CN1871662A - 溅射沉积中硒化银膜化学计量比和形态控制 - Google Patents

溅射沉积中硒化银膜化学计量比和形态控制 Download PDF

Info

Publication number
CN1871662A
CN1871662A CNA038206064A CN03820606A CN1871662A CN 1871662 A CN1871662 A CN 1871662A CN A038206064 A CNA038206064 A CN A038206064A CN 03820606 A CN03820606 A CN 03820606A CN 1871662 A CN1871662 A CN 1871662A
Authority
CN
China
Prior art keywords
film
silver
silver selenide
sputtering
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038206064A
Other languages
English (en)
Other versions
CN1871662B (zh
Inventor
李久滔
K·哈姆普顿
A·麦克特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1871662A publication Critical patent/CN1871662A/zh
Application granted granted Critical
Publication of CN1871662B publication Critical patent/CN1871662B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/938Vapor deposition or gas diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12896Ag-base component

Abstract

一种溅射沉积硒化银并控制溅射沉积硒化银膜的化学计量比、结节缺陷形成和晶体结构的方法。该方法包括在约0.3-约10mTorr的压力下,使用溅射沉积方法沉积硒化银。根据本发明的一个方面,优选在约2-约3mTorr的压力下使用RF溅射沉积方法。根据本发明的另一个方面,优选在约4-约5mTorr的压力下使用脉冲DC溅射沉积方法。根据本发明的另一个方面,可以在约10mTorr的压力和小于约250W的溅射功率下溅射沉积含α-和β-硒化银的硒化银膜。

