CN1904131A - 可控靶冷却 - Google Patents

可控靶冷却 Download PDF

Info

Publication number
CN1904131A
CN1904131A CNA2006100992943A CN200610099294A CN1904131A CN 1904131 A CN1904131 A CN 1904131A CN A2006100992943 A CNA2006100992943 A CN A2006100992943A CN 200610099294 A CN200610099294 A CN 200610099294A CN 1904131 A CN1904131 A CN 1904131A
Authority
CN
China
Prior art keywords
backing sheet
target
cooling hole
sputtering target
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100992943A
Other languages
English (en)
Other versions
CN1904131B (zh
Inventor
棚濑义昭
稻川真
细川明广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1904131A publication Critical patent/CN1904131A/zh
Application granted granted Critical
Publication of CN1904131B publication Critical patent/CN1904131B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3497Temperature of target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Abstract

本发明公开了一种溅射靶组件(18,20),对于较大面板的等离子体溅射反应器特别有用。该反应器具有密封到主处理室(14)和真空泵吸室(32)两者的靶组件,真空泵吸室容纳移动的磁控管(30)。靶瓦接合到其的靶组件包括一体板(62),其具有平行于主表面钻出的平行冷却孔(64)。孔的端部可以被密封(74),且竖直延伸的槽(66、68、70、72)在每侧上布置为两个交错的群组,并成对地向下机械加工到在衬背板的相对侧上的各自的冷却孔对。四个歧管(104、106)密封到四个群组的槽,并提供了逆流的冷却剂路径。

