CN1973033A - 治疗用再程序化、杂交干细胞和成熟 - Google Patents

治疗用再程序化、杂交干细胞和成熟 Download PDF

Info

Publication number
CN1973033A
CN1973033A CNA2005800187835A CN200580018783A CN1973033A CN 1973033 A CN1973033 A CN 1973033A CN A2005800187835 A CNA2005800187835 A CN A2005800187835A CN 200580018783 A CN200580018783 A CN 200580018783A CN 1973033 A CN1973033 A CN 1973033A
Authority
CN
China
Prior art keywords
cell
stem
therapeutic reprogramming
stem cell
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800187835A
Other languages
English (en)
Inventor
昌西·B·赛亚
弗朗西斯科·J·西尔瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PrimeGen Biotech LLC
Original Assignee
PrimeGen Biotech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PrimeGen Biotech LLC filed Critical PrimeGen Biotech LLC
Publication of CN1973033A publication Critical patent/CN1973033A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/061Sperm cells, spermatogonia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0611Primordial germ cells, e.g. embryonic germ cells [EG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/235Leukemia inhibitory factor [LIF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/04Cells produced using nuclear transfer

Abstract

本发明提供了治疗用程序化细胞,以及用于制造此类细胞的方法。治疗用程序化细胞是已成熟的干细胞,从而使得:它们在与刺激因子接触之后呈现较多分化的状态或较少分化的状态。治疗用再程序化细胞适合用于细胞再生疗法,其具有分化为更定型的细胞系代的潜力。此外,本发明提供了适用于治疗用再程序化和细胞再生疗法的杂交干细胞。

Description

治疗用再程序化、杂交干细胞和成熟
相关申请
本申请是提交于2003年1月16日的美国专利申请号10/346,816(其要求了提交于2002年1月16日的美国临时专利申请号60/348,521和提交于2002年3月26日的美国临时专利申请号60/367,161的优先权)的部分继续申请,是提交于2004年6月8日的美国专利申请号10/864,788(其要求了提交于2003年6月9日的美国临时专利申请号60/477,438的优先权)的部分继续申请,并且要求了提交于2004年7月15日的美国临时专利申请号60/588,146的优先权,上述文献全部内容通过整体引用并入本文。
