CN1898185A - 甲苯甲基化工艺 - Google Patents

甲苯甲基化工艺 Download PDF

Info

Publication number
CN1898185A
CN1898185A CNA2004800353648A CN200480035364A CN1898185A CN 1898185 A CN1898185 A CN 1898185A CN A2004800353648 A CNA2004800353648 A CN A2004800353648A CN 200480035364 A CN200480035364 A CN 200480035364A CN 1898185 A CN1898185 A CN 1898185A
Authority
CN
China
Prior art keywords
toluene
mole
charging
water
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800353648A
Other languages
English (en)
Other versions
CN100404480C (zh
Inventor
阿辛姆·库马·高希
帕梅拉·哈维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of CN1898185A publication Critical patent/CN1898185A/zh
Application granted granted Critical
Publication of CN100404480C publication Critical patent/CN100404480C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种制备二甲苯产品的方法,其通过以下方法而进行:提供反应器,其包含非蒸汽的磷处理的ZSM-5型沸石催化剂。使该催化剂与甲苯/甲醇进料和氢共进料在适于甲苯甲基化的反应器条件下接触。在甲基化反应期间在这样的条件下将水共进料引入反应器,所述条件提供了基本上没有由于这种水的引入而造成的该催化剂结构性铝的损失。

Description

甲苯甲基化工艺
技术领域
本发明通常涉及芳族化合物的烷基化。
背景技术
对二甲苯是一种有价值的被取代的芳族化合物,因为十分需要将其氧化成对苯二甲酸,一种在形成聚酯纤维和树脂中的主要组分。其在工业上可由石脑油加氢处理(催化重整)、石脑油或粗柴油蒸汽裂化和甲苯岐化产生。
用甲醇使甲苯烷基化,其亦称甲苯甲基化,已经在实验室研究中用于产生对二甲苯。已知甲苯甲基化在酸性催化剂、特别是在沸石或沸石型催化剂上发生。特别地,ZSM-5型沸石、沸石β和磷酸硅铝(SAPO)催化剂已经用于该工艺。通常邻(o)-、间(m)-和对(p)-二甲苯的热力学平衡混合物可由甲苯甲基化形成,如由以下反应所举例说明。
Figure A20048003536400041
甲苯                          邻-甲苯               间-甲苯            对-甲苯
在反应温度为约500℃的条件下,邻、间和对二甲苯的热力学平衡组成可分别为约25、50和25mol%。然而这种甲苯甲基化可在很宽的温度范围内发生。副产品如C9+及其他芳香产品可由二甲苯产品的二次烷基化而产生。
通过吸附和异构化循环使对二甲苯可与混合的二甲苯分离。这种循环可能必须重复若干次,因为在平衡混合物中的异构体的浓度低。期望的是高纯度级(99+%)对二甲苯的氧化以产生对苯二甲酸。然而这种高纯度级对二甲苯的生产成本可能是很高的。不同的使用结晶技术的方法能够被使用并且是比较廉价的,其中在最初的二甲苯产品中对二甲苯的浓度是约80%或更高。因此,比平衡浓度更高的对二甲苯可能是所希望的。
如果催化剂具有择形性能,在甲苯甲基化反应中能够获得明显更高量的对二甲苯。通过使沸石孔径变窄、钝化沸石的外表面或控制沸石酸性,在改性沸石催化剂中能够获得择形性能。甲苯甲基化可以在改性的ZSM-5或ZSM-5型沸石催化剂上发生,产生二甲苯产品,其包含比热力学浓度明显更大量的对二甲苯。
在Kaeding等人的“SelecTive AlkylaTion of Toluene withMethanol to Produce para-Xylene”(发表于Journal of Catalysis,第67卷,159-174页,1981年)中,描述了通过混合5%的磷制造ZSM-5催化剂的方法,其中该催化剂用二苯基三价膦酸的甲苯溶液浸渍。这样改性的ZSM-5催化剂显示的甲苯甲基化活性为二甲苯产品中有84-90%的对位异构体。在另一个方法中,通过从含水磷酸试剂中混合8.51%的磷而使催化剂改性。该催化剂显示的对二甲苯的选择性高达97%,然而由于积炭在数小时内该催化剂显示出活性降低。
附图说明
为了更全面理解本发明,结合附图参考以下发明内容,其中:
图1是对于实施例4的甲苯甲基化反应的甲苯转化率和对二甲苯选择性随时间的图表;
图2是对于实施例5的甲苯甲基化反应的甲苯转化率和对二甲苯选择性随时间的图表;
图3是对于实施例6的甲苯甲基化反应的甲苯转化率和对二甲苯选择性随时间的图表;
图4是对于实施例7的甲苯甲基化反应的甲苯转化率和对二甲苯选择性随时间的图表;
图5是对于实施例12的甲苯甲基化反应的甲苯转化率和对二甲苯选择性随时间的图表;和。
图6显示了新AHP处理的ZSM-5和从用于实施例12中描述的甲苯甲基化反应的反应器移出的废催化剂的27Al MAS-NMR光谱。
详细说明
用含磷化合物改性ZSM-5型沸石催化剂显示了生产出比使用未改性催化剂的甲苯甲基化中的热力学平衡值明显更大量的对二甲苯。这种改性提供了大于80%的对二甲苯选择性。虽然这种磷处理的ZSM-5催化剂可以具有高对二甲苯选择性,但是它们往往以非常快的速率失活,例如,催化剂可以在一天内损失其初始活性的50%以上。这可能也许是由于催化剂上的积炭。
如本文中所用的,术语“ZSM-5型”是指那些同ZSM-5沸石同构相同的沸石。另外,术语“ZSM-5”和“ZSM-5型”也可在本文中可互换地使用以相互涵盖并且不应该以限制性意义解释。如本文中所用的,催化活性可以表示为所转化的甲苯的摩尔数相对于所供给的甲苯的摩尔数的百分数,并且可以定义为:
甲苯转化率(摩尔%)=(Ti-T0/Ti)×100               (2)
其中,Ti是所供给的甲苯的摩尔数,而T0是未反应的甲苯的摩尔数。如本文中所用的,总二甲苯的选择性可表示为:
总二甲苯的选择性(摩尔%)=(Xtx/Ti-T0)×100        (3)
其中,Xtx是产品中总(o-,m-或p-)二甲苯的摩尔数。如本文中所用的,对二甲苯的选择性可表示为:
对二甲苯的选择性(摩尔%)=(Xp/Xtx)×100           (4)
其中,Xp是对二甲苯的摩尔数。
已经发现在烷基化反应期间通过将水或蒸汽与甲苯/甲醇进料一起作为共进料引入反应器,当使用非蒸汽的磷处理的ZSM-5型沸石催化剂时,可以使催化剂活性和选择性增加、稳定或使其下降速率降低。如本文中所用的,称沸石催化剂为“非蒸汽的”,用意是包括这样的沸石催化剂,在其用于任何烷基化或甲基化反应前,其未受高温蒸汽(即大于950℃)处理或者经受高温蒸汽(即大于950℃)从而导致催化剂结构的改变。
用于甲基化反应的水或蒸汽可在有或者没有共进料氢的条件下被引入,在烷基化反应启动期间烃供给到反应器或者其可以在最初启动之后被引入。使用所述的具有高对二甲苯选择性的催化剂,本发明特别适用于甲苯甲基化反应。特别地,对二甲苯的选择性可以为约80%、85%、90%或95%或更多,基于二甲苯的总摩尔数。除非另有说明,全部转化率和选择性百分数是以mol%计。
ZSM-5沸石催化剂和其制备方法描述于美国专利3,702,886,其全部内容引入本文作为参考。在本发明中,ZSM-5沸石催化剂可包括改性前具有二氧化硅/氧化铝摩尔比为25-300,更具体地约30-约280的那些。
ZSM-5可以通过用含磷(P)化合物处理而改性。这种含磷化合物可包括膦酸、三价膦酸、亚磷酸和磷酸,所述酸的盐和酯,以及卤化磷(phosphorous halide)。特别地,磷酸(H3PO4)和磷酸氢铵((NH4)2HPO4)可用作所述含磷化合物,以提供具有择形性能的甲苯甲基化催化剂来获得高对二甲苯浓度。这种改性的催化剂可包含磷,其量为约0.01-约0.15克磷/克沸石,更具体地说为约0.02-约0.13克磷/克沸石。该磷改性的沸石可在约500-570℃的温度下焙烧。催化剂可具有170-200m2/g的BET表面积和0.10-0.18毫升/克催化剂的孔隙度。该催化剂可具有弱酸性,显示出宽峰,在250℃-350℃具有峰最大值,如由氨程序升温脱附(NH3-TPD)技术所表征。
改性沸石催化剂可与粘合剂如矾土、粘土和硅石粘合。粘合的催化剂可在450℃-570℃的温度焙烧。用于制备粘合的催化剂的技术在本领域中是众所周知的。
在进行甲苯甲基化反应时,反应的启动可包括特别短时间的启动条件,然后该启动条件可被调节到运行条件,该运行条件可通常持续长时间。这些启动条件可包括向含磷处理的ZSM-5催化剂的反应器的最初的甲苯/甲醇进料来提供约1hr-1至约90hr-1的最初的液时空速(LHSV),更具体地说为约1至约70hr-1。在引入反应器前,该甲苯和甲醇进料可被预混合,作为单个的混合进料物流。进料也可包含少量的水、C9+芳族化合物及其他化合物。然而,在本文中所述的液时空速是基于甲苯/甲醇进料,而不含任何其他组分。在进料中甲苯/甲醇摩尔比可为0.5-10.0,更具体地说为1.0-5.0。另外,最初的共进料氢气(H2)以氢/烃(H2/HC)摩尔比小于约10提供,更具体地说为约0.1-约8。除非另作说明,在本文中所述的全部H2/HC比都是摩尔比。在本文中所用的反应器温度是指催化剂床入口温度,并且在启动时反应器温度为400℃-700℃。
为有助于提高催化剂活性和选择性而引入的水可以在反应启动期间引入,但也可以在最初启动后被引入。但不论是哪种情况,液态水可以被添加并且在其与氢共进料(如果有的话)和烃进料混合前被汽化。
在启动和正常运行阶段,反应器压力可保持大致恒定。反应器压力可变化,但一般地为约10-约50psig,更具体地说为约20-约50psig。
该反应可在固定床连续流动型反应器中以降流方式进行。单个或多个串联和/或并联的反应器适于进行该反应。在启动期间,反应器温度可逐渐地上升。最初,当将进料引入反应器时,反应器温度可为约200℃或以上。然后,温度可被增加到最终的期望温度。该温度可以以约1℃/分钟-约10℃/分钟的速度逐渐上升,来提供约400℃-约700℃的最终的启动反应器温度。
这种启动条件可被保持一段特定的时间,其后,可以将条件调节至“运行条件”以获得稳定的甲苯转化率和对二甲苯选择性。不同的启动条件的应用描述于未决美国专利申请No.10/632254中,其引入本文作为参考。这种调节可包括减小烃进料速率(即减小LHSV)和增加氢速率(即增加H2/HC摩尔比)。在运行条件期间温度可被保持在约400℃-约700℃。
被引入反应器的水可被进料到反应器,以比率为从约0.2至或更多,并且可以为小于约10摩尔水每摩尔烃,更具体地说,从约0.3至约5、6或7摩尔水每摩尔烃。在某些情况中,水可以以从约0.2至1.2摩尔水每摩尔烃的比率进料,更具体地说,从约0.3至约0.8摩尔水每摩尔烃。作为共进料添加的水(或蒸汽)可以与氢共进料结合或者不与氢共进料结合。如实施例所证明的,由于蒸汽共进料所造成的活性和选择性的提高不能被在进料中添加相同摩尔数的氢所代替。
水被进料到反应器,其中,条件是使得由于在反应器内存在这种附加水导致基本上没有催化剂结构性铝(structural aluminum)的损失。
