CN1933374A - 多模光纤通信系统 - Google Patents

多模光纤通信系统 Download PDF

Info

Publication number
CN1933374A
CN1933374A CN200610105503.0A CN200610105503A CN1933374A CN 1933374 A CN1933374 A CN 1933374A CN 200610105503 A CN200610105503 A CN 200610105503A CN 1933374 A CN1933374 A CN 1933374A
Authority
CN
China
Prior art keywords
signal
data
optical
controllable
noninverting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200610105503.0A
Other languages
English (en)
Other versions
CN1933374B (zh
Inventor
A·布思维尔
S·G·P·米多克罗夫特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Avago Technologies General IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avago Technologies General IP Singapore Pte Ltd filed Critical Avago Technologies General IP Singapore Pte Ltd
Publication of CN1933374A publication Critical patent/CN1933374A/zh
Application granted granted Critical
Publication of CN1933374B publication Critical patent/CN1933374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output

Abstract

数据处理电路(47-62)的特征在于其被布置,以便从输入数据信号(43)提供非反相数据信号(45)和反相数据信号(48),接收控制信号(70,71)来控制经处理的数据信号(63)的生成,根据控制信号(70,71)将可控制的延迟(46,49)施加到所述非反相数据信号和反相数据信号(45,48)中的至少一个,根据控制信号(70,71)施加可控制的增益因子(55,56)到所述非反相数据信号和反相数据信号(45,48)中的至少一个,并且在施加可控制的一个(或多个)延迟(46,49)和一个(或多个)增益因子(55,56)之后,组合非反相信号和反相信号来生成经处理的数据信号(63)。

