 Hewlett-Packard Development Company, L.P. Forming a single crystal semiconductor film on a non-crystalline surface
JP2003080694A (ja) * 2001-06-26 2003-03-19 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、並びに非接触型カード媒体
JP3948247B2 (ja) * 2001-10-29 2007-07-25 セイコーエプソン株式会社 膜パターンの形成方法
WO2003057949A1 (en) 2002-01-04 2003-07-17 Nuccon Technologies Inc. Preparation of nano-sized crystals
US7282738B2 (en) * 2003-07-18 2007-10-16 Corning Incorporated Fabrication of crystalline materials over substrates

Also Published As

Publication number Publication date
WO2005010964A2 (en) 2005-02-03
EP1649499A2 (en) 2006-04-26
TW200516655A (en) 2005-05-16
CA2532638A1 (en) 2005-02-03
WO2005010964A3 (en) 2005-10-06
TWI264769B (en) 2006-10-21
US20050011434A1 (en) 2005-01-20
US7071022B2 (en) 2006-07-04
JP2006528427A (ja) 2006-12-14
KR20060040694A (ko) 2006-05-10

Similar Documents

Publication Publication Date Title
CN1826683A (zh) 使用自组装单层的硅结晶法
CN1957446A (zh) 在基片上制造结晶材料的过程
CN1755943B (zh) 具有半导体元件的显示器件及其制造方法
KR100301888B1 (ko) 미소 입자 또는 세선의 성장 위치가 제어 가능한 미세 구조의 제조방법 및 그 미세 구조를 사용한 반도체 소자
CN102113120B (zh) 用于薄膜晶体管的杂化的介电材料
KR101138869B1 (ko) 유기발광 디스플레이의 단위 화소부 구동소자의 제조방법
US7626197B2 (en) Semiconductor device including conductive network of protective film molecules and fine particles
CN1754271A (zh) 形成薄膜晶体管和相关系统的方法
CN1577742A (zh) 溶液淀积硫族化物薄膜
CN1845340A (zh) 薄膜晶体管及其制造方法
JP2011233886A (ja) 半導体組成物
CN1514469A (zh) 结晶掩模、非晶硅结晶方法及利用其制造阵列基板的方法
CN1790727A (zh) 有机薄膜晶体管阵列板及其制造方法
KR950009904A (ko) 입자 크기가 큰 다결정 규소 박막의 제조 방법
CN1467859A (zh) 薄膜半导体器件及其制造方法和图像显示装置
US7633087B2 (en) Semiconductor thin film using self-assembled monolayers and methods of production thereof
TW560074B (en) Thin film transistor and display apparatus with the same
CN102054874B (zh) 薄膜晶体管及其制造方法
Arase et al. Hydrophobic modification of SiO2 surface by aminosilane derivatives
WO2003098672A1 (en) Deposition method of insulating layers having low dielectric constant of semiconductor device
CN1302520C (zh) 利用激光结晶形成多晶系膜层的方法
CN1581450A (zh) 低温多晶硅薄膜晶体管的制造方法
CN111192908A (zh) 一种显示面板及其制备方法
CN1612293A (zh) 制造具应变的多层结构及具有应变层的场效晶体管的方法
CN102428539A (zh) 超细晶粒多晶硅薄膜的气相沉积方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication