CN1856871A - 在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法 - Google Patents

在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法 Download PDF

Info

Publication number
CN1856871A
CN1856871A CNA2004800242823A CN200480024282A CN1856871A CN 1856871 A CN1856871 A CN 1856871A CN A2004800242823 A CNA2004800242823 A CN A2004800242823A CN 200480024282 A CN200480024282 A CN 200480024282A CN 1856871 A CN1856871 A CN 1856871A
Authority
CN
China
Prior art keywords
micro
cooler device
nano
structures
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800242823A
Other languages
English (en)
Other versions
CN100416781C (zh
Inventor
C·丹格洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
The United States of America, represented by the Director-General of NASA
Younidimu Co.
Samsung Electronics Co Ltd
Nanoconduction Inc
Original Assignee
Nanoconduction Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoconduction Inc filed Critical Nanoconduction Inc
Publication of CN1856871A publication Critical patent/CN1856871A/zh
Application granted granted Critical
Publication of CN100416781C publication Critical patent/CN100416781C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/763Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less formed along or from crystallographic terraces or ridges

Abstract

公开了采用碳纳米管或纳米线阵列以减小在集成电路芯片和散热器之间热接触电阻的散热器结构。碳纳米管阵列与布置在纳米管之间的导热金属填料结合。这个结构产生了具有高轴向和横向导热性的热界面。