Description

溅射沉积中硒化银膜化学计量比和形态控制
                      发明领域
本发明涉及使用硫属玻璃形成的电阻可变存储器件领域,特别涉及一种将硒化银膜沉积在硫属玻璃上的改进方法。
                      发明背景
与目前使用的存储技术相比,由于在开关特性、不挥发性、存储速度、可靠性、热特性和耐用性方面有潜在的优点,所以将硫属化物材料用于电阻可变存储器件在目前引起极大的关注。在下面的论文中报道了此领域中的研究“High Speed Memory Behavior and Reliabilityof an Amorphous As2S3 Film doped with Ag”,Hirose等人,Phys.Stat.Sol.(1980),第K187-K190页;“Polarity-dependent memoryswitching and behavior of Ag dendrite in Ag-photodoped amorphousAs2S3 films”,Hirose等人,Journal of applied Physics,第47卷,No.6(1976),第2767-2772页;和“Dual Chemical Role of Ag as anAdditive in Chalcogenide Glasses”,Mitkova等人,Physical ReviewLetters,第83卷,No.19(1999),第3848-3851页,本文中引入其内容作为参考。
在许多使用硫属化物材料的存储元件设计中,将硒化银(As2S)的膜与硫属化物材料层结合。硒化银膜对电气性能是重要的。因此,硒化银沉积是制造电阻可变存储器件的一个重要方面。最可利用的对硒化银沉积的研究有限,通常选择蒸发沉积来形成硒化银膜。
蒸发沉积的硒化银具有伴随的问题,因为硒化银的分解性使得不可能获得硒化银的精密化学计量比。我们认为,在蒸发法中,当银开始向低浓度扩散时,它开始聚集。由于银被束缚在簇或聚集体中,所以在蒸发过程的开始,硒更容易蒸发。因此,在蒸发法的过程中,硒更迅速地蒸发,造成沉积靶变为富银的。接近蒸发过程的结束,很少乃至没有硒因为沉积而留在基质上,而因为沉积主要留下银。因此,大量的硒沉积在基质上,随后主要是银沉积。因此,蒸发法没有均匀沉积硒化银,并且控制蒸发硒化银的化学计量比和表面形态是困难的。
而且,蒸发沉积无助于工业应用。溅射沉积更容易用于工艺过程,而且与蒸发沉积法相比,溅射沉积具有许多优点。例如,溅射沉积提供更好的膜厚度和质量控制。
通常,通过将基质放在抽真空或加压至所需压力的沉积室中进行溅射沉积或溅射。然后,在该室内产生通常由靶产生的膜材料的粒子流,该颗粒冷凝到基质上而出现沉积。在另一种常常称为离子束轰击溅射的溅射法中,高能的离子源束射向靶。轰击离子的力将足够的能量传给靶的原子以使活化的原子离开靶子并形成粒子流。在基质上得到的沉积物形成薄膜。
由于银的高扩散性能,硒的低熔点以及硒化银的记忆性能,在溅射沉积的过程中控制硒化银膜的化学计量比和形态是困难的。例如,硒化银块材是导电的,但其电导率(约几千ohm-1cm-1)较大多数金属的电导率相对低。并且,银浓度对器件的电气性能是关健的,因此必须使银浓度保持在接近于约66.7原子%(本文中,后面表示为“%”)。随着银浓度高于约67.5%,在硒化银膜中和/或硒化银膜上许多结节缺陷。这些缺陷的尺寸可以为约1/10微米,这对亚微米器件制造有严重的负面影响。尽管还不知道形成这些缺陷的准确机理,但我们认为这些缺陷是由超过硒化银膜中所需化学计量比的银浓度要求的过量银造成的。
常规的溅射方法还导致其结构几乎仅仅由β-硒化银组成的沉积硒化银膜。然而,对于最佳的器件性能来说,理想的是制造含α-和β-硒化银的硒化银膜。
理想的是具有一种改进的沉积硒化银膜的方法。对于溅射沉积来说,具有一种控制硒化银的化学计量比和形态的方法也是理想的。具有一种形成含α-和β-硒化银的溅射沉积硒化银的方法也是理想的。
                      发明概述
本发明一个示范性的实施方案包括将硒化银膜沉积在基质上的方法。该方法包括使用低压溅射沉积方法。优选的溅射沉积方法包括RF溅射或脉冲DC溅射。优选地,该溅射沉积将在约0.3-约10mTorr的压力范围内进行。本发明特别用于沉积具有较好化学计量比精度的硒化银膜。本发明也特别用于溅射沉积硒化银膜,同时避免在整个硒化银膜内和在该硒化银膜的表面上形成结节缺陷。最后,在约10mTorr的溅射压力和小于约250W的溅射功率下,本发明也用于沉积包含α-和β-硒化银的硒化银膜。
根据以下结合附图提供的详细说明将会更好地理解本发明的这些及其它特点和优点。
                      附图简述
图1(a)是使用20mTorr压力沉积的脉冲DC溅射沉积硒化银膜的SEM图。
图1(b)是使用10mTorr压力沉积的脉冲DC溅射沉积硒化银膜的SEM图。
图1(c)是使用3mTorr压力沉积的脉冲DC溅射沉积硒化银膜的SEM图。
图2说明在不同溅射压力和功率下溅射的沉积硒化银膜的两个X-射线衍射图。
                      发明详述
在下面的详细说明中,涉及到本发明各种具体结构的实施方案和方法的实施方案。用足够的细节描述这些实施方案以使本领域普通技术人员能够实施本发明。应该理解的是,可以使用其它实施方案,并且可以进行各种结构上的、逻辑上的和电气上的改变而不背离本发明的精神或范围。
术语“硒化银”意在包括各类硒化银,包括具有稍过量或缺乏银的种类,例如Ag2Se、Ag2+xSe和Ag2-xSe。
术语“硫属玻璃”意在包括基于只选自VIA族中的元素(S、Se、Te、Po、O)或选自其与IV族(Si、Ge)和/或V族(P、As、Sb、Bi)中元素组合的各种组合物结构。
本发明涉及一种沉积硒化银的方法。根据本发明,使用例如0.3-约10mTorr的低压来溅射沉积硒化银。并且,根据本发明,优选使用RF溅射方法或脉冲DC溅射方法沉积硒化银。
硒化银本身具有电存储性能,即电导率,而溅射沉积方法通常包括强电流、电压和离子轰击。因此,溅射沉积方法中的电和热效应都会影响硒化银溅射靶和沉积的硒化银膜。出于上述原因,溅射沉积需要考虑怎样将电能施加到硒化银靶上。
因为硒化银的电导率较大多数金属的电导率相对低,所以D.C.溅射不起作用。规则的DC磁控管溅射试验没有效,主要是因为等离子体不容易引燃。
取决于靶年龄,在较高压力,例如约20mTorr或更高压力下溅射沉积导致银浓度低于或高于所需约66.7%的化学计量比银浓度的膜。已经观察到,使用RF或脉冲DC磁控管溅射沉积的相对新靶的高压沉积,例如约20mTorr或更高,产生银浓度只有约60%的硒化银膜,这比所需66.7%的化学计量比银浓度低得多。也已观察到,使用RF或脉冲DC磁控管溅射沉积的相对老靶的高压沉积,例如约20mTorr或更高,产生银浓度高于约67.5%的硒化银膜。
本发明人发现,在约0.3-约10mTorr的低压下,可以使用RF或脉冲DC磁控管溅射沉积方法来沉积更精密化学计量比的硒化银膜,同时避免在该膜中形成结节缺陷。还已发现,硒化银靶组成随靶的寿命而改变,而使用低压溅射沉积方法用老的和新的硒化银靶都可以获得精密化学计量比沉积物。
图1说明具有氮化硅薄膜的、由工业等级硅片形成的基质的SEM图,所述氮化硅膜具有约500埃厚的脉冲DC溅射沉积的硒化银膜。使用200kHz、脉冲宽度1056ns、恒定动力供应150W的DentonVacuum Discovery24脉冲DC溅射沉积图1中所示的硒化银膜。使用具有约66.7%的化学计量比银浓度的硒化银靶来沉积硒化银膜。比较各种压力下脉冲DC溅射沉积硒化银膜的SEM图表明,约0.3-约10mTorr的低压溅射沉积降低并消除结节缺陷形成。观察到,使用高压,即约20mTorr沉积的硒化银膜具有高于约67.5%的银浓度,并且如图1(a)所示,在该膜的表面上和整个膜内形成结节缺陷;如图1(b)所示,使用10mTorr低压形成的沉积硒化银膜具有相对少的结节缺陷;如图1(c)所示,使用3mTorr的更低压力的沉积膜具有无结节缺陷的光滑表面。
根据本发明的第一个实施方案,在约0.3-约10mTorr,更优选约2-约3mTorr的低压下,使用RF溅射沉积方法溅射沉积硒化银靶,从而提供这样的硒化银膜,该膜具有很少,甚至没有结节缺陷,银浓度约等于用于溅射沉积该硒化银膜的硒化银靶的银浓度。例如,在RF溅射沉积方法中使用银浓度约为66.7%的硒化银靶的情况下,沉积的硒化银膜的银浓度小于约67.5%,优选约67%,更优选约66.7%。根据本发明第一个实施方案的方法可以用于任何年龄的硒化银靶,同时还提供这样一种溅射沉积硒化银膜,所述硒化银膜的银浓度约等于用于沉积该硒化银膜的硒化银靶的银浓度。
在根据本发明第一个实施方案的溅射方法中,溅射沉积通常发生在室中。首先建立初始基础真空压力(initial base vacuum pressure)。该初始基础真空压力可以是任何合适的压力,包括高于约10mTorr的压力,这可以帮助引燃等离子体。在溅射方法的过程中,应该将工艺气体维持在约0.3-约10mTorr,优选约2-约3mTorr的压力下。工艺气体可以是任何合适的溅射工艺气体,例如氪、氙、氦、氖、氩或它们的组合。优选的工艺气体是氩。尽管不希望受到任何特定功率的限制,但在溅射方法的过程中施加的功率优选为,例如,约100-约500瓦,最优选为约150瓦。能量密度和能量需要可以改变,这取决于选择的系统或靶的尺寸。例如,4英寸或更大的靶需要更大的功率。优选的RF频率为约100kHz-约20MHz,优选为13.5MHz。示范性的溅射沉积系统是Denton Vacuum Discovery24。