发明领域
本发明涉及治疗用再程序化细胞的领域。具体地,本发明提供了治疗用再程序化细胞,所述细胞不受衰老过程威胁,具有免疫相容性,植入后其将在合适的出生后(post-natal)细胞环境中发挥作用,以产生功能性细胞。此外,本发明提供了下述方法,用于提供适合用于治疗用再程序化、移植和治疗的杂交干细胞。
发明背景
干细胞是能产生其它类型细胞的原始细胞。存在有数种干细胞,它们也被称为祖细胞。全能(totipotent)细胞被认为是机体的“主人(master)”细胞,因为它们含有产生机体加胎盘(为人类胚胎提供营养)所有细胞所需的全部遗传信息。人类细胞仅在受精卵最初的极少数次分裂期间具有这种全能能力。全能细胞分裂三次或四次后,就出现了一系列的阶段,其中细胞变得逐渐专门化。分裂的下一阶段产生多能(pluripotent)细胞,其高度多用,能产生除了胎盘或子宫其它支持组织的细胞之外的任何细胞类型。在下一阶段,细胞变为专能(multipotent)这意味着它们能产生数种其它细胞类型,但是这些类型数量有限。专能细胞的例子是造血细胞-能发育为数种血细胞的血细胞,但是不能发育为脑细胞。在使胚胎发展的细胞分裂长链末尾,是“终末分化(terminallydifferentiated)”细胞——被认为永远定型为特定功能的细胞。
科学家长期持下述观点:分化的细胞不会被改变,或不会被导致以除了已天然定型的方式之外的任何方式来作用。但是在近来的干细胞实验中,科学家已能够令血液干细胞以类神经元的方式作用。因此,研究还聚焦于:使专能细胞变为多能种类的方式(Kanatsu-shinohara M.et al.Generation of pluripotent stem cells from neonatal mouse testis.Cell 119:1001-12,2004)。
干细胞是细胞的稀少种群,它们能产生器官保持和功能所必需的大范围的细胞组织种类。这些细胞被定义为具有下述两种基本特征的未分化细胞:(i)它们具有自身更新的能力,(ii)它们还具有分化为一种或多种具有成熟表型的专门化细胞类型的能力。干细胞有三大组:(i)成年的或身体(出生后的)干细胞,存在于所有出生后生物中,(ii)胚胎干细胞,其能从胚胎前或胚胎发育阶段获得,以及(iii)胎儿干细胞(产前),其能从发育的胎儿中分离出。用于细胞再生疗法时,每组干细胞都具有其自身的优点和缺点,特别是在它们的分化潜力,以及在合适的或目标细胞环境中从头移植(engraft)和发挥功能的能力。
在出生后动物中,存在系代(lineage)定型的祖干细胞和系代未定型的多能干细胞,它们存在于结缔组织,向出生后生物提供连续的器官或器官系统保持和修复所需的细胞。这些细胞被定名为身体干细胞或成年干细胞,其可以是静止的或非静止的。典型地,成年干细胞具有如下两种特征:(i)它们能长期产生它们自身的相同拷贝(长期自身更新);以及(ii)它们能产生具有特征形态和专门功能的成熟细胞类型。
已从造血干细胞及其骨髓移植后的行为,获得了对干细胞生物学的很多理解。在骨髓小环境中,存在数种成年干细胞,每种都具有独特的属性和可变的分化能力,这与它们的细胞环境相关。在子宫内转进免疫前绵羊胎的从人类骨髓分离得到的身体干细胞,具有异种移植为多种组织的能力。在骨髓小环境中还存在间质干细胞,其具有广泛范围的非造血分化能力,包括骨、软骨、脂肪细胞、腱、肺、肌肉、骨髓基质和脑组织。此外,还发现了神经干细胞,胰腺、肌肉、脂肪、卵巢和精原干细胞。已通过使用骨髓移植,展示和实现了身体或出生后干细胞的治疗用途。但是,成年身体干细胞具有已被衰老和细胞分裂所改变的基因组。衰老导致自由基伤害或氧化损伤的积累,这可使细胞容易形成肿瘤,降低了细胞的分化能力或者诱导凋亡。重复的细胞分裂与端粒变短直接相关,这是决定细胞功能性寿命的终极细胞钟。结果,成年身体干细胞具有与胚胎和产前干细胞中发现的生理初期状态足够不同的基因组。