Description

多模光纤通信系统
技术领域
本发明涉及多模光纤通信系统,尤其涉及这样的光纤通信系统,其中信号通过多模光通信信道传播中的非线性使被提供给接收机的信号退化。
背景技术
光信号在信号产生时以及在通过光通信信道传输时都可能会经受许多噪声源和失真。光发射机或接收机中的噪声源包括热噪声和散粒噪声。接收机的接收机部分也使用高灵敏度的雪崩光电二极管,但是这将引入雪崩光电二极管噪声。光信号的产生一般会经受其它噪声源或漂移。例如,当激光二极管在使用中或者由于周围温度变化而加热时,激光二极管的输出功率会经受慢漂移。系统失真的原因在于,在光通信链路中使用新的或者现有的多模光纤而引起的非线性变化。在多模光纤中,不同模式具有不同的传播速度,这趋向于将脉冲分散到相邻的脉冲中,从而引起符号间干扰(ISI)。在单模光纤中也发生脉冲分散,但是程度较轻。因此,这样的影响趋向于关闭眼图并增加在接收机处所测量的比特差错率(BER)。
虽然由于温度漂移引起的变化例如通过激光源的温度稳定性或者凭借在接收机处的自动增益控制能够非常轻易地被补偿,但是难以补偿由于在多模光纤中的脉冲展宽所引起的变化。
因此,高速通信链路(例如以至少5Gbit/s数据速率运行的链路)趋向于使用单模光纤连同高精度光纤连接器。即使当这样的链路在短距离上(例如,在链路的长度一般为10m到100m的数量级的局域网中)、或者在中距离上(例如,在链路的长度一般为1km到10km的数量级的城域网中)运行时,这也是这种情况。虽然这样的高速通信链路以非常低的BER(例如,10-12)提供可靠的性能,但是需要大大降低成本的可比较性能,在实际上这需要使用多模光纤和更加便宜的连接器。
因此,近年来,多模光纤已经被应用在以高达10Gbit/s在FDDI级多模光纤上运行的通信链路中。对于850nm光源,这样的链路已经被限于大约30m的长度。对于1310nm光源,这样的链路已经被限于80m的长度。然而必须是高达90%的已安装的多模光纤通信链路能够在至少300m上发射数据。
已经建议在接收机处使用均衡器电路来补偿符号间干扰。这种均衡器电路接收来自光电检测器电路的输出作为输入,之后从中生成至少两个均衡器系数。信号延迟线也接收来自光电检测器电路的输出。来自延迟线的抽头输出每个都与均衡器系数中的一个相乘或者相接合,之后相加到一起来生成均衡的输出信号。虽然该方法在补偿某些类型的信号失真方面有效,但是这增加了接收机电路的附加成本,并且没有解决由于在多模光纤中脉冲展宽所引起的失真问题的根本原因。
本发明的目的是提供光通信系统以及在这种系统中传送光信号的方法,所述该方法解决了这个问题。
发明内容
根据本发明,提供用于连接到多模光纤传输链路的光发射机单元,所述光发射机单元包括用于接收输入数据信号的数据输入端、数据信号处理电路和光辐射源,数据信号处理电路被布置以接收来自数据输入端的输入数据信号,并向光辐射源提供经处理的数据信号,并且光辐射源被布置以从中生成光信号用于通过多模光纤进行传输,其中数据处理电路被布置,以便:
-从输入数据信号提供非反相数据信号和反相数据信号;
-接收控制信号来控制经处理的数据信号的生成;
-根据控制信号将可控制的延迟施加到所述非反相数据信号和反相数据信号中的至少一个;
-根据控制信号将可控制的增益因子施加到所述非反相数据信号和反相数据信号中的至少一个;和
-在施加可控制的一个(或者多个)延迟和可控制的一个(或多个)增益因子之后,组合所述非反相信号和反相信号来生成经处理的数据信号。
根据本发明,还提供了一种多模光纤传输系统,所述多模光纤传输系统包括第一和第二光收发机,以及至少一个多模光纤传输链路,第一收发机具有第一发射机单元和第一接收机单元,第二收发机具有第二发射机单元和第二接收机单元,所述多模光纤传输链路在成对的发射机和接收机单元之间延伸,用于在所述收发机之间进行双工光通信,其中第一发射机单元是根据本发明的,第二收发机单元被适配,以便检测在第二接收机单元处所接收的光信号的质量,并从第二发射机单元将指示所述所接收的信号的质量的信息传送给第一接收机单元,所述第一收发机被适配,以便响应于所述信息来生成控制信号,以优化在第二接收机单元处所接收的信号的质量。
本发明还提供了一种在光通信系统中通过多模光纤传输数据的方法,包括:
-接收输入数据信号;
-从输入数据信号提供非反相数据信号和反相数据信号;
-将可控制的延迟施加到所述非反相数据信号和反相数据信号中的至少一个;
-将可控制的增益因子施加到所述非反相数据信号和反相数据信号中的至少一个;
-接收控制信号以允许控制一个(或多个)延迟和一个(或多个)增益因子;
-在施加可控制的一个(或多个)延迟和一个(或多个)增益因子信号之后,组合所述非反相信号和反相信号来生成经处理的数据信号;
-使用经处理的数据信号来生成光信号;
-通过多模光纤传输光信号。
术语“增益”既包括正增益也包括负增益(即衰减)。
在本发明的一个实施例中,数据处理电路包括:
-第一可变延迟线和相关联的控制输入,用于根据控制信号来施加第一可控制的延迟;
-第二可变延迟线和相关联的控制输入,用于根据控制信号来施加第二可控制的延迟;
-第一可变增益级和相关联的控制输入,用于根据控制信号来施加第一可控制的增益;
-第二可变增益级和相关联的控制输入,用于根据控制信号来施加第二可变增益。
还应当指出,数字或者模拟电子设备及它们的组合可以被用于实现本发明的这些方面。例如,延迟线可以是模拟或者数字延迟线,在后一种情况中可以以软件或者固件的形式(例如在数字信号处理器(DSP)芯片中)被实现。类似地,可变增益可以用模拟放大器或者数字地被实现,例如以软件或者固件的形式(例如在DSP芯片中)被实现。
优选地,具有用户可调整的设置,用于改变可控制的延迟和/或改变可控制的增益因子。这个设置可以便利地根据被连接到发射机的多模光纤的长度来校准。
附图说明
现在将只通过举例并参考附图来进一步描述本发明,其中:
图1是示出了在多模光纤中的脉冲展宽如何使所接收的脉冲退化的示意图;
图2和3是分别示出了如何使用预补偿来改变所发射的脉冲的形状以便减轻所接收的脉冲的退化的示意图;
图4是根据本发明的优选实施例的多模光纤传输系统的示意图,所述多模光纤传输系统具有通过一对多模光纤所连接的一对光收发机单元,第一收发机被布置来提供图2的预补偿,另一个收发机被布置来分析所接收的信号并与第一光收发机通信以调整并优化预补偿;和
图5是相应地使用根据本发明的优选实施例的光发射机单元在光通信系统中通过多模光纤来传输数据的流程图。
具体实施方式
图1图示了在通过多模光纤传输期间如何能够使光脉冲1退化的一个例子。水平轴表示时间或者沿光纤长度的距离,垂直轴是所发射的光辐射强度。然而,在多模光纤链路中特定形式的脉冲失真具有相当大的可变性,其取决于诸如光纤的类型和长度之类的多个因素。