根据本发明的第二个实施方案,在约0.3-约10mTorr的低压下,使用脉冲DC溅射沉积方法溅射沉积硒化银,从而提供这样的硒化银膜,该膜具有的银浓度约等于用于溅射沉积该硒化银膜的硒化银靶的银浓度。例如,在脉冲DC溅射沉积方法中使用银浓度约为66.7%的硒化银靶的情况下,沉积的硒化银膜的银浓度小于约67.5%,优选约67%,更优选约66.7%。约4-约5mTorr的低压是优选的。RF溅射沉积与脉冲DC溅射沉积之间的差异在于,对于脉冲DC溅射,约4-约5mTorr的沉积压力制造银浓度基本上等于硒化银靶银浓度,例如66.7%的沉积硒化银膜。然而,通常,低压沉积提供具有更精密硒化银化学计量比的更光滑溅射沉积硒化银膜。使用的优选低压可以依靶的状况,例如靶的年龄而改变。
与上述根据本发明第一个实施方案的方法相似,根据第二个实施方案的溅射沉积也发生在室中,例如Denton Vacuum Discovery24中,其中首先建立合适的初始基础真空压力,并使用合适的工艺气体。然而,根据第二个实施方案,在溅射方法的过程中,应该将工艺气体维持在约0.3-约10mTorr,优选约4-约5mTorr的压力下。尽管不希望受到任何特定功率的限制,但在溅射方法的过程中施加的功率优选为,例如,约100-约500瓦,最优选为150瓦;优选的脉冲DC频率可以为,例如约100-约250kHz,优选为约200kHz。然而,能量密度和能量要求可以改变,并且t取决于选择的系统和/或靶的尺寸。例如,4英寸或更大的靶需要更大的功率。脉冲宽度应该为约1000-约1200ns,优选为约1056ns。
尽管还不知道解释实验观测值起点的准确机理,但溅射压力、离子动能、散射诱导能量降低和/或RF与脉冲DC等离子体电性质之间有联系。对于实际应用,发明人建议在较低压力下使用RF溅射沉积方法或脉冲DC溅射沉积方法来沉积较好精度化学计量比的硒化银膜,并避免在该膜上形成结节缺陷。因此,压力可以在约0.3-约10mTorr的低压范围内改变以微调硒化银膜的银浓度。也可以改变功率源。这在器件制造中非常重要,因为许多器件需要元素浓度稍微偏离(即,±2%浓度)约66.7%的优选值。因此,由于低压溅射沉积也可以用在相对老的靶上,同时仍然提供更精密的银化学计量比浓度,所以本发明延长了靶寿命,因此降低了工艺成本。
根据本发明,除了在溅射沉积的过程中控制硒化银的化学计量比和形态之外,理想的是也控制了沉积硒化银的晶体结构。
硒化银(例如Ag2Se)由于其406K(约130℃)的低温相转变点而众所周知。Ag2Se在低于406K的温度下形成称为“β相”的斜方结构。Ag2Se在高于406K(约133℃)的温度下经历结构改变,其中Se形成体心立方亚晶格,同时银经受熔化转变。在此所谓的“α相”或“超离子相(superionic phase)”中,Ag离子显示液体状分散。Se亚晶格在约1170K(897℃)下也将经受熔化转变。
根据本发明,理想的是由α-和β-硒化银相的混合物形成沉积的硒化银膜。这种混合物对由硒化银膜形成的某些器件的最佳性能来说是关健的。根据本发明,可以在相对低功率/相对高压力的条件下,通过溅射方法形成含α和β相的硒化银膜。
图2说明溅射沉积硒化银膜的两幅X-射线衍射(XRD)图200和220。图1说明在350W的溅射功率和50sccm的氩气溅射气体流速下溅射沉积的硒化银膜的XRD图200,该气体流速相应于约7mTorr的溅射气压。图2说明在350W的溅射功率和75sccm的氩气溅射气体流速下溅射沉积的硒化银膜的XRD图220,该气体流速相应于约10mTorr的溅射气压。图200和220表明,在后一种状况下,在粗略模式2θXRD图中,在约23和37度出现α和β峰。
虽然不受理论的限制,但基于XRD图200和220,好像在溅射过程中硒化银与基质的较低能量冲击在沉积膜中产生更多的α相硒化银。较低的溅射功率和较高的溅射压力降低赋予溅射硒化银分子的动能,因此导致硒化银与基质的较低能量冲击。而且,似乎将基质加热至高于室温(约25℃)的温度也提高沉积膜中的α相。
虽然硒化银的晶体结构(即α和β相的混合物)对于使用这种膜的器件的最佳性能来说是重要的,但是膜的化学计量比和组织(例如光滑性)也影响如上所述的器件性能。因此,一定程度上降低溅射功率或升高溅射压力导致显示具有粗糙表面或非所要求的化学计量比的膜,为了制造具有所需化学计量比并且结构显示α和β两相的光滑硒化物膜,必须平衡溅射功率和压力参数。然而,应该强调,与用于制造该膜的方法无关,理想的是在沉积的硒化银膜中存在有α相。
根据本发明的第三个示范性实施方案,在使所述硒化银膜的结构含α相和β相的溅射条件下溅射沉积硒化银膜。具体地说,使用小于约250W的溅射功率和至少约10mTorr的溅射压力溅射沉积硒化银。而且,在溅射功率小于约250W,溅射压力约为10mTorr的溅射条件下,可以在基质上形成含α和β结构相、具有约等于硒化银溅射靶银浓度的银浓度且无表面缺陷的硒化银膜。
虽然已经描述并说明了本发明的示范性实施方案,但是可以进行变化和改变而不背离本发明的精神或范围。因此,本发明不受上述说明的限制,而只受附加的权利要求的范围限制。