不幸的是,事实上,成年动物体内的每种身体细胞,包括干细胞,都具有留有时间和重复细胞分裂破坏痕迹的基因组。因此,直到现在,获得具有未受损害的或初期生理状态的基因组的干细胞的仅有的方法是:从流产胚胎或使用体外授精技术形成的胚胎回收干细胞。但是,科学和伦理考虑使得使用胚胎干细胞的干细胞研究进展缓慢。胚胎干细胞细胞系的产生被认为提供了用于研究和治疗的胚胎干细胞的可更新来源,但是近来的报道表明,现有的细胞系已被免疫原性动物分子所污染(Martin M.et al.,Human embryonic stem cells express an immunogenic nonhuman sialic acid.Nature Medicine 11:228-32,2005)。
与使用成年干细胞相关的另一问题是,这些细胞没有免疫特权(privilege),或者在移植之后会丢失它们的免疫特权。(术语“免疫特权”用来指下述状态,其中,受体免疫系统不将细胞识别为外来的)。因此,当使用成年干细胞时,大多数情况下,只能使用自体移植。因此,最近最为关注的干细胞疗法形式是本质上按照患者定制的医疗方案,因此与此类方案相关的经济因素限制了它们广泛的潜能。
对目前可获得的用途的其它障碍。此外,干细胞应被诱导为:成熟为器官或细胞类型,所述类型是可用作治疗所期待的。影响干细胞体内成熟的因素很少被了解,体外的就更少被了解了。因此,目前的成熟技术依赖于偶然性和大大超出施用疗法的科学家或接受者控制的生物过程。
目前的研究集中于:开发胚胎干细胞,作为全能或多能免疫特权细胞,用于细胞再生疗法。但是,因为胚胎干细胞本身不适合用于直接移植,原因是它们会在移植后形成畸胎瘤,所以它们被提出作为“通用供体”细胞,其能分化为适用于移植的针对患者定制的多能、专能或定型细胞。此外,关于从人类胚胎分离胚胎干细胞存在道德和伦理议题。
因此,人们需要生物学上有用的、多能干细胞的来源,所述干细胞具有接近生理初期状态的基因组。此外,人们需要下述生物学上有用的多能干细胞的来源,所述干细胞具有接近生理初期状态的基因组,所述基因组能在受体中将免疫特权保持一段足够用于治疗的时期。此外,人们需要调节(condition)体内或体外的干细胞移植,以使被移植的干细胞成熟为目标组织的潜力最大化。
发明内容
本发明提供了生物学上有用的多能治疗用再程序化细胞,其具有最小化的氧化损伤以及可与未受损伤的、产前或胚胎干细胞的端粒长度相当的端粒长度(即,本发明的治疗用再程序化细胞具有接近生理初期状态的基因组)。此外,本发明的治疗用再程序化细胞具有免疫特权,因此适合用于治疗应用。本发明的其它方法提供了对杂交干细胞的制造。此外,本发明包括下述相关方法,用于使按照本发明的教导制造的干细胞成熟为特定的宿主组织。
在本发明的一种实施方式中,提供了治疗用再程序化方法,所述方法包括:分离干细胞,将干细胞与包含刺激因子的培养基接触,所述刺激因子能诱导干细胞发育为治疗用再程序化细胞,从培养基中回收治疗用再程序化细胞,将治疗用再程序化细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。适用于根据本发明的教导的治疗用再程序化的干细胞包括:胚胎干细胞、胎儿干细胞、身体干细胞、专能成年祖细胞、杂交干细胞、经过修饰的生殖细胞、脂肪来源的干细胞以及原性(primordialsex)细胞。在本发明的一种实施方式中,原性细胞是精原干细胞。