Description

可控靶冷却
技术领域
本发明一般地涉及溅射装置。更具体而言,涉及溅射靶的冷却。
背景技术
溅射是硅集成电路的制造中发展很成熟的技术,其中金属靶被溅射以将靶材料沉积到硅晶片上。溅射还已经应用于其他用途,例如窗涂覆。近年来,溅射已经应用于在诸如平板计算机显示器和大平板电视等的平板显示器的制造中的硅集成电路的类似目的。各种类型的平板显示器可以制造为通常包括形成在较大的薄绝缘矩形衬底(通常称作面板)上的薄膜晶体管(TFT),并包括液晶显示器(LCD)、等离子显示器、场发射器和有机发光二极管(OLED)。
图1的剖视图中示意性地图示了传统的平板溅射反应器10。Demaray等人在美国专利5,565,071中公开了这种反应器的更多细节,其通过引用结合于此。在主真空室14内的基座12支撑待被溅射涂覆的矩形面板16,矩形面板16与基本矩形的靶瓦18相对,靶瓦18接合到衬背板20,衬背板20密封到主室14但通过绝缘体22与主室14电绝缘。面板16可以由玻璃、聚合物材料或其他材料形成。最常见的靶材料是诸如铝、钼之类的金属或者氧化铟锡(ITO),不过取决于所期望形成在面板16上的层的类型,也可以自由地替换其他金属。更大的靶可能需要将多个目标瓦以一维或二维阵列的形式接合到衬背板。未图示的真空泵系统将主室14的内部泵吸到10-6到10-7托或更低的基础压力。气体源24通过质量流率控制器26将诸如氩之类的溅射工作气体供应到室14中,且在溅射期间,主室压通常保持为不超过数个毫托。DC电源28将数百伏特的负DC偏压施加到与接地的基座12和未图示的室屏蔽相对的靶18,以使得氩被激发为等离子体。充正电的氩离子被负偏压的靶18以足够的能量吸引和加速而从其溅射靶材料的原子。溅射材料的一些撞击面板16并以靶材料的薄层将其涂覆。可选地,诸如氮之类的反应气体也可以附加地容纳到室中以使得溅射金属与其反应并将诸如金属氮化物之类的金属成份形成在面板表面上。
如果具有相反磁极的磁电管30布置在衬背板20的背侧以将磁场B投射到主室中靶18的前方,则可以较大地增强溅射。磁场捕获电子并因而提高了靶18附近的等离子体密度,较大地提高了溅射率。为实现靶18的均匀腐蚀和面板16上的均匀沉积,磁电管30以一维或二维图案在衬背板20的背侧上扫描。磁电管30的形式可以比所图示的更复杂。
几乎所有的面板制造设备通过其大尺寸而区别。最初的一代基于具有500mm量级的横向尺寸。各种经济和制造因素已经提出了随后多代的更大尺寸的平板制造设备。正在发展的下一代将在具有超过2m的边长的面板上进行溅射沉积。此大尺寸已经引起了在大多数现今的设备中限制到约300mm尺寸的晶片制造设备中未经历过的一些问题。
靶18,并更具体地其衬背板20必须相对较薄,使得磁电管30可以通过其投射充足的磁场。但是,在没有其他装置的情况下,衬背板20需要承受在其背侧和主室14的高度真空之间的可观的力(压差乘以面积),并且衬背板20不应在这些压差作用下明显弯曲。为提供这么大的薄靶,Demaray提出将磁电管30布置在密封到衬背板20的背侧并被泵吸到在亚托范围内(机械式真空泵的极限)的相对低压的磁电管室32内。这样的背侧泵吸使施加在衬背板20上的力减小了约一千倍。
这样的结构与其中靶衬背板20背侧处对应的室填充有冷却水以在溅射期间冷却靶的传统晶片溅射反应器形成对照。Demaray取而代之地使冷却流体从冷却器34通过形成在衬背板32内的冷却通道循环。如图2的剖视图所示,基本矩形的传统靶40包括由顶板44和底板46形成的衬背板42。基本矩形横截面的冷却通道48被机械加工到顶板44的表面中以大体在衬背板42的两侧之间延伸,不过更大的水平分布歧管可以形成为更靠近这两侧以将冷却通道48连接到共同的冷却流体入口和共同的冷却流体出口。底板46接着被接合到衬背板42。过去,铟接合是最经常被使用的,但是导电聚合物粘接剂接合正受到更多欢迎。