Claims (79)

1.一种沉积硒化银的方法,包括:
在溅射沉积室中提供硒化银溅射靶;
将溅射气体引入所述室中,其中将所述溅射气体保持在约0.3-约10mTorr的压力下;和
在所述靶上进行溅射工艺,从而制造沉积的硒化银膜。
2.权利要求1的方法,其中所述沉积的硒化银膜具有的银浓度约等于所述硒化银靶的银浓度。
3.权利要求2的方法,其中所述硒化银靶具有约66.7%的银浓度。
4.权利要求3的方法,其中所述沉积硒化银膜具有小于约67.5%的银浓度。
5.权利要求3的方法,其中所述沉积硒化银膜具有约67%的银浓度。
6.权利要求3的方法,其中所述沉积硒化银膜具有约66.7%的银浓度。
7.权利要求2的方法,其中所述硒化银膜基本上没有结节缺陷。
8.权利要求1的方法,其中所述溅射沉积方法是RF溅射沉积方法。
9.权利要求8的方法,其中所述溅射压力为约2-约3mTorr。
10.权利要求1的方法,其中使用约100-约500瓦的溅射功率进行所述溅射沉积。
11.权利要求10的方法,其中所述功率为约150瓦。
12.权利要求8的方法,其中使用约100kHz-约20MHz的频率进行所述沉积方法。
13.权利要求12的方法,其中所述频率约为13.5MHz。
14.权利要求1的方法,其中所述溅射沉积方法是脉冲DC溅射沉积方法。
15.权利要求14的方法,其中所述压力为约4-约5mTorr。
16.权利要求14的方法,其中使用约100-约250kHz的频率进行所述沉积方法。
17.权利要求16的方法,其中所述频率约为200kHz。
18.权利要求14的方法,其中使用约1000-约1200ns的脉冲宽度进行所述溅射沉积方法。
19.权利要求18的方法,其中所述脉冲宽度约为1056ns。
20.一种控制溅射沉积硒化银膜的化学计量比的方法,包括:
使用约0.3-约10mTorr的溅射沉积压力溅射沉积具有预定银浓度的硒化银膜;和
在沉积所述硒化银膜的同时,在所述范围内改变所述溅射沉积压力。
21.权利要求20的方法,其中所述硒化银膜具有小于约67.5%的银浓度。
22.权利要求21的方法,其中所述硒化银膜具有约67%的银浓度。
23.权利要求21的方法,其中所述硒化银膜具有约66.7%的银浓度。
24.权利要求21的方法,其中所述硒化银膜基本上没有结节缺陷。
25.权利要求20的方法,其中使用约100-约300瓦的功率进行所述溅射沉积。
26.权利要求25的方法,其中所述功率约为150瓦。
27.权利要求20的方法,其中使用RF溅射沉积方法进行所述溅射沉积。
28.权利要求27的方法,其中使用约100kHz-约20MHz的频率进行所述RF溅射沉积方法。
29.权利要求28的方法,其中所述频率约为13.5MHz。
30.权利要求20的方法,其中使用脉冲DC溅射沉积方法进行所述溅射沉积。
31.权利要求30的方法,其中使用约100-约250kHz的频率进行所述脉冲DC溅射沉积方法。
32.权利要求31的方法,其中所述频率约为200kHz。
33.权利要求30的方法,其中使用约1000-约1200ns的脉冲宽度进行所述脉冲DC溅射沉积方法。
34.权利要求33的方法,其中所述脉冲宽度约为1056ns。
35.一种沉积硒化银的方法,包括:
提供银浓度约为66.7%的硒化银溅射靶,
保持约0.3-约10mTorr的溅射沉积压力;和
在所述硒化银溅射靶上进行RF溅射方法,其中所述RF溅射方法形成沉积的硒化银膜。
36.权利要求35的方法,其中所述硒化银膜具有小于约67.5%的银浓度。
37.权利要求35的方法,其中所述硒化银膜具有约67%的银浓度。
38.权利要求35的方法,其中所述硒化银膜基本上没有结节缺陷。
39.权利要求35的方法,其中所述压力为约2-约3mTorr。
40.权利要求35的方法,其中使用约100-约300瓦的功率进行所述RF溅射沉积方法。
41.权利要求40的方法,其中所述功率约为150瓦。
42.权利要求35的方法,其中使用约100kHz-约20MHz的频率进行所述RF溅射沉积方法。
43.权利要求42的方法,其中所述频率约为13.5MHz。
44.一种沉积硒化银的方法,包括:
提供银浓度约为66.7%的溅射硒化银靶;和
在约0.3-约10mTorr的压力下进行脉冲DC溅射沉积方法,其中所述DC溅射沉积方法形成沉积的硒化银膜。
45.权利要求44的方法,其中所述硒化银膜具有小于约67.5%的银浓度。
46.权利要求44的方法,其中所述硒化银膜具有约67%的银浓度。
47.权利要求44的方法,其中所述硒化银膜具有约66.7%的银浓度。
48.权利要求45的方法,还包括由所述溅射靶形成基本上没有结节缺陷的硒化银膜。
49.权利要求44的方法,其中所述压力约为4-约5mTorr。
50.权利要求44的方法,其中使用约100-约250kHz的频率进行所述脉冲DC溅射沉积方法。
51.权利要求50的方法,其中所述频率约为200kHz。
52.权利要求44的方法,其中使用约1000-约1200ns的脉冲宽度进行所述脉冲DC溅射沉积方法。
53.权利要求52的方法,其中所述脉冲宽度约为1056ns。
54.一种沉积硒化银的方法,包括:
提供银浓度约为66.7%的硒化银溅射靶;和
使用硒化银溅射靶进行溅射工艺,从而形成银浓度小于约67.5%的硒化银膜。
55.权利要求54的方法,其中使用约0.3-约10mTorr的沉积压力进行所述溅射沉积。
56.权利要求55的方法,其中使用RF溅射沉积方法进行所述溅射沉积。
57.权利要求56的方法,其中使用约2-约3mTorr的溅射沉积压力进行所述RF溅射沉积方法。
58.权利要求54的方法,其中使用脉冲DC溅射沉积方法进行所述溅射沉积。
59.权利要求58的方法,其中使用约4-约5mTorr的溅射沉积压力进行所述脉冲DC溅射沉积。
60.一种在约0.3-约10mTorr的压力下沉积的溅射沉积硒化银膜,所述膜基本上没有结节缺陷。
61.权利要求60的膜,其中使用银浓度小于约67.5%的硒化银靶沉积所述溅射沉积硒化银膜。
62.权利要求61的膜,其中所述硒化银膜具有约66.7%的银浓度。
63.权利要求61的膜,其中所述硒化银膜具有约67%的银浓度。
64.权利要求60的膜,其中RF溅射沉积所述硒化银膜。。
65.权利要求63的膜,其中所述压力为约2-约3mTorr。
66.权利要求60的膜,其中脉冲DC溅射沉积所述膜。
67.权利要求66的膜,其中所述压力为约4-约5mTorr。
68.一种银浓度小于约67.5%的溅射沉积硒化银膜。
69.权利要求68的膜,其中使用银浓度为约66.7%的硒化银靶沉积所述溅射沉积硒化银膜。
70.权利要求69的膜,其中所述硒化银膜具有约67%的银浓度。
71.权利要求69的膜,其中所述硒化银膜具有约66.7%的银浓度。
72.权利要求68的膜,其中RF溅射沉积所述溅射沉积硒化银。
73.权利要求68的膜,其中脉冲DC溅射沉积所述溅射沉积硒化银。
74.一种沉积硒化银的方法,包括:
在溅射沉积室中提供硒化银溅射靶;
将溅射气体引入所述室中;
在所述靶上进行溅射工艺,从而产生沉积的硒化银膜,其中所述硒化银包括α-硒化银和β-硒化银。
75.权利要求74的方法,其中在所述溅射过程中,将所述溅射气体维持在约10mTorr的压力下。
76.权利要求74的方法,其中在所述溅射过程中,将所述溅射过程的溅射功率维持在小于约250W下。
77.权利要求74的方法,其中所述沉积的硒化银膜具有的银浓度约等于所述硒化银溅射靶的银浓度。
78.权利要求77的方法,其中所述硒化银靶具有约66.7%的银浓度。
79.权利要求74的方法,其中所述硒化银膜基本上无结节缺陷。
CN038206064A 2002-08-29 2003-08-28 溅射沉积中硒化银膜化学计量和形态控制 Expired - Fee Related CN1871662B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/230,279 US7364644B2 (en) 2002-08-29 2002-08-29 Silver selenide film stoichiometry and morphology control in sputter deposition
US10/230,279 2002-08-29
PCT/US2003/026814 WO2004020683A2 (en) 2002-08-29 2003-08-28 Silver selenide film stoichiometry and morphology control in sputter deposition

