CN1961209A - 集成电子传感器 - Google Patents

集成电子传感器 Download PDF

Info

Publication number
CN1961209A
CN1961209A CNA2005800178446A CN200580017844A CN1961209A CN 1961209 A CN1961209 A CN 1961209A CN A2005800178446 A CNA2005800178446 A CN A2005800178446A CN 200580017844 A CN200580017844 A CN 200580017844A CN 1961209 A CN1961209 A CN 1961209A
Authority
CN
China
Prior art keywords
sensor device
integrated sensor
sensor
electrode
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800178446A
Other languages
English (en)
Inventor
蒂莫西·卡明斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Laboratories Inc
Original Assignee
蒂莫西·卡明斯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒂莫西·卡明斯 filed Critical 蒂莫西·卡明斯
Publication of CN1961209A publication Critical patent/CN1961209A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

一种集成传感器及其制造所述器件的方法,该器件包括在半导体衬底中的MOS电路,具有互连导体和绝缘电介质的互连级,所述级在衬底上并互连MOS电路,互连级包含具有嵌入互连电介质中的电极的传感器,以及MOS电路包括用于处理来自传感器电极的信号的处理器。

Description

集成电子传感器
发明领域
本发明涉及电子传感器。
现有技术
在电子工业中一个主要的驱动力是希望获得更大的功能集成,使得生产更自动化并降低每单位的成本。当然,附加的优点是减小的尺寸以及由此更高的电路密度。更重要的是,对于电池应用来说,由于降低的寄生电容,所以更高的集成通常导致更低的能耗。
然而,在传感器领域中,尤其是在无线传感器领域中,由于在将微控制器、A-D转换器(ADC)、存储器、RF收发机和传感器元件集成到一个集成的传感器器件中碰到的困难,所以已经减慢了更高的集成。由于对于各种元件的材料处理的不兼容性,所以这些困难已经出现了。例如,通常在陶瓷或者玻璃衬底上制造传感器元件,并且传感器元件不可能容易地集成在硅上。RF收发机典型地由双极晶体管构成,它们难以和其它技术例如CMOS集成在一起。而且,很多CMOS的高分辨率ADC是利用多晶-多晶电容器制成,它们遭受着衬底寄生效应、应力和失配效应的影响。而且,在IC处理中使用的铝金属化容易腐蚀,因此限制了对于某些类传感器应用的有效性。
US6724612和US6690569介绍了具有电子和传感部件的传感器器件,所述传感部件是电容性的电极。然而,电极需要铂或者金涂覆以及聚合物的沉积作为检测湿度的电介质。这种处理不受大容量半导体处理的影响。
本发明解决了这些问题。
发明内容
根据本发明,提供了一种集成传感器器件,包括:
在半导体衬底中的MOS电路,
具有互联导体和绝缘电介质的互连级,所述级在衬底上面并互联MOS电路,
互连级包含具有嵌入互连电介质中的电极的传感器,以及
MOS电路包括处理来自传感器电极的信号的处理器。
在一个实施例中,传感器包括多孔氧化物,用于导入被检测的气体或者湿度。
在另一个实施例中,多孔氧化物是掺杂了碳的SiO2
在再一个实施例中,传感器是电容性传感器。
在一个实施例中,传感器包括在传感器电极上的钝化层。
在另一个实施例中,多孔氧化物沉积在钝化层上,并且MOS电路检测电极之间的边缘场的变化。
在再一个实施例中,包括在互连级之间的刻蚀阻止层,并且钝化层是和刻蚀阻止材料相同的组成物。
在一个实施例中,钝化层是Si3N4的组成物。
在另一个实施例中,钝化层在检测电极上凹进。
在再一个实施例中,在凹槽中有多孔氧化物膜。
在一个实施例中,多孔氧化物位于电极之间并且被暴露出来。
在另一个实施例中,MOS电路在垂直维度上直接位于传感器之下。
在再一个实施例中,MOS电路包括温度传感器。
在一个实施例中,温度传感器包括PNP晶体管。
在另一个实施例中,MOS电路包括微控制器,用于处理气体或者来自该气体或湿度传感器的湿度信号和来自温度传感器的温度信号,以提供增强的输出。
在再一个实施例中,增强的输出是校正了温度的气体或者湿度的读数。
在一个实施例中,传感器包括沉积在传感器电极上的聚酰亚胺。
在另一实施例中,MOS电路包括连接在传感器电极和处理器之间的AD转换器。
在再一个实施例中,AD转换器包括具有围绕有效的(active)AD转换器电容器的恒定布局(topography)的虚拟电容器的阵列。
在一个实施例中,还包括发光二极管。
在另一个实施例中,在深入到传感器电极的较低横向互连级中的沟槽中形成所述二极管。
在再一个实施例中,该器件包括光电检测二极管。
在一个实施例中,所述二极管位于传感器电极的较低横向互连级中的深沟槽中。
在另一个实施例中,MOS电路包括无线收发机。
在再一个实施例中,无线收发机用于和网络中的其它节点通信,并且它包括当检测到干扰时根据低频信道切换方案切换信道频率的装置。
在一个实施例中,互连级包括低噪声放大器。
在另一个实施例中,低噪声放大器包括在导体下面的应变硅区。
在再一个实施例中,应变硅在衬底上面的第五或者第六互连级中。
在一个实施例中,传感器包括连接在器件的上表面上的焊盘之间的检测元件。
在另一个实施例中,元件是检测气体的薄膜。
在再一个实施例中,元件是氧化锌的组成物。
在一个实施例中,所述元件检测声音,并且MOS电路包括用于处理来自元件的信号的音频处理器。
在本发明的另一个方案中,提供了一种制造上述实施例中的任何一个的传感器器件的方法,该方法包括以下步骤:
在衬底中制造MOS电路,
根据互连设计在相继的制造周期中制造互连级,以互连MOS电路,以及
在最后的互连级中制造传感器电极和电介质。
在一个实施例中,该方法还包括在顶部互连级上沉积钝化层的步骤。
在另一实施例中,该方法包括在互连级中的每层电介质上沉积刻蚀阻止层以及在顶部互连级电介质上沉积刻蚀阻止材料以提供钝化层的步骤。
在再一个实施例中,提供多孔氧化物作为较低互连级中的电介质,并使用通常的氧化物作为较高互连级中的电介质。
在一个实施例中,在较高互连级中沉积应变的低噪声放大器,所述放大器包括应变的硅区域。
本发明的具体描述
附图的简要说明
从仅仅参考附图借助于例子给出的其一些实施例的下述描述可以更清楚地理解本发明,其中:
图1是本发明的单芯片无线传感器器件的方框图;
图2是表示用于制造该器件的工艺的流程图;
图3(a)是器件的横截面图,图3(b)是检测电极的平面图;而图3(c)是示出了电极之间的边缘场的范围的图;
图4是器件的AD转换器的示意图;
图5是示出了替换实施例的传感器部件的图;
图6和7是替换传感器部件的横截面图;
图8是用于最终封装的密封(potting)装置的图;
图9是传感器器件的12位SARAD转换器的电路图;
图10是用于SAR转换器的电容器阵列的布局图;
图11是器件的微控制器的方框图;
图12是示出了在器件的应变硅晶体管中的子表面电流流动路径的横截面图;
图13是表示无线收发机的频率选择的图;
图14示出了用于本发明的器件的通信方案;
图15是气体检测器件的横截面图;
图16是音频传感器的示意性横截面图;以及
图17是一个实施例中器件的LED和光电二极管的横截面图。
具体实施方式
气体/湿度传感器实施例
参考图1,单芯片无线传感器1包括通过传送/接收接口3连接到无线天线4的微控制器2。微控制器2还连接到8kB的RAM5、USB接口6、RS232接口8、64kB的闪存存储器9和32kHz的晶体10。在这个实施例中,器件1检测湿度和温度,并且湿度传感器11通过18位ΣΔAD转换器12连接到微控制器2,以及温度传感器13通过12位的SAR AD转换器14连接到微控制器2。
器件1是在单个工艺中制造的单个集成芯片,其中在该单个工艺中使用标准CMOS处理技术制造电子和传感器部件,应用该技术以在集成工艺中获得电子和检测部件。