以下实施例更好地用于举例说明本发明。
实施例
以下实施例中的反应在固定床流动型反应器中以降流方式进行,其中甲苯和甲醇在引入反应器前进行预混合。液态水单独地被添加并且在其与烃进料和氢气(如果有的话)混合前被汽化。ZSM-5沸石催化剂使用磷酸(实施例1-11)或者磷酸氢铵(实施例12)进行处理。ZSM-5沸石催化剂最初利用NH4-ZSM-5沸石粉末,在磷处理前其二氧化硅/氧化铝(SiO2/Al2O3)摩尔比为约280。然后将其焙烧以形成H-ZSM-5沸石。如此改性的ZSM-5沸石催化剂不进行任何进一步的改性如蒸汽加工或脱铝。
通过将约50g的NH4-ZSM-5沸石粉末和100-150毫升的去离子水在400毫升烧杯中混合而进行利用磷酸的ZSM-5沸石催化剂的制备。然后其被置于加热板上,使用磁搅拌棒搅拌该沸石悬浮液。该悬浮液温度保持在约100℃。然后将磷酸(15.8g,85wt%水溶液)滴加到烧杯。继续加热直到水完全汽化。在马弗炉中在大约110℃干燥该改性沸石至少4小时。然后在510或530℃在空气中焙烧该改性沸石。该焙烧过的沸石然后被压碎并且筛分至20/40筛目。这样合成的最终的催化剂具有以下性能:BET表面积为约190m2/g,孔隙度为约0.139ml/g,平均孔径为约29埃。
在实施例3中,所用的磷酸处理的ZSM-5沸石催化剂用氧化铝粘合。约5.6g氧化铝(勃姆石晶体,还称作假勃姆石)通过与约2.0g的硝酸(70%水溶液)强力混合而胶溶。然后使约22.4g的改性的ZSM-5沸石粉末(前面段落中所述的)与该胶溶的氧化铝混合,并且通过混合和喷水制成捏塑体。该捏塑体被制成小块,然后在最高温度为530℃的可编程序温度分布图下焙烧至少6小时。该焙烧的催化剂尺寸为20-40筛目。
对于磷酸氢铵(AHP)处理的ZSM-5沸石催化剂(实施例12),制备了去离子水中的铵离子交换的ZSM-5沸石的浆料。该浆料然后被加热到约80℃,并且向其中加入AHP(0.24克AHP/克ZSM-5粉末)。该混合物然后被加热到约100℃以基本上汽化全部的水。所得的沸石然后在烤箱中在大约90-120℃的温度下干燥过夜。然后在约530℃在空气中焙烧该干燥的沸石。不使用粘合剂来形成该催化剂。该改性的ZSM-5经过筛分以形成20-40筛目。这样合成的最终的催化剂具有以下性能:BET表面积为约190m2/g,孔隙度为约0.139ml/g,平均孔径为约29埃。
在实施例1-12中,反应器由外径为约1/2英寸的不锈钢管组成。0.5ml-6.0ml的催化剂装料被放置在管式反应器内其中点附近。惰性材料如碳化硅SiC层被添加到催化剂床的两端。通过以期望的比率混合甲苯和甲醇而制备进料。然后以预定速率泵送进料。氢气以预定速率被添加到进料中以保持所选的H2/HC比。液态水以预定速率被添加并且在其与烃进料和氢气(如果有的话)混合前被汽化。
在使用蒸汽作为共进料的甲苯甲基化反应中使用超过500小时(如实施例4和12所述)以后,废催化剂从反应器取出并且通过在510℃在空气中燃烧焦炭而使催化剂除焦。然后通过幻角自旋(MAS)固态NMR光谱对催化剂进行27Al分析。如在实施例12结尾所示,27Al NMR光谱研究表明,在蒸汽共进料存在下,在甲苯甲基化反应期间,改性的ZSM-5沸石没有出现结构性铝的损失。
实施例1
3.0ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。在本实施例中,启动和运行条件保持相同。摩尔比为2∶1的甲苯/甲醇进料以约3.09ml/分钟的速率引入,产生约62hr-1的LHSV。以一定的速率使用共进料H2以产生约0.1的H2/HC摩尔比。以约0.65摩尔H2O/摩尔HC进料随该进料一起引入水。运行条件和结果示于以下表1A和1B中。
表1A
  运行条件
  催化剂进料启动正常运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV62,H2/HC=0.1,T 450℃与启动相同与HC进料同时启动
表1B
  蒸汽时间,小时   2.2   3.2   4.2
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   45024620.110.651.0107.21084.6005.550.540.480.190.320.096.7984.47   44826620.110.651.8104.28083.3008.800.570.470.260.330.189.8789.43   45326620.110.651.9105.45081.3209.660.580.470.260.34010.7290.20
a基于甲苯和甲醇进料
如可从以上数据看出,在较高的LHSV和在约450℃的温度下,催化剂显示了约10%甲苯转化率和约90%对二甲苯选择性。
实施例2
3.0ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。摩尔比为2∶1的甲苯/甲醇预混合进料以约1.53ml/分钟的速率引入,产生约31hr-1的LHSV。以0.11摩尔H2/摩尔HC进料的速率使用共进料H2。在启动时水与烃进料一起被引入并且保持在0.66摩尔H2O/摩尔HC进料。运行条件和结果示于以下表2A和表2B中。
表2A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV31,H2/HC 0.11,T=500℃LHSV31,H2/HC 0.11,T=500℃与HC进料同时启动
表2B
  蒸汽时间,小时   1.5   2.5   3.5
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5102030.60.110.662.370.933.18072.87018.070.900.580.380.560.1619.6392.43   5032030.60.110.662.300.413.07073.45018.100.900.570.390.540.2819.5892.49   5082030.60.110.662.290.253.03073.55018.170.910.580.380.540.3019.6492.42
a基于甲苯和甲醇进料
如可从以上数据看出,当在较高的LHSV和在约500℃的温度下运行时,催化剂显示了约20%甲苯转化率和大于90%对二甲苯选择性。
实施例3
0.90ml粘合的催化剂装料被装填到反应器中,80%为活性催化剂。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。摩尔比为2∶1的甲苯/甲醇预混合进料以约0.39ml/分钟的速率引入,产生约26hr-1的LHSV。以0.11摩尔H2/摩尔HC进料的速率使用共进料H2。在启动时水与烃进料一起被引入并且保持在0.82摩尔H2O/摩尔HC进料。运行条件和结果示于以下表3A和表3B中。
表3A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,氧化铝粘合的2∶1比率LHSV26,H2/HC 0.11,T=500℃LHSV26,H2/HC 0.11,T=500℃与HC进料同时启动
表3B
  蒸汽时间,小时   1.6   2.6   4.1
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5012126.10.110.822.351.9413.44075.5905.630.240.170.200.160.287.0393.21   4971926.10.110.822.202.219.20079.4805.570.290.240.240.220.356.9091.31   5052226.10.110.822.322.478.28080.1705.470.290.240.210.200.356.7091.17
a基于甲苯和甲醇进料
当在较高的LHSV和在约500℃的温度下运行时,氧化铝粘合的ZSM-5催化剂显示了约7%甲苯转化率和大于90%对二甲苯选择性。
实施例4
5.4ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。不同的启动和运行条件被用于本实施例。在启动时,摩尔比为2∶1的甲苯/甲醇预混合进料以约3.1ml/分钟的速率引入产生约34hr-1的最初LHSV。以一定速率使用最初共进料H2以产生约0.10的H2/HC摩尔比。在约1.8小时以后,启动运行条件,其中调节甲苯/甲醇进料以提供约2hr-1的LHSV,H2/HC摩尔比为约7-8。在最初阶段后,烃进料速率和共进料H2保持大致恒定。在启动后约23小时引入水,其速率是变化的(见表4B)。运行条件和结果示于以下表4A和表4B以及图1中。
表4A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的,非粘合的2∶1比率LHSV34,H2/HC=0.1,T 500℃LHSV2,H2/HC 7-8,T=500℃23小时后启动,在运行期间变化
表4B
  蒸汽时间,小时   1.8   27.3   123.3   171.3   291.3   380.8   507.3   549.8   668.8   699.8   819.3
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5032234.40.1001.390.992.49079.390.0711.291.010.790.350.781.4614.3386.25   500222.17.8102.372.084.58075.78011.211.231.100.211.200.2614.6482.79   500202.08.100.811.860.653.41072.90017.381.261.000.271.130.1519.9988.49   501202.17.770.782.970.853.72072.45016.601.140.900.241.010.1319.2089.06   502211.98.810.872.010.513.06072.65017.991.280.960.281.110.1520.4988.93   501212.07.910.251.681.314.65076.05012.441.251.110.211.110.1815.5384.05   502212.17.920.251.751.726.11076.38010.471.151.060.171.020.1713.6182.57   503222.08.030.751.631.484.80074.81013.561.231.050.211.060.1616.5585.61   503222.07.900.751.680.804.92074.51014.361.221.030.221.110.1517.2686.45   504212.27.460.701.881.084.74074.25014.491.190.970.221.040.1517.2887.03   504222.27.221.132.630.895.31073.6414.441.030.840.200.890.1217.0088.53
a基于甲苯和甲醇进料
在启动时,没有水进料,最初甲苯转化率和对二甲苯选择性分别是约15%和86%。当LHSV和H2/HC的比率转变为运行条件时,对二甲苯选择性逐渐降低。参考图1,作为共进料所添加的水的量在标记为A-E的部分中变化,其中
A=无水
B=约0.8摩尔H2O/摩尔HC进料