Publications (2)

Publication Number Publication Date
CN1871662A true CN1871662A (zh) 2006-11-29
CN1871662B CN1871662B (zh) 2010-05-05

Family

ID=31976442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038206064A Expired - Fee Related CN1871662B (zh) 2002-08-29 2003-08-28 溅射沉积中硒化银膜化学计量和形态控制

Country Status (7)

Country Link
US (4) US7364644B2 (zh)
EP (1) EP1573081A3 (zh)
JP (1) JP4164068B2 (zh)
KR (5) KR100669611B1 (zh)
CN (1) CN1871662B (zh)
AU (1) AU2003270012A1 (zh)
WO (1) WO2004020683A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710324B1 (en) * 2005-04-08 2008-12-03 STMicroelectronics S.r.l. PVD process and chamber for the pulsed deposition of a chalcogenide material layer of a phase change memory device
US7574224B2 (en) * 2005-06-13 2009-08-11 Qualcomm Incorporated Methods and apparatus for performing timing synchronization with base stations
US7974261B2 (en) * 2005-06-13 2011-07-05 Qualcomm Incorporated Basestation methods and apparatus for supporting timing synchronization
US8036205B2 (en) * 2005-06-13 2011-10-11 Qualcomm Incorporated Methods and apparatus for supporting uplinks with remote base stations
US7812333B2 (en) * 2007-06-28 2010-10-12 Qimonda North America Corp. Integrated circuit including resistivity changing material having a planarized surface
TWI397601B (zh) * 2008-03-14 2013-06-01 Lam Res Corp 用於將膜沉積至基材上的方法
US8134138B2 (en) * 2009-01-30 2012-03-13 Seagate Technology Llc Programmable metallization memory cell with planarized silver electrode
FR2965569B1 (fr) * 2010-10-04 2019-06-14 X-Fab France Utilisation d'un procede de deposition par pulverisation cathodique d'une couche de chalcogenure
CN102080263B (zh) * 2010-12-10 2012-11-07 同济大学 一种Ag2X薄膜的制备方法
WO2013070679A1 (en) 2011-11-08 2013-05-16 Tosoh Smd, Inc. Silicon sputtering target with special surface treatment and good particle performance and methods of making the same
CN104828790B (zh) * 2015-03-24 2017-05-17 武汉理工大学 Ag2X化合物的静态载荷合成方法
KR102618880B1 (ko) 2018-09-13 2023-12-29 삼성전자주식회사 스위칭 소자, 가변 저항 메모리 장치 및 그의 제조방법