现在参考图2、3(a)、3(b)和3(c)更具体地描述制造工艺20,并且其包括步骤21到27。
21,前端处理
用CMOS阱、隔离氧化、多晶硅和注入处理硅衬底41,以形成MOS元件,如在CMOS处理中公知的。而且,在衬底中形成对温度敏感的PNP晶体管,以提供传感器13。
22,较低互连和电介质沉积
形成第一、第二和第三互连级42。这包括多孔低K二氧化硅电介质42(a)的化学汽相沉积(CVD),以及刻蚀和镀铜操作三个周期,以提供互连轨迹42(b)。为了限制下一周期中刻蚀的范围,每个周期都在刻蚀阻止层42(c)的沉积中完成。刻蚀阻止材料是氮化硅Si3N4。每个周期的二氧化硅、互连金属和刻蚀阻止形成第一互连的三级堆栈42。对于部件之间更快的信号传输来说,使用低K电介质允许了低电容。
23,较高互连和CVD电介质沉积
形成第四和第五互连级43。还存在电介质沉积和电镀金属互连两个周期。然而,在这两个周期中,为了使结构强度更好,电介质是“常规的”SiO2(非多孔)43(a),以抵消较低级42中的多孔电介质的较弱的机械强度。此外,这些周期包括标准CMOS技术。
第五级包括具有内部温度监控器的加热元件43(b),用于以即时的温度监控来对湿度传感器11进行即时的加热和清洁。而且,作为形成第四和第五级的一部分,该工艺增加了用于电容器顶端金属(CTM)的薄金属板,在它们之间具有薄层(0.04μm)的SiO2电介质,以形成用于这两个AD转换器的混合信号的金属-绝缘体-金属(MIM)电容器。
24,SiO2的CVD沉积,检测级
形成互连/检测层44。这只是前面的互连和电镀周期之后的下一次重复或者循环,并且实际上电介质是和用于之前紧邻的周期的“常规”SiO2相同。然而,作为电镀顶部互连层44的完整部分,形成检测湿度的电容性的互相交叉的指(电极)45和参考电容性的互相交叉的指(电极)46。选择指的尺寸和间隔以适应应用。在这个实施例中,指45和46具有0.5μm的间隔。在图3(b)中更清楚地示出了该设置。使用介电常数Kox为3.9的氧化物,这产生的电容为:
Cox = k ox e 0 Tox = 3.9 * 8.85 × 10 - 12 0.5 × 10 - 6 = 0.000069 F / m 2 = 0.069 fF / μm 2
每个实际的电容性结构大概是焊接盘的尺寸,允许每个指具有4000μm的总长度。对于1μm的金属厚度,这给出了传感器的电容为0.276pF。然而,由于边缘分量(fringing component),所以两个紧密间隔的狭窄导体之间的电容可能比简单平行板的计算值大10%到30%。
25,Si3N4钝化层的沉积
以类似于常规刻蚀阻止层的方式通过CVD沉积钝化层48,因为其也为Si3N4。然而,钝化层48大约3-5μm厚,以提供对器件1的物理保护和防潮层。
26,在检测电极上刻蚀钝化层
将检测电极45上的钝化层48的那个部分刻蚀到90%的深度,以在检测电极上留下大约0.1μm深度的薄Si3N4层48(a)。
27,多孔氧化物的CVD沉积
现在通过CVD在步骤26中形成的凹槽中沉积与在前三个级中用作电介质的材料相同的材料。这是具有大比表面积的检测湿度的膜49。气体或者湿气的进入导致多孔电介质的介电常数的变化。这导致下面的检测电极45电容的变化。
从上面可以理解的是,使用标准深亚微米CMOS处理技术,由此获得完全集成的产品。使用相同的电介质和互连金属层,和芯片的其余部分同时地制成了该传感器。对于该传感器1的大批量可制造性,这种‘标准CMOS’方法非常有益。
显然至今还没有尝试这种方法,这是由于这样的感受,即这种传感器将需要聚合物以及镀金或镀铂和/或将被认为是现代CMOS晶片制造工厂中的污染物的其它非标准材料。为了获得减小的电容而进行的基于SiO2的组成物的研发打破了内部晶格结构。这使得它们多孔并经受湿气或者气体渗透。而且,在传感器结构中使用CMOS处理的氮化硅(Si3N4)以获得刻蚀阻止层,来担当保护集成器件的阻挡层。在上述实施例中,Si3N4层在检测部件上面,并且当在非常潮湿的环境中这种渗透可能腐蚀电极时,它对于被检测湿气的进入担当阻挡物的作用。因此检测是基于利用弹簧(spring)效应,这在下面阐述。
器件1的使用
在使用中,湿气进入到膜49中,使得它影响其介电常数,以及由此影响检测指45之间的边缘场。这在图3(c)中用线55表示。即使通过层48的薄部分48(a)阻止湿气进入检测指45之间的间隔,这也会发生。
传感器1依赖于电极之间的场的这个边缘分量55。对于所述的4000μm、0.27pF的结构,边缘分量大约是25到50fF。由于18位ΣΔAD转换器的紧密接近(直接位于传感器下方),所以可以检测非常小的电容变化,即使在边缘场。在图4中示出这个转换器,其中检测指45是Cs,而参考指46是Cr。这些电容形成第二级过采样希格玛德耳塔调制器的微分前端,表示传感器和转换器部件之间的集成等级。Vr和Vs提供比例和偏移补偿。通过使用抽取(decimation)滤波器来对每秒的采样数量和过采样比例进行折中而获得了非常高的分辨率。
参考图5,在该实施例中,在钝化层51的顶部沉积(或者印制)多孔材料50,消除了多余的刻蚀步骤。然而,如果钝化层的厚度大约是例如3μm,那么传感器电容器指45的间隔必须增加到大约大于等于5μm,以使得边缘电容分量仍表示总电容的可测量比例。对于4000μm的传感器结构,现在将总电容降低为大约27fF,现在可变的边缘分量在3到5fF的区域内。现在1%或者2%的湿度变化产生了小于千万亿分之一法拉的电容变化,通过该高度过采样的微分希格玛德耳塔高分辨率的转换器仍然可以检测该变化。18位的分辨率还提供了非常大的动态范围,能够使转换器容易地应对晶片和晶片以及批量和批量之间不同氧化物和不同孔尺寸的高度可变的和非线性的电容相对于湿度的特性。
参考图6,在这个实施例中,使用标准CMOS处理,而不需要多余的处理步骤。通常使用聚酰亚胺作为硅芯片上的‘减轻应力’的涂层。通常用稍微大尺寸形式的焊盘掩模来确定聚酰亚胺的设置。在这个例子中,聚酰亚胺掩模包括从参考电容器上消除聚酰胺60的额外开口。由于聚酰亚胺是多孔的,所以现在检测电容器上的部分经历了电容相对于湿度的微小变化。
参考图7,在这个实施例中,在器件的所有互连级中使用多孔的低K氧化物电介质,使得传感器器件在电容性的互相交叉的指71之间具有多孔的低K电介质70。通过在传感器结构上放置‘虚拟的’焊盘钝化层开口,露出检测指71上面的表面72,用于在焊盘刻蚀的过程中使湿气进入到指之间的电介质中。这在除了检测电容指71之外的整个区域上剩下了钝化层73。这个实施例具有这样的优点,即使用标准CMOS工艺,而不需要额外的掩模。然而,它允许了湿气靠近电容指71。然而,对于很多的应用来说这不是问题,例如对于传感器每几分钟只经受一次几毫秒的几毫伏的低湿度办公环境。
图8示出了用于封入单芯片无线传感器的简单密封装置。传感器1通过导电粘接剂81粘接到电池,并存在封装82。使用模型(former)以保持检测部件上的区域清楚。用封装82包围所有的其它区域,该封装提供物理保护,以及如果连续暴露于非常潮湿的环境中,也保护芯片和电池端子使其不腐蚀或者不电解退化。除了RF天线导线83之外,任何地方都没有露出金属。
或者,如果物理保护不太重要和/或如果对温度变化的响应时间更重要,则可以没有封装。
温度传感器
除了上述的金属加热器温度传感器43(b)之外,还可以形成衬底PNP温度传感器13作为衬底41的完整部分,如图3(a)所示的。这依赖于基极发射结的公知的-2.2mV/℃Vbe特性。通过使湿度和温度传感器组合在一个器件中,可能存在通过微控制器计算的增强读数,也就是露点。这些和微控制器2和闪存存储器9一起,允许使用标度(scaling)和刻度(calibration)的查找表,以实现精度在0.5℃内。
参考图9,示出了12位的SAR转换器14。该转换器测量PNP的Vbe电压或者在如所示的桥结构中的金属加热器的监控器的与温度有关的电阻。如下所述,在没有任何校准电路的情况下,转换器实现12位的分辨率。参考图10,用于转换器14的电容器阵列处于级的中心,并且它被八个类似的虚拟阵列90围绕,以保证转换器14中的关键阵列电容器的恒定形状和良好的匹配。通过耦合电容器Cc将阵列分割成7个上面的位和5位子DAC。这和7×7μm的小单元电容器尺寸一起保持整个阵列电容(Cs)大约在8pF,足够小的电容使得可以用所示的芯片上的缓冲放大器来有效地驱动它,并且足够小的电容还使得由于氧化物厚度的梯度或者其它工艺参数而引起的整体的不匹配最小化。在100KHz的采样频率时,kT/C噪声图是140nV,远远低于12位LSB尺寸。在金属5(第五级)上,对于衬底来说电容器具有非常小的寄生电容,简化了成比例的电容器的匹配。这些电容器的金属-绝缘体-金属(MIM)结构导致低的电压和温度系数以及寄生电阻。