最初,脉冲1是窄的,具有陡的上升沿2和同样陡的下降沿3。当脉冲沿着光纤的长度被传输时,不同的模式以不同的速度传播。结果是所接收的脉冲会主要沿着后沿4被展开。虽然在图1中示出所发射和所接收的峰值强度一样以便能够使脉冲形状的变化更好地可视化,但是所接收的脉冲的强度也将稍微下降。
图2示出如何能够通过包含强度下沉(dip)11,之后为初始峰值12来最初地预补偿脉冲10,以便在传输期间的脉冲展宽将趋向于填充该下沉11,从而得到如图3所示的更加接近最优的所接收的脉冲20。为了使这种形式的预补偿在光传输系统中工作,这里具有非零基线15是必要的,其中形成强度下沉11。因此,这种形式的预补偿需要基线15,它比一般的基线5高,基线5存在于图1所示的没有预补偿的多模光纤中。通常,在光通信系统中,激光二极管被偏置,以便光输出是在线性强度对电流特征曲线的基线上。根据预补偿的形式,本发明要求激光二极管被偏置稍微高于这个线性斜度的基线,以便下沉11足够深以补偿后沿的脉冲展宽。
图4示出根据本发明的一个优选实施例的多模光纤传输系统30的示意图。系统30具有一对光收发机单元31、32,它们由一对多模光纤传输链路33、34连接。第一收发机单元31具有光发射机35,光发射机35具有沿第一多模光纤链路33向光电检测器37发射光信号的光辐射源36,所述光电检测器37在第二收发机单元32中是光接收机38的一部分。
第二收发机单元32具有光发射机39,光发射机39具有光辐射源40,所述光辐射源通过第二多模光纤链路34向第一收发机单元31的光接收机42中的光电检测器41发射光信号。
光辐射源36、40通常各自都包括激光二极管和相关联的电子驱动器电路。光电检测器37、41通常包括光电二极管,所述光电二极管具有相关联的接收机电路。图中未示出的是光插头和插座或者光纤33、34本身的结构,因为这些能够从常规的光连接器和多模光纤光缆中被提供。
第一光收发机单元31具有连接到外部数据源44的信号输入43。输入数据43可以由(未示出的)常规输入电路来处理或者调节。非反相数据信号45被提供给第一延迟线46。数据反相器47接收相同的非反相信号45,并将反相数据信号48提供给第二延迟线49。两个延迟线46、49之间的相对延迟能够通过由延迟控制电路52所提供的各个延迟控制信号50、51来调整。这个布置允许由延迟控制52来设置非反相信号和反相信号45、48之间的相对延迟。因为它是需要被调节的相对延迟,所以这只对于具有一条延迟线46、49是必要的,因此图4示出了更加概括的电路布置。
延迟线46、49提供被传递给相关联的幅度控制级55、56的各个延迟的非反相信号和反相信号53、54,以便非反相延迟信号和反相延迟信号53、54的相对幅度能够通过由增益控制电路59所提供的控制信号57、58来设置。
延迟控制电路52和增益控制电路59一起包括预补偿控制器60。正如下面要更加详细地描述那样,为了优化预补偿的形式,预补偿控制器60能够自动或者手动地被控制。
来自幅度控制级55、56的输出61、62然后被组合以便例如或者通过将信号加到一起或者通过将这些信号作为输入提供给单独的放大器并且然后被组合来生成经处理的数据信号63。应当指出,在这个布置中,反相器47的位置以及实际上提供延迟及幅度控制的顺序可以与图示的不同。例如,反相器47可以被提供在最后延迟或者幅度控制级49、56之后。可替换地,反相可以由负输出提供给放大器。
正如可以从图4中可以看出,这种形式的预补偿易于提供并易于以模拟或者数据电子设备实现。这也是预补偿的有效形式,因为反相信号以及非反相信号的相对延迟和幅度能够被调整,以便在通过多模光纤传输之后补偿所退化的光信号的后沿。
所发射的信号33由第二收发机单元32的光接收机38接收。信号输出64可以从光接收机37内的接收机电路提供。在本发明的一个方面,接收机电路也将所接收的信号65提供给信号分析电路66,所述信号分析电路66被布置,以便例如在比特差错率或者逻辑信号传输之间的时间间隔方面来分析所接收的信号的质量。为了通过第二多模光纤34将控制信号发送给第一收发机单元31中的光接收机41,信号分析电路66将输入67提供给光发射机40。光接收机41提供信号输出68,它既作为数据输出69、也作为到预补偿控制器60的控制输入70。这样,为了提供对经处理的数据信号63的闭环控制,信号分析电路66能够与预补偿控制器60通信。为了避免由于在第二多模链路34中没有或者不充分的预补偿所引起的问题,来自信号分析电路66的控制器信号67也可以以能够由预补偿控制器60解码的、不受脉冲展宽影响的相对低频率信号的形式来提供。
附加地或者可替换地,收发机单元3可以具有被连接到诸如开关或者拨号之类的手动控制72的手动控制输入71,用户通过所述手动控制可以手动地设置所期望的预补偿等级。例如,手动预补偿控制72可以根据在两个收发机单元31、32之间的光纤33的长度被校准。
图5示出了在光通信系统30中传输数据的方法的主要步骤的流程图80。输入数据信号与它的反相信号一起被提供81。之后,可控制的延迟被施加82到非反相数据信号和反相数据信号中的至少一个。实现这一点的一种方法是使用控制信号来控制第一和第二延迟线之间的相对延迟同时,使用第一可变延迟线来延迟非反相数据信号,并使用第二可变延迟线来延迟反相数据信号。
然后,可控制的增益因子被施加83到非反相数据信号和反相数据信号中的至少一个。实现这一点的一种方法是使用第一增益级来减弱或者放大非反相数据信号,并使用第二增益级来减弱或者放大反相数据信号,同时使用控制信号来控制第一和第二增益级的相对增益。
然后,接收84控制信号以允许控制相对延迟和增益因子。这可以被实现的一种方法是手动调整设置,该设置根据被连接到发射机的多模光纤的长度被校准,以便调整可控制的延迟和/或可控制的增益因子。这可以被实现的另一种方法是在第二光收发机单元处接收通过多模光纤所传输的光信号,之后检测所接收的光信号的质量。随后该控制信号可以响应于所接收的光信号的检测质量自动生成,以优化在第二光收发机单元处所接收的信号的质量。
然后,非反相信号和反相信号在施加可控制的相对延迟和增益因子之后被组合85来生成经处理的数据信号,之后其被使用86来生成光信号用于通过多模式光纤链路进行传输87。
因此,本发明提供了在多模光纤通信系统中传送光信号的便利系统和方法,其可能会由于在光纤中各种光模式的不同的信号传输特性而经受所发射信号的生成。
应该认识到,在不脱离本发明的如所附权利要求所限定的范围的情况下,各种变型、修改和/或添加可以被引入上述部件的结构和布置中。