衬背板42的两个板46、48的接合已经带来了技术挑战,尤其是在更大面板尺寸的情况下。所期望的是当溅射已经有效地腐蚀到靶瓦50时衬背板42可以再使用。即,所期望的是移除旧的靶瓦50并用新的靶瓦来将其替换。衬背板42需要较耐用,从而在用过的靶瓦从衬背板剥离并将新的靶瓦层叠时无需再修整。对于较大尺寸的面板,靶及衬背板已变的越来越昂贵。于是,当保持并优选地增大其耐用性时,可以减小其成本。两个板44、46可以焊接在一起,但焊接易于使薄板变形。两个板44、46可以在密封剂布置在界面上的情况下螺纹紧固在一起。但是,对于2.5m×2.5m靶所需的螺纹件的数量是过大。可以使用铟接合,但是其耐用性将成为问题。高压热处理(autoclaving)已经被提议,但是这是一种复杂且昂贵的处理。
更大的靶尺寸已经在均匀冷却更大面积而不会不适当地增大靶组件的厚度方面带来了挑战。
发明内容
本发明的一个方面包括溅射靶衬背板,一个或多个靶瓦接合到该溅射靶衬背板,且该溅射靶衬背板具有形成为平行于衬背板主表面的横向平行延伸的冷却孔,用于冷却水或其他液体的流动。衬背板优选地是一体的,且圆筒形冷却孔可以通过例如深钻而钻过其横向尺度。
本发明的另一个方面包括将冷却孔分为交错的两个群组,并且在两个群组的冷却孔中的冷却液体逆流,即,在逆平行方向上流动,从而减小在靶及其衬背板上的温差。
本发明的另一个方面包括竖直的入口孔或槽和出口孔或槽,其在两个相对的周界侧上从衬背板的主表面形成,且每个连接到冷却孔的一个或多个以将冷却液体供应到水平延伸的冷却孔或从水平延伸的冷却孔排放冷却液体。槽有利地连接二至六个相邻的冷却孔。冷却孔的在竖直出口孔外侧的端部被塞住。有利的是,在每个周界侧上的孔或槽沿着冷却孔的轴向偏移地交替以提供交替的入口孔或槽和出口孔或槽。供应和排放歧管可以接着平行地布置并密封到各自的入口孔或槽和出口孔或槽。
附图说明
图1是传统的平板溅射室的示意性剖视图。
图2是传统靶的剖视图,该靶包括具有冷却通道的衬背板和接合到其的靶。
图3是本发明的衬背板的简化实施例的示意性立体图。
图4是竖直延伸的冷却入口或出口到水平延伸的冷却孔的剖视图。
图5是形成在靶衬背板中的多个水平延伸的冷却孔的剖视图。
图6是本发明的多瓦靶和衬背板的仰视图,其包括四排冷却入口和出口。
图7是图6的靶衬背板的角部的局部立体图。
图8是待附装到图6的衬背板的两个冷却歧管之一的实施例的立体图。
图9是形成图8的歧管的一部分的歧管板的平面侧的平面图。
图10是图6的衬背板的附装了两个图8的歧管的立体图。
具体实施方式
示意性地图示在图3的从底部观察的立体图中的、本发明的一个实施例的衬背板60形成为一体的金属板62,其具有与衬背板60的所期望尺寸对应的横向尺度,例如,对于计划中的下一代,在边长上大于2m。一系列平行的圆筒形冷却孔64被钻孔为从金属板62的一个横向侧延伸到另一个横向侧,并平行于金属板62的主表面。示例性的尺寸是对于铝板33mm的厚度和12mm的孔径。钻出如此长距离的孔可以通过深钻来实现,即,使用非常长的钻头。考虑到长距离,有利的是从两侧钻孔在中间汇合。冷却水或其他流体流动通过孔64以冷却衬背板60并因此冷却附装到衬背板60的靶瓦。