Description

在集成电路微冷却器的设计 和制造中使用自组装纳米结构的系统和方法
技术领域
本发明涉及移除在芯片组件中使用的集成电路和元件产生的热量的,以及便于移除所述热量的封装。更具体地,本发明公开了用于改善连接到集成电路器件的散热器结构性能的自组装纳米结构的应用。
背景技术
用于冷却半导体IC的现有技术使用了大而昂贵的芯片封装,其具有连接到陶瓷或塑料封装的IC芯片的外部安装地翼状散热器。随着现代集成电路的速度和密度的增长,由这些芯片产生的功率也与增加的密度和功能呈几何比增加。在视频处理和CPU应用领域,散发由现在IC产生的热量的能力已经成为技术进展的一个重大局限。在现在的技术中,当裸片“附着”到散热器上时,加入了相对大的接口热电阻。这些多个接口具有增加整个裸片的散热电阻和使得传热更困难的不希望有的副作用。
图1(现有技术)是简化的集成电路结构的截面示意图。晶体管结构102形成在衬底100的顶表面附近。电连接106用于和在衬底100上的晶体管102和多个其他相似器件(未示出)连接。利用“焊球”104完成集成电路到印刷电路板或布线引线框架的互连。这种类型的封装经常称作“倒装芯片”器件。在现有技术中,由晶体管102产生的热能经过衬底100被抽取到芯片背面。通过减小由空气间隙和表面不平产生的界面传热电阻,可以利用热传输粘合层108以提高热传导。典型地,这个层可以由热脂或导热环氧树脂构成。这些材料虽然比固体表面/表面接触更好,当与固体金属比较时,仍然具有相对差的导热性。结果,背部芯片表面界面仍然表现出有效的导热性,其限制可以从芯片抽取的能量。
最近,美国专利申请公开号US2003/0117770已经公开了形成热界面的工艺,其采用碳纳米管以减小在电子器件和散热器之间的热阻。对准的纳米管束接受以熔化形式注入的高分子材料以产生复合物,该复合物放置在电子器件和散热器之间。纳米管沿热能方向平行对准。然而,高分子填充物在横向传热上贡献很小,可能会在器件表面产生局部的热点。对准的碳纳米管束的使用也可以导致减小的热传导。理论分子动力学模型已经示出了单个的碳纳米管展示了异乎寻常高的导热性,但是当以管到管接触形成碳纳米管束时,导热性会降低一个数量级(见例如Savas Berber等,Physics ReviewLetters,84,no.20,4613,2000年5月)。
美国专利申请公开US2003/231471公开了使用在CVD金刚石膜的沉积后生长的单壁或双壁碳纳米管阵列的集成电路封装。根据CVD金刚石膜的粗糙度,使用碳纳米管以辅助在电路硅裸片和集成散热器的表面之间形成热接触。为了保持弹性,没有填充在纳米管之间的填隙空位。然而该公开未能提供任何方法来减小衬垫(matting)和纳米管到纳米管的接触,其减小了结构的有效导热性。虽然CVD金刚石膜是好的导体,但它们不能与在多种散热结构中使用的许多其它的金属材料热兼容(来自膨胀系数)。另外,由于这些技术需要700℃至800℃的温度,所以用于生长碳纳米管的公知技术会阻碍直接在硅电路裸片上沉积碳纳米管。将完成的电路裸片曝露在这样高的温度下不是一个值得推荐的做法。
所需要的是一种通过集成几个热组件以使得从集成电路上的热表面的热传递的最大化,从而使界面电阻最小化的方法和结构。
发明内容
本发明的一个目的是提供一种具有散热器表面的散热器主体;多个单独分开的、用于将热能从至少一个集成电路芯片的表面传输到所述散热器表面的杆状纳米结构,所述多个单独分开的、杆状纳米结构布置在所述散热器表面和所述至少一个集成电路芯片的表面之间;以及在所述多个单独分开的、杆状纳米结构之间的填隙空位内布置的导热材料。
在本发明的一个实施例中,一种用于制造微冷却器件的方法包括在散热器主体的安装表面中形成浅腔,在所述浅腔内生长杆状纳米结构,在杆状纳米结构之间的填隙空位内沉积导热材料。
附图说明
当考虑到下面的详细描述时,将会更好地理解本发明。本说明书引用了附图,其中:
图1(现有技术)是集成电路结构的截面示意图;
图2是根据本发明实施例的附着在倒装芯片集成电路上的集成微冷却器件的示意性侧视图;
图3是根据本发明实施例的附着在多个倒装芯片集成电路上的集成微冷却器件的示意性侧视图;
图4是示出了根据本发明实施例的结构细节的翼状集成微冷却器件的截面示意图;
图5是根据本发明实施例的具有内部流道的集成微冷却器件的截面示意图;
图6是根据本发明实施例的碳纳米管的电子显微镜照片;
图7是根据本发明实施例的连接到多个倒装芯片集成电路的集成微冷却器件的截面示意图;
图8是说明根据本发明实施例的翼状集成微冷却器件的制造步骤的流程图;
图9是根据本发明实施例说明具有内部流道的集成微冷却器件的制造步骤的流程图;和
图10是根据本发明实施例在平坦化过程后的纳米结构的部分截面图。
具体实施方式
在本说明书的背景技术部分中已经说明了图1(现有技术)。
图2是根据本发明实施例的附着在倒装芯片集成电路芯片206上的集成微冷却器件202的示意性侧视图200。该集成微冷却器件202是与芯片206分开的结构,该芯片206包含高导电性、自组装纳米结构并与散热器件集成。以下为从安装在电路板210上的集成电路芯片206的表面208传输的热量提供低热阻通道。热界面层204提供包含纳米结构的低电阻界面以增强从芯片206的热传导,减小在芯片206中局部热点的影响,并且横向传导热量到具有比芯片206更大的基底面的散热器结构202。下面描述微冷却器件202的结构细节。本领域技术人员都知道,可以使用共晶层或热粘合剂(未示出)把芯片206和微冷却器202粘合在一起。另外,微冷却器件202、集成电路芯片206和电路板210可以用机械带、夹具或保持装置固定在一起(未示出)。
图3是根据本发明实施例的附着在多个倒装芯片集成电路(306a-306d)上的集成微冷却器件302的示意性侧视图300。在这个实施例中,微冷却器302的上和下表面都用来除去来自倒装芯片IC306a-306d的热能。安装在印刷电路板310a上的芯片306a和306b通过界面层304a把热量从表面308a和308b散发到器件302。安装在印刷电路板310b上的芯片306c和306d通过界面层304b把热量从表面308c和308d散发到器件302。本领域技术人员都知道,可以使用共晶层或热粘合剂(未示出)把芯片306和微冷却器302粘合在一起(未示出)。另外,微冷却器件302、集成电路芯片306和电路板310可以用机械带、夹具或保持装置固定在一起。虽然图3中示出的实施例包含四个集成电路,但是通过增加器件302的规模,可以加入任意数量的附加集成电路倒装芯片306,这对于本领域的普通技术人员很显然的。
图4是示出了根据本发明实施例的结构细节的翼状集成微冷却器件400的截面示意图。该器件400包括用于从倒装芯片402的表面418抽取热能的散热片主体404。通过包含层408、410和412的增强传热界面结构把热能传输到散热器表面420。散热器主体404装配有散热片414(或翼状结构)以通过对流、典型地通过由风扇或其它装置产生的强迫空气流来增强抽热。然而,如果合适也可以采用自然对流。同样,散热片414可以浸透在用于除去高能量流的比如水的液体或其它液相冷却剂中。散热器主体404可以由硅、金属或导热陶瓷制成。如铜或铝的金属是优选的,但是也可以使用由硅衬底形成的结构。如果使用硅,可以在散热片表面涂覆金属以增强横向导热。通过本领域技术人员公知的方法在散热主体404内部形成散热腔416以包含传热界面层408、410和412。