Claims (10)

1.一种用于连接到多模光纤传输链路(33)的光发射机单元(35),包括用于接收输入数据信号(43)的数据输入端(44)、数据信号处理电路(47-62)和光辐射源(36),数据信号处理电路被布置,以便接收(45)来自数据输入端(44)的输入数据信号(43),并向光辐射源(36)提供经处理的数据信号(63),并且光辐射源被布置,以便从中生成光信号(10)用于通过多模式光纤(33)进行传输,其中数据处理电路(47-62)被布置,以便:
-从输入数据信号(43)提供非反相数据信号(45)和反相数据信号(48);
-接收控制信号(70,71)来控制经处理的数据信号(63)的生成;
-根据控制信号(70,71)将可控制的延迟(46,49)施加到所述非反相数据信号和反相数据信号(45,48)中的至少一个;
-根据控制信号(70,71)将可控制的增益因子(55,56)施加到所述非反相数据信号和反相数据信号(45,48)中的至少一个;和
-在施加可控制的一个(或多个)延迟(46,49)和一个(或多个)增益因子(55,56)之后,组合非反相信号和反相信号来生成经处理的数据信号(63)。
2.如权利要求1所述的光发射机单元(35),其中数据处理电路(47-62)包括:
-第一可变延迟线(46)和相关联的控制输入(50),用于根据控制信号(70,71)来施加第一可控制的延迟;
-第二可变延迟线(49)和相关联的控制输入(51),用于根据控制信号(70,71)来施加第二可控制的延迟;
-第一可变增益级(55)和相关联的控制输入(57),用于根据控制信号(70,71)来施加第一可控制的增益;
-第二可变增益级(56)和相关联的控制输入(58),用于根据控制信号(70,71)来施加第二可变增益。
3.如权利要求1或者2所述的光发射机单元(35),包括驱动器电路(36),用于使用经处理的数据信号(63)来驱动光辐射源。
4.如前述任何一个权利要求所述的光发射机单元(35),包括用户可调整的设置(72),用于改变可控制的延迟(46,49)和/或改变可控制的增益因子(55,56),所述设置(72)根据被连接到发射机(35)的多模光纤(33)的长度来校准。
5.一种多模光纤传输系统(30),包括第一和第二光收发机(31,32),以及至少一个多模光纤传输链路(33,34),第一收发机(31)具有第一发射机单元(35)和第一接收机单元(38),第二收发机具有第二发射机单元(39)和第二接收机单元(42),所述多模光纤传输链路(33,34)在成对的发射机和接收机单元(35,38;39,42)之间延伸,用于在所述收发机(31,32)之间进行双工光通信,其中第一发射机单元(35)是如权利要求1至3的任何一个所述的,第二收发机单元(32)被适配,以便检测在第二接收机单元(38)处所接收的光信号(20)的质量(66),并从第二发射机单元(39)将指示所述所接收的信号的质量的信息传送给第一接收机单元(42),所述第一收发机(31)被适配,以便响应于所述信息来生成控制信号(70),以优化在第二接收机单元(38)处所接收的信号(20)的质量。
6.在光通信系统(30)中通过多模光纤(33)传输数据的方法,包括:
-接收输入数据信号(43);
-从输入数据信号(43)提供(81)非反相数据信号(45)和反相数据信号(48);
-将可控制的延迟(46,49)施加(82)到所述非反相数据信号和反相数据信号(45,48)中的至少一个;
-将可控制的增益因子(55,56)施加(83)到所述非反相数据信号和反相数据信号(45,48)中的至少一个;
-接收(84)控制信号(70,71)以允许控制一个(或多个)延迟(46,49)和一个(或多个)增益因子(55,56);
-在施加可控制的一个(或多个)延迟(46,49)和一个(或多个)增益因子信号(55,56)之后,组合(85)非反相信号和反相信号(45,48)来生成经处理的数据信号(63);
-使用(86)经处理的数据信号(63)来生成光信号(10);
-通过多模光纤(33)来传输(87)光信号(10)。
7.如权利要求6所述的方法,包括步骤:
-使用第一可变延迟线(46)来延迟非反相数据信号(45);
-使用第二可变延迟线(49)来延迟反相数据信号(48);以及
-使用控制信号(70,71)来控制第一和第二延迟线(46,49)之间的相对延迟。
8.如权利要求6或7所述的方法,包括步骤:
-使用第一增益级(55)来减弱或者放大非反相数据信号(45);
-使用第二增益级(56)来减弱或者放大反相数据信号(48);和
-使用控制信号(70,71)来控制第一和第二增益级(55,56)的相对增益。
9.如权利要求6至8的任何一个权利要求所述的方法,包括步骤:
为了调整可控制的延迟(46,49)和/或可控制的增益因子(55,56),调整设置(72),所述设置(72)根据被连接到发射机单元(35)的多模光纤(33)的长度来校准。
10.如权利要求6至8的任何一个权利所述的方法,包括步骤:
-在光收发机单元(32)接收通过多模光纤(33)所传输的光信号(20);
-检测所述所接收的光信号(20)的质量(66);
-响应于所述所接收的光信号(20)的检测质量来自动生成控制信号(70),以优化在第二接收机单元(38)处所接收的信号(20)的质量。
CN200610105503.0A 2005-07-07 2006-07-07 多模光纤通信系统 Active CN1933374B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0513898A GB2428149B (en) 2005-07-07 2005-07-07 Multimode optical fibre communication system
GB0513898.7 2005-07-07