C=约0.25摩尔H2O/摩尔HC进料
D=约0.8摩尔H2O/摩尔HC进料
E=约1.1摩尔H2O/摩尔HC进料
当以约0.8-0.9摩尔H2O/摩尔HC进料添加水时,对二甲苯选择性显著增加。当降低水量至约0.25摩尔H2O/摩尔HC进料时,对二甲苯选择性略微下降,但当被调节回到约0.7-0.8摩尔H2O/摩尔HC进料时,对二甲苯选择性增加。
实施例5
4.1ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。不同的启动和运行条件被用于本实施例。在启动时,摩尔比为2∶1的甲苯/甲醇预混合进料以约2.74ml/分钟的速率引入,产生约40hr-1的最初LHSV。以一定速率使用最初共进料H2以产生约0.1的H2/HC摩尔比。在约2.5小时以后,启动运行条件,其中调节甲苯/甲醇进料以提供约2hr-1的LHSV,H2/HC摩尔比为约7-8。在启动后约2.5小时引入水,并保持在0.6-0.7摩尔H2O/摩尔HC进料。运行条件和结果示于以下表5A和表5B以及图2中。
表5A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV40,H2/HC=0.1,T 500℃LHSV2,H2/HC 7-8,T=500℃在500℃,1小时后启动
表5B
  蒸汽时间,小时   2.5   20.2   26.2   68.2   146.2   164.2   188.2
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5032440.20.0901.090.422.91073.210.0718.831.230.790.400.940.1120.8390.30   506192.17.550.642.750.764.53070.93017.281.280.940.261.130.1520.3288.64   503222.07.890.672.801.034.39070.00018.211.260.870.261.050.1321.1389.57   502212.17.720.651.820.564.65069.95019.271.310.910.281.110.1322.0789.65   500212.08.080.691.590.314.25071.01019.061.310.920.281.130.1421.6989.49   500202.07.710.661.170.465.491770.64018.541.270.920.271.100.1321.3189.42   502212.17.700.652.330.625.13070.10018.261.240.870.261.060.1321.1489.62
a基于甲苯和甲醇进料
在启动时,没有水进料,最初甲苯转化率和对二甲苯选择性分别是约21%和90%。参考图2,当以0.6-0.7摩尔H2O/摩尔HC进料添加水时,甲苯转化率和对二甲苯选择性保持较稳定,甚至在转变成运行条件后。
实施例6
5.4ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。不同的启动和运行条件被用于本实施例。在启动时,摩尔比为2∶1的甲苯/甲醇进料以约3.08ml/分钟的速率引入,产生约34hr-1的最初LHSV。以一定速率使用最初共进料H2以产生约0.1的H2/HC摩尔比。在约2小时以后,启动运行条件,其中调节甲苯/甲醇进料以提供约2hr-1的LHSV,H2/HC摩尔比为约7-8。在启动后约124小时引入水,并保持在约0.75摩尔H2O/摩尔HC进料。运行条件和结果示于以下表6A和表6B以及图3中。
表6A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV34,H2/HC=0.1,T 500℃LHSV2,H2/HC 7-8,T=500℃在500℃,124小时后启动
表6B
  蒸汽时间,小时   2.3   4.3   99.8   123.8   141.3   165.8   189.3   195.8
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5002234.30.1102.140.271.93072.630.0717.602.051.430.341.360.1821.4083.52   502212.07.9401.301.814.96072.64014.571.741.340.251.240.1718.5782.57   500212.17.6600.901.964.83077.0209.372.062.030.111.470.2614.5079.91   501222.17.9101.541.113.02079.6908.942.001.930.111.420.2413.5669.47   500202.07.920.751.731.165.22073.16013.211.981.750.161.420.2117.9977.98   501222.07.920.751.791.014.29072.90014.282.081.790.181.470.2119.0578.68   543242.17.790.741.430.673.83070.88017.052.311.800.131.710.1821.9280.54   605212.17.740.731.380.762.87072.75016.972.171.510.081.340.1020.8482.15
a基于甲苯和甲醇进料
参考图3,如可以看出,转化率和对二甲苯选择性逐渐降低直到在124小时后以约0.75摩尔H2O/摩尔HC进料添加水时。据此,甲苯转化率和对二甲苯选择性随时间持续增加直到该运行结束。
实施例7
5.4ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。甲苯/甲醇预混合进料的摩尔比为2∶1。不同的启动和运行条件被用于本实施例。在启动时,摩尔比为2∶1的甲苯/甲醇进料以约2.96ml/分钟的速率引入,产生约33hr-1的最初LHSV。以一定速率使用最初共进料H2以产生约0.1的H2/HC摩尔比。在约2.5小时以后,启动运行条件,其中调节甲苯/甲醇进料以提供约2hr-1的LHSV,H2/HC摩尔比为约7-8。在启动后约2.5小时引入水,并保持在约0.75摩尔H2O/摩尔HC进料。在约195小时后,将反应器温度从约500℃调节到约530℃。运行条件和结果示于以下表7A和表7B以及图4中。
表7A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV33,H2/HC=0.1,T 500℃LHSV2,H2/HC 7-8,T=500℃(0-195小时),T=525℃(195-338小时)在500℃,1小时后启动
表7B
  蒸汽时间,小时   2.5   20.2   43.7   74.2   170.2   212.2   236.2   314.2   331.7
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   5032332.90.1100.970.162.75076.11015.441.641.240.321.180.1818.4184.26   506192.17.570.731.730.595.39071.29016.201.671.370.211.350.1920.1984.16   500212.07.850.761.810.505.03070.25017.451.791.390.231.370.1821.5184.56   499222.07.900.761.660.394.47069.88018.331.871.470.251.480.1922.4884.60   502222.07.900.782.790.984.86069.39016.941.741.440.231.440.1921.3884.19   530222.07.750.751.770.484.44072.89016.241.551.130.131.210.1319.4185.84   525232.07.700.761.300.474.51068.63019.821.981.400.201.520.1723.9285.43   527232.07.930.771.080.223.94068.29020.872.101.480.221.620.1824.9985.39   526222.07.730.751.430.294.58068.67019.841.941.390.201.490.1623.8785.62
a基于甲苯和甲醇进料
参考图4,在启动后2.5小时添加水之后,在整个运行期间,甲苯转化率和对二甲苯选择性保持稳定。在图4中标记为A和B的部分中,催化剂床入口温度分别保持在约500℃和525℃。
实施例8
5.4ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。摩尔比为2∶1的甲苯/甲醇预混合进料以约0.46ml/分钟的速率引入,产生约5hr-1的LHSV。以0.22摩尔H2/摩尔HC进料的速率使用共进料H2。在启动时水与烃进料一起被引入并且保持在5.45摩尔H2O/摩尔HC进料。运行条件和结果示于以下表8A和表8B中。
表8A
  运行条件
  催化剂进料启动运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV5,H2/HC 0.22,T=550℃LHSV5,H2/HC 0.22,T=550℃与进料同时启动
表8B
  蒸汽时间,小时   3.6   20.6
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   551235.10.225.451.441.425.69075.11014.001.070.6800.59015.8388.85   552225.10.225.450.970.815.78074.49015.421.180.7500.60017.2488.86
a基于甲苯和甲醇进料
如可从以上数据看出,当LHSV约为5和在约550℃的温度下运行时,催化剂显示了约16%甲苯转化率和约90%对二甲苯选择性。
对比例9
3.0ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。在本实施例中,启动和运行条件保持相同并且没有水被添加到进料中。摩尔比为2∶1的甲苯/甲醇进料以约1.55ml/分钟的速率引入,产生约31hr-1的LHSV。以一定速率使用共进料H2以产生约0.75的H2/HC摩尔比。运行条件和结果示于以下表9A表9B中。
表9A
  运行条件
  催化剂进料启动正常运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV31,H2/HC=0.75,T 500℃与启动相同无
表9B
  蒸汽时间,小时   2.0   3.0   4.0   22.0   28.5
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   50221310.7502.021.493.42084.3406.380.810.730.210.6208.1780.56   50322310.7501.761.743.33080.9909.111.090.920.260.79011.4481.92   50022310.7501.581.793.58081.7508.261.080.940.240.77010.6180.35   49922310.7600.711.495.79085.8003.830.850.800.100.530.115.8380.97   49823310.7500.682.245.57085.0804.000.870.820.100.530.116.0770.30