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL258761A (zh) * 1959-12-07
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3450967A (en) 1966-09-07 1969-06-17 Vitautas Balio Tolutis Selenium memory cell containing silver up to 2 atomic percent adjacent the rectifying contact
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
JPS56126916U (zh) 1980-02-29 1981-09-26
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
JPS60184885A (ja) * 1984-03-02 1985-09-20 Sanyo Electric Co Ltd 光学記録媒体
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4668968A (en) 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4673957A (en) 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4843443A (en) 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
JPS60184885U (ja) 1984-05-18 1985-12-07 株式会社まるか いわし刺身等の包装具
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
WO1986002744A1 (en) * 1984-10-29 1986-05-09 American Telephone & Telegraph Company Method of producing devices using nonplanar lithography
US4767695A (en) * 1984-10-29 1988-08-30 American Telephone And Telegraph Company, At&T Bell Laboratories Nonplanar lithography and devices formed thereby
US4664939A (en) 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4839208A (en) * 1986-04-30 1989-06-13 Nec Corporation Optical information recording medium
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
WO1988003310A1 (en) * 1986-10-29 1988-05-05 Dai Nippon Insatsu Kabushiki Kaisha Draw type optical recording medium
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
JPH01241035A (ja) * 1988-03-22 1989-09-26 Toshiba Corp 情報記録媒体
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
EP0405450A3 (en) * 1989-06-30 1991-08-21 Kabushiki Kaisha Toshiba Data recording medium and method of manufacturing the same
US5014893A (en) * 1990-04-02 1991-05-14 Chrysler Corporation Luggage rack for a vehicle
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5406509A (en) 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5534711A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
US5512328A (en) 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5498558A (en) * 1994-05-06 1996-03-12 Lsi Logic Corporation Integrated circuit structure having floating electrode with discontinuous phase of metal silicide formed on a surface thereof and process for making same
US5651865A (en) * 1994-06-17 1997-07-29 Eni Preferential sputtering of insulators from conductive targets
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5785828A (en) * 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
WO1996041381A1 (en) 1995-06-07 1996-12-19 Micron Technology, Inc. A stack/trench diode for use with a multi-state material in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5555537A (en) 1995-06-30 1996-09-10 International Business Machines Corporation Optical data storage system with multiple write-once phase-change recording layers
US5714768A (en) 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) * 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
JP3570169B2 (ja) * 1997-08-22 2004-09-29 松下電器産業株式会社 光学情報記録媒体
AU751949C (en) 1997-12-04 2003-08-21 Arizona Board Of Regents On Behalf Of The University Of Arizona, The Programmable sub-surface aggregating metallization structure and method of making same
US6011757A (en) 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6388324B2 (en) * 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6268662B1 (en) * 1998-10-14 2001-07-31 Texas Instruments Incorporated Wire bonded flip-chip assembly of semiconductor devices
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6825489B2 (en) * 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
WO2000048196A1 (en) 1999-02-11 2000-08-17 Arizona Board Of Regents Programmable microelectronic devices and methods of forming and programming same
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) * 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US20030107105A1 (en) 1999-08-31 2003-06-12 Kozicki Michael N. Programmable chip-to-substrate interconnect structure and device and method of forming same
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
US6865117B2 (en) 2000-02-11 2005-03-08 Axon Technologies Corporation Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same
US6914802B2 (en) * 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6586676B2 (en) * 2000-05-15 2003-07-01 Texas Instruments Incorporated Plastic chip-scale package having integrated passive components
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
WO2002021542A1 (en) 2000-09-08 2002-03-14 Axon Technologies Corporation Microelectronic programmable device and methods of forming and programming the same
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6404665B1 (en) 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6348385B1 (en) * 2000-11-30 2002-02-19 Chartered Semiconductor Manufacturing Ltd. Method for a short channel CMOS transistor with small overlay capacitance using in-situ doped spacers with a low dielectric constant
US6653193B2 (en) 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6649928B2 (en) 2000-12-13 2003-11-18 Intel Corporation Method to selectively remove one side of a conductive bottom electrode of a phase-change memory cell and structure obtained thereby
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6437383B1 (en) 2000-12-21 2002-08-20 Intel Corporation Dual trench isolation for a phase-change memory cell and method of making same
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6646297B2 (en) 2000-12-26 2003-11-11 Ovonyx, Inc. Lower electrode isolation in a double-wide trench
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US6727192B2 (en) * 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
WO2002091384A1 (en) 2001-05-07 2002-11-14 Advanced Micro Devices, Inc. A memory device with a self-assembled polymer film and method of making the same
US7102150B2 (en) 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6480438B1 (en) 2001-06-12 2002-11-12 Ovonyx, Inc. Providing equal cell programming conditions across a large and high density array of phase-change memory cells
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6487113B1 (en) 2001-06-29 2002-11-26 Ovonyx, Inc. Programming a phase-change memory with slow quench time
US6462984B1 (en) 2001-06-29 2002-10-08 Intel Corporation Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6642102B2 (en) 2001-06-30 2003-11-04 Intel Corporation Barrier material encapsulation of programmable material
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6576543B2 (en) * 2001-08-20 2003-06-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method for selectively depositing diffusion barriers
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
WO2003021589A1 (en) * 2001-09-01 2003-03-13 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
AU2002362662A1 (en) 2001-10-09 2003-04-22 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
WO2003036736A2 (en) 2001-10-26 2003-05-01 Axon Technologies Corp. Tunable cantilever apparatus and method for making same
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6873538B2 (en) 2001-12-20 2005-03-29 Micron Technology, Inc. Programmable conductor random access memory and a method for writing thereto
US6625054B2 (en) 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6667900B2 (en) 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6909656B2 (en) 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US20030143782A1 (en) 2002-01-31 2003-07-31 Gilton Terry L. Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures
US6867064B2 (en) 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6849868B2 (en) * 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
TWI224403B (en) 2002-03-15 2004-11-21 Axon Technologies Corp Programmable structure, an array including the structure, and methods of forming the same
US6660136B2 (en) * 2002-03-27 2003-12-09 Micron Technology, Inc. Method of forming a non-volatile resistance variable device and method of forming a metal layer comprising silver and tungsten
US20040014314A1 (en) * 2002-04-24 2004-01-22 Brooks Joseph F. Evaporative deposition with enhanced film uniformity and stoichiometry
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US7015494B2 (en) * 2002-07-10 2006-03-21 Micron Technology, Inc. Assemblies displaying differential negative resistance
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter
US7799180B2 (en) * 2003-11-14 2010-09-21 Micron Technology, Inc. Silver selenide sputtered films and method and apparatus for controlling defect formation in silver selenide sputtered films