在所示实施例中,冷却水从长的或椭圆的孔或槽66、68、70、72供应和排放,孔或槽66、68、70、72从金属板62的主表面优选地至少研磨到孔64的中间深度但不研磨到金属板62的相对侧。结果,冷却孔64暴露到各对槽66、68、70、72。槽66、68、70、72在衬背板60将密封到其的真空室14和磁电管室32的外侧的位置处布置为在金属板62的相对的横向侧上的两组。为了管道连接的方便性,槽优选地位于靶瓦将接合到其的衬背板60的所示底侧上。如果槽66、68、70、72暴露成对的冷却孔64,则简化了机械加工和密封。槽可以形成为圆孔,尤其是在其仅暴露各自的一个冷却孔的情况下,但是连接到多个冷却孔64的长槽是有利的。每个槽对应超过两个冷却孔64将进一步简化机械加工和密封,但需要付出冷却均匀性降低的代价。通常,每个槽对应六个冷却孔64是合理的上限。如图4的剖视图所示,冷却孔64的在槽66、68、70、72横向外侧的端部被塞子74水密密封,使得水通过冷却孔64的中部在衬背板50的相对侧上从槽流动到槽。
衬背板60的材料不限于铝或铝合金,但考虑到深钻,优选的是容易加工的材料,例如铝或黄铜。
优选的是,冷却水或其他液体冷却剂供应到槽并从槽排放以建立逆流的冷却剂。例如,槽66可以充当入口而槽68可以充当出口以用于冷却剂向右流动,且槽72可以充当入口而槽70可以充当出口以用于冷却剂向左流动。当存在许多逆平行的冷却孔64的流动群组时,逆流极大地减小了衬背板60之上的温差。通常,冷却水在普通溅射条件下经过衬背板60一次时大约从20℃加热到25℃。对于单向流动,衬背板将具有从一侧到另一侧的约5℃的温差,其导致铝中约1mm的热膨胀差,该值应该减小。在另一方面,对于逆流冷却剂,相邻对的冷却孔64具有相反的温度梯度,并且他们足够靠近使得衬背板60被基本冷却到两个流动的平均值,即,在逆流孔之间的区域上作为平均值的几乎恒定的22.5℃,虽然会产生局部补偿温度波动。
如图5的剖视图所示,在图3中的与冷却孔64相邻并在将冷却剂提供到其的槽66、68、70、72之间的靶区域78中,一个或多个靶瓦76接合到衬背板60的底侧(图中为顶侧)。
图3对衬背板60的图示是相当简化的。图6的仰视图所示的更实际的靶和衬背板组件80包括具有成角度的角部84的一体的衬背板82,角部84在图7的局部立体图中更详细地示出。其包括42个用于逆流的成交替对的平行冷却孔86。冷却孔86从衬背板82的包括成角度的角部84在内的相对边缘深钻。示例性的尺度是对于铝或铝合金板82为33mm的厚度和12mm的孔径,即,孔径优选地大于板厚的25%,并小于板厚的75%,并优选地小于板厚的50%。板厚可以在例如20和60mm之间改变。槽88、90从衬背板82的底操作表面机械加工为在每侧上交错的两排,以暴露成对的冷却孔88。多组(例如10组)耦合的槽88和多组(例如10组)耦合的槽90提供了槽88、90到冷却孔86的成对式耦合。如上所述,由槽88、90所暴露的冷却孔88的数量可以改变。而且,槽组的数量可以改变,而且通过增加组的数量可以提高冷却均匀度。塞子92螺纹紧固到或其他方式密封到孔88、90的两端,使得全部冷却剂流动通过孔88、90。塞子92可以从各种可商业获取的类型中选择,例如,Swagelok、Farmington塞、SAE塞,或者可以专门制造。虽然应该避免翘曲,但是也可以使用焊接杆塞。
所述实施例使得冷却孔86和槽88、90在衬背板82之上均匀间隔。但是可以使用非均匀分布来调整冷却,例如,在衬背板82中部更多的冷却孔从而更强的冷却。
所述用于具有横向通过其钻孔而成的冷却孔的一体衬背板的制造技术提供了一些优点。主要基于机械加工的制造比先前实施的多个板的接合要便宜得多。即使孔径占板厚尺寸相当的百分比,其也不会较大地减小板的刚度。此外,所得到的衬背板在使用或靶的再修整期间不会遭到剥离。
在衬背板82制造之后,优选地使用导电聚合物粘接剂以可从加州圣何塞的TCB获取的处理来将靶瓦94接合到衬背板82,不过也可以使用传统铟接合或其他方法。附图示出了以其间约0.5mm的预定间隙处于二维阵列状态的多个瓦94,如果较大的瓦不容易获取的话,这是有利的布置。但是,可以使用其他的瓦布置,例如多个瓦的一维阵列或者单个较大的瓦。