a基于甲苯和甲醇进料
如可从以上数据看出,在头数小时内,催化剂显示约10%甲苯转化率和大于80%对二甲苯选择性,但是约25小时之后甲苯转化率和对二甲苯选择性均下降。
实施例10
3.0ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。在本实施例中,启动和运行条件保持相同。摩尔比为2∶1的甲苯/甲醇进料以约1.54ml/分钟的速率引入,产生约31hr-1的LHSV。以一定速率使用共进料H2以产生约0.1的H2/HC摩尔比。以约0.65摩尔H2O/摩尔HC进料与该进料一起引入水。在本实施例中,结合的H2和H2O速率被调节以产生约0.75摩尔的总合的H2和H2O/摩尔HC进料。此0.75摩尔共进料/进料摩尔比用于前述的对比例中。运行条件和结果示于以下表10A和表10B中。
表10A
  运行条件
  催化剂进料启动正常运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV31,H2/HC=0.1,T 500℃与启动相同与进料同时启动
表10B
  蒸汽时间,小时   2.2   3.0   4.0   21.0   27.5   45.5   51.5
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   50122310.110.653.060.387.93066.27019.770.970.570.360.69022.5592.77   50121310.110.652.890.171.09071.330.0721.571.100.600.410.77022.8892.69   50222310.110.653.020.181.43070.99021.551.110.610.410.69022.8792.61   50319310.110.651.800.163.13073.19019.061.030.610.360.65020.3992.08   50222310.110.641.570.182.08073.53019.841.080.640.390.67020.9992.02   50722310.110.661.130.181.84076.31017.960.980.620.360.62018.8591.82   50222310.110.661.490.272.58075.91017.170.940.600.360.590.0818.3291.77
a基于甲苯和甲醇进料
如可从以上数据看出,在较高的LHSV和在约500℃的温度下,催化剂显示了约20%甲苯转化率和大于90%对二甲苯选择性。如果将这些结果与对比例9的结果相比,显而易见的是蒸汽与H2的结合使用与仅使用H2作为共进料相比是有利的。
实施例11
3.0ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。在本实施例中,启动和运行条件保持相同。摩尔比为2∶1的甲苯/甲醇进料以约1.71ml/分钟的速率引入,产生约34hr-1的LHSV。在本实施例中,没有使用共进料H2。以约0.75摩尔H2O/摩尔HC进料与该进料一起引入水。在先前实施例中,结合的H2和H2O共进料/进料摩尔比为约0.75。运行条件和结果示于以下表11A表11B中。
表11A
  运行条件
  催化剂进料启动正常运行进料中的水   磷酸处理的ZSM-5,非粘合的2∶1比率LHSV34,H2/HC=0,T 500℃与启动相同与HC进料同时启动
表11B
  蒸汽时间,小时   2.1   3.1   4.1   21.6
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   507203400.751.300.192.43076.52017.190.900.540.390.55018.0892.27   503223400.751.280.192.47076.56017.190.880.530.380.53018.0392.42   503243400.751.300.202.67076.93016.630.860.520.370.52017.4992.39   507203400.751.120.213.10079.17014.240.820.540.330.48015.1691.28
a基于甲苯和甲醇进料
如可从以上数据看出,在较高的LHSV和在约500℃的温度下,催化剂显示了约18%甲苯转化率和大于90%对二甲苯选择性。如果将这些结果与实施例10的结果相比,使用蒸汽而不使用H2共进料显示了相似的效果。
实施例12
5.4ml催化剂装料被装填到反应器中。在引入进料前,催化剂在200℃在H2流下干燥至少1小时。反应器压力保持在约20psig。不同的启动和运行条件被用于本实施例。在启动时,摩尔比为2∶1的甲苯/甲醇进料以约3.06ml/分钟的速率引入,产生约34hr-1的最初LHSV。以一定速率使用最初共进料H2以产生约0.1的H2/HC摩尔比。在约2小时以后,启动运行条件,其中调节甲苯/甲醇进料以提供约2hr-1的LHSV,H2/HC摩尔比为约7-8。在启动后约44小时引入水,并且其速率有变化(见表12B)。反应条件和结果示于以下表12A和表12B以及图5中。
表12A
  运行条件
  催化剂进料启动正常运行进料中的水   磷酸氢铝处理的ZSM-5,非粘合的2∶1比率LHSV34,H2/HC=0.1,T 500℃LHSV2,H2/HC 7-8,T=500℃4小时后启动,在运行期间变化
表12B
  蒸汽时间,小时   3.8   27.3   44.3   51.3   140.8   164.8   284.8   332.8   453.8   483.3   507.3
  催化剂床的入口温度,℃入口压力,psigLHSVaH2,摩尔/摩尔HC进料H2O,摩尔/摩尔HC进料产品分布,wt%C5-二甲醚甲醇苯甲苯乙苯对二甲苯(PX)间二甲苯(MX)邻二甲苯(OX)乙基甲苯三甲基苯C10+甲苯转化率,摩尔%总二甲苯中的%PX   504192.10.1102.354.607.19077.0307.600.330.260.190.320.138.9792.73   502222.17.5601.783.316.30079.8507.000.500.440.150.560.128.6088.23   502222.17.9201.243.055.96081.1606.730.540.470.150.580.128.3286.95   503202.07.960.771.671.655.16080.3109.270.540.470.190.610.1210.7090.16   503192.17.890.761.761.816.93078.6109.330.430.350.170.450.1710.6492.29   502202.17.890.761.851.836.34078.6209.750.440.370.170.470.1511.0592.34   503212.08.040.771.731.445.97078.25010.950.480.410.200.500.0812.1992.51   503232.17.970.251.252.227.13079.1508.500.520.440.160.530.1010.0289.87   504202.17.850.251.252.888.78079.1306.490.440.390.110.450.087.9688.72   507232.17.840.250.992.487.24080.9606.640.510.450.120.520.108.1187.47   503202.17.960.251.523.738.80079.0305.510.430.390.090.430.087.0087.07
a基于甲苯和甲醇进料
参考图5,作为共进料所添加的水的量在标记为A-C的部分中变化,其中:
A=无水
B=约0.8摩尔H2O/摩尔HC进料
C=约0.25摩尔H2O/摩尔HC进料
在进料中没有水,最初甲苯转化率和对二甲苯选择性分别是约9%和92%。在LHSV和H2/HC被调节至运行条件后,甲苯转化率和对二甲苯选择性逐渐地降低。在添加水以后,甲苯转化率和对二甲苯选择性增加。当水量降低至0.25摩尔H2O/摩尔HC进料时,观察到甲苯转化率和对二甲苯选择性降低。
废催化剂分析
分析废催化剂以确定是否由于脱铝而使其结构发生变化,由于在甲苯甲基化反应期间所形成的水或由于在甲苯甲基化反应期间与进料一起所添加的水使得可能出现所述脱铝。使用以下仪器操作条件进行幻角自旋(MAS)固态NMR研究:400MHz分光计(27Al,在104.5MHz),室温,氮化硅转子(Si3N4),13-14KHz样品自旋(约800000rpm),10度倾斜以避免饱和以及4000-10000扫描信号平均值。在检测期间未使用质子去耦。全部光谱参考化学位移标尺上的0.0ppm处的氯化铝六水合物(单独地在试管中进行)。这在氮化铝(氮化硅转子中的少量杂质)上产生内标104.85ppm。
在使用蒸汽作为共进料的甲苯甲基化反应中,在使用超过500小时以后,从反应器中取出实施例4和12的废催化剂。该催化剂在510℃在空气中通过燃烧焦炭而除焦。然后通过幻角自旋(MAS)固态NMR光谱对催化剂进行27Al分析。
图6显示了实施例12的新的和废的磷酸氢铵(AHP)处理的ZSM-5催化剂的光谱。该新催化剂样品的NMR光谱(光谱a)在55-50ppm区中显示了四面体结构的铝峰并且该光谱严重变形,表明当除去一些骨架铝时结构中的孔穴所致的嵌套硅醇的存在。在30-40ppm处的相邻峰严重变形但仍然在骨架中,这归于铝原子可能与氧或3或5配位。在-12ppm处,光谱中的最大峰来自八面配位的铝原子。
就废催化剂(光谱b)来说,与新样品相比,在53ppm处骨架铝的共振被更清晰地分辨,这表明缺陷结构的某些退火可能已经发生。如果嵌套的硅醇缩合形成Si-O-Si结构,释放骨架中的应力,则发生了这种退火。在-12ppm处,非骨架八面体的铝共振在光谱中还是最强烈的并且是轮廓分明的共振,这表明显著的再水合已经发生。如果水是反应历程的一部分,则观察到这种现象。因此可知,对于新和废催化剂样品而言,在表明结构性铝(四面体铝)的峰强度方面,没有观察到显著的差异。
此外,在从反应器取出后对实施例4的磷酸(PA)处理的ZSM-5催化剂进行了27Al NMR分析。如就AHP处理的催化剂而言,废的PA处理的催化剂在54ppm处显示了骨架铝峰(未示出光谱)。与上述样品相比,3-或5-配位的铝(在30-40ppm处的宽共振)在强度上明显更高。存在3个不同的八面体的(六配位)非骨架铝物质,在-11ppm和-20ppm处所见。它们全部在一定程度上呈现出被水合(铝与不同数目的水分子配位)。
从MAS NMR光谱研究断定,对于新和废催化剂样品而言,在表明结构性(四面体铝)的峰强度方面,没有观察到显著的差异。因此断定在甲苯甲基化反应期间所形成的水或与进料一起所添加的水未造成沸石结构性铝的损失。
虽然本发明仅以其一些形式说明,但对于本领域技术人员将显而易见的是其不如此受限,而是在不背离本发明范围的前提下易于进行各种变化和变型。因此,适宜的是所附权利要求应被宽泛地并且以与本发明范围一致的方式进行理解。