层408包含提供非常高的导热性的单独分开的、杆状的纳米结构以减小界面接触电阻。这些结构可以包括金属纳米线、或优选多壁碳纳米管(MWCNT)或多壁碳纳米纤维。金属纳米线(例如Au、Cu、Ni、氧化锌和硼化金属)是具有尺寸可与声子平均自由程(在室温下通常几十个纳米)相比拟的线状的金属晶体,以使得从允许有效传热特性和热接触的量子限制现象中受益。在一个示例中,由于Ni电极所展示出低的欧姆接触电阻,所以金属硼化物纳米线被认为具有好的热接触电阻。优选地,该MWCNT大致垂直于表面420和418,平行于热流动的方向。MWCNT具有非常高(在轴上)的导热性,通常在800至3000W/m-°K的范围内。它们可能是固体CVD金刚石膜的系数的两倍。它们优选地生长在微冷却器400表面作为独立式、垂直对准的、单独分开的碳纳米管(或纳米纤维)的阵列,其占据了从它们生长的地方开始的15和40%之间的表面。在一些实施例中,通过等离子增强CVD(PECVD)生长方法生长MWCNT。例如,可以使用由Jun Li等(Applied Physics Letters,vol.81,no.5,2002年7月)和L.De1zeit(J.Appl Physics 91,6027,2002年5月)等描述的方法。然而,虽然CNT的轴向导热性非常高,其横向导热性(在从纳米管到纳米管的非轴向方向)不是非常好。实际上,在轴向对准的纳米管之间的横向接触能够减小它们的有效轴向导热性。如果附着在衬底上的碳纳米管的数量太大(例如大于40%CNT密度),Van der Waal力会产生导致差导热性的束或垫块的情况。在另一方面,如果覆盖密度太低(例如小于15%),由于导热纳米管的数量的减少,导热性也会降低。覆盖密度的优选范围在约15%和40%之间,最优选为25%至40%。因此,与CNT的束或垫块相反,覆盖率在15%和40%之间的平行CNT能够提供更好的总导热性。为了改善横向导热,在MWCNT之间的填隙空位内布置导热材料。该导热材料在包含层的纳米管内提供横向导热。横向导热促进热量从相对小的硅裸片表面向散热主体404的大得多得表面区域扩散。它也减少了在芯片402的表面418上的局部热点。导热材料可以是金属或金属合金、导热陶瓷、CVD金刚石或导热聚合物。优选地,导热材料是如铜、铝、银、金的金属或它们的合金。在这些金属材料中,金和铜合金是最优选的。这通常是由于它们的高导热率、容易通过电镀或电化学沉积来沉积以及低的成本。对于本领域技术人员来说,铜电镀是在现代集成电路生产中通用的双镶嵌工艺。取决于导热填充材料的导热率,层408的厚度可以典型地在50至1000微米之间。
使用金属作为填充材料的另一希望的特征是它在厚度上显著地低于MWCNT。在某些实施例中,使用层408的平坦化以为良好的“长距离”接触而维持平整度。然而,“短距离”表面的不规则性(在几个微米的数量级)也能够显著影响界面热电阻。因此,希望MWCNT的一些部分从层408的主体延伸出来,以使得曝露的末端可以与这些表面的不规则性保持一致并改善热接触。当平坦化层408时,较软的金属材料被腐蚀得比较硬的纳米管更厉害,导致金属材料的底切。这个底切留下纳米管从复合层408延伸的部分。当用CMP(化学-机械平坦化)或电化学蚀刻技术平坦化层408时,该底切会自动发生。如果在芯片402和层408之间需要共晶金属接合,可以加上附加(可选的)粘合层406。在这种情况下,曝露的纳米管末端会伸入到该层中`并可能穿过它延伸。优选地,粘合层406是共晶金属,但是也可以使用基于胶结结剂成分的热聚合物。层412是可以与硅散热主体404结合使用的界面材料。典型地,层412可以由氮化硅化合物构成。对于金属散热主体404,层412是可选的,只需要用来辅助粘合催化物金属层410。使用金属催化物层410以启动和控制在层408中的纳米管的生长。金属催化物层410可以从Ti、Co、Cr、Pt、Ni和它们的合金中选择。优选地,金属催化物层410是Ni以及Ni合金。下面将讨论进一步与这些层相关的工艺条件。
图5是根据本发明实施例的具有内部流道514的集成微冷却器件500的截面示意图。器件500包括用于从倒装芯片502的表面518抽取热能的散热器主体504。通过包含层508、510和512的增强传热界面结构将热量传输到散热器表面520。层508-512留在在主体504中形成的散热腔516中。在这个实施例中,散热器主体504包含密封的流道514以除去从芯片502传递的热能。液体和气体冷却都是可能的,但是对这个实施例,由于例如水的液体冷却剂的特有热容量,优选液体冷却。对于非常高速的散热系统或在非常高速处理器需要次环境结温的情况下,也可能使用致冷剂。由于通过这样的系统遇到(encounter)高的热流通量,所以由本发明实施例提供的低热电阻对可靠性操作是极其重要的。层506-512具有相同的功能,由如上所述由与相应层406-412相同的材料构成。
图6是根据本发明实施例的碳纳米管的电子显微镜照片。在这个图中,MWCNT的对准的、单独分开的、平行的特点是很显然的。同样很明显的是,为了好的横向导热性在纳米管之间需要填充的填隙空位。
图7是的附着到根据本发明实施例的多个倒装芯片集成电路的集成微冷却器件700的截面示意图。该器件700包括用于从产生热能的多个倒装芯片702a和702b抽取热能的散热器主体704。通过包含层508a-512a和508b-512b的增强传热界面结构将热量传输到散热器表面720a和720b。层508a-512a和508b-512b分别留在散热腔716a和716b中。在这个实施例中,散热器主体704包含密封的流道714以除去从芯片502传递的热能。对这个实施例,由于增加的热负荷,由于例如水的液体冷却剂所特有的热容量,优选液体冷却。对于除去高的热负荷或在非常高速处理器需要次环境结温的情况下,也可能使用致冷剂。层706a-712a和706b-712b具有相同的功能并且由如上所述与相应层406-412相同的材料构成。
图8是说明根据本发明实施例的翼状集成微冷却器件的制造的示例步骤的流程图800。在802,为衬底或散热器主体(例如404)选择适当的材料。随后步骤涉及其中选择硅为衬底的过程。在804,在第一(或底)表面上构图形成散热腔(例如416)。在806,蚀刻散热腔,在808,在腔(例如416)中沉积界面材料(例如412)。如上所述,在某些实施例中这个界面材料是氮化硅。对于本领域技术人员选择沉积氮化硅有很多技术,例如CVD或溅射。可选择地,如果选择金属或陶瓷作为散热主体材料,通过机械加工可以制造散热腔。在810,在界面层上沉积可选的导电层以促进随后催化物层的沉积和粘合。导电层可以由厚度在3nm-200nm的范围内的Ti、Cr或Pt构成。如果散热器主体是金属,那么可以不需要导电层。在812,使用CVD、PVD、电镀或无电镀沉积来对从选自Ti、Co、Cr、Pt、Ni和它们的合金的催化物材料进行沉积,并沉积3nm至30nm的厚度。在814,生长单独分开的碳纳米管的碳纳米管阵列(例如作为层408的一部分)。在某些实施例中,该阵列分别经前面提到的J.Li和A.Delzeit的方法通过PECVD生长阵列。在816,在碳纳米管之间沉积导热材料。对于金属的导热材料,典型地通过电化学沉积或CVD来沉积该材料对于本领域技术人员来说是公知的。如果使用CVD金刚石填隙物质,可以使用本领域已知的CVD工艺。在818,通过CMP、电化学腐蚀或者两者的结合来平坦化包含层(例如408)的碳纳米管。在820,如果需要,则增加适当厚度的可选共晶粘合层(例如406)。在822,散热片(例如414)在硅衬底的第二(或顶)表面中构图。在824,用公知的方法腐蚀散热片。在826,散热片涂覆有可选的金属涂层或CVD金刚石,其沉积了适当厚度以使得沿着散热片表面的温度梯度最小化。对于金属散热器主体(例如400)的情况,通过已知机械工艺制造散热片。
图9是说明根据本发明实施例的具有内部流道的集成微冷却器件的制造步骤的流程图900。在902,在传热主体(例如504)中制造流道(例如514)。对于金属主体,可以使用标准的机械加工技术。对于硅衬底,可以如图8中示出的实施例中描述的那样制造散热片。合适的金属、陶瓷或硅片或盖子粘合地与散热片的顶部的平坦表面接合以建立封闭通道(例如514)。
图10是根据本发明实施例的在平坦化过程后的纳米结构的部分截面图1000。如图所示,碳纳米管或纳米线1008从金属/催化物层1002以大致平行的结构生长。如前面所述,导热填充材料1004放置在纳米结构1008之间的空隙中。纳米结构的平坦化在纳米结构的末端和填充材料的凹陷的平坦化表面之间产生间隙1006。当包含显著不同硬度的成分的复合材料被平坦化时,间隙1006由化学机械平坦化(CMP)工艺产生。在纳米结构是MWCNT以及填料是如铜、铝或银的金属的情况下,由于金属比碳纳米管软得多,所以平坦化工艺会底切填料。由于比如铜的基本金属比相对化学不活泼的碳纳米管更容易反应并对化学溶剂敏感,所以采用化学(或电化学)蚀刻填料金属的时候会产生相同的效应。
在间隙1006中未支撑的纳米结构是相对有弹性的,使得曝露的末端扭曲或弯曲(在微米级),以与复合在集成电路芯片的热产生表面中的起伏和缺陷。这种“毛刷”效应产生与纳米结构末端的密切接触,允许沿着纳米管的导热性为最大的轴上进行抽热。如果使用共晶或粘合层,纳米结构的曝露端会伸入该层中,并会使得当共晶或粘合层是液体时符合相对表面,这可能出现在两个表面接合之前。所期望的间隙尺寸1006取决于电路、硅裸片和平坦化的微冷却器表面的表面平坦度。表面粗糙度的RMS值被认为在0.2um至3um的范围内,并最优选在该范围的下端。
应当认为上述的多个实施例仅仅作为本发明的示例。它们并不倾向于穷尽或限制本发明公开的形式。本领域的技术人员将会很容易知道在不脱离这里描述的本发明的精神的情况下,可以进行其它修改和变化。因此,本发明是由下面的权利要求所限定的。