在本发明的另一种实施方式中,用于本发明的治疗用再程序化方法的刺激因子包括:化学物质、生物化学物质和细胞提取物。本发明的化学物质刺激因子选自由5-氮杂-2’-脱氧胞苷、组蛋白去乙酰酶抑制剂、正丁酸和曲古菌素A(trichostatin A)构成的组。本发明的细胞提取物刺激因子选自由全细胞提取物、细胞质提取物和核质提取物所构成的组。用于本发明的治疗用再程序化方法的细胞提取物分离自干细胞,包括胚胎干细胞、胎儿神经干细胞、专能成年祖细胞、杂交干细胞和原性细胞。
在本发明的一种实施方式中,需要治疗用再程序化细胞的宿主是哺乳动物,更为具体地,人。在本发明的另一种实施方式中,干细胞分离自需要治疗用再程序化细胞的宿主。
在本发明的又一种实施方式中,治疗用再程序化方法还包括:使所述治疗用再程序化细胞成熟从而定型为组织特异性系代的步骤。
在本发明的一种实施方式中,提供了一种治疗用再程序化方法,所述方法包括:分离精原干细胞(SSC);将SSC与包含刺激因子的培养基接触,所述刺激因子能诱导SSC发育为全能细胞;从培养基中回收全能细胞;将全能细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。
在本发明的另一种实施方式中,提供了一种治疗用再程序化方法,所述方法包括:提供杂交干细胞;将杂交干细胞与包含刺激因子的培养基接触,所述刺激因子能诱导杂交干细胞发育为全能细胞;从培养基中回收全能细胞;将全能细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。
在本发明的又一种实施方式中,提供了一种治疗用再程序化细胞,其中包含已被暴露给刺激因子的SSC,所述刺激因子已导致SSC成熟或分化为全能或多能细胞。
在本发明的一种实施方式中,提供了一种治疗用再程序化细胞,其中包含已被暴露给刺激因子的多能干细胞,所述刺激因子已导致多能干细胞成熟或分化为更定型的细胞系代。
在本发明的另一种实施方式中,提供了制造杂交干细胞的方法,所述方法包括:获得供体细胞,其中,供体细胞是双倍体;获得宿主细胞,对宿主细胞摘除细胞核;将供体细胞或其细胞核与宿主细胞融合;分离出杂交干细胞。适合用于根据本发明的教导制造杂交干细胞的供体细胞选自由胚胎干细胞、身体细胞、原性细胞和治疗用再程序化细胞构成的组。在本发明的另一种实施方式中,供体细胞处于G0期。
在本发明的又一种实施方式中,适用于根据本发明的教导制造杂交干细胞的宿主细胞选自由胚胎干细胞、胎儿神经干细胞和专能成年祖细胞构成的组。
在本发明的一种实施方式中,用于制造杂交干细胞的方法还包括如下步骤:在获得步骤之后并且在摘除细胞核步骤之前培养宿主细胞历经四次传代。
在本发明的另一种实施方式中,适合用于制造杂交干细胞的供体细胞和宿主细胞来自哺乳动物。在本发明的又一种实施方式中,供体细胞和宿主细胞来自同一个体。
在本发明的一种实施方式中,通过选自由化学、机械、物理、x-射线照射以及激光照射摘除细胞核所构成的组的方法,来摘除适用于制造杂交干细胞的宿主细胞的细胞核。在本发明的另一种实施方式中,通过细胞松弛素D来摘除宿主细胞的细胞核。
在本发明的又一种实施方式中,制造杂交干细胞的方法还包括如下步骤:在与供体细胞融合之前,对已摘除细胞核的宿主细胞进行大约三天的培养。
在本发明的一种实施方式中,制造杂交干细胞的方法的融合步骤包括选自由电融合、微注射、化学融合或基于病毒的融合构成的组的融合方法。
在本发明的另一种实施方式中,制造杂交干细胞的方法的分离步骤包括荧光活化的细胞拣选。在本发明的又一种实施方式中,制造杂交干细胞的方法还包括在分离步骤之后培养杂交干细胞。
附图说明
本专利或申请含有至少一幅彩色附图。提出申请并交纳所需费用后,专利局将提供具有彩色附图的本专利或专利申请公开的拷贝。