闪存微控制器
在和传感器相同的芯片上具有8位微控制器2和64KB闪存存储器9能够使得在精度和功能上有显著的改进。这是因为实现了在各种温度条件上的实时连续校准或者现场校准。这些数量的存储器也足够适应整个IEEE802.15.4协议和Zigbee软件栈以执行信标(beacon)、对等、星形和网状网络连接、现代无线传感器网络的关键需求。片上调节器产生1.2V,其给在薄氧化物最小几何形状器件上制造的微控制器、存储器块和无线RF收发机中的大部分供电。
为了有助于更低的功率,在厚氧化物的3.3V晶体管上实现时间间隔的计数器和微控制器的中断逻辑的一部分,如图11所示。这意味着,当芯片在睡眠状态或者断电模式时可以关闭调节器,消除调节器的DC偏置电流。这和3V晶体管的几乎为零的亚阈值泄漏一起导致显著的电能节约和电池寿命的延长。当从断电醒来时,通过依次操作传感器、转换器和无线收发机,微控制器还实现了噪声和衬底串扰的减少。
现在转到无线收发机3,并且尤其是它的低噪声放大器(LNA),将LNA设计成具有超低功率和低噪声操作。参见图12,对于前端LNA,通过在第五或第六级上的铜电感器以及使用应变硅MOS器件能够实现这一点。该图示出了硅锗的薄层100,在其上面有薄应变硅层101,其具有比常规硅更高的载流子迁移率。多晶硅栅102在应变硅区域中产生沟道。然而,由于锗的迁移率更高,所以晶体管电流中的大部分在子表面SiGe区域中流动,从而给出更低的噪声操作和更高的增益。因此对于相同的增益,LNA可以在更低的电流下偏置,从而节省电池电能。铜比铝具有更低的电阻,从而给出更高的Q因数(导致更高的接收器增益)。第五或者第六级铜也更厚(更低的电阻),并更远离衬底(更少的寄生电容)。
参考图13,示出了对于RF收发机3的频率选择。器件1在节点的无线网络中形成节点。这可能是简单的点对点链路或者星形或者网状网络。所有的节点使用固定的频率,并且无线接口3提供慢跳频方案来防止干扰。其通过最初所有的节点使用相同的频率来进行操作。当传输故障表示可能的干扰时,节点根据图13中所示的算法而移动到不同的频率。接着是所有节点的同步。
为了跳频方案能工作,用跳频序列预编程所有的节点。而且,它们必须都被初始化到相同的信道中,使得它们可以“一起跳频”,这通常是在安装之后或者换电池之后。
更具体而言,当安装时(或者换电池时),例如,安装者通过按压按钮来手动将节点放在“初始化”模式中。然后节点将它的接收机打开并“听”例如信道0上的附近的节点传输(或者主信号)。如果在适当时间例如几秒或者几分钟(因为当前信道可能堵塞)之后它什么都没有接收到,则它步进到序列中的下一信道,并再次等候和收听。最后,借助于这种方式,它应当从相邻的节点接收信标或者数据包;然后它可以再次使它的计时器同步、请求跳频间隔定时、加入序列并进入睡眠,一直到下一次跳频和传输周期。
这种初始化方法意味着,在安装的时候节点仅必须保持一次“开启”在全功率接收模式下;然后它在电池的1到3年寿命的99.9%的时间(如802.15.4标准所定义的)中可以回到睡眠模式。由于802.15.4标准允许高达4分钟的睡眠周期,所以在这个持续时间中节点可以处于全功率接收模式。然而,实际上这是不可能的,因为安装者将知道这个周期。使用频谱分析器(或者手持无线“检漏头(sniffer)”),他可以粗略地预测下一信标传输时间什么时候到,并刚刚在该时间之前按压‘初始化’按钮。
参考图14,该图示出了使用慢跳频方案的例子。它用在两个建筑物120和125之间的长距离(200m)链路115上(在和计算机127连接的网关节点126上使用定向的14dBi的天线)。在第一建筑物120中实现节点121的标准802.15.4Zigbee固定信道星形网络。这使得多供给方的能共同使用的节点安装在星形网设施的监控应用中,而在更容易受到干扰的长距离关键链路(critical link)上采用慢跳频算法。
测试和校准
对于湿度传感器这通常是困难的,连同特殊包装控制以及电连接一起,需要湿度受控制的特殊腔室。
在本发明中,由于以标准CMOS工艺制造整个湿度传感器,所以可以在晶片发货之前在通常的晶片级测试时测试和校准该湿度传感器。这利用了这样的事实,即晶片探针和工厂测试区域通常运行在精确的湿度等级时,例如40%的相对湿度。可以将这种已知值存储在片上闪存EEPROM存储器中,以便随后由微控制器在软件控制下精确地校准输出值时使用,或者它可以用在芯片的非闪存EEPROM形式中,以在40%的RH时熔断多状态保险丝(poly fuse)来校准传感器。该1点校准对于很多应用可能足够了,例如设置点周围的办公空调控制,通常为40%。如果在更宽范围湿度上需要更高的精度,那么可能需要第二校准点。这通过例如在85%RH时的密闭腔室中或者在干氮干燥剂腔室(0.001%RH)中进行“第二通道(second-pass)”晶片探针来实现。尽管第二通道晶片测试增加了一些额外的成本,但是它显著地低于基于封装的测试。
气体检测
在另一个实施例中,如图15所示,在钝化层131上、在18位ΣΔAD转换器12的微分电容器132之一的位置处沉积氧化锌和氧化铁的薄膜130。通过溶胶凝胶工艺合成这些氧化物,将其加热到大约120℃到200℃,然后通过混合喷墨沉积来进行沉积。薄膜意味着可以在传感器结构中使用小的指间隔,并且高分辨率AD转换器意味着可以使用小传感器结构,并仍然导致电容可检测的微小变化,甚至在室温操作时也是如此。
图16示出了替换实施例,其中在顶部氧化物或者钝化层141上沉积氧化铁/氧化锌140,但是其直接连接到顶部金属层中的电极142,形成电阻器,其值通过18位转换器可以作为桥式电路的一部分来确定。
利用代替图15的氧化物130的不同材料,可以使器件结构和生产工艺适应于检测不同的气体,例如使用用于检测氢气的钯,用于SO2、H2S的氧化锆,或者用于NO2的增塑聚乙烯氯化物,以及用于异丁烷的WO3。在每一种情况中,通过注入气体、通过吸附或者物理吸附或者化学吸附改变检测材料的导电率和介电常数。因此,交替使用15-电容性的和16-电阻性的实施例或者和片上紧密集成的高分辨率转换器一起使用,以获得非常低的ppm气体浓度测量。
音频传感器
或者,为了声音的灵敏性,可以在图16所示的结构中应用压电聚合物。转换主要基于导电率的变化。在这种情况下,在MOS电路级,采用具有驱动18位AD转换器的缓冲器的桥式电路,以捕获音频信号。
音频传感器(麦克风)是远程无线节点上有用的特征,例如,用于“听”电机是否在运行、警铃是否在响。由于IEEE802.15.4的0.1%的占空比,所以需要用于该音频的设置;在802.15.4的2.4GHz频带中的250Kb/s的最大数据速率对应于0.1%占空比时250b/s的恒定不变的数据速率。采用可变比特率的音频压缩器块(VBR)以获得15∶1或者更好的压缩比例,实现3.75Kb/S的有效比特速率,这对于很多工业的低级音频需求是足够的。
光学传感器
参考图17,该器件还可包括光发射器150和检测器151。在通常处理的最后应用高度定向的深各向异性刻蚀,以完全刻蚀掉所有的六或者七层电介质,以露出光电二极管的光传感器151、200μm×500μm的大PN结,,其收集光子并产生相应的电流。
在本实施例中,刻蚀还露出了多孔硅区域150,该区域是在工艺的开始时通过电化学刻蚀在该特殊区域中的衬底产生的。由于多孔硅的公知的发光特性,所以让电流流过该区域使得它起到发光二极管(LED)的作用。放置在多孔区域周围的隔离沟槽可以使泄漏到衬底的任何电流最小化,并且改善发光效率。
对于本领域技术人员来说电化学刻蚀形成多孔硅是公知的,并且在一些CMOS工艺上是可以利用的,但是对于大部分CMOS工艺是不标准的。替换的LED结构是掺杂的聚合物有机发光器件。使用混合喷墨印刷,以图16所示的方式直接将构图的发光掺杂聚合物膜,例如聚乙烯咔唑(PVK)膜沉积到电极上。
本发明不局限于所述的实施例,而是可以在结构和细节上变化。例如,除了铜之外可以使用其它的导体用于互连,例如铝。而且,传感器器件可以是不具有无线电或者微控制器或者闪存存储器的“拆开(stripped down)”形式的传感器,“湿度到数字”传感器芯片。在这种情况下,通过在电压参考电路和电容器阵列中熔断各个多状态保险丝实现AD和传感器的校准。应当注意的是,测试不需要包括AD的每个编码,由此明显简化了测试,并降低了成本。而且,可以在上面的实施例中所述的之外的方法和器件中独立地或者组合地提供一些或者更多的下述特征:
使用应变硅作为低噪声放大器,
低频信道选择/跳频,
具有复制的电容器阵列的SAR,
多孔硅LED,
音频的压电聚合物麦克风传感器,
低占空比的音频压缩和传输,
微控制器特征。