Claims (21)

1.一种制备二甲苯产品的方法,其包括:
(a)提供反应器,其包含非蒸汽的磷处理的ZSM-5型沸石催化剂;
(b)使该催化剂与甲苯/甲醇进料和氢共进料在适于甲苯甲基化的反应器条件下接触;和
(c)在甲基化反应期间在这样的条件下将水共进料引入反应器,所述条件提供了基本上没有由于这种水的引入而造成的该催化剂结构性铝的损失。
2.权利要求1的方法,其中:
该共进料水与最初进料一起被引入。
3.权利要求1的方法,其中:
该共进料水在甲苯甲基化反应已经启动后被引入。
4.权利要求1的方法,其中:
以从约0.2摩尔至小于约10摩尔水/摩尔HC进料,将该共进料水进料到反应器中。
5.权利要求1的方法,其中:
以0.3摩尔至约7摩尔水/摩尔HC进料,将该共进料水进料到反应器中。
6.权利要求1的方法,其中:
该反应器具有保持在小于700℃的催化剂床入口温度。
7.权利要求1的方法,其中:
该磷处理过的ZSM-5型沸石催化剂具有约0.01克磷/克沸石至约0.15克磷/克沸石的总磷含量。
8.权利要求1的方法,其中:
该方法提供二甲苯产品,其对二甲苯含量为至少80%,基于二甲苯总摩尔计。
9.权利要求1的方法,其中:
该甲苯/甲醇进料具有的甲苯/甲醇摩尔比为约1∶2-约10∶1。
10.权利要求1的方法,其中:
该ZSM-5型沸石催化剂用磷酸和磷酸氢铵中的至少一种来处理。
11.权利要求1的方法,其中:
该反应器具有保持在约400℃-约600℃的催化剂床入口温度。
12.权利要求1的方法,其中:
该催化剂在磷处理前的二氧化硅/氧化铝摩尔比为约25-约300。
13.权利要求1的方法,其中:
该催化剂是粘合的催化剂。
14.一种制备二甲苯产品的方法,其包括:
提供固定床反应器,该固定床反应器包含磷处理的ZSM-5型沸石催化剂,所述催化剂的总磷含量为约0.01克磷/克沸石-约0.15克磷/克沸石并且在磷处理前的二氧化硅/氧化铝摩尔比为约25-约300;
使该催化剂与甲苯/甲醇进料和氢共进料在适于甲苯甲基化的反应器条件下接触;和
在甲基化反应期间在这样的条件下将数量为约0.2-小于约10摩尔水/摩尔烃的水引入反应器,所述条件提供了基本上没有由于这种水的引入而造成的该催化剂结构性铝的损失,
从而产生二甲苯产品,所述二甲苯产品的对二甲苯含量为至少80%,以二甲苯总摩尔计,并且其中该催化剂床入口温度小于700℃。
15.权利要求14的方法,其中:
该水与最初甲苯/甲醇HC进料一起被引入。
16.权利要求14的方法,其中该水在甲苯甲基化反应已经启动后被引入。
17.权利要求14的方法,其中:
以约0.3至约7摩尔/摩尔烃的比率,将该水进料到反应器中。
18.权利要求14的方法,其中:
该甲苯/甲醇进料具有的甲苯/甲醇摩尔比为约1∶2-约10∶1。
19.权利要求14的方法,其中:
该ZSM-5型沸石催化剂用磷酸和磷酸氢铵中的至少一种来处理。
20.权利要求14的方法,其中:
该反应器具有保持在约400℃-约700℃的催化剂床入口温度。
21.权利要求14的方法,其中:
该催化剂是粘合的催化剂。
CNB2004800353648A 2003-09-30 2004-09-30 甲苯甲基化工艺 Expired - Fee Related CN100404480C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/675,780 US7060864B2 (en) 2003-09-30 2003-09-30 Toluene methylation process
US10/675,780 2003-09-30

Publications (2)

Publication Number Publication Date
CN1898185A true CN1898185A (zh) 2007-01-17
CN100404480C CN100404480C (zh) 2008-07-23

Family

ID=34377268

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800353648A Expired - Fee Related CN100404480C (zh) 2003-09-30 2004-09-30 甲苯甲基化工艺

Country Status (7)