Claims (20)

1、一种微冷却器件结构,包括:
具有散热器表面的散热器主体;
多个单独分开的、用于将热能从至少一个集成电路芯片的表面传输到所述散热器表面的杆状纳米结构,所述多个单独分开的、杆状纳米结构布置在所述散热器表面和所述至少一个集成电路芯片的表面之间;以及
在所述多个单独分开的、杆状纳米结构之间的填隙空位内布置的导热材料。
2、如权利要求1所述的微冷却器件,其中所述多个单独分开的、杆状纳米结构是多壁碳纳米管。
3、如权利要求2所述的微冷却器件,其中所述多壁碳纳米管的取向基本垂直于所述至少一个集成电路芯片的表面。
4、如权利要求1所述的微冷却器件,其中所述多个单独分开的、杆状纳米结构是金属纳米线。
5、如权利要求4所述的微冷却器件,其中所述金属纳米线的取向基本垂直于所述至少一个集成电路芯片的表面。
6、如权利要求1所述的微冷却器件,其中所述导热材料包括铜。
7、如权利要求1所述的微冷却器件,其中所述导热材料包括铜的合金。
8、如权利要求1所述的微冷却器件,其中所述导热材料包括银。
9、如权利要求1所述的微冷却器件,其中所述导热材料包括铝。
10、如权利要求1所述的微冷却器件,其中所述散热器主体由散热片冷却。
11、如权利要求1所述的微冷却器件,其中所述散热器主体由流经在其中形成的通道的液体冷却。
12、一种制造微冷却器件的方法,包括:
在散热器主体的安装表面中形成散热腔;
在所述浅腔中生长杆状纳米结构;和
在所述杆状纳米结构之间的填隙空位中沉积导热材料。
13、如权利要求12所述的制造微冷却器件的方法,其中所述杆状纳米结构是多壁碳纳米管。
14、如权利要求12所述的制造微冷却器件的方法,其中所述杆状纳米结构是金属纳米线。
15、如权利要求12所述的制造微冷却器件的方法,其中所述导热材料包括铜。
16、如权利要求12所述的制造微冷却器件的方法,其中所述导热材料包括铝。
17、如权利要求12所述的制造微冷却器件的方法,其中所述导热材料包括银。
18、如权利要求12所述的制造微冷却器件的方法,其中所述杆状纳米结构是单独分开的并且取向基本垂直于所述散热器主体的所述安装表面。
19、如权利要求18所述的制造微冷却器件的方法,进一步包括:
平坦化所述杆状纳米结构的末端以使得所述杆状纳米结构延伸出所述导热材料的平坦化表面。
20、如权利要求19所述的制造微冷却器件的方法,进一步包括:
在所述杆状纳米结构的末端上沉积粘合层。
CNB2004800242823A 2003-08-25 2004-08-25 在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法 Active CN100416781C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49784903P 2003-08-25 2003-08-25
US60/497,849 2003-08-25

Publications (2)

Publication Number Publication Date
CN1856871A true CN1856871A (zh) 2006-11-01
CN100416781C CN100416781C (zh) 2008-09-03

Family

ID=34519980

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800242823A Active CN100416781C (zh) 2003-08-25 2004-08-25 在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法

Country Status (5)

Country Link
US (2) US7109581B2 (zh)
EP (1) EP1658634A4 (zh)
KR (1) KR20070027482A (zh)
CN (1) CN100416781C (zh)
WO (1) WO2005041256A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562148B (zh) * 2009-04-24 2011-08-24 北京大学 一种用碳纳米管实现上下两层导电材料垂直互连的方法
CN112652592A (zh) * 2019-10-11 2021-04-13 安波福技术有限公司 电子设备的热界面层
CN116368614A (zh) * 2020-09-24 2023-06-30 Hrl实验室有限责任公司 晶片级集成微结构化散热器