Claims (37)

1、一种集成传感器器件,包括:
在半导体衬底中的MOS电路,
具有互连导体和绝缘电介质的互连级,所述级在该衬底上并对所述MOS电路进行互连,
所述互连级包含具有嵌入该互连电介质中的电极的传感器,并且
所述MOS电路包括用于处理来自该传感器电极的信号的处理器。
2、如权利要求1所述的集成传感器器件,其中该传感器包括用于使被检测的气体或者湿气进入的多孔氧化物。
3、如权利要求2所述的集成传感器器件,其中该多孔氧化物是掺杂了碳的SiO2
4、如前述任一权利要求所述的集成传感器器件,其中该传感器是电容性传感器。
5、如权利要求4所述的集成传感器器件,其中该传感器包括在该传感器电极上的钝化层。
6、如权利要求5所述的集成传感器器件,其中该多孔氧化物沉积在该钝化层上,并且所述MOS电路检测所述电极之间的边缘场的变化。
7、如权利要求5或者6所述的集成传感器器件,包括在所述互连级之间的刻蚀阻止层,并且所述钝化层具有和该刻蚀阻止材料相同的组成物。
8、如权利要求7所述的集成传感器器件,其中该钝化层具有Si3N4组成物。
9、如权利要求5至8中的任一项所述的集成传感器器件,其中该钝化层在该检测电极上凹进。
10、如权利要求9所述的集成传感器器件,其中在凹槽中存在多孔氧化物膜。
11、如权利要求1至4中的任一项所述的集成传感器器件,其中该多孔氧化物处于所述电极之间并被暴露出来。
12、如前述任一权利要求所述的集成传感器器件,其中所述MOS电路在垂直维度上直接位于该传感器下面。
13、如前述任一权利要求所述的集成传感器器件,其中所述MOS电路包括温度传感器。
14、如权利要求13所述的集成传感器器件,其中该温度传感器包括PNP晶体管。
15、如权利要求13或者14所述的集成传感器器件,其中所述MOS电路包括微控制器,用于处理来自气体或者湿度传感器的气体或者湿度信号和来自该温度传感器的温度信号,以提供增强的输出。
16、如权利要求15所述的集成传感器器件,其中所述增强的输出是校正了温度的气体或者湿度的读数。
17、如权利要求1所述的集成传感器器件,其中该传感器包括沉积在所述传感器电极上的聚酰亚胺。
18、如前述任一权利要求所述的集成传感器器件,其中所述MOS电路包括连接在所述传感器电极和所述处理器之间的AD转换器。
19、如权利要求18所述的集成传感器器件,其中该AD转换器包括具有围绕有效的AD转换器电容器的恒定布局的虚拟电容器的阵列。
20、如前述任一权利要求所述的集成传感器器件,还包括发光二极管。
21、如权利要求20所述的集成传感器器件,其中在深入到该传感器电极的较低横向互连级的沟槽中形成所述二极管。
22、如前述任一权利要求所述的集成传感器器件,其中该器件包括光电检测器二极管。
23、如权利要求22所述的集成传感器器件,其中所述二极管位于该传感器电极的较低横向互连级中的深沟槽中。
24、如前述任一权利要求所述的集成传感器器件,其中所述MOS电路包括无线收发机。
25、如权利要求24所述的集成传感器器件,其中该无线收发机用于和网络中的其它节点通信,并且它包括用于当检测到干扰时根据低频信道切换方案来切换信道频率的装置。
26、如权利要求24或者25所述的集成传感器器件,其中互连级包括低噪声放大器。
27、如权利要求26所述的集成传感器器件,其中该低噪声放大器包括在导体下面的应变硅区。
28、如权利要求27所述的集成传感器器件,其中该应变硅处在该衬底上面的第五或者第六互连级中。
29、如前述任一权利要求所述的集成传感器器件,其中该传感器包括连接在该器件的上表面上的焊盘之间的检测元件。
30、如权利要求29所述的集成传感器器件,其中该元件是检测气体的薄膜。
31、如权利要求30所述的集成传感器器件,其中该元件是氧化锌的组成物。
32、如权利要求29所述的集成传感器器件,其中所述元件检测声音,并且所述MOS电路包括用于处理来自该元件的信号的音频处理器。
33、一种制造前述任一权利要求所述的传感器器件的方法,该方法包括以下步骤:
在该衬底中制造所述MOS电路,
根据互连设计在相继的制造周期中制造互连级,以互连所述MOS电路,和
在最后的互连级中制造所述传感器电极和电介质。
34、如权利要求33所述的方法,还包括在该顶部互连级上沉积钝化层的步骤。
35、如权利要求34所述的方法,包括在所述互连级中的每层电介质上沉积刻蚀阻止层,以及在该顶部互连级电介质上沉积刻蚀阻止材料以提供该钝化层的步骤。
36、如权利要求33到35中的任一项所述的方法,其中设置多孔氧化物作为较低互连级中的电介质,并使用常规的氧化物作为较高互连级中的电介质。
37、如权利要求33到36中的任一项所述的方法,其中在较高互连级中沉积应变的低噪声放大器,所述放大器包括应变的硅区域。
CNA2005800178446A 2004-04-02 2005-03-30 集成电子传感器 Pending CN1961209A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55856504P 2004-04-02 2004-04-02
US60/558,565 2004-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012102889459A Division CN102854229A (zh) 2004-04-02 2005-03-30 集成电子传感器