两个歧管100(其中之一示出在基本在其操作位置上从底部观察的图8的立体图中)附装到衬背板82的在其操作底侧上的相对侧以覆盖并耦合到错位排列的槽88、90。有利地,其可以由不锈钢容易地形成而不会影响溅射室内的清洁。每个歧管100包括歧管板102以及短矩形歧管104和长矩形歧管106,短矩形歧管104和长矩形歧管106每个具有各自的成对软管装配108、110用于通过连到冷却器118的未图示的软管来供应和排放冷却水或其他液体冷却剂。安装在并耦合到每个歧管104、106的内部的多个孔装配108、110将更均匀的冷却剂流提供到大量槽88、90和相关孔86的每个。两个歧管104、106从每个歧管板槽112、114内焊接在槽周界与歧管板102之间。当焊接时,两个歧管104、106在其间分开约1cm以允许在歧管104、106之间的区域上紧固件拧入在歧管板102和衬背板82之间。
如图9的俯视图所示,歧管板102包括与衬背板82中的槽88、90对应的、交错的两排歧管槽112、114。O环槽116围绕每个歧管槽112、114以容纳用于将歧管100及其槽112、114绕衬背板的槽88、90密封到衬背板82的各个O环。歧管104、106的基部具有机械加工到其的对应槽以允许冷却液体在歧管104、106和对应群组的冷却孔86之间自由循环。通过歧管板102钻孔而成的三排未图示的通孔与衬背板82中的未图示锥孔对应,用于将歧管100螺纹附装和密封到衬背板82。通孔和锥孔布置为使得四个螺纹件绕每个歧管槽112、114以矩形图案紧固,而均匀地密封O环116。
操作靶组件120图示在图10的在其操作方位基本从底部观察的局部立体图中。操作靶组件120包括靶和图6的衬背板80,以及固定并密封到衬背板82的在其对主室14和磁控管室32的真空密封处外侧的两个相对周界侧的两个图8的歧管100(仅图示了一个)。操作靶组件120还包括连接在冷却器118和衬背板82的两横向侧上的软管装配108、110之间多分支供应软管122和多分支排放软管124。在所示的歧管100上,供应软管122将被冷却的冷却剂供应到短歧管104,而排放软管124从长歧管106排放被靶加热的冷却剂。连接到每个歧管104、106的双软管使得在大量冷却孔之间的流动平滑。相反,在固定到靶80的具有类似软管装配108、110的另一个未图示横向侧上的未图示歧管100上,供应软管122通过两个软管装配110将被冷却的冷却剂供应到长歧管106,而排放软管124通过两个软管装配108从短歧管104排放被加热的冷却剂。结果,在两个短歧管104之间建立了在一个方向上的第一冷却剂流,而在两个长歧管106之间建立了相反方向上的第二冷却剂流。
外部歧管提供了其自身的一些优点。它们可以与靶组件分离地制造并可以容易地再使用。此外,与大量平行的冷却孔结合时,它们能够对靶进行更均匀的冷却。
可选实施例包括在衬背板82的两个主表面上的和在其连接到冷却孔64中不同的一个的两个横向侧上的单排衬背板槽88、90。分离的液体歧管可以附装到衬背板82的顶部或底部。此构造减小了衬背板的长度。其他形式的歧管也包括在本发明内。
虽然已经参考图1的溅射室的方位描述了以上实施例,但是清楚的是,该方位可以转变,放在其侧方,或布置为其他角度,而不偏离本发明的精神。权利要求中提及的方向出于方便描述的考虑,而可以相对于重力改变到其他方位。
本发明不限于意图用于显示器的面板上的溅射,而可以应用于其他应用。
本发明的一些特征可以分离或结合地实施例,而仅具有权利要求的限制。
本发明因而提供了一种更便宜、更耐用的靶组件,和一种提供了改善了热控制的可再使用的衬背板。