Families Citing this family (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) * 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US20110125412A1 (en) * 1998-12-17 2011-05-26 Hach Company Remote monitoring of carbon nanotube sensor
US8958917B2 (en) * 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US7767270B1 (en) * 2002-12-13 2010-08-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Selective functionalization of carbon nanotubes based upon distance traveled
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US8080871B2 (en) 2003-08-25 2011-12-20 Samsung Electronics Co., Ltd. Carbon nanotube-based structures and methods for removing heat from solid-state devices
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US8039961B2 (en) * 2003-08-25 2011-10-18 Samsung Electronics Co., Ltd. Composite carbon nanotube-based structures and methods for removing heat from solid-state devices
US20080131655A1 (en) * 2006-03-21 2008-06-05 Barbara Wacker Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US20070126116A1 (en) * 2004-08-24 2007-06-07 Carlos Dangelo Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US20080131722A1 (en) * 2006-03-21 2008-06-05 Ephraim Suhir Single Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US20090302295A1 (en) * 2003-08-25 2009-12-10 Peter Schwartz Structures & Methods for Combining Carbon Nanotube Array and Organic Materials as a Variable Gap Interposer for Removing Heat from Solid-State Devices
US20070114658A1 (en) * 2004-08-24 2007-05-24 Carlos Dangelo Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US7538422B2 (en) * 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
WO2005025734A2 (en) * 2003-09-17 2005-03-24 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050214197A1 (en) * 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
JP2005129734A (ja) * 2003-10-23 2005-05-19 Sony Corp 電子機器
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
WO2005098084A2 (en) * 2004-01-15 2005-10-20 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
TWI232013B (en) * 2004-01-30 2005-05-01 Oriental Inst Technology Device and method for cooling hot spot in micro system
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
JP2006073651A (ja) * 2004-08-31 2006-03-16 Fujitsu Ltd 半導体装置
US7196411B2 (en) * 2004-09-17 2007-03-27 Taiwan Semiconductor Manufacturing Company, Ltd. Heat dissipation for chip-on-chip IC packages
US7279916B2 (en) 2004-10-05 2007-10-09 Nanoconduction, Inc. Apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
JP4179292B2 (ja) * 2005-02-21 2008-11-12 サンケン電気株式会社 半導体装置
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US7476982B2 (en) * 2005-02-28 2009-01-13 Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US20060231237A1 (en) * 2005-03-21 2006-10-19 Carlos Dangelo Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
US7596751B2 (en) * 2005-04-22 2009-09-29 Hewlett-Packard Development Company, L.P. Contact sheet based image management
JP5349042B2 (ja) * 2005-05-03 2013-11-20 ナノコンプ テクノロジーズ インコーポレイテッド 炭素複合材料およびその製造方法
US20060251897A1 (en) * 2005-05-06 2006-11-09 Molecular Nanosystems, Inc. Growth of carbon nanotubes to join surfaces
US7449776B2 (en) * 2005-05-10 2008-11-11 Hewlett-Packard Development Company, L.P. Cooling devices that use nanowires
EP2112249A1 (en) * 2005-05-26 2009-10-28 Nanocomp Technologies, Inc. Systems and methods for thermal management of electronic components
US7886813B2 (en) * 2005-06-29 2011-02-15 Intel Corporation Thermal interface material with carbon nanotubes and particles
KR100674404B1 (ko) * 2005-07-05 2007-01-29 재단법인서울대학교산학협력재단 탄소나노튜브가 코팅된 방열판 및 그 제조방법
EP1926846A4 (en) 2005-07-28 2010-12-15 Nanocomp Technologies Inc SYSTEMS AND METHOD FOR FORMING AND OBTAINING NANO FIBER MATERIALS
US20070031684A1 (en) * 2005-08-03 2007-02-08 Anderson Jeffrey T Thermally conductive grease
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US7927992B2 (en) * 2005-09-06 2011-04-19 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
CN1937094A (zh) * 2005-09-22 2007-03-28 清华大学 扫描热显微镜探针
JP5100655B2 (ja) * 2005-10-27 2012-12-19 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲー 半導体レーザ装置
US7695808B2 (en) * 2005-11-07 2010-04-13 3M Innovative Properties Company Thermal transfer coating
US7360581B2 (en) * 2005-11-07 2008-04-22 3M Innovative Properties Company Structured thermal transfer article
CN100517661C (zh) * 2005-11-26 2009-07-22 鸿富锦精密工业(深圳)有限公司 散热装置的制备方法
US20070152325A1 (en) * 2005-12-30 2007-07-05 Intel Corporation Chip package dielectric sheet for body-biasing
CN100459124C (zh) * 2005-12-30 2009-02-04 日月光半导体制造股份有限公司 多芯片封装结构
US7545030B2 (en) * 2005-12-30 2009-06-09 Intel Corporation Article having metal impregnated within carbon nanotube array
CN101001515B (zh) * 2006-01-10 2011-05-04 鸿富锦精密工业(深圳)有限公司 板式散热管及其制造方法
DE102006001792B8 (de) 2006-01-12 2013-09-26 Infineon Technologies Ag Halbleitermodul mit Halbleiterchipstapel und Verfahren zur Herstellung desselben
US7494910B2 (en) * 2006-03-06 2009-02-24 Micron Technology, Inc. Methods of forming semiconductor package
US7550841B2 (en) * 2006-03-23 2009-06-23 Intel Corporation Methods of forming a diamond micro-channel structure and resulting devices
US20070227700A1 (en) * 2006-03-29 2007-10-04 Dimitrakopoulos Christos D VLSI chip hot-spot minimization using nanotubes
US7557438B2 (en) * 2006-04-27 2009-07-07 Intel Corporation Cooling mechanism for stacked die package, and method of manufacturing stacked die package containing same
WO2007137095A2 (en) * 2006-05-16 2007-11-29 Nanoconduction, Inc. Carbon nanotube-based structures and methods for removing heat from solid-state devices
WO2008097275A2 (en) * 2006-08-30 2008-08-14 Molecular Nanosystems, Inc. Methods for forming freestanding nanotube objects and objects so formed
WO2008029334A1 (en) * 2006-09-04 2008-03-13 Nxp B.V. Fabrication of self-assembled nanowire-type interconnects on a semiconductor device
US7659143B2 (en) * 2006-09-29 2010-02-09 Intel Corporation Dual-chip integrated heat spreader assembly, packages containing same, and systems containing same
WO2008049015A2 (en) * 2006-10-17 2008-04-24 Purdue Research Foundation Electrothermal interface material enhancer
US20080131658A1 (en) * 2006-12-05 2008-06-05 Vijay Wakharkar Electronic packages and components thereof formed by co-deposited carbon nanotubes
CN101232794B (zh) * 2007-01-24 2011-11-30 富准精密工业(深圳)有限公司 均热板及散热装置
WO2008127776A1 (en) * 2007-02-14 2008-10-23 The Regents Of The University Of California A method to determine thermal profiles of nanoscale circuitry
JP5355423B2 (ja) * 2007-02-22 2013-11-27 ダウ コーニング コーポレーション 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品
AU2008219693B2 (en) * 2007-02-27 2012-04-12 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
US20080225464A1 (en) * 2007-03-08 2008-09-18 Nanocomp Technologies, Inc. Supercapacitors and Methods of Manufacturing Same
JP5194513B2 (ja) * 2007-03-29 2013-05-08 富士通セミコンダクター株式会社 配線構造及びその形成方法
WO2008129525A1 (en) * 2007-04-23 2008-10-30 University College Cork - National University Of Ireland, Cork A thermal interface material