Publications (1)

Publication Number Publication Date
CN1961209A true CN1961209A (zh) 2007-05-09

Family

ID=34962453

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2005800178446A Pending CN1961209A (zh) 2004-04-02 2005-03-30 集成电子传感器
CN2012102889459A Pending CN102854229A (zh) 2004-04-02 2005-03-30 集成电子传感器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012102889459A Pending CN102854229A (zh) 2004-04-02 2005-03-30 集成电子传感器

Country Status (5)

Country Link
US (7) US7554134B2 (zh)
EP (1) EP1730506B1 (zh)
JP (1) JP2007535662A (zh)
CN (2) CN1961209A (zh)
WO (1) WO2005095936A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115569A (zh) * 2012-10-22 2013-05-22 深圳市嘉瀚科技有限公司 具有无线传输功能的整体集成式光电传感器
CN103512940A (zh) * 2012-06-21 2014-01-15 Nxp股份有限公司 具有传感器的集成电路和制造方法
CN104792829A (zh) * 2014-04-07 2015-07-22 英诺晶片科技股份有限公司 传感器装置
CN105675051A (zh) * 2016-01-12 2016-06-15 上海申矽凌微电子科技有限公司 制造传感器集成电路的方法及使用该方法制造的集成电路
CN105742247A (zh) * 2016-04-07 2016-07-06 上海申矽凌微电子科技有限公司 传感器集成电路的制造方法及使用该方法制造的集成电路
CN106082102A (zh) * 2016-07-12 2016-11-09 上海申矽凌微电子科技有限公司 集成温度湿度气体传感的传感器电路制造方法及传感器
CN106124576A (zh) * 2016-06-28 2016-11-16 上海申矽凌微电子科技有限公司 集成的湿度传感器和多单元气体传感器及其制造方法
CN107632044A (zh) * 2016-07-18 2018-01-26 意法半导体有限公司 小型气体分析器
CN108463718A (zh) * 2015-11-02 2018-08-28 阿尔法莫斯公司 气体传感器控制器
US10557812B2 (en) 2016-12-01 2020-02-11 Stmicroelectronics Pte Ltd Gas sensors