Claims (27)

1.一种溅射靶,包括:
衬背板,所述衬背板包括形成在其中的多个横向延伸的、平行的、圆筒形冷却孔;和
一个或多个溅射靶瓦,其接合到所述衬背板的两个主表面之一。
2.如权利要求1所述的溅射靶,其中所述冷却孔平行于所述一个主表面延伸。
3.如权利要求1所述的溅射靶,其中所述衬背板是一体板。
4.如权利要求1所述的溅射靶,其中所述冷却孔具有为所述衬背板厚度的至少25%的直径。
5.如权利要求1所述的溅射靶,其中所述冷却孔适于耦合到至少一个液体冷却供应管线和至少一个液体冷却排放管线。
6.如权利要求1所述的溅射靶,其中所述冷却孔在其横向端部处被密封,且其中所述衬背板还包括从所述衬背板的所述主表面中的至少一个延伸到所述冷却孔的入口孔和出口孔。
7.如权利要求6所述的溅射靶,其中所述入口孔和所述出口孔耦合到各自的处于其交错群组中的多个冷却孔。
8.如权利要求7所述的溅射靶,其中所述多个的数量在2和6之间。
9.如权利要求7所述的溅射靶,其中所述入口孔和所述出口孔是长形孔。
10.如权利要求7所述的溅射靶,还包括四个液体歧管,其在所述衬背板的相对横向侧上耦合到所述群组的两个中的各自一个。
11.如权利要求10所述的溅射靶,还包括两个歧管板,各对所述液体歧管附装到所述歧管板,并且所述歧管板可拆卸地附装到所述衬背板。
12.如权利要求11所述的溅射靶,还包括将所述歧管板密封到所述衬背板的O环。
13.如权利要求10所述的溅射靶,其中所述液体冷却剂供应到所述四个液体歧管并从所述四个液体歧管排放以提供在所述平行的孔中的相逆的冷却剂流。
14.如权利要求10所述的溅射靶,还包括附装到每个所述液体歧管的至少一个软管装配。
15.如权利要求1至14中任一项所述的溅射靶,其中所述衬背板具有基本矩形形状。
16.如权利要求1至14中任一项所述的溅射靶,其中所述一个或多个靶瓦在基本矩形区域中接合到所述衬背板。
17.一种靶衬背板,包括:
一体的金属板;和
多个平行的冷却孔,其平行于具有靶区域的所述金属板的主表面延伸通过所述板,所述靶区域被构造为接合到一个或多个靶瓦。
18.如权利要求17所述的靶衬背板,其中所述孔是圆筒形的。
19.如权利要求17所述的靶衬背板,还包括:
两组交错的两排访问孔,其形成在所述主表面中并布置在所述金属板的每个横向端上,其中每组所述交错的两排访问孔暴露所述冷却孔中的不同的一个;且
其中所述靶区域布置在包括所述交错的两排的两个横向端之间。
20.如权利要求19的靶衬背板,其中所述访问孔的每个暴露所述冷却孔中的至少两个。
21.一种在溅射反应器中溅射的方法,所述溅射反应器具有靶组件,所述靶组件具有横向通过其的平行的冷却通道,所述冷却通道在一侧上密封到处理室,而在第二侧上密封到磁控管室,所述处理室包含待被溅射涂覆的衬底,所述磁控管室包含扫描磁控管,所述方法包括:使液体冷却剂在所述冷却通道的不同的一个中以相反方向流动。
22.如权利要求21所述的方法,其中所述冷却通道是钻孔通过板而成的圆筒形孔,一个或多个靶瓦接合到所述板上。
23.一种在溅射反应器中溅射的方法,所述溅射反应器包括:主室,其包括待处理的衬底;靶衬背板,一个或多个靶瓦接合到所述靶衬背板且所述靶衬背板密封到所述主室;和真空泵吸的磁控管室,其密封到所述衬背板,所述方法包括使冷却剂在逆流方向上流动通过各自的多个圆筒形冷却孔,所述圆筒形冷却孔形成在所述衬背板中并平行于所述衬背板的主表面延伸过所述衬背板。
24.一种制造靶衬背板的方法,包括以下步骤:
在板的相对边缘之间钻多个平行的冷却孔;并
从所述板的至少一个主表面机械加工多个槽以与所述冷却孔的相对端部邻近的部分连接;并
将所述槽与所述板的所述边缘之间的所述访问孔密封。
25.如权利要求24所述的方法,还包括将至少一个靶瓦附装到所述板的所述主表面之一以覆在所述冷却孔之上。
26.如权利要求24所述的方法,其中所述槽是长槽,其每个与二至六个所述冷却孔相连接。
27.如权利要求24所述的方法,其中将所述槽机械加工为在所述板的相对侧上的交错的两排。
CN2006100992943A 2005-07-27 2006-07-27 可控靶冷却 Expired - Fee Related CN1904131B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/190,389 US8182661B2 (en) 2005-07-27 2005-07-27 Controllable target cooling
US11/190,389 2005-07-27