Publications (2)

Publication Number Publication Date
CN1933374A true CN1933374A (zh) 2007-03-21
CN1933374B CN1933374B (zh) 2011-04-06

Family

ID=34856788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610105503.0A Active CN1933374B (zh) 2005-07-07 2006-07-07 多模光纤通信系统

Country Status (6)

Country Link
US (1) US7680421B2 (zh)
EP (1) EP1742388B1 (zh)
JP (1) JP4740053B2 (zh)
CN (1) CN1933374B (zh)
DE (1) DE602006008390D1 (zh)
GB (1) GB2428149B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609040A (zh) * 2011-05-04 2014-02-26 阿尔卡特朗讯 用于多模通信的光学接收器

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428149B (en) * 2005-07-07 2009-10-28 Agilent Technologies Inc Multimode optical fibre communication system
US20070248358A1 (en) * 2006-04-19 2007-10-25 Michael Sauer Electrical-optical cable for wireless systems
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8472767B2 (en) 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US20070286599A1 (en) * 2006-06-12 2007-12-13 Michael Sauer Centralized optical-fiber-based wireless picocellular systems and methods
US20070285239A1 (en) * 2006-06-12 2007-12-13 Easton Martyn N Centralized optical-fiber-based RFID systems and methods
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7627250B2 (en) * 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
WO2010090999A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
EP2394379B1 (en) 2009-02-03 2016-12-28 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
WO2012006777A1 (en) * 2010-07-14 2012-01-19 Huawei Technologies Co., Ltd. Transponder for an optical communications system and optical communications system
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
WO2012115843A1 (en) 2011-02-21 2012-08-30 Corning Cable Systems Llc Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
EP2702710A4 (en) 2011-04-29 2014-10-29 Corning Cable Sys Llc DETERMINING THE TRANSMISSION DELAY OF COMMUNICATIONS IN DISTRIBUTED ANTENNA SYSTEMS AND CORRESPONDING COMPONENTS, SYSTEMS AND METHODS
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
EP3132548B1 (en) * 2014-04-15 2021-06-02 ARRIS Enterprises LLC Smart receivers and transmitters for catv networks
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9571198B2 (en) 2014-07-25 2017-02-14 Futurewei Technologies, Inc. Compensation of non-linear transmitter impairments in optical communication networks
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
EP3235336A1 (en) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
GB201516759D0 (en) 2015-09-22 2015-11-04 Univ Aston Mode division multiplexed passive optical network
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US9900103B1 (en) * 2016-11-02 2018-02-20 Alcatel-Lucent Usa Inc. Optical transceiver having an interface circuit with a routing capability