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961209A (zh) * 2004-04-02 2007-05-09 蒂莫西·卡明斯 集成电子传感器
US8357958B2 (en) * 2004-04-02 2013-01-22 Silicon Laboratories Inc. Integrated CMOS porous sensor
US7948014B2 (en) * 2005-05-26 2011-05-24 Nxp B.V. Electronic device
EP1929285B1 (en) * 2005-09-30 2017-02-22 Silicon Laboratories Inc. An integrated electronic sensor and method for its production
EP1952134A1 (en) * 2005-11-17 2008-08-06 Koninklijke Philips Electronics N.V. Moisture sensor
US7420365B2 (en) * 2006-03-15 2008-09-02 Honeywell International Inc. Single chip MR sensor integrated with an RF transceiver
US20070235877A1 (en) * 2006-03-31 2007-10-11 Miriam Reshotko Integration scheme for semiconductor photodetectors on an integrated circuit chip
US7700975B2 (en) * 2006-03-31 2010-04-20 Intel Corporation Schottky barrier metal-germanium contact in metal-germanium-metal photodetectors
DE102006019534A1 (de) * 2006-04-27 2007-11-08 CiS Institut für Mikrosensorik gGmbH Mikrosensor
DE102006036646A1 (de) * 2006-08-03 2008-02-07 Innovative Sensor Technology Ist Ag Verfahren zur Bestimmung der relativen Feuchte eines Mediums und entsprechende Vorrichtung
DE102006037243B4 (de) * 2006-08-09 2010-06-02 Siemens Ag Netzwerk zur drahtlosen Übertragung von Daten
KR20080041912A (ko) * 2006-11-08 2008-05-14 삼성전자주식회사 감도 제어가 가능한 씨모스 이미지 센서의 픽셀 회로
US8063469B2 (en) * 2008-09-30 2011-11-22 Infineon Technologies Ag On-chip radio frequency shield with interconnect metallization
US8169059B2 (en) * 2008-09-30 2012-05-01 Infineon Technologies Ag On-chip RF shields with through substrate conductors
US8889548B2 (en) 2008-09-30 2014-11-18 Infineon Technologies Ag On-chip RF shields with backside redistribution lines
US7948064B2 (en) 2008-09-30 2011-05-24 Infineon Technologies Ag System on a chip with on-chip RF shield
US8178953B2 (en) 2008-09-30 2012-05-15 Infineon Technologies Ag On-chip RF shields with front side redistribution lines
US8124953B2 (en) 2009-03-12 2012-02-28 Infineon Technologies Ag Sensor device having a porous structure element
EP2282333B1 (en) 2009-07-27 2013-03-20 Nxp B.V. Integrated circuit comprising moisture sensor
CN101738422B (zh) 2009-12-23 2012-09-05 北京宝力马传感技术有限公司 一种湿度测量装置及方法
KR101665669B1 (ko) * 2010-03-04 2016-10-13 삼성전자주식회사 반도체 소자 및 그 형성 방법
US8927909B2 (en) * 2010-10-11 2015-01-06 Stmicroelectronics, Inc. Closed loop temperature controlled circuit to improve device stability
EP2508881B1 (en) * 2011-04-04 2019-01-23 Sensirion AG Testing a humidity sensor
EP2508874B1 (en) 2011-04-08 2019-06-05 ams international AG Capacitive sensor, integrated circuit, electronic device and method
EP2554980B1 (en) * 2011-08-03 2014-06-25 Nxp B.V. Integrated circuit with sensor and method of manufacturing such an integrated circuit
US9164052B1 (en) 2011-09-30 2015-10-20 Silicon Laboratories Inc. Integrated gas sensor
US8852513B1 (en) 2011-09-30 2014-10-07 Silicon Laboratories Inc. Systems and methods for packaging integrated circuit gas sensor systems
US8669131B1 (en) 2011-09-30 2014-03-11 Silicon Laboratories Inc. Methods and materials for forming gas sensor structures
US8691609B1 (en) 2011-09-30 2014-04-08 Silicon Laboratories Inc. Gas sensor materials and methods for preparation thereof
EP2623969B1 (en) * 2012-01-31 2014-05-14 Nxp B.V. Integrated circuit and manufacturing method
EP2645091B1 (en) * 2012-03-30 2018-10-17 ams international AG Integrated circuit comprising a gas sensor
KR101874839B1 (ko) * 2012-04-25 2018-07-05 이플러스이엘렉트로닉 게엠베하 습도 센서 장치
CN102721429B (zh) * 2012-06-21 2015-06-24 昆山诺科传感器集成有限公司 频率输出温湿度变送器
US9287219B2 (en) 2012-07-25 2016-03-15 Silicon Laboratories Inc. Radiation-blocking structures
EP2720034B1 (en) * 2012-10-12 2016-04-27 ams International AG Integrated Circuit comprising a relative humidity sensor and a thermal conductivity based gas sensor
EP2762865A1 (en) * 2013-01-31 2014-08-06 Sensirion Holding AG Chemical sensor and method for manufacturing such a chemical sensor
US10175188B2 (en) * 2013-03-15 2019-01-08 Robert Bosch Gmbh Trench based capacitive humidity sensor
JP6286845B2 (ja) * 2013-03-22 2018-03-07 富士通株式会社 熱電素子搭載モジュール及びその製造方法
US9234859B2 (en) * 2013-03-28 2016-01-12 Stmicroelectronics S.R.L. Integrated device of a capacitive type for detecting humidity, in particular manufactured using a CMOS technology
US10323980B2 (en) * 2013-03-29 2019-06-18 Rensselaer Polytechnic Institute Tunable photocapacitive optical radiation sensor enabled radio transmitter and applications thereof
EP2793018A1 (en) * 2013-04-19 2014-10-22 Nxp B.V. Thermal conductivity based gas sensor
CN103209002B (zh) * 2013-04-23 2015-12-23 中国科学院深圳先进技术研究院 用于微型无线传感器节点的数据传输装置
CA2912616A1 (en) 2013-05-17 2014-11-20 fybr Distributed remote sensing system gateway
US9652987B2 (en) * 2013-05-17 2017-05-16 fybr Distributed remote sensing system component interface
CN104981688B (zh) * 2013-05-29 2018-07-13 罗斯蒙特分析公司 具有湿度和温度补偿的硫化氢气体探测器
US10177781B2 (en) * 2013-06-24 2019-01-08 Silicon Laboratories Inc. Circuit including a switched capacitor bridge and method
US10160966B2 (en) 2013-12-12 2018-12-25 Altratech Limited Sample preparation method and apparatus
US10746683B2 (en) 2013-12-12 2020-08-18 Altratech Limited Capacitive sensor and method of use
TWI523808B (zh) * 2014-01-29 2016-03-01 先技股份有限公司 微機電氣體感測裝置
KR102238937B1 (ko) * 2014-07-22 2021-04-09 주식회사 키 파운드리 배선 사이의 중공에 형성된 습도 센서 및 그 제조 방법
EP3037810B1 (fr) * 2014-12-23 2017-10-25 EM Microelectronic-Marin SA Capteur d'humidite ameliore
CN104614294A (zh) * 2014-12-31 2015-05-13 北京工业大学 一种基于Zigbee无线通信技术的分层异构空气质量实时监测模型
CN104627947B (zh) * 2015-02-09 2016-02-10 江西师范大学 Cmos湿度传感器及其形成方法
EP3062097A1 (fr) * 2015-02-27 2016-08-31 EM Microelectronic-Marin SA Capteur d'humidité avec module thermique
US10909607B2 (en) 2015-06-05 2021-02-02 Boveda Inc. Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller
US10055781B2 (en) 2015-06-05 2018-08-21 Boveda Inc. Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller
US9891183B2 (en) * 2015-07-07 2018-02-13 Nxp B.V. Breach sensor
US10670554B2 (en) 2015-07-13 2020-06-02 International Business Machines Corporation Reconfigurable gas sensor architecture with a high sensitivity at low temperatures
KR20180105198A (ko) * 2016-01-27 2018-09-27 더 제너럴 하스피탈 코포레이션 자기적 전기화학적 감지
US10336606B2 (en) * 2016-02-25 2019-07-02 Nxp Usa, Inc. Integrated capacitive humidity sensor
US20170287757A1 (en) * 2016-03-30 2017-10-05 Robert F. Kwasnick Damage monitor
US10083883B2 (en) * 2016-06-20 2018-09-25 Applied Materials, Inc. Wafer processing equipment having capacitive micro sensors
US10254261B2 (en) 2016-07-18 2019-04-09 Stmicroelectronics Pte Ltd Integrated air quality sensor that detects multiple gas species
CN106249093A (zh) * 2016-07-22 2016-12-21 上海新时达电气股份有限公司 自动分辨并检测电气设备中的预埋传感器的装置及其方法
US10480495B2 (en) * 2017-05-08 2019-11-19 Emerson Climate Technologies, Inc. Compressor with flooded start control
EP4219751A1 (en) 2017-09-20 2023-08-02 Altratech Limited Diagnostic device and system
US10453791B2 (en) * 2018-02-06 2019-10-22 Apple Inc. Metal-on-metal capacitors
CN108562697A (zh) * 2018-03-30 2018-09-21 歌尔股份有限公司 一种室内有害气体监测装置
US10804195B2 (en) * 2018-08-08 2020-10-13 Qualcomm Incorporated High density embedded interconnects in substrate
JP7167396B2 (ja) * 2018-11-16 2022-11-09 ミネベアミツミ株式会社 湿度検出装置及び故障判定方法
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
CN111696952A (zh) * 2019-03-13 2020-09-22 住友电工光电子器件创新株式会社 微波集成电路
US11397047B2 (en) * 2019-04-10 2022-07-26 Minebea Mitsumi Inc. Moisture detector, moisture detection method, electronic device, and log output system
KR20220023074A (ko) * 2020-08-20 2022-03-02 삼성전자주식회사 반도체 패키지 테스트 장치 및 방법
US11855019B2 (en) 2021-02-11 2023-12-26 Globalfoundries Singapore Pte. Ltd. Method of forming a sensor device
CN113252734B (zh) * 2021-06-22 2021-09-24 电子科技大学 一种电阻型气体传感器柔性电路及气体浓度计算方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057823A (en) * 1976-07-02 1977-11-08 International Business Machines Corporation Porous silicon dioxide moisture sensor and method for manufacture of a moisture sensor
GB1586117A (en) * 1977-06-22 1981-03-18 Rosemount Eng Co Ltd Solid state sensor element
US4165642A (en) * 1978-03-22 1979-08-28 Lipp Robert J Monolithic CMOS digital temperature measurement circuit
US4419021A (en) * 1980-02-04 1983-12-06 Matsushita Electric Industrial Co., Ltd. Multi-functional sensing or measuring system
JPS58111747A (ja) 1981-12-25 1983-07-02 Yamatake Honeywell Co Ltd ガスセンサおよびその製造方法
CA1216330A (en) * 1983-02-07 1987-01-06 Junji Manaka Low power gas detector
US4656463A (en) * 1983-04-21 1987-04-07 Intelli-Tech Corporation LIMIS systems, devices and methods
US4542640A (en) * 1983-09-15 1985-09-24 Clifford Paul K Selective gas detection and measurement system
JPS6066145A (ja) * 1983-09-20 1985-04-16 Omron Tateisi Electronics Co 外部雰囲気検知装置
JPS60242354A (ja) * 1984-05-16 1985-12-02 Sharp Corp Fet型センサ
JPS6157847A (ja) * 1984-08-29 1986-03-24 Sharp Corp 電界効果型湿度センサ
US4931381A (en) * 1985-08-12 1990-06-05 Hoechst Celanese Corporation Image reversal negative working O-quinone diazide and cross-linking compound containing photoresist process with thermal curing treatment
GB8606045D0 (en) * 1986-03-12 1986-04-16 Emi Plc Thorn Gas sensitive device
JPH06105232B2 (ja) * 1986-07-17 1994-12-21 株式会社東芝 絶縁ゲ−ト電界効果型感湿素子
JPS63103957A (ja) * 1986-10-20 1988-05-09 Seiko Epson Corp 湿度検出器
US4793181A (en) * 1987-06-02 1988-12-27 Djorup Robert Sonny Constant temperature sorption hygrometer
US4831381A (en) * 1987-08-11 1989-05-16 Texas Instruments Incorporated Charge redistribution A/D converter with reduced small signal error
JPH01196558A (ja) * 1988-02-01 1989-08-08 Takara Kogyo Kk 湿度センサ
US4876890A (en) * 1988-06-29 1989-10-31 Uop Moisture sensing apparatus and method
JPH02232901A (ja) * 1989-03-07 1990-09-14 Seiko Epson Corp 湿度センサ
US5120421A (en) * 1990-08-31 1992-06-09 The United States Of America As Represented By The United States Department Of Energy Electrochemical sensor/detector system and method
JP3041491B2 (ja) 1991-06-06 2000-05-15 株式会社トーキン 湿度センサ
CA2066929C (en) * 1991-08-09 1996-10-01 Katsuji Kimura Temperature sensor circuit and constant-current circuit
US5481129A (en) * 1991-10-30 1996-01-02 Harris Corporation Analog-to-digital converter
DE19623517C1 (de) * 1996-06-12 1997-08-21 Siemens Ag MOS-Transistor für biotechnische Anwendungen
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
DE19641777C2 (de) * 1996-10-10 2001-09-27 Micronas Gmbh Verfahren zum Herstellen eines Sensors mit einer Metallelektrode in einer MOS-Anordnung
GB2321336B (en) * 1997-01-15 2001-07-25 Univ Warwick Gas-sensing semiconductor devices
US5878332A (en) * 1997-02-07 1999-03-02 Eic Enterprises Corporation Multiple frequency RF transceiver
EP0882978A1 (en) * 1997-06-04 1998-12-09 STMicroelectronics S.r.l. Integrated semi-conductor device comprising a chemoresistive gas microsensor and manufacturing process thereof
DE69726718T2 (de) * 1997-07-31 2004-10-07 St Microelectronics Srl Verfahren zum Herstellen hochempfindlicher integrierter Beschleunigungs- und Gyroskopsensoren und Sensoren, die derartig hergestellt werden
JP3514361B2 (ja) * 1998-02-27 2004-03-31 Tdk株式会社 チップ素子及びチップ素子の製造方法
US6288442B1 (en) * 1998-09-10 2001-09-11 Micron Technology, Inc. Integrated circuit with oxidation-resistant polymeric layer
JP2000299438A (ja) * 1999-04-15 2000-10-24 Hitachi Ltd 半導体集積回路
DE19924906C2 (de) * 1999-05-31 2001-05-31 Daimler Chrysler Ag Halbleiter-Gassensor, Gassensorsystem und Verfahren zur Gasanalyse
US6690569B1 (en) * 1999-12-08 2004-02-10 Sensirion A/G Capacitive sensor
US6673644B2 (en) * 2001-03-29 2004-01-06 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
US6580600B2 (en) * 2001-02-20 2003-06-17 Nippon Soken, Inc. Capacitance type humidity sensor and manufacturing method of the same
US6632478B2 (en) * 2001-02-22 2003-10-14 Applied Materials, Inc. Process for forming a low dielectric constant carbon-containing film
US6484559B2 (en) * 2001-02-26 2002-11-26 Lucent Technologies Inc. Odor sensing with organic transistors
US6348407B1 (en) * 2001-03-15 2002-02-19 Chartered Semiconductor Manufacturing Inc. Method to improve adhesion of organic dielectrics in dual damascene interconnects
US20030010988A1 (en) * 2001-07-11 2003-01-16 Motorola, Inc. Structure and method for fabricating semiconductor structures with integrated optical components and controller
JP4501320B2 (ja) * 2001-07-16 2010-07-14 株式会社デンソー 容量式湿度センサ
AU2002341803A1 (en) * 2001-09-24 2003-04-07 Amberwave Systems Corporation Rf circuits including transistors having strained material layers
US6673664B2 (en) * 2001-10-16 2004-01-06 Sharp Laboratories Of America, Inc. Method of making a self-aligned ferroelectric memory transistor
US6724612B2 (en) * 2002-07-09 2004-04-20 Honeywell International Inc. Relative humidity sensor with integrated signal conditioning
JP3869815B2 (ja) * 2003-03-31 2007-01-17 Necエレクトロニクス株式会社 半導体集積回路装置
US7053425B2 (en) * 2003-11-12 2006-05-30 General Electric Company Gas sensor device
JP4065855B2 (ja) * 2004-01-21 2008-03-26 株式会社日立製作所 生体および化学試料検査装置
JP3994975B2 (ja) * 2004-02-27 2007-10-24 株式会社デンソー 容量式湿度センサ
JP4553611B2 (ja) * 2004-03-15 2010-09-29 三洋電機株式会社 回路装置
CN1961209A (zh) 2004-04-02 2007-05-09 蒂莫西·卡明斯 集成电子传感器
US7096716B2 (en) * 2004-11-03 2006-08-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Integration of thermal regulation and electronic fluid sensing
EP1767934B1 (en) * 2005-09-21 2007-12-05 Adixen Sensistor AB Hydrogen gas sensitive semiconductor sensor
EP1929285B1 (en) * 2005-09-30 2017-02-22 Silicon Laboratories Inc. An integrated electronic sensor and method for its production