Also Published As

Publication number Publication date
US7049009B2 (en) 2006-05-23
US20080210921A1 (en) 2008-09-04
WO2004020683A2 (en) 2004-03-11
US9552986B2 (en) 2017-01-24
CN1871662B (zh) 2010-05-05
KR20050059097A (ko) 2005-06-17
EP1573081A2 (en) 2005-09-14
JP4164068B2 (ja) 2008-10-08
AU2003270012A1 (en) 2004-03-19
KR100741941B1 (ko) 2007-07-24
US20050098428A1 (en) 2005-05-12
AU2003270012A8 (en) 2004-03-19
WO2004020683A3 (en) 2005-10-20
KR20070038178A (ko) 2007-04-09
KR100782244B1 (ko) 2007-12-05
KR100669611B1 (ko) 2007-01-16
US20140224646A1 (en) 2014-08-14
KR100732498B1 (ko) 2007-06-27
KR20070036803A (ko) 2007-04-03
US20040040835A1 (en) 2004-03-04
KR20060106937A (ko) 2006-10-12
EP1573081A3 (en) 2005-12-07
KR20060106936A (ko) 2006-10-12
US7364644B2 (en) 2008-04-29
JP2006503977A (ja) 2006-02-02
KR100669612B1 (ko) 2007-01-16

Similar Documents

Publication Publication Date Title
US9552986B2 (en) Forming a memory device using sputtering to deposit silver-selenide film
JP4805648B2 (ja) 半導体薄膜及びその製造方法
US8821697B2 (en) Silver selenide sputtered films and method and apparatus for controlling defect formation in silver selenide sputtered films
US6858465B2 (en) Elimination of dendrite formation during metal/chalcogenide glass deposition
JP4168689B2 (ja) 薄膜積層体
JPH0950712A (ja) 透明導電膜及びその形成方法
Shimizu et al. Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering
US7138290B2 (en) Methods of depositing silver onto a metal selenide-comprising surface and methods of depositing silver onto a selenium-comprising surface
JP2004292873A (ja) 酸化亜鉛膜の製造方法
Li et al. Effects of Nb doping on switching-voltage stability of zinc oxide thin films
JP2012219330A (ja) 相変化メモリの形成装置、及び相変化メモリの形成方法
Shy et al. Structural and electrical characteristics of Ba (Zr0. 12Ti0. 88) O3 thin films deposited on LaNiO3 electrode by RF magnetron sputtering
Ishibashi et al. Large area deposition of ITO films by cluster type sputtering system
Hayashi et al. A very-high-conductivity of in-doped CdTe film
JP2000243160A (ja) 透明導電積層体の製造方法
CN110729401B (zh) Ga-Sb-O相变材料及其应用与制备方法
JP2003342068A (ja) 酸化物焼結体
Barron et al. Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition
Axelevitch et al. Investigation of conductive transparent In/sub 2/O/sub 3/thin films deposited by triode sputtering
Sanchez Coating materials news
Nakagawa et al. On Dominant Factors for C-Axis Orientation of Co-Cr Films in Sputter-Deposition
Krupanidhi Low Energy Ion Bombardment Induced Effects in Multi-Component Electroceramic Thin Films
GB2046003A (en) Improvements Relating to Electrolytic Cells
CN1523130A (zh) 一种金属-有机络合物电双稳态薄膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20130828