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE413808B (sv) * 1978-09-22 1980-06-23 Asea Ab Metdon for overforing av metsignaler via en optisk lenk
US4280221A (en) * 1979-05-31 1981-07-21 The Boeing Company Digital data communication system
US4662004A (en) * 1984-12-17 1987-04-28 Fmw Corporation Laser communication system
US4642804A (en) * 1985-05-10 1987-02-10 Bell Communications Research, Inc. Shared laser lightwave transmission systems
DE3814583C1 (zh) * 1988-04-27 1989-11-23 Krone Ag, 1000 Berlin, De
US5120985A (en) * 1989-01-31 1992-06-09 Fujitsu Limited Data reproducing circuit for correcting amplitude variation and peak shift
ES2048331T3 (es) 1989-02-02 1994-03-16 Abbott Lab Metodo y dispositivo para cromatografia cuantitativa.
US4994675A (en) * 1989-04-28 1991-02-19 Rebo Research, Inc. Method and apparatus for checking continuity of optic transmission
US5132639A (en) * 1989-09-07 1992-07-21 Ortel Corporation Predistorter for linearization of electronic and optical signals
US5210633A (en) * 1990-09-12 1993-05-11 General Instrument Corporation Apparatus and method for linearizing the operation of an external optical modulator
US5019769A (en) * 1990-09-14 1991-05-28 Finisar Corporation Semiconductor laser diode controller and laser diode biasing control method
US5311346A (en) * 1992-06-17 1994-05-10 At&T Bell Laboratories Fiber-optic transmission polarization-dependent distortion compensation
US5293545A (en) * 1992-07-27 1994-03-08 General Instrument Corporation Optical source with reduced relative intensity noise
US5321710A (en) * 1993-04-19 1994-06-14 Raynet Corporation Predistortion method and apparatus for laser linearization
JP3068389B2 (ja) * 1993-09-29 2000-07-24 日本電気株式会社 半導体記憶装置
EP0701338B1 (en) * 1994-09-12 2003-07-23 Nippon Telegraph And Telephone Corporation An optical intensity modulation transmission system
US5862287A (en) * 1996-12-13 1999-01-19 Imra America, Inc. Apparatus and method for delivery of dispersion compensated ultrashort optical pulses with high peak power
US6249630B1 (en) * 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US6188497B1 (en) * 1997-02-13 2001-02-13 Lucent Technologies Inc. Duo-binary signal encoding
US6942469B2 (en) * 1997-06-26 2005-09-13 Crystal Investments, Inc. Solenoid cassette pump with servo controlled volume detection
JPH11112068A (ja) * 1997-10-06 1999-04-23 Fujitsu Ltd 光信号伝送システム及び光信号伝送方法
JP2000031900A (ja) * 1998-07-08 2000-01-28 Fujitsu Ltd 光ファイバ通信のための方法並びに該方法の実施に使用する端局装置及びシステム
DE69940873D1 (de) * 1998-07-29 2009-06-25 Nippon Telegraph & Telephone Optisches Übertragungssystem
US6590682B1 (en) * 1998-08-10 2003-07-08 Zilog, Inc. Infrared signal communication system and method including transmission means having automatic gain control
GB9825046D0 (en) * 1998-11-17 1999-01-13 Barr & Stroud Ltd Data communications link
US6198559B1 (en) * 1998-11-20 2001-03-06 Lucent Technologies, Inc. Automatic delay compensation for generating NRZ signals from RZ signals in communications networks
JP2000236299A (ja) * 1998-12-18 2000-08-29 Fujitsu Ltd 光送信機及び光伝送システム
US6678478B1 (en) * 1999-06-01 2004-01-13 Advantest Corporation Correcting method of optical signal transmission system and optical signal transmission system using said correcting method
US6763197B1 (en) * 1999-06-08 2004-07-13 Nippon Telegraph And Telephone Corporation Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
DE60142814D1 (de) * 2000-02-28 2010-09-30 Nippon Telegraph & Telephone Optisches Übertragungsverfahren, optischer Sender und optischer Empfänger
DE10012538C1 (de) * 2000-03-15 2001-09-20 Fraunhofer Ges Forschung Digitaler I/Q-Modulator mit Vorverzerrung
EP1282224B1 (en) * 2000-04-21 2009-08-05 Sony Corporation Distortion compensation apparatus
GB2362280A (en) 2000-05-12 2001-11-14 Roke Manor Research Optical pulse shaping apparatus
JP2001358654A (ja) * 2000-06-15 2001-12-26 Fujitsu Ltd 光波長変換器及び、これを用いる光波長多重化システム
US7099597B2 (en) * 2000-08-25 2006-08-29 Pts Corporation Method of adaptive signal degradation compensation
JP3721062B2 (ja) * 2000-08-30 2005-11-30 日本電信電話株式会社 光送信機
AU2002246880B2 (en) * 2000-12-29 2006-12-07 Watermark Medical, Inc. Sleep apnea risk evaluation
GB2372830B (en) * 2001-03-02 2003-05-21 Marconi Caswell Ltd Electro-optic gating arrangement with improved duty cycle
US7082268B2 (en) * 2001-05-31 2006-07-25 Teradvance Communications, Llc Method and system for 80 and 160 gigabit-per-second QRZ transmission in 100 GHz optical bandwidth with enhanced receiver performance