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606079B2 (en) 2012-06-21 2017-03-28 Nxp B.V. Integrated circuit with sensors and manufacturing method
CN103512940A (zh) * 2012-06-21 2014-01-15 Nxp股份有限公司 具有传感器的集成电路和制造方法
CN103512940B (zh) * 2012-06-21 2016-02-24 Nxp股份有限公司 具有传感器的集成电路和制造方法
CN103115569B (zh) * 2012-10-22 2016-05-04 深圳市嘉瀚科技有限公司 具有无线传输功能的整体集成式光电传感器
CN103115569A (zh) * 2012-10-22 2013-05-22 深圳市嘉瀚科技有限公司 具有无线传输功能的整体集成式光电传感器
CN104792829A (zh) * 2014-04-07 2015-07-22 英诺晶片科技股份有限公司 传感器装置
TWI555977B (zh) * 2014-04-07 2016-11-01 英諾晶片科技股份有限公司 感測器裝置
CN108463718B (zh) * 2015-11-02 2021-04-13 阿尔法莫斯公司 气体传感器控制器
CN108463718A (zh) * 2015-11-02 2018-08-28 阿尔法莫斯公司 气体传感器控制器
CN105675051A (zh) * 2016-01-12 2016-06-15 上海申矽凌微电子科技有限公司 制造传感器集成电路的方法及使用该方法制造的集成电路
CN105675051B (zh) * 2016-01-12 2018-06-05 上海申矽凌微电子科技有限公司 制造传感器集成电路的方法及使用该方法制造的集成电路
CN105742247B (zh) * 2016-04-07 2019-07-26 上海申矽凌微电子科技有限公司 传感器集成电路的制造方法及使用该方法制造的集成电路
CN105742247A (zh) * 2016-04-07 2016-07-06 上海申矽凌微电子科技有限公司 传感器集成电路的制造方法及使用该方法制造的集成电路
CN106124576A (zh) * 2016-06-28 2016-11-16 上海申矽凌微电子科技有限公司 集成的湿度传感器和多单元气体传感器及其制造方法
CN106124576B (zh) * 2016-06-28 2018-12-18 上海申矽凌微电子科技有限公司 集成的湿度传感器和多单元气体传感器及其制造方法
CN106082102B (zh) * 2016-07-12 2017-12-15 上海申矽凌微电子科技有限公司 集成温度湿度气体传感的传感器电路制造方法及传感器
CN106082102A (zh) * 2016-07-12 2016-11-09 上海申矽凌微电子科技有限公司 集成温度湿度气体传感的传感器电路制造方法及传感器
CN107632044A (zh) * 2016-07-18 2018-01-26 意法半导体有限公司 小型气体分析器
US10429330B2 (en) 2016-07-18 2019-10-01 Stmicroelectronics Pte Ltd Gas analyzer that detects gases, humidity, and temperature
US10557812B2 (en) 2016-12-01 2020-02-11 Stmicroelectronics Pte Ltd Gas sensors
US11543378B2 (en) 2016-12-01 2023-01-03 Stmicroelectronics Pte Ltd Gas sensors