Country Link
US (2) US7060864B2 (zh)
EP (1) EP1675808B1 (zh)
JP (2) JP2007507525A (zh)
KR (1) KR100802690B1 (zh)
CN (1) CN100404480C (zh)
MY (1) MY139626A (zh)
WO (1) WO2005033071A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701899A (zh) * 2012-06-21 2012-10-03 大连理工大学 甲苯甲醇烷基化生产对二甲苯节能减排工艺
CN102875317A (zh) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 生产对二甲苯的方法
CN102875318A (zh) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 生产对二甲苯的反应-再生装置
CN102951993A (zh) * 2012-11-19 2013-03-06 同济大学 提高甲苯与甲醇烷基化合成二甲苯反应稳定性的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060864B2 (en) * 2003-09-30 2006-06-13 Saudi Basic Industries Corporation Toluene methylation process
US7285511B2 (en) * 2004-04-23 2007-10-23 Saudi Basic Industries Corporation Method of modifying zeolite catalyst
US7399727B2 (en) * 2004-04-23 2008-07-15 Saudi Basic Industries Corporation Zeolite catalyst and method
US7304194B2 (en) * 2005-05-05 2007-12-04 Saudi Basic Industries Corporation Hydrothermal treatment of phosphorus-modified zeolite catalysts
US7368410B2 (en) * 2005-08-03 2008-05-06 Saudi Basic Industries Corporation Zeolite catalyst and method of preparing and use of zeolite catalyst
US7662737B2 (en) * 2005-12-22 2010-02-16 Saudi Basic Industries Corporation Bound phosphorus-modified zeolite catalyst, method of preparing and method of using thereof
US7834227B2 (en) * 2006-12-29 2010-11-16 Uop Llc Aromatics co-production in a methanol-to-propylene unit
US8115041B2 (en) * 2008-04-02 2012-02-14 Saudi Basic Industries Corporation Pretreatment of a phosphorus-modified zeolite catalyst for an aromatic alkylation process
US8846559B2 (en) * 2008-11-03 2014-09-30 Saudi Basic Industries Corporation Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
US8558046B2 (en) * 2009-05-28 2013-10-15 Saudi Basic Industries Corporation Aromatic alkylation process
US8062987B2 (en) * 2009-10-05 2011-11-22 Saudi Basic Industries Corporation Phosphorus-containing zeolite catalysts and their method of preparation
US8399727B2 (en) * 2009-10-21 2013-03-19 Exxonmobil Chemical Patents Inc. Production of para-xylene by the methylation of benzene and/or toluene
US20110137099A1 (en) * 2009-12-08 2011-06-09 Saudi Basic Industries Corporation Aromatic alkylation process
BRPI1103071B1 (pt) * 2010-06-11 2019-04-02 China Petroleum & Chemical Corporation Processo para síntese de etil benzeno a partir de etanol e benzeno
SG10201602933TA (en) 2011-10-17 2016-05-30 Exxonmobil Res & Eng Co Phosphorus Modified Zeolite Catalysts
US9278342B2 (en) 2012-07-02 2016-03-08 Saudi Basic Industries Corporation Method of modifying a phosphorus-containing zeolite catalyst
US9314779B2 (en) 2012-08-09 2016-04-19 Saudi Basic Industries Corporation Method of making a catalyst and catalyst made thereby
US8969643B2 (en) 2013-05-23 2015-03-03 Saudi Basic Industries Corporation Method for conversion of aromatic hydrocarbons
EP3036211B1 (en) * 2013-08-23 2019-09-25 Hindustan Petroleum Corporation Ltd. A process for the preparation of isomers of xylene
US9783462B2 (en) 2013-09-10 2017-10-10 Saudi Basic Industries Corporation Toluene methylation with transalkylation of heavy aromatics
US9364815B2 (en) 2013-11-07 2016-06-14 Saudi Basic Industries Corporation Method of preparing an alumina catalyst support and catalyst for dehydrogenation reactions, and its use
US10532962B2 (en) 2016-02-02 2020-01-14 Sabic Global Technologies B.V. Conversion of shale gas to aromatics
US11208365B2 (en) 2016-12-20 2021-12-28 Uop Llc Processes and apparatuses for methylation of aromatics in an aromatics complex
US11130719B2 (en) 2017-12-05 2021-09-28 Uop Llc Processes and apparatuses for methylation of aromatics in an aromatics complex
US11130720B2 (en) 2018-03-23 2021-09-28 Uop Llc Processes for methylation of aromatics in an aromatics complex
CN113526520B (zh) * 2020-04-13 2023-01-13 中国石油化工股份有限公司 一种磷改性zsm-5分子筛及其制备方法