图1描述了按照本发明的教导从TgN(GFPU)5Nagy小鼠分离出的脂肪来源干细胞(ADSC)。图1a描述了通过荧光显微法在细胞中表达的绿色荧光蛋白(GFP)。图1b描述了相差显微镜下的与图1a所示的同样的细胞。
图2描述了按照本发明的教导制备的分化ADSC。脂肪来源干细胞被诱导分化为五种组织类型(神经原、脂肪原、骨原、软骨原和心原的),通过组织学,针对Oil Red O(脂肪发生)、Von Kossa(骨发生)和Alcian Blue(软骨发生),以及通过免疫组织化学针对巢蛋白(nestin)的表达(神经发生)和心脏肌钙蛋白I(心脏细胞发生(cardiogenesis))对分化的和对照细胞进行了分析。
图3描述了对按照本发明的教导制造的ADSC进行细胞核摘除。图3a描述了摘除细胞核后用细胞松弛素D处理的ADSC。图3b描述了对照细胞。图3c描述了用细胞松弛素D处理的ADSC在处理后三小时的情况。
图4描述了按照本发明的教导制造的融合后两周的干细胞杂交体。
图5描述了按照本发明的教导制造的融合后四周的干细胞杂交体。图5a描述了干细胞杂交培养中的GFP阳性染色细胞。图5b描述了在相差显微镜下观察到的与图5a相同的细胞。
图6描述了按照本发明的教导制造的融合后六周的干细胞杂交体。图6a描述了干细胞杂交培养中的GFP阳性染色细胞。图6b描述了在相差显微镜下观察到的与图6a相同的细胞。
图7描述了对按照本发明的教导制备的杂交干细胞进行的荧光活化细胞拣选(FACS)分析。对照(-)GFP的图描述了不表达GFP的对照细胞;G3.8杂交体的图描述了在G3.8干细胞杂交体克隆中的GFP表达,G3.9杂交体的图描述了在G3.9干细胞杂交体克隆中的GFP表达。
图8描述了从按照本发明的教导制造的杂交干细胞克隆中对GFP进行单细胞聚合酶链式反应(PCR)放大的结果。
图9描述了按照本发明的教导制造的杂交干细胞的脂肪原性分化。
图10描述了按照本发明的教导制造的杂交干细胞的骨原性分化。
图11描述了按照本发明的教导制造的杂交干细胞的软骨原性分化。
图12描述了按照本发明的教导制造的杂交干细胞的神经原性分化。
图13描述了按照本发明的教导制造的杂交干细胞的心原性分化。
术语定义
化学修饰:本文中使用的“化学修饰”指下述过程,其中使用化学物质或生物化学物质来诱导供体细胞或其细胞核中基因组变化,从而允许供体细胞或其细胞核在成熟期间能做出响应,以及是宿主细胞胞质能接收的。
定型:本文中使用的“定型”指,细胞被认为永久定型为特定功能。定型的细胞也被称为终末分化的细胞。
胞质提取物修饰:本文中使用的“胞质提取物修饰”指下述过程,其中,由细胞的胞质内含物构成的细胞提取物被用于诱导供体细胞或其细胞核的基因组变化,从而允许供体细胞或其细胞核在成熟期间能做出响应,以及是宿主细胞胞质能接受的。
去分化:本文中使用的“去分化”指形式或功能上的专门性的丢失。在细胞中,去分化导致较少定型的细胞。
分化:本文中使用的“分化”指细胞被改造为特定的形式或功能。在细胞中,分化导致更为定型的细胞。
供体细胞:本文中使用的“供体细胞”指:从为杂交干细胞贡献其细胞核基因物质的前胚胎、胚胎、胎儿或出生后多细胞生物或原性细胞获得的任何二倍体(2N)细胞。供体细胞不局限于终末分化的细胞或分化过程中的细胞。就本发明的目的而言,供体细胞指整个细胞或单独的细胞核。
供体细胞制备:本文中使用的“供体细胞制备”指下述方法,其中,供体细胞或其细胞核被制备以经历成熟,或被制备以能被宿主细胞的细胞质接受和/或在出生后环境中做出响应。
胚胎:本文中使用的“胚胎”指生长和分化早期阶段(特征为胚胎植入着床和原肠胚形成)的动物,其中,确定并建立了三种胚层,通过胚层分化成为分别的器官和器官系统。三种胚层是内胚层、外胚层和中胚层。