US7639356B2 (en) * 2007-05-18 2009-12-29 The United States Of America As Represented By The Secretary Of The Navy Highly efficient surface enhanced Raman and fluorescence nanostructure substrates
JP4953206B2 (ja) * 2007-06-08 2012-06-13 株式会社デンソー 熱交換部材及び熱交換装置
US9061913B2 (en) * 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
EP2173655B1 (en) * 2007-07-09 2020-04-08 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
WO2009048672A2 (en) * 2007-07-25 2009-04-16 Nanocomp Technologies, Inc. Systems and methods for controlling chirality of nanotubes
EP2469657A1 (en) * 2007-08-07 2012-06-27 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US20090173334A1 (en) * 2007-11-08 2009-07-09 Sunrgi Composite material compositions, arrangements and methods having enhanced thermal conductivity behavior
US20090266395A1 (en) * 2007-11-08 2009-10-29 Sunrgi Solar concentration and cooling devices, arrangements and methods
FR2924861B1 (fr) * 2007-12-07 2010-02-12 Thales Sa Dispositif electronique comportant un film a base de nanotubes de carbonne pour assurer la gestion thermique et son procede de fabrication
US8262835B2 (en) 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US7479590B1 (en) 2008-01-03 2009-01-20 International Business Machines Corporation Dry adhesives, methods of manufacture thereof and articles comprising the same
US7900690B2 (en) * 2008-01-07 2011-03-08 King Fahd University Of Petroleum And Minerals Moving carbon nanotube heat sink
US20090246507A1 (en) * 2008-01-15 2009-10-01 Georgia Tech Research Corporation Systems and methods for fabrication and transfer of carbon nanotubes
JP5864253B2 (ja) 2008-05-07 2016-02-17 ナノコンプ テクノロジーズ インコーポレイテッド ナノ構造複合材シートの形成方法
WO2009137725A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
CN101671442A (zh) * 2008-09-12 2010-03-17 清华大学 碳纳米管阵列复合材料的制备方法
TWI401308B (zh) * 2008-12-23 2013-07-11 Kuo Chun Ying 奈米散熱材料
US20100190023A1 (en) * 2009-01-26 2010-07-29 Adam Franklin Gross Metal bonded nanotube array
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US8323439B2 (en) * 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
US7862342B2 (en) * 2009-03-18 2011-01-04 Eaton Corporation Electrical interfaces including a nano-particle layer
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
US8507797B2 (en) * 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
US8236118B2 (en) 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
US10167572B2 (en) * 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US10164135B2 (en) * 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US20110039459A1 (en) * 2009-08-11 2011-02-17 Yancey Jerry W Solderless carbon nanotube and nanowire electrical contacts and methods of use thereof
US8709538B1 (en) * 2009-09-29 2014-04-29 The Boeing Company Substantially aligned boron nitride nano-element arrays and methods for their use and preparation
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
US8460747B2 (en) 2010-03-04 2013-06-11 Guardian Industries Corp. Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
US8604332B2 (en) 2010-03-04 2013-12-10 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
US8518472B2 (en) 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
JP5673668B2 (ja) * 2010-03-12 2015-02-18 富士通株式会社 放熱構造体、電子機器およびそれらの製造方法
JP6130787B2 (ja) 2010-03-30 2017-05-17 ナンテロ,インク. ネットワーク、ファブリック及びフィルム内にナノスケール要素を配列させるための方法
US8564954B2 (en) * 2010-06-15 2013-10-22 Chipmos Technologies Inc. Thermally enhanced electronic package
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
US20120090816A1 (en) * 2010-10-13 2012-04-19 William Marsh Rice University Systems and methods for heat transfer utilizing heat exchangers with carbon nanotubes
NL2007834A (en) 2010-12-23 2012-06-27 Asml Netherlands Bv Lithographic apparatus and removable member.
KR101273365B1 (ko) * 2010-12-30 2013-06-11 연세대학교 산학협력단 열전달 소자
US20120211199A1 (en) * 2011-02-22 2012-08-23 Gerald Ho Kim Silicon-Based Cooling Package with Diamond Coating for Heat-Generating Devices
JP5760668B2 (ja) * 2011-05-11 2015-08-12 富士通株式会社 シート状構造体及びその製造方法並びに電子機器及びその製造方法
US9217555B2 (en) * 2011-05-17 2015-12-22 Bridgelux Incorporated LED module with integrated thermal spreader
US9111899B2 (en) 2012-09-13 2015-08-18 Lenovo Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks
US9159643B2 (en) * 2012-09-14 2015-10-13 Freescale Semiconductor, Inc. Matrix lid heatspreader for flip chip package
US8921994B2 (en) 2012-09-14 2014-12-30 Freescale Semiconductor, Inc. Thermally enhanced package with lid heat spreader
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
US9593019B2 (en) 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
US10431354B2 (en) 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
EP3010853B1 (en) 2013-06-17 2023-02-22 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US10468330B2 (en) * 2013-12-12 2019-11-05 Samsung Electronics Co., Ltd. Semiconductor chip and electronic system including the same
US20150168086A1 (en) * 2013-12-16 2015-06-18 KULR Technology Corporation Carbon Fiber Heat Exchangers
US9324628B2 (en) 2014-02-25 2016-04-26 International Business Machines Corporation Integrated circuit heat dissipation using nanostructures
US9482477B2 (en) * 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
US9484281B2 (en) * 2014-08-14 2016-11-01 Qualcomm Incorporated Systems and methods for thermal dissipation
US20160106005A1 (en) * 2014-10-13 2016-04-14 Ntherma Corporation Carbon nanotubes as a thermal interface material
JP6821575B2 (ja) 2015-02-03 2021-01-27 ナノコンプ テクノロジーズ,インク. カーボンナノチューブ構造体およびその生成のための方法
US9468989B2 (en) 2015-02-26 2016-10-18 Northrop Grumman Systems Corporation High-conductivity bonding of metal nanowire arrays
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
CN105261695B (zh) * 2015-11-06 2018-12-14 天津三安光电有限公司 一种用于iii-v族化合物器件的键合结构
US10876201B2 (en) 2016-06-27 2020-12-29 Ironwood 12 Llc Broadband fluorescence amplification assembly
US11186732B2 (en) 2016-06-27 2021-11-30 Ironwood 12 Llc Vertically-aligned carbon nanotube substrate having increased surface area
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
TWI755492B (zh) * 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 基於碳納米管的熱界面材料及其製造和使用方法
JP6885175B2 (ja) * 2017-04-14 2021-06-09 富士電機株式会社 半導体装置
US10607919B2 (en) * 2017-04-28 2020-03-31 Semiconductor Components Industries, Llc Semiconductor package having junction cooling pipes embedded in substrates
JP2018192534A (ja) * 2017-05-12 2018-12-06 国立大学法人 東京大学 熱流方向性制御構造
WO2019086619A1 (de) * 2017-11-03 2019-05-09 Jenoptik Laser Gmbh Diodenlaser
KR102584991B1 (ko) * 2019-06-14 2023-10-05 삼성전기주식회사 반도체 패키지
WO2022122146A1 (en) * 2020-12-09 2022-06-16 HELLA GmbH & Co. KGaA Heat sink arrangement, heat sink and electronic control unit
US11653475B2 (en) * 2021-02-01 2023-05-16 Microsoft Technology Licensing, Llc Thermally conductive microtubes for evenly distributing heat flux on a cooling system
CN117606262A (zh) * 2024-01-18 2024-02-27 河南心连心智能装备科技有限公司 一种可消除应力的废锅换热器