EP1276004B1 (en) * 2001-07-12 2007-09-05 Avago Technologies Fiber IP (Singapore) Pte. Ltd. A method and system for optical wavelength conversion and regeneration
JP4709446B2 (ja) * 2001-09-20 2011-06-22 株式会社日立国際電気 フィードフォワード非線型歪補償増幅器
US7116851B2 (en) * 2001-10-09 2006-10-03 Infinera Corporation Optical signal receiver, an associated photonic integrated circuit (RxPIC), and method improving performance
US7167490B2 (en) * 2001-11-05 2007-01-23 Jds Uniphase Corporation Optical gain apparatus with pump source wavelength control
US6623188B1 (en) * 2002-02-08 2003-09-23 Optiuh Corporation Dispersion tolerant optical data transmitter
US7039399B2 (en) * 2002-03-11 2006-05-02 Adc Telecommunications, Inc. Distribution of wireless telephony and data signals in a substantially closed environment
US7277511B2 (en) * 2002-05-15 2007-10-02 Intellon Corporation Two-stage non-linear filter for analog signal gain control in an OFDM receiver
JP4010877B2 (ja) * 2002-06-03 2007-11-21 富士通株式会社 光伝送システム
US7062177B1 (en) * 2002-06-25 2006-06-13 Cypress Semiconductor Corp. Out of band communications link for 4-lane optical modules using dark fibers and low-bandwidth LEDs
US7046621B2 (en) * 2002-07-10 2006-05-16 I/O Controls Corporation Redundant multi-fiber optical ring network
US6792020B2 (en) * 2002-08-05 2004-09-14 Agilent Technologies, Inc. Laser driver with a safety circuit having digital feedback
US6831280B2 (en) * 2002-09-23 2004-12-14 Axcelis Technologies, Inc. Methods and apparatus for precise measurement of time delay between two signals
US20040057734A1 (en) * 2002-09-25 2004-03-25 Lucent Technologies, Inc. Method and system for reducing transmission penalties associated with ghost pulses
DE10302128B3 (de) * 2003-01-21 2004-09-09 Infineon Technologies Ag Pufferverstärkeranordnung
US7196578B2 (en) * 2003-05-30 2007-03-27 Lucent Technologies Inc. Amplifier memory effect compensator
WO2004112264A2 (en) * 2003-06-10 2004-12-23 Ubi Systems, Inc. System and method for performing high-speed communications over fiber optical networks
US7091500B2 (en) * 2003-06-20 2006-08-15 Lucent Technologies Inc. Multi-photon endoscopic imaging system
US7804760B2 (en) * 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
GB2404992B (en) * 2003-08-12 2006-12-27 Agilent Technologies Inc Electro-absorption modulation of optical signals
EP1655866A1 (en) * 2003-08-13 2006-05-10 Nippon Telegraph and Telephone Corporation Distortion generator circuit, pre-distortion circuit, optical signal transmitter using the same, and optical signal transmission system
US6961492B2 (en) * 2003-09-17 2005-11-01 Lucent Technologies Inc. Tunable dispersion compensator
US7286767B2 (en) * 2003-09-30 2007-10-23 Intel Corporation Optical transceiver over single communication link
US20050089334A1 (en) * 2003-10-03 2005-04-28 Zvi Regev Protocol independent managed optical system
US7460788B2 (en) * 2003-10-29 2008-12-02 Ezconn Corporation Transmitting and receiving device
KR100578232B1 (ko) * 2003-10-30 2006-05-12 주식회사 하이닉스반도체 지연 고정 루프
KR100584433B1 (ko) * 2003-11-25 2006-05-26 삼성전자주식회사 차등 편광 변조 방식의 광전송 시스템
US7460790B2 (en) * 2004-01-30 2008-12-02 Finisar Corporation Non-linear compensation of timing jitter
US20070280701A1 (en) * 2004-05-25 2007-12-06 Azea Networks Limited Method and Apparatus for Producing High Extinction Ratio Data Modulation Formats
WO2006013893A1 (ja) * 2004-08-03 2006-02-09 Nippon Telegraph And Telephone Corporation トランスインピーダンスアンプ
KR100651378B1 (ko) * 2004-10-20 2006-11-29 삼성전자주식회사 첩 영복귀-교호부호반전 광송신기
US7414728B2 (en) * 2004-12-23 2008-08-19 Massachusetts Institute Of Technology Reconfigurable polarization independent interferometers and methods of stabilization
GB2428149B (en) * 2005-07-07 2009-10-28 Agilent Technologies Inc Multimode optical fibre communication system
US8761387B2 (en) * 2006-05-04 2014-06-24 Mindspeed Technologies, Inc. Analog transmit crosstalk canceller
JP4522417B2 (ja) * 2007-01-15 2010-08-11 富士通株式会社 光変調装置および光変調方法
US8055137B2 (en) * 2007-03-27 2011-11-08 Tongqing Wang Phase coded non-return-to-zero optical transmitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609040A (zh) * 2011-05-04 2014-02-26 阿尔卡特朗讯 用于多模通信的光学接收器
CN103609040B (zh) * 2011-05-04 2016-11-23 阿尔卡特朗讯 用于多模通信的光学接收器
US9559782B2 (en) 2011-05-04 2017-01-31 Alcatel Lucent Optical receiver for multimode communications