胚胎干细胞:本文中使用的“胚胎干细胞”指:全能的、从发育中的胚胎(已达到附着于子宫壁上的发育阶段)获得的任何细胞。在上下文中,胚胎干细胞和前胚胎干细胞是等同的术语。类胚胎干细胞(类ESC)细胞是并非从胚胎直接分离出的全能细胞。类ESC细胞可从根据本发明的教导去分化的原性细胞获得。
胎儿干细胞:本文中使用的“胎儿干细胞”指专能的、从发育中的多细胞胎儿(不再处于早期或中期器官生成阶段)获得的细胞。
生殖细胞:本文中使用的“生殖细胞”指,繁殖用的细胞,例如,精母细胞或卵母细胞或将发育为繁殖用细胞的细胞。
宿主细胞:本文中使用的“宿主细胞”指,向杂交干细胞贡献细胞质的、从前胚胎/胚胎/胎儿或出生后多细胞生物获得的任何专能干细胞。
宿主细胞制备:本文中使用的“宿主细胞制备”指其中对宿主细胞摘除细胞核的过程。
杂交干细胞:本文中使用的“杂交干细胞”指:从摘除了细胞核的宿主细胞以及多细胞生物的供体细胞或其细胞核获得的任何专能细胞。杂交干细胞还被公开于也待决的美国专利申请号10/864,788中。
核质提取物修饰:本文中使用的“核质提取物修饰”指下述过程,其中,由细胞的细胞核内含物(缺少DNA)组成的细胞提取物被用于诱导供体细胞或其细胞核的基因组变化,从而允许供体细胞或其细胞核在成熟期间能做出响应,以及是宿主细胞胞质能接受的。
成熟:本文中使用的“成熟”指下述过程,其中包括分化途径中正向或反向的协同步骤,其可以指分化或去分化。用于本文所述的方法时,本文中使用的成熟与发育的动词或名词同义。
经过修饰的生殖细胞:本文中使用的“经过修饰的生殖细胞”指下述细胞,其包含被摘除细胞核的宿主卵子以及来自精原细胞、卵原细胞或原性细胞的供体细胞核。被摘除细胞核宿主卵子和供体细胞核可以来自同一物种或不同物种。经过修饰的生殖细胞还可被称为“杂交生殖细胞”。
专能:本文中使用的“专能”指,细胞能产生数种其它细胞,但是这些类型数量有限。专能细胞的例子是造血细胞-能发育为数种血细胞但是不能发育为脑细胞的血液干细胞。
专能成年祖细胞:本文中使用的“专能成年祖细胞”指从骨髓中分离的、具有分化为间质、内皮和内胚层系代细胞的潜力的专能细胞。
前胚胎:本文中使用的“前胚胎”指在细胞分裂之前的发育早期的受精卵。在前胚胎期间,发生最初的卵裂。
前胚胎干细胞:参见前文所述“胚胎干细胞”。
出生后干细胞:本文中使用的“出生后干细胞”指从出生后的多细胞生物获得的任何专能细胞。
多能:本文中使用的“多能”指能产生除了胎盘细胞或子宫的其它支持细胞之外的任何细胞类型的细胞。
原性细胞:本文中使用的“原性细胞”指下述任何二倍体细胞,其是从雄性或雌性的成熟或发育中的性腺获得的,能产生进行物种繁殖的细胞,并且含有二倍体基因组状态。原性细胞可以是静止的或活性分裂中的。这些细胞包括,雄性生殖母细胞、雌性生殖母细胞、精原干细胞、卵巢干细胞、卵原细胞、A型精原细胞、B型精原细胞。还被称为生殖细胞系干细胞。
原生殖细胞:本文中使用的“原生殖细胞”指在胚胎发生早期存在的、预定成为生殖细胞的细胞。
再程序化:本文中使用的“再程序化”指重建细胞的遗传程序,使得细胞展示出多能性,并且具有产生完全发育的生物的潜力。
作出响应的:本文中使用的“作出响应的”指细胞或一组细胞的下述状况,其中,它们对细胞环境敏感并且相应地在其中发挥功能。作出响应的细胞能应答于特定细胞环境、组织、器官和/或器官系统,并且在其中发挥功能。
身体干细胞:本文中使用的“身体干细胞”指二倍体专能或多能干细胞。身体干细胞不是全能干细胞。
治疗用克隆:本文中使用的“治疗用克隆”指,使用细胞核转移方法(包括用另一种细胞或从内细胞团获得的干细胞的细胞核去置换卵子细胞核)进行的细胞克隆。
治疗用再程序化:本文中使用的“治疗用再程序化”指下述成熟方法,其中,按照本发明的教导,干细胞被暴露给刺激因子,以产生多能、专能或组织特异性的定型细胞。治疗用再程序化细胞可用于植入宿主,以替换或修复患病的、被损伤的、有缺陷的或遗传受损的组织。本发明的治疗用再程序化细胞不具有非人类的唾液酸残余(residue)。