Also Published As

Publication number Publication date
US20120256236A1 (en) 2012-10-11
US20150316498A1 (en) 2015-11-05
US20110089472A1 (en) 2011-04-21
US8497531B2 (en) 2013-07-30
US8507955B2 (en) 2013-08-13
US20110089439A1 (en) 2011-04-21
US20090273009A1 (en) 2009-11-05
US20110098937A1 (en) 2011-04-28
US8507954B2 (en) 2013-08-13
WO2005095936A1 (en) 2005-10-13
US8648395B2 (en) 2014-02-11
EP1730506A1 (en) 2006-12-13
US7554134B2 (en) 2009-06-30
JP2007535662A (ja) 2007-12-06
US20050218465A1 (en) 2005-10-06
CN102854229A (zh) 2013-01-02
EP1730506B1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
CN1961209A (zh) 集成电子传感器
US8007167B2 (en) Integrated electronic sensor
US9304104B2 (en) Ion sensitive field effect transistor
US7157054B2 (en) Membrane type gas sensor and method for manufacturing membrane type gas sensor
US9952171B2 (en) Gas sensor package
JP4065855B2 (ja) 生体および化学試料検査装置
US6580600B2 (en) Capacitance type humidity sensor and manufacturing method of the same
TW201225304A (en) Chemically sensitive sensor with lightly doped drains
CN1737554A (zh) 湿度传感器和具有湿度检测功能的组合传感器
CN101048656A (zh) 用于检测和/或测量环境中所含电荷浓度的传感器,对应的用途及其制造方法
US7355200B2 (en) Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor
CN107064255B (zh) 一种基于CMOS工艺的复合电极式pH传感器及其制备方法
Prodromakis et al. Exploiting CMOS technology to enhance the performance of ISFET sensors
Zehfroosh et al. High-sensitivity ion-selective field-effect transistors using nanoporous silicon
US7939022B2 (en) Integration of colorimetric transducers and detector
Oprea et al. Flip-chip suspended gate field effect transistors for ammonia detection
Lai et al. A CMOS biocompatible charge detector for biosensing applications
IES20050180A2 (en) An integrated electronic sensor
CN108155179B (zh) 一种具有气体检测功能半导体器件
IE84228B1 (en) An integrated electronic sensor
IE20050180U1 (en) An integrated electronic sensor
Chiang et al. Sensing characteristics of ISFET based on AlN thin film
Graf et al. Monolithic metal-oxide microsensor system in industrial CMOS technology
IE84764B1 (en) An integrated electronic sensor
CN1643700A (zh) 侦测器装置、电荷载体之侦测方法、及侦测电荷之ono场效应晶体管之使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: CHIP SENSOR CO., LTD.

Free format text: FORMER OWNER: TIMOTHY CUMMINGS

Effective date: 20100624

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: COUNTY CLARE, IRELAND TO: COUNTY LIMERICK, IRELAND

TA01 Transfer of patent application right

Effective date of registration: 20100624

Address after: Limerick

Applicant after: Chip sensor Co Ltd

Address before: Claire County, Ireland

Applicant before: cummings Timothy

ASS Succession or assignment of patent right

Owner name: SILICON LAB INC.

Free format text: FORMER OWNER: CHIP + SENSOR CO., LTD.

Effective date: 20121106

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20121106

Address after: American Texas

Applicant after: Silicon Lab Inc.

Address before: Limerick

Applicant before: Chip sensor Co Ltd