Publications (2)

Publication Number Publication Date
CN1904131A true CN1904131A (zh) 2007-01-31
CN1904131B CN1904131B (zh) 2011-07-20

Family

ID=37673491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100992943A Expired - Fee Related CN1904131B (zh) 2005-07-27 2006-07-27 可控靶冷却

Country Status (5)

Country Link
US (2) US8182661B2 (zh)
JP (1) JP5506132B2 (zh)
KR (1) KR101321085B1 (zh)
CN (1) CN1904131B (zh)
TW (1) TWI350317B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970849A (zh) * 2011-08-31 2013-03-13 株式会社安川电机 电子部件冷却组件及电力变换装置
CN103313503A (zh) * 2013-05-19 2013-09-18 中国科学院近代物理研究所 用于加速器驱动次临界核能系统的固体散裂靶
CN114959601A (zh) * 2022-06-09 2022-08-30 先导薄膜材料有限公司 一种平面靶材的绑定方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) * 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20070264564A1 (en) * 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) * 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
KR101021536B1 (ko) 2004-12-08 2011-03-16 섬모픽스, 인코포레이티드 LiCoO2의 증착
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
DE102006008973B4 (de) * 2006-02-23 2014-09-11 Von Ardenne Anlagentechnik Gmbh Kühlbare Trägerplatte für Targets in Vakuumzerstäubungsanlagen
US20080006523A1 (en) 2006-06-26 2008-01-10 Akihiro Hosokawa Cooled pvd shield
KR20090069323A (ko) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. 가요성 기판의 마스킹 및 가요성 기판에 배터리 층을 증착하기 위한 재료의 구속
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20090023056A1 (en) * 2007-07-18 2009-01-22 Tesla Motors, Inc. Battery pack thermal management system
EP2225406A4 (en) * 2007-12-21 2012-12-05 Infinite Power Solutions Inc PROCEDURE FOR SPUTTER TARGETS FOR ELECTROLYTE FILMS
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
CN101911367B (zh) 2008-01-11 2015-02-25 无穷动力解决方案股份有限公司 用于薄膜电池及其他器件的薄膜包封
CN101983469B (zh) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 与能量采集关联的储能装置的无源过电压/欠电压控制和保护
WO2010019577A1 (en) 2008-08-11 2010-02-18 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
CN102947976B (zh) 2010-06-07 2018-03-16 萨普拉斯特研究有限责任公司 可充电、高密度的电化学设备
US9334563B2 (en) 2010-07-12 2016-05-10 Materion Corporation Direct cooled rotary sputtering target
RU2013103041A (ru) 2010-07-12 2014-08-20 Мэтиреон Эдвансд Мэтириэлз Текнолоджиз Энд Сервисез Инк. Узел соединения опорной трубки с вращающейся мишенью
US9434029B2 (en) 2011-12-20 2016-09-06 Intel Corporation High performance transient uniform cooling solution for thermal compression bonding process
US20140061039A1 (en) * 2012-09-05 2014-03-06 Applied Materials, Inc. Target cooling for physical vapor deposition (pvd) processing systems
US20140069130A1 (en) * 2012-09-10 2014-03-13 Semicat, Inc. Temperature control of semiconductor processing chambers
US10060023B2 (en) 2012-10-19 2018-08-28 Infineon Technologies Ag Backing plate for a sputter target, sputter target, and sputter device
CN104668897B (zh) * 2013-12-03 2017-06-30 宁波江丰电子材料股份有限公司 背板的形成方法
US9282650B2 (en) * 2013-12-18 2016-03-08 Intel Corporation Thermal compression bonding process cooling manifold
US10192847B2 (en) * 2014-06-12 2019-01-29 Asm Technology Singapore Pte Ltd Rapid cooling system for a bond head heater
US10263301B2 (en) 2015-01-09 2019-04-16 Dana Canada Corporation Counter-flow heat exchanger for battery thermal management applications
WO2016168932A1 (en) 2015-04-21 2016-10-27 Dana Canada Corporation Counter-flow heat exchanger for battery thermal management applications
JP2018533674A (ja) * 2015-11-12 2018-11-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 冷却構造を有するスパッタリングターゲットバッキングプレートアセンブリ
CN109154481B (zh) 2016-05-06 2020-08-11 达纳加拿大公司 具有集成旁路的用于电池热管理应用的热交换器
JP6916413B2 (ja) * 2017-04-25 2021-08-11 株式会社島津製作所 電源一体型真空ポンプ
US11699634B2 (en) * 2019-05-03 2023-07-11 Applied Materials, Inc. Water cooled plate for heat management in power amplifiers
KR20210155625A (ko) * 2020-06-16 2021-12-23 주식회사 뉴파워 프라즈마 냉각 블록 및 이를 갖는 플라즈마 반응 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271625A (en) * 1975-12-10 1977-06-15 Semikron Gleichrichterbau Semiconductor rectifier device
US4361749A (en) * 1980-02-04 1982-11-30 Western Electric Co., Inc. Uniformly cooled plasma etching electrode
US5328585A (en) * 1992-12-11 1994-07-12 Photran Corporation Linear planar-magnetron sputtering apparatus with reciprocating magnet-array
US5487822A (en) 1993-11-24 1996-01-30 Applied Materials, Inc. Integrated sputtering target assembly
US6264812B1 (en) 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
US5873989A (en) * 1997-02-06 1999-02-23 Intevac, Inc. Methods and apparatus for linear scan magnetron sputtering
US5985115A (en) * 1997-04-11 1999-11-16 Novellus Systems, Inc. Internally cooled target assembly for magnetron sputtering
US6340415B1 (en) 1998-01-05 2002-01-22 Applied Materials, Inc. Method and apparatus for enhancing a sputtering target's lifetime
KR100291330B1 (ko) * 1998-07-02 2001-07-12 윤종용 반도체장치제조용스퍼터링설비및이를이용한스퍼터링방법
JP2000073164A (ja) 1998-08-28 2000-03-07 Showa Alum Corp スパッタリング用バッキングプレート
IT1310518B1 (it) * 1999-01-13 2002-02-18 Danieli Off Mecc Dispositivo per colata continua ad alta velocita' e relativoprocedimento
JP3940521B2 (ja) * 1999-04-07 2007-07-04 株式会社東芝 イオン源電極板の製造方法
US6840427B2 (en) * 2000-09-11 2005-01-11 Tosoh Smd, Inc. Method of manufacturing sputter targets with internal cooling channels
JP2002220661A (ja) 2001-01-29 2002-08-09 Sharp Corp スパッタリング装置に用いられるバッキングプレートおよびスパッタリング方法
US7017656B2 (en) * 2001-05-24 2006-03-28 Honeywell International, Inc. Heat exchanger with manifold tubes for stiffening and load bearing
US6708870B2 (en) * 2002-05-24 2004-03-23 Praxair S.T. Technology, Inc. Method for forming sputter target assemblies
CN2565842Y (zh) * 2002-07-11 2003-08-13 中国科学院物理研究所 一种平面磁控溅射靶