全能:本文中使用的“全能”指,含有产生机体加胎盘的所有细胞所需的全部遗传信息的细胞。人类细胞仅在受精卵最初的极少数次分裂期间具有这种全能能力。
全细胞提取物修饰:本文中使用的“全细胞提取物修饰”指下述方法,其中,由细胞的胞质和细胞核内含物构成的细胞提取物被用于诱导供体细胞或其细胞核的基因组变化,从而允许供体细胞或其细胞核在成熟期间能做出响应,以及是宿主细胞胞质能接受的。
发明详述
本发明提供了生物学上有用的多能治疗用再程序化细胞,其具有最小化的氧化损伤以及可与未受损伤的、产前或胚胎干细胞的端粒长度相当的端粒长度(即,本发明的治疗用再程序化细胞具有接近生理初期状态的基因组)。此外,本发明的治疗用再程序化细胞具有免疫特权,因此适合用于治疗应用。本发明的其它方法提供了对杂交干细胞的制造。此外,本发明包括用于使按照本发明的教导制造的干细胞成熟为特定的宿主组织的相关方法。
干细胞是能产生其它类型细胞的原始细胞。存在有数种干细胞,它们也被称为祖细胞。全能细胞被认为是机体的“主人”细胞,因为它们含有产生机体加胎盘(为人类胚胎提供营养)所有细胞所需的全部遗传信息。人类细胞仅在受精卵最初的极少数次分裂期间具有这种全能能力。全能细胞分裂三次或四次后,就出现了一系列的阶段,其中细胞变得逐渐专门化。分裂的下一阶段产生多能细胞,其高度多用,能产生除了胎盘或子宫其它支持组织的细胞之外的任何细胞类型。在下一阶段,细胞变为专能的,这意味着它们能产生数种其它细胞类型,但是这些类型数量有限。专能细胞的例子是造血细胞-能发育为数种血细胞的血细胞,但是不能发育为脑细胞。在使胚胎发展的细胞分裂长链末尾,是“终末分化”细胞——被认为永远定型为特定功能的细胞。
科学家长期持下述观点:分化的细胞不能被改变,或不能被导致为能以除了已天然定型的方式之外的任何方式来作用。但是在近来的干细胞实验中,科学家已能够令血液干细胞以类神经元的方式作用。因此,研究还聚焦于:使专能细胞变为多能种类的方式(Kanatsu-shinohara M.et al.Generation of pluripotent stem cells from neonatal mouse testis.Cell 119:1001-12,2004)。
哺乳动物发育的个体发育提供了干细胞的中心作用。在胚胎发生的早期,来自接近上胚层(epiblast)的、预定成为生殖细胞(原生殖细胞)的细胞沿着生殖腺嵴移动。这些细胞表达高水平的碱性磷酸酶,并且表达转录因子Oct4。随着移动和生殖腺嵴的定居,原生殖细胞经历分化,成为雄性或雌性生殖细胞前体(原性细胞)。就本发明公开的目的而言,仪讨论雄性原性细胞(PSC),但是雄性和雌性原性细胞的质量和性质是等同的,并没有暗示任何限制。在雄性原性细胞发育期间,原干细胞开始与前体足细胞紧密联系,导致生精索(seminiferous cord)开始形成。当原生殖细胞被包括进生精索时,它们分化为有丝分裂静止的生殖母细胞。这些生殖母细胞分裂数天,然后就停留于细胞周期的G0/G1阶段。在小鼠和大鼠中,这些生殖母细胞在出生后数天内重新开始分裂,以产生精原干细胞,并且最终经历分化和精子发生相关的减数分裂。
原性细胞直接作出响应,以产生受精以及最终新一轮胚胎发生以产生新生物所需的细胞。原性细胞不经历程序化死亡,其具有与胚胎阶段可比的质量。
胚胎干细胞是从前着床胚泡阶段的胚胎的内细胞团获得的细胞,其具有最大的分化潜力,能产生在胚胎本体(proper)全部三个胚层中发现的细胞。从实践角度来看,胚胎干细胞是人工制造的细胞培养物,因为,在它们天然的上胚层环境中,它们仅在胚胎发生期间短暂存在。在体外对胚胎干细胞的操作已导致了宽范围的细胞类型的产生和分化,包括心肌细胞、造血细胞、内皮细胞、神经、骨骼肌、软骨细胞、脂肪细胞、肝和胰岛。与成熟细胞共培养的、生长中的胚胎干细胞可以影响和初始化胚胎干细胞的分化,分化为特定系代。