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3965207A (en) * 1975-01-06 1976-06-22 Mobil Oil Corporation Selective production of para-xylene
US4278827A (en) * 1980-04-07 1981-07-14 Mobil Oil Corporation Shape selective reactions with zeolite catalyst modified with group IVB metal
DE3169731D1 (en) 1980-11-04 1985-05-09 Teijin Petrochem Ind A catalyst composition containing as catalytically active components alumina and a cristalline aluminosilicate zeolite, a process for isomerizing xylenes and ethylbenzene, and use of this catalyst composition
US4704495A (en) 1980-12-29 1987-11-03 Mobil Oil Corporation Catalytic conversions using shape selective metallic catalysts
US4902406A (en) * 1982-04-30 1990-02-20 Mobil Oil Corporation Synthesis of zeolite ZSM-22
US5336478A (en) * 1982-04-30 1994-08-09 Mobil Oil Corp. Highly siliceous porous crystalline material
US5248841A (en) 1982-04-30 1993-09-28 Mobil Oil Corporation Hydrocarbon conversion with ZSM-22 zeolite
US5254767A (en) 1982-04-30 1993-10-19 Mobil Oil Corp. Highly siliceous porous crystalline material and its use in conversion of oxygenates
US5254770A (en) 1982-09-01 1993-10-19 Mobil Oil Corp. Isomerization of aromatic compounds over ZSM-22 zeolite
US4973781A (en) 1982-11-17 1990-11-27 Mobil Oil Corporation Zeolite ZSM-57 and catalysis therewith
US4914067A (en) * 1983-05-02 1990-04-03 Uop Catalytic cracking catalysts and cracking process using mixed catalyst system
US4548914A (en) 1983-08-26 1985-10-22 Mobil Oil Corporation Zeolite catalysts of improved activity and para-selectivity
DE3332563A1 (de) 1983-09-09 1985-03-28 Basf Ag, 6700 Ludwigshafen Verfahren zur entschwefelung von h(pfeil abwaerts)2(pfeil abwaerts)s-haltigen gasen
JPS6067437A (ja) * 1983-09-22 1985-04-17 Teijin Yuka Kk P−キシレンの製造法
US4891197A (en) * 1983-12-19 1990-01-02 Mobil Oil Corporation Silicophosphoaluminates and related crystalline oxides
US4694114A (en) 1984-01-11 1987-09-15 Mobil Oil Corporation Process for isomerizing alkyl aromatic hydrocarbons utilizing ZSM-23 zeolite and a hydrogenation/dehydrogenation metal
US4758328A (en) * 1984-01-17 1988-07-19 Union Oil Company Of California Shock calcined aluminosilicate zeolites
US4623633A (en) 1984-01-17 1986-11-18 Union Oil Company Of California Shock calcined aluminosilicate zeolites
US4716135A (en) 1984-04-09 1987-12-29 Mobil Oil Corporation Organophosphorus-modified zeolites and method of preparation
US4638106A (en) * 1984-07-13 1987-01-20 Exxon Research & Engineering Co. Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
US5047141A (en) 1984-07-16 1991-09-10 Mobil Oil Corporation Larger pore molecular sieves of controlled activity
US4912073A (en) * 1984-07-16 1990-03-27 Mobil Oil Corp. Larger pore molecular sieves of controlled activity
US4873067A (en) 1984-08-21 1989-10-10 Mobil Oil Corporation Zeolite ZSM-57
IL73146A (en) 1984-10-02 1988-11-15 Yeda Res & Dev Catalysts and process for the production of hydrocarbons and substitution of hydrocarbons
US4891467A (en) * 1984-10-15 1990-01-02 Amoco Corporation Selective synthesis of pseudocumene and durene
US4721827A (en) * 1985-02-20 1988-01-26 Aristech Chemical Corportion Crystalline magnesia-silica composites and process for producing same
US4623530A (en) 1985-02-20 1986-11-18 United States Steel Corporation Crystalline magnesia-silica composites and process for producing same
JPS61221137A (ja) * 1985-03-28 1986-10-01 Teijin Yuka Kk P−キシレンの製造法
US4727209A (en) * 1985-06-11 1988-02-23 Uop Inc. Hydrocarbon alkylation processes employing a phosphorus-modified alumina composite
US4665251A (en) * 1985-06-12 1987-05-12 Mobil Oil Corporation Aromatization reactions with zeolites containing phosphorus oxide
US4590321A (en) * 1985-06-12 1986-05-20 Mobil Oil Corporation Aromatization reactions with zeolites containing phosphorus oxide
US4673767A (en) * 1985-11-25 1987-06-16 Amoco Corporation AMS-1B crystalline borosilicate molecular sieve-based catalyst compositions and process for toluene alkylation
US4670616A (en) * 1985-11-25 1987-06-02 Amoco Corporation AMS-1B crystalline borosilicate molecular sieve-based catalyst compositions and process for toluene methylation
US4695666A (en) 1985-12-09 1987-09-22 Uop Inc. Phosphorus-containing alumina catalyst for the isomerization of aromatics
US4746763A (en) * 1987-04-22 1988-05-24 Uop Inc. Process for producing aromatic compounds from C2 -C6 aliphatic hydrocarbons
US4761513A (en) * 1987-07-01 1988-08-02 Uop Inc. Temperature control for aromatic alkylation process
FR2623423B1 (fr) 1987-11-23 1990-03-30 Centre Nat Rech Scient Nouveaux catalyseurs a base de zeolithes modifiees par des elements alcalins sous forme metallique, leur preparation et leur application a l'alkylation des derives alkyl-aromatiques
US4935574A (en) * 1988-03-29 1990-06-19 E. I. Du Pont De Nemours And Company Preparation of para-xylene by toluene methylation
FR2629444B1 (fr) 1988-04-01 1990-12-07 Rhone Poulenc Chimie Zeolites a base de silice et d'oxyde de germanium et procede de synthese de celles-ci
US4891930A (en) * 1988-04-04 1990-01-09 Schaefer Alan W Apparatus and process for applying a cover, to a round hay bale
US4847223A (en) * 1988-04-08 1989-07-11 Concordia University Superacidic catalysts for low temperature conversion of aqueous ethanol to ethylene
US4861930A (en) 1988-09-28 1989-08-29 Uop Combination process for the conversion of a C2 -C6 aliphatic hydrocarbon
GB8829923D0 (en) 1988-12-22 1989-02-15 Ici Plc Zeolites
US5178748A (en) * 1988-12-22 1993-01-12 Imperial Chemical Industries Catalytic reactions using zeolites
US5105047A (en) * 1989-08-02 1992-04-14 E. I. Du Pont De Nemours And Company Catalysis using blends of perfluorinated ion-exchange polymers with perfluorinated diluents
US5094995A (en) * 1989-08-02 1992-03-10 E. I. Du Pont De Nemours And Company Supported perfluorinated ion-exchange polymers
US5124299A (en) * 1989-08-02 1992-06-23 E. I. Du Pont De Nemours And Company Catalysis using blends of perfluorinated ion-exchange polymers with perfluorinated diluents
US5233102A (en) * 1989-08-02 1993-08-03 E. I. Du Pont De Nemours And Company Olefin hydration
US5043502A (en) * 1990-03-16 1991-08-27 Uop Production of xylenes from light aliphatic hydrocarbons via dehydrocyclodimerization and methylation
US5173461A (en) 1990-03-21 1992-12-22 Mobil Oil Corporation Toluene disproportionation catalyst
US5534239A (en) * 1990-03-23 1996-07-09 Societe Nationale Elf Aquitaine Process for the synthesis of a silica enriched crystalline aluminosilicate having the offretite structure, the aluminosilicate obtained and its use as a catalyst for the conversion of hydrocarbons
GB9013859D0 (en) 1990-06-21 1990-08-15 Ici Plc Zeolites
GB9013916D0 (en) * 1990-06-22 1990-08-15 Ici Plc Zeolites
EP0466545A1 (fr) * 1990-06-29 1992-01-15 Rhone-Poulenc Chimie Zéolithes à base de silice et d'oxydes d'éléments tétravalents, leur procédé de synthèse et leur application
JPH06340416A (ja) 1990-08-29 1994-12-13 Rhone Poulenc Chim シリカ及び場合によっては四価元素の酸化物を基材とするゼオライトの製造法
US5366948A (en) 1991-03-12 1994-11-22 Mobil Oil Corp. Catalyst and catalytic conversion therewith
US5348643A (en) 1991-03-12 1994-09-20 Mobil Oil Corp. Catalytic conversion with improved catalyst
US5231064A (en) * 1991-03-12 1993-07-27 Mobil Oil Corp. Cracking catalysts comprising phosphorus and method of preparing and using the same
US5110776A (en) * 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
US5456821A (en) 1991-03-12 1995-10-10 Mobil Oil Corp. Catalytic conversion with improved catalyst
US5171921A (en) 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
US5387732A (en) * 1991-10-15 1995-02-07 Fina Technology, Inc. Start-up process for improved selectivity in toluene disproportionation
US5210356A (en) * 1991-12-16 1993-05-11 Fina Technology, Inc. Toluene disproportionation employing modified omega zeolite catalyst
US5227558A (en) * 1992-02-10 1993-07-13 Fina Technology, Inc. Aromatic alkylation process employing steam modified zeolite beta catalyst
US5475179A (en) 1992-03-12 1995-12-12 Mobil Oil Regioselective production of para-dialkyl benzenes
US5498814A (en) * 1992-03-12 1996-03-12 Mobil Oil Corp. Regioselective methylation of toluene to para-xylene
US5516736A (en) * 1992-03-12 1996-05-14 Mobil Oil Corp. Selectivating zeolites with organosiliceous agents
US5571768A (en) 1992-03-12 1996-11-05 Mobil Oil Corporation Zeolite functionalized with organosiliceous groups
US5321183A (en) * 1992-03-12 1994-06-14 Mobil Oil Corp. Process for the regioselective conversion of aromatics to para-disubstituted benzenes
EP0568913A3 (en) 1992-05-03 1995-03-22 Dalian Chemical Physics Inst Process for the conversion of methanol into light olefins and catalyst used therefor.
US5318696A (en) * 1992-12-11 1994-06-07 Mobil Oil Corporation Catalytic conversion with improved catalyst catalytic cracking with a catalyst comprising a large-pore molecular sieve component and a ZSM-5 component
US5294578A (en) * 1992-12-23 1994-03-15 Mobil Oil Corp. Supported acid catalysts, their preparation and use in organic compound conversion
US5336824A (en) * 1993-01-29 1994-08-09 Fina Technology, Inc. Mordenite catalysts in toluene synthesis
US5349113A (en) 1993-02-25 1994-09-20 Mobil Oil Corp. Shape selective hydrocarbon conversion over pre-selectivated, activated catalyst
US5365003A (en) 1993-02-25 1994-11-15 Mobil Oil Corp. Shape selective conversion of hydrocarbons over extrusion-modified molecular sieve
CN1034223C (zh) * 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
US5378670A (en) * 1993-04-16 1995-01-03 W. R. Grace & Co.-Conn. Phosphorus zeolites/molecular sieves
US5362697A (en) * 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
US5430213A (en) * 1993-05-06 1995-07-04 Exxon Chemical Patents Inc. Process for producing 1,4-dienes
DE69431625T2 (de) * 1993-05-28 2003-02-27 Exxonmobil Oil Corp Verfahren zur modifikation der formselektivität eines zeolithkatalysators und verwendung des modifizierten katalysators
US5698756A (en) 1993-05-28 1997-12-16 Mobil Oil Corporation Toluene alkylation with ethylene to produce para-ethyloluene
US5476823A (en) 1993-05-28 1995-12-19 Mobil Oil Corp. Method of preparation of ex situ selectivated zeolite catalysts for enhanced shape selective applications and method to increase the activity thereof
US5523510A (en) * 1993-08-30 1996-06-04 Texaco Inc. Treated bound ferrierite zeolites for skeletal isomerization of n-olefins to iso-olefins
US5563310A (en) 1993-09-14 1996-10-08 Mobil Oil Corporation Toluene alkylation with methanol
ES2139752T3 (es) 1993-10-18 2000-02-16 Mobil Oil Corp Material cristalino poroso sintetico, mcm-58, su sintesis y uso.
EP0655277A1 (en) * 1993-11-01 1995-05-31 Csir Amorphous aluminosilicate catalyst
US5457078A (en) 1993-11-29 1995-10-10 Mobil Oil Corporation Manufacture of improved zeolite Beta catalyst
WO1995026814A1 (en) * 1994-03-31 1995-10-12 Exxon Chemical Patents Inc. Supported lewis acid catalysts derived from superacids useful for hydrocarbon conversion reactions
ES2139197T3 (es) * 1994-03-31 2000-02-01 Infineum Usa Lp Reacciones de polimerizacion con catalizadores de acidos de lewis soportados.
US5561095A (en) 1994-03-31 1996-10-01 Exxon Chemical Patents Inc. Supported lewis acid catalysts for hydrocarbon conversion reactions
US5576256A (en) 1994-05-23 1996-11-19 Intevep, S.A. Hydroprocessing scheme for production of premium isomerized light gasoline
US5689024A (en) 1994-06-03 1997-11-18 Mobil Oil Corporation Use of crystalline SUZ-9
US5646314A (en) * 1994-11-16 1997-07-08 Arco Chemical Technology, L.P. Process for titanium silicalite-catalyzed epoxidation
US5573746A (en) 1995-06-06 1996-11-12 Mobil Oil Corporation Zeolite synthesis with amino acid directing agents
US6060633A (en) * 1995-10-20 2000-05-09 Chen; Frank Joung-Yei Supported Lewis acid catalysts derived from superacids useful for hydrocarbon conversion reactions
US5646580A (en) * 1996-03-04 1997-07-08 Motorola, Inc. Method and apparatus for switching crystals in a crystal controlled oscillator
CA2204461C (en) * 1996-05-14 2006-07-04 Thomas V. Harris Process for producing an alkylated, non-oxygen-containing aromatic hydrocarbon
US6048816A (en) * 1996-10-02 2000-04-11 Mobil Oil Corporation Catalyst and process for converting methanol to hydrocarbons
ZA978671B (en) 1996-10-02 1999-03-26 Mobil Oil Corp Selective para-xylene production by toluene methylation
WO1998023373A1 (fr) * 1996-11-27 1998-06-04 Idemitsu Kosan Co., Ltd. Procede de production d'un catalyseur pour l'epuration des gaz d'echappement
US5925586A (en) * 1996-12-31 1999-07-20 Exxon Chemical Patents, Inc. Phosphorus modified small pore molecular sieve catalysts, and their use in the production of light olefins
US5905051A (en) * 1997-06-04 1999-05-18 Wu; An-Hsiang Hydrotreating catalyst composition and processes therefor and therewith
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
US6034283A (en) * 1997-07-18 2000-03-07 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of cyclic alcohols
US6047544A (en) * 1997-08-20 2000-04-11 Nissan Motor Co., Ltd. Engine exhaust gas purification catalyst and exhaust gas purifier
EP0903178B2 (en) * 1997-09-17 2012-05-30 China Petro-Chemical Corporation A pentasil-type molecular sieve containing composition, its preparation method and use
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
NO318036B1 (no) * 1997-10-15 2005-01-24 Res Inst Petroleum Processing Katalysator for katalytisk pyrolyseprosess for fremstilling av lette olefiner og fremgangsmate for fremstilling derav
US6040257A (en) * 1997-11-07 2000-03-21 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
EP1044068A1 (en) * 1997-12-03 2000-10-18 Exxon Chemical Patents Inc. Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
CN1069682C (zh) * 1997-12-23 2001-08-15 中国石油化工总公司 重油催化热裂解层柱粘土催化剂及其制备
US6395664B1 (en) * 1998-02-19 2002-05-28 Uop Llc Process for reactivating a deactivated dehydrocyclodimerization catalyst with water
US5907073A (en) * 1998-02-24 1999-05-25 Fina Technology, Inc. Aromatic alkylation process
US6074975A (en) * 1998-03-03 2000-06-13 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6417421B1 (en) * 1998-03-03 2002-07-09 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and process therefor and therewith
US6080303A (en) * 1998-03-11 2000-06-27 Exxon Chemical Patents, Inc. Zeolite catalyst activity enhancement by aluminum phosphate and phosphorus
ES2224702T3 (es) * 1998-09-28 2005-03-01 Bp Corporation North America Inc. Procedimiento para la produccion de olefinas empleando un catalizador a base de pentasil zaolita.
JP3871449B2 (ja) * 1998-10-05 2007-01-24 新日本石油株式会社 軽油の水素化脱硫方法
JP3868128B2 (ja) * 1998-10-05 2007-01-17 新日本石油株式会社 軽油の水素化脱硫装置及び方法
CN1096296C (zh) * 1998-11-13 2002-12-18 中国石油化工集团公司 一种生产中间馏分油的加氢裂化催化剂及其制备
US6057485A (en) * 1998-11-17 2000-05-02 Fina Technology, Inc. Gas phase alkylation with split load of catalyst
US6090274A (en) * 1998-12-29 2000-07-18 Phillips Petroleum Company Hydrotreating catalyst composition and processes therefor and therewith
US6268305B1 (en) * 1999-02-27 2001-07-31 Fina Technology, Inc. Catalysts with low concentration of weak acid sites
US6090991A (en) * 1999-02-27 2000-07-18 Fina Technology, Inc. Gas phase alkylation method and catalyst
US6222084B1 (en) * 1999-04-09 2001-04-24 Fina Technology, Inc. Gas phase alkylation-liquid phase transalkylation process
US6699811B1 (en) * 1999-05-05 2004-03-02 Exxon Mobil Chemical Patents Inc. Tailored zeolite bound zeolite catalyst and its use for hydrocarbon conversion
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
JP3859940B2 (ja) * 1999-08-06 2006-12-20 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
US6187982B1 (en) * 1999-10-15 2001-02-13 Mobil Oil Corporation Process for converting dienes and oxygenates to para-xylene and light olefins
US6726834B2 (en) * 1999-10-22 2004-04-27 Intevep, S.A. Process for catalytic cracking of a hydrocarbon feed with a MFI aluminisilcate composition
EP1116775A1 (en) * 2000-01-12 2001-07-18 Akzo Nobel N.V. Catalyst composition with high efficiency for the production of light olefins
JP3489048B2 (ja) * 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
US6506954B1 (en) * 2000-04-11 2003-01-14 Exxon Mobil Chemical Patents, Inc. Process for producing chemicals from oxygenate
JP3904802B2 (ja) * 2000-04-26 2007-04-11 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
TWI240716B (en) * 2000-07-10 2005-10-01 Bp Corp North America Inc Pressure swing adsorption process for separating paraxylene and ethylbenzene from mixed C8 aromatics
GB0303659D0 (en) * 2003-02-18 2003-03-19 Johnson Matthey Plc Process
US7060864B2 (en) * 2003-09-30 2006-06-13 Saudi Basic Industries Corporation Toluene methylation process
US7285511B2 (en) * 2004-04-23 2007-10-23 Saudi Basic Industries Corporation Method of modifying zeolite catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875317A (zh) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 生产对二甲苯的方法
CN102875318A (zh) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 生产对二甲苯的反应-再生装置
CN102875317B (zh) * 2011-07-12 2014-11-26 中国石油化工股份有限公司 生产对二甲苯的方法
CN102875318B (zh) * 2011-07-12 2015-01-07 中国石油化工股份有限公司 生产对二甲苯的反应-再生装置
CN102701899A (zh) * 2012-06-21 2012-10-03 大连理工大学 甲苯甲醇烷基化生产对二甲苯节能减排工艺
CN102951993A (zh) * 2012-11-19 2013-03-06 同济大学 提高甲苯与甲醇烷基化合成二甲苯反应稳定性的方法