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US680886A (en) * 1900-09-24 1901-08-20 Charles Rath Wheeled scraper.
IT1138371B (it) * 1981-05-20 1986-09-17 Brev Elettrogalvan Superfinitu Dispositivo di tenuta con guarnizioni flessibili,per vasche di cromatura di barre e simili
US4932052A (en) * 1989-06-26 1990-06-05 Jack Lo Self-adjusting headset-handset combination
US5006924A (en) * 1989-12-29 1991-04-09 International Business Machines Corporation Heat sink for utilization with high density integrated circuit substrates
US5060543A (en) * 1990-01-30 1991-10-29 Warheit William A Self-adjusting tool
US5217094A (en) * 1991-08-09 1993-06-08 Atwood Industries, Inc. Self-adjusting, push-to-release parking brake control
US5891724A (en) * 1992-10-27 1999-04-06 Queen's University At Kingston Methods for conferring multidrug resistance on a cell
US5837081A (en) * 1993-04-07 1998-11-17 Applied Sciences, Inc. Method for making a carbon-carbon composite
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5713690A (en) * 1996-05-28 1998-02-03 International Business Machines Corporation Apparatus for attaching heatsinks
US6395991B1 (en) * 1996-07-29 2002-05-28 International Business Machines Corporation Column grid array substrate attachment with heat sink stress relief
JP2000516708A (ja) * 1996-08-08 2000-12-12 ウィリアム・マーシュ・ライス・ユニバーシティ ナノチューブ組立体から作製された巨視的操作可能なナノ規模の装置
US5932925A (en) * 1996-09-09 1999-08-03 Intricast, Inc. Adjustable-pressure mount heatsink system
US5818700A (en) * 1996-09-24 1998-10-06 Texas Instruments Incorporated Microelectronic assemblies including Z-axis conductive films
US5990552A (en) * 1997-02-07 1999-11-23 Intel Corporation Apparatus for attaching a heat sink to the back side of a flip chip package
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US5808236A (en) * 1997-04-10 1998-09-15 International Business Machines Corporation High density heatsink attachment
WO1998048456A1 (en) 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
US6061239A (en) 1997-05-16 2000-05-09 Psc Computer Products Cam-type retainer clip for heat sinks for electronic integrated circuits
US5969947A (en) * 1997-12-17 1999-10-19 International Business Machines Corporation Integral design features for heatsink attach for electronic packages
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US6713151B1 (en) * 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6417563B1 (en) * 2000-07-14 2002-07-09 Advanced Micro Devices, Inc. Spring frame for protecting packaged electronic devices
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
JP2002121404A (ja) * 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
US6591658B1 (en) * 2000-10-25 2003-07-15 Advanced Micro Devices, Inc. Carbon nanotubes as linewidth standards for SEM & AFM
US6783589B2 (en) * 2001-01-19 2004-08-31 Chevron U.S.A. Inc. Diamondoid-containing materials in microelectronics
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP4714371B2 (ja) * 2001-06-06 2011-06-29 ポリマテック株式会社 熱伝導性成形体及びその製造方法
US6432740B1 (en) 2001-06-28 2002-08-13 Hewlett-Packard Company Fabrication of molecular electronic circuit by imprinting
US6449155B1 (en) * 2001-08-09 2002-09-10 International Business Machines Corporation Land grid array subassembly for multichip modules
JP3946975B2 (ja) * 2001-10-09 2007-07-18 富士通株式会社 冷却装置
US6910666B2 (en) * 2001-10-12 2005-06-28 William J. Burr Adjustable leveling mount
GB2384008B (en) * 2001-12-12 2005-07-20 Electrovac Method of synthesising carbon nano tubes
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6965513B2 (en) 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
US6658971B2 (en) * 2002-02-05 2003-12-09 Oberg Industries Self-adjusting tool utilizing a cam
US6821415B2 (en) * 2002-02-13 2004-11-23 Matthew L. Sharb Self-adjusting fluid surface skimmer and fluid treatment system using same
US20040013598A1 (en) 2002-02-22 2004-01-22 Mcelrath Kenneth O. Molecular-level thermal management materials comprising single-wall carbon nanotubes
TW593730B (en) * 2002-03-25 2004-06-21 Ind Tech Res Inst Process of direct low-temperature growth of carbon nanotubes on a substrate
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) * 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
KR20040101200A (ko) * 2002-04-08 2004-12-02 윌리엄 마쉬 라이스 유니버시티 불소화를 이용한 단일-장벽 탄소 나노튜브의 절단 방법
US6724906B2 (en) * 2002-05-07 2004-04-20 Alex Naksen Adjustable headphone
JP4416376B2 (ja) 2002-05-13 2010-02-17 富士通株式会社 半導体装置及びその製造方法
US6853068B1 (en) * 2002-05-22 2005-02-08 Volterra Semiconductor Corporation Heatsinking and packaging of integrated circuit chips
US6891724B2 (en) * 2002-06-12 2005-05-10 Intel Corporation Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
US6892652B2 (en) * 2002-08-19 2005-05-17 Branson Ultrasonics Corporation Self-adjusting dynamic floating fixture
US7662313B2 (en) * 2002-09-05 2010-02-16 Nanosys, Inc. Oriented nanostructures and methods of preparing
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
US20040072994A1 (en) * 2002-10-15 2004-04-15 Herr Daniel J.C. Nanostructures including controllably positioned and aligned synthetic nanotubes, and related methods
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
CN1239387C (zh) * 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
US6859367B2 (en) * 2003-01-03 2005-02-22 Intel Corporation Heat sink attachment device
US6992893B2 (en) * 2003-01-10 2006-01-31 Hewlett-Packard Development Company, L.P. Heat sink attachment
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
US20040218362A1 (en) * 2003-02-19 2004-11-04 Amaro Allen J. System and apparatus for heat removal
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US20040182600A1 (en) * 2003-03-20 2004-09-23 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
CN1244491C (zh) * 2003-03-25 2006-03-08 清华大学 一种碳纳米管阵列结构及其制备方法
US7118941B2 (en) 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7112472B2 (en) 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US20040266063A1 (en) 2003-06-25 2004-12-30 Montgomery Stephen W. Apparatus and method for manufacturing thermal interface device having aligned carbon nanotubes
US6976532B2 (en) 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
US6856511B1 (en) * 2003-07-17 2005-02-15 Cisco Technology, Inc. Methods and apparatus for attaching a heat sink to a circuit board component
US6880799B2 (en) * 2003-08-01 2005-04-19 Honeywell International Inc. Self-adjusting system for a damper
US7416019B2 (en) * 2003-08-13 2008-08-26 The Johns Hopkins University Thermal interface and switch using carbon nanotube arrays
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US6989325B2 (en) 2003-09-03 2006-01-24 Industrial Technology Research Institute Self-assembled nanometer conductive bumps and method for fabricating
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
JP4339657B2 (ja) * 2003-09-30 2009-10-07 富士通株式会社 半導体装置及びその製造方法
TW200517042A (en) 2003-11-04 2005-05-16 Hon Hai Prec Ind Co Ltd Heat sink
US7186020B2 (en) * 2003-12-12 2007-03-06 University Of Washington Thermal interface material (TIM) with carbon nanotubes (CNT) and low thermal impedance
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7612370B2 (en) * 2003-12-31 2009-11-03 Intel Corporation Thermal interface
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050260412A1 (en) * 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562148B (zh) * 2009-04-24 2011-08-24 北京大学 一种用碳纳米管实现上下两层导电材料垂直互连的方法
CN112652592A (zh) * 2019-10-11 2021-04-13 安波福技术有限公司 电子设备的热界面层
CN116368614A (zh) * 2020-09-24 2023-06-30 Hrl实验室有限责任公司 晶片级集成微结构化散热器