Also Published As

Publication number Publication date
DE602006008390D1 (de) 2009-09-24
CN1933374B (zh) 2011-04-06
GB2428149B (en) 2009-10-28
GB2428149A (en) 2007-01-17
EP1742388B1 (en) 2009-08-12
EP1742388A1 (en) 2007-01-10
US7680421B2 (en) 2010-03-16
US20070009266A1 (en) 2007-01-11
GB0513898D0 (en) 2005-08-10
JP2007020177A (ja) 2007-01-25
JP4740053B2 (ja) 2011-08-03

Similar Documents

Publication Publication Date Title
CN1933374A (zh) 多模光纤通信系统
CN1266849C (zh) 光传输系统和光通信方法
US7147387B2 (en) Transmitter preemphasis in fiber optic links
US8041226B2 (en) Optical transceiver with equalizing function and a method to setup the optical transceiver
CN1244207C (zh) 把光信号总色散量减至最小的方法和设备
US8929747B1 (en) Reducing pulse narrowing in the transmitter signal that drives a limiting E/O converter for optical fiber channels
JP2019537333A (ja) 光ファイバ通信に対する方法及びシステム
Buchali et al. 128 GSa/s SiGe DAC implementation enabling 1.52 Tb/s single carrier transmission
CN105703824A (zh) 一种高速光模块的接收测试装置及方法
US11018908B2 (en) Pulse amplitude modulation level optimization and equalization in optical systems
Hecht et al. 120Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28GHz 850nm VCSELs
Torres-Ferrera et al. Statistical analysis of 100 Gbps per wavelength SWDM VCSEL-MMF data center links on a large set of OM3 and OM4 fibers
Li et al. Demonstration of a real-time UWOC system using a bandwidth limited LED based on hardware and software equalization
EP1460785B1 (en) Adaptive equalisation using single-mode VCSELS
CN107204805B (zh) 用于多模多电平调制短距光通信系统幅度域及时间域均衡方法
Gimeno et al. Multi-rate adaptive equalizer for transmission over up to 50-m SI-POF
JP2004120758A (ja) 高非線形ファイバを用いる光送信器および方法
Lengyel et al. Sensitivity improvements in an 850-nm VCSEL-based link using a two-tap pre-emphasis electronic filter
Li et al. 6.25 Gb/s POF link using GaN μLED arrays and optically generated pulse amplitude modulation
Stark et al. Equalization strategies for 25G PON
Randel et al. Spectrally efficient polymer optical fiber transmission
Loquai et al. 10-Gb/s pulse-amplitude modulated transmission over 1-mm large-core polymer optical fiber
Lin et al. Spatial division multiplexing for optical data center networks
Li et al. Tilted-beam-enabled optical equalization for PAM-4 transmission in VCSEL-MMF links
US20220337386A1 (en) End-to-end link channel with lookup table(s) for equalization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES GENERAL IP

Effective date: 20130517

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130517

Address after: Singapore Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore Singapore

Patentee before: Avago Technologies Fiber IP (Singapore) Pte. Ltd.

TR01 Transfer of patent right

Effective date of registration: 20181019

Address after: Singapore Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore Singapore

Patentee before: Avago Technologies General IP (Singapore) Pte. Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201021

Address after: Singapore City

Patentee after: Broadcom International Pte. Ltd.

Address before: Singapore City

Patentee before: Avago Technologies General IP (Singapore) Pte. Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230410

Address after: Singapore, Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore, Singapore

Patentee before: Broadcom International Pte. Ltd.

TR01 Transfer of patent right