Also Published As

Publication number Publication date
US20050209492A1 (en) 2005-09-22
JP5242637B2 (ja) 2013-07-24
CN100404480C (zh) 2008-07-23
EP1675808A4 (en) 2010-03-24
JP2010248249A (ja) 2010-11-04
US7060864B2 (en) 2006-06-13
WO2005033071A2 (en) 2005-04-14
KR100802690B1 (ko) 2008-02-12
EP1675808B1 (en) 2016-01-06
MY139626A (en) 2009-10-30
EP1675808A2 (en) 2006-07-05
JP2007507525A (ja) 2007-03-29
KR20060116197A (ko) 2006-11-14
US7279608B2 (en) 2007-10-09
US20050070749A1 (en) 2005-03-31
WO2005033071A3 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
CN1898185A (zh) 甲苯甲基化工艺
US11766667B2 (en) Zeolite catalyst and method for producing lower olefin
CN1704167A (zh) 沸石催化剂改性方法
CN1311757A (zh) 制备分子筛的方法
CN1871191A (zh) 烯烃的制备
CN1856360A (zh) 用于二甲醚合成的催化剂及其制备方法
CN101500969A (zh) 沸石催化剂和沸石催化剂的制备方法与用途
CN1693202A (zh) 一种sapo-34分子筛的制备方法
CN1684929A (zh) 烯烃的生产
CN1901993A (zh) 催化剂、该催化剂的制备方法及使用该催化剂的低级烃的制造方法
CN1049406C (zh) 具有mfi结构含磷和稀土的分子筛
CN1586721A (zh) 一种碳四液化石油气芳构化的催化剂及其制备方法
CN1742070A (zh) 烃的催化裂化方法
CN1167666C (zh) 二氨基二苯基甲烷及其高级同系物的生产方法
CN1230408C (zh) 1,3-丙二醇的生产方法
CN1296275C (zh) 制备丝光沸石/zsm-5混晶材料的方法
CN1111086C (zh) 一种含稀土的分子筛及其制备方法
CN1317359C (zh) 一种含稀土超稳y型沸石的石油烃裂化催化剂
CN1191124C (zh) 一种用于石蜡基原料油的裂化催化剂
JP2011073913A (ja) Zsm−5型ゼオライトの製造方法
CN1060833A (zh) 烷基取代芳烃的生产方法
CN1022544C (zh) 复合hzsm-5沸石/蛭石催化剂及其用途
CN1052619A (zh) 含镓的铝硅酸盐型催化剂在每分子具有5~7个碳原子的轻馏分的芳构化反应中的应用
CN1173495A (zh) 由肟制备酰胺的方法
CN1285410C (zh) 甲醇气相选择性胺化合成二甲胺的催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080723

Termination date: 20200930