Also Published As

Publication number Publication date
WO2005041256A2 (en) 2005-05-06
EP1658634A4 (en) 2009-10-28
US7109581B2 (en) 2006-09-19
US8039953B2 (en) 2011-10-18
KR20070027482A (ko) 2007-03-09
US20050046017A1 (en) 2005-03-03
EP1658634A2 (en) 2006-05-24
US20060270116A1 (en) 2006-11-30
WO2005041256A3 (en) 2006-04-13
CN100416781C (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
CN100416781C (zh) 在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法
US7538422B2 (en) Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US20070126116A1 (en) Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
JP5628312B2 (ja) ナノチューブの熱インターフェース構造
US20070114658A1 (en) Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
Morris Nanopackaging: Nanotechnologies and electronics packaging
US8207016B2 (en) Methods of cooling semiconductor dies
JP5673668B2 (ja) 放熱構造体、電子機器およびそれらの製造方法
US20050255304A1 (en) Aligned nanostructure thermal interface material
US20070155136A1 (en) Carbon nanotube and metal thermal interface material, process of making same, packages containing same, and systems containing same
CN101353165B (zh) 形成碳纳米管架构和复合材料的方法和通过其形成的结构
US9024436B2 (en) Thermal interface material for integrated circuit package
US7301232B2 (en) Integrated circuit package with carbon nanotube array heat conductor
JP7373061B2 (ja) 熱伝導体、熱伝導性材料、及び半導体デバイスのパッケージ構造
US20110266581A1 (en) Light-emitting device containing a composite electroplated substrate
TWI633636B (zh) 電子裝置及其製造方法
JP2002334968A (ja) 3次元半導体チップ
TWM407489U (en) IC carrier board with high thermal conductivity, packaging IC carrier board, and electronic devices
TWI246878B (en) Phase change thermal conductive plate and heat dissipating device having same
TW201022618A (en) Metal-based composite material sheet arranged in fiber direction and method of fabricating the same
TW200904745A (en) Thermal interface material, method of making the same and package having thermal interface material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: UNIDIM INC.

Free format text: FORMER OWNER: NANOCONDUCTION INC.

Effective date: 20110516

Owner name: SAMSUNG ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: UNIDIM INC.

Effective date: 20110516

Owner name: THE USA REPRESENTED BY DIRECTOR OF NATIONAL AERONA

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: STATE OF CALIFORNIA, THE USA TO: GYEONGGI, SOUTH KOREA

TR01 Transfer of patent right

Effective date of registration: 20110516

Address after: Gyeonggi Do, South Korea

Co-patentee after: The United States of America, represented by the Director-General of NASA

Patentee after: SAMSUNG ELECTRONICS Co.,Ltd.

Address before: California, USA

Co-patentee before: The United States of America, represented by the Director-General of NASA

Patentee before: Younidimu Co.

Effective date of registration: 20110516

Address after: California, USA

Co-patentee after: The United States of America, represented by the Director-General of NASA

Patentee after: Younidimu Co.

Address before: California, USA

Co-patentee before: The United States of America, represented by the Director-General of NASA

Patentee before: Nanoconduction Inc.

Effective date of registration: 20110516

Address after: California, USA

Co-patentee after: The United States of America, represented by the Director-General of NASA

Patentee after: NANOCONDUCTION Inc.

Address before: California, USA

Patentee before: Nanoconduction Inc.