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970849A (zh) * 2011-08-31 2013-03-13 株式会社安川电机 电子部件冷却组件及电力变换装置
CN103313503A (zh) * 2013-05-19 2013-09-18 中国科学院近代物理研究所 用于加速器驱动次临界核能系统的固体散裂靶
CN103313503B (zh) * 2013-05-19 2016-12-28 中国科学院近代物理研究所 用于加速器驱动次临界核能系统的固体散裂靶
CN114959601A (zh) * 2022-06-09 2022-08-30 先导薄膜材料有限公司 一种平面靶材的绑定方法
CN114959601B (zh) * 2022-06-09 2023-09-29 先导薄膜材料(安徽)有限公司 一种平面靶材的绑定方法

Also Published As

Publication number Publication date
US20120175250A1 (en) 2012-07-12
TW200710246A (en) 2007-03-16
US20070023275A1 (en) 2007-02-01
KR20070014046A (ko) 2007-01-31
JP2007031838A (ja) 2007-02-08
KR101321085B1 (ko) 2013-10-22
TWI350317B (en) 2011-10-11
JP5506132B2 (ja) 2014-05-28
US10294559B2 (en) 2019-05-21
US8182661B2 (en) 2012-05-22
CN1904131B (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
CN1904131B (zh) 可控靶冷却
EP1243016B1 (en) Method and apparatus for ionized physical vapor deposition
US7429718B2 (en) Heating and cooling of substrate support
TWI289607B (en) Target tiles in a staggered array
US20070045108A1 (en) Monolithic sputter target backing plate with integrated cooling passages
CN101431009A (zh) 喷淋板和基板处理装置
CN1423826A (zh) 等离子体加工装置的温度控制系统
US7550066B2 (en) Staggered target tiles
CN104583453A (zh) 用于物理气相沉积(pvd)处理系统的靶材冷却
US20170081758A1 (en) Mask for vapor deposition apparatus, vapor deposition apparatus, vapor deposition method, and method for producing organic electroluminescence element
JP5517392B2 (ja) 基板支持アセンブリ、プロセスチャンバ及びプロセスチャンバ内の基板の温度を維持するための方法
WO2017194097A1 (en) Evaporation source for depositing an evaporated material, and method for depositing an evaporated material
US9340868B2 (en) Sputtering device
JP2023002518A (ja) 蒸発した材料を堆積させるための蒸発源、及び蒸発した材料を堆積させるための方法
CN102760679A (zh) 基板托架以及使用了该托架的基板处理装置
KR20130111783A (ko) 스퍼터 장치
US20080296352A1 (en) Bonding method for cylindrical target
KR101209653B1 (ko) 스퍼터 장치
KR101111042B1 (ko) 기판 지지부의 가열 및 냉각 방법
KR101209651B1 (ko) 스퍼터 장치
KR100688969B1 (ko) 표시장치용 기판의 제조장치 및 제조방법
TW201137147A (en) Pump baffle design for integrated pump and sputter source
KR101329764B1 (ko) 스퍼터 장치
KR101125557B1 (ko) 스퍼터 장치
KR101385590B1 (ko) 스퍼터 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20200727

CF01 Termination of patent right due to non-payment of annual fee