就本讨论的目的而言,基于与器官发生相关的发育阶段,区分开胚胎和胎儿。前胚胎阶段指,前胚胎经历卵裂的最初阶段的时期。早期胚胎发生的标志为植入着床和原肠胚形成,其中,三种胚层确定并建立。晚期胚胎发生由胚层衍生物分化形成各个器官和器官系统所界定。胚胎到胎儿的转变由绝大多数器官和器官系统的发育所界定,接着是快速的胎儿生长。
胚胎发生是下述发育过程,其中,被精子受精的卵母细胞开始分裂,并经历第一轮胚胎发生,其中发生卵裂和囊胚形成。在第二轮中,发生植入着床、原肠胚形成和早期器官发生。第三轮的特征为器官发生,最后一轮的胚胎发生(其中,胚胎不再被称为胚胎而被称为胎儿)是胎儿生长和发育发生的时候。
胚胎发生期间,产生自桑椹胚后卵裂和紧密化(compaction)的最初两种组织系代是滋养外胚层和原始内胚层,其对于胎盘和胚胎外卵黄囊做出了主要贡献。紧密化之后很短的时间内,在着床之前,上胚层或原始外胚层开始发育。
上胚层提供产生胚胎本体的细胞。随着上胚层干细胞小环境的发育,囊胚形成完全完成,此时胚胎从透明带凸现出来,并着床到子宫壁上,在所述上胚层干细胞小环境中,多能细胞处于其中,并在发育期间被定向来完成多种发育任务。
着床之后是原肠胚形成和早期器官发生。在第一轮器官发生的末尾,所有三种胚层将已经形成;外胚层、中胚层和明确的内胚层以及基本的身体规划和器官原基被建立。早期器官发生之后,胚胎发生的标志是大量的器官发育,此时,完成就标志着发育中的胚胎向发育中的胎儿的转化,其特征在于胎儿生长和器官发育的最后一轮。一旦完成了胚胎发生,妊娠时期被胎儿出生所结束,此时生物体具有了所有需要的器官、组织和细胞小环境,以在出生后正常工作和生存。
胚胎发生的过程被用于描述胚胎发育时胚胎发育的整个过程,但是在细胞水平上,可以通过细胞成熟来描述和/或阐述胚胎发生。
已从胎儿骨髓(造血干细胞)、胎儿脑(神经干细胞)和羊水(多能羊膜干细胞)分离出了胎儿干细胞。此外,已在成年雄性和雌性组织中描述了干细胞。胎儿干细胞在器官发生和胎儿发育期间具有多种作用,最终其成为身体干细胞储备的一部分。
成熟指下述过程,其中包括分化途径中正向或反向的协同步骤,其可以指分化或去分化。在成熟过程的一个例子中,在胚胎发生或器官发生期间,细胞或一组细胞与其细胞环境发生相互作用。随着成熟的进行,细胞开始形成小环境,这些小环境或微环境,容纳定向和调控器官发生的干细胞。在出生时,成熟已发展为:存在细胞和适合的细胞小环境,从而使生物能在出生后发挥功能和生存。发育过程在不同物种之间都高度保守,这允许将一种哺乳动物物种的成熟或分化系统延伸至实验室中的其它哺乳动物物种。
在生物寿命期内,器官和器官系统的细胞组合物被暴露于广泛范围的导致细胞或基因组损伤的内在及外界因子。紫外线不仅对正常皮肤细胞具有影响,还对皮肤干细胞群有影响。用于治疗癌症的化疗药物对造血干细胞具有破坏性的作用。具有反应活性的氧物质(细胞代谢的副产物)是威胁细胞基因组完整性的内在因子。在所有器官或器官系统中,细胞由干细胞群持续地替换。但是,随着生物衰老,细胞损伤就积累于这些干细胞群中。如果损伤是可遗传的,例如,基因组突变,所有后代也将会受到影响由此受到威胁。单个干细胞克隆可用于在一年以上的时间内产生系代(例如淋巴或骨髓细胞),因此如果干细胞受损它们就具有了传播突变的可能性。身体应答于受到威胁的干细胞,这是通过诱导凋亡由此将其从库中除去,以及防止潜在的功能障碍或肿瘤发生性质来实现的。凋亡从群中除去受到威胁的细胞,但是其也会减少将来可利用的干细胞的数量。因此,随着生物衰老,干细胞数量减少。除了干细胞库的损失之外,还有证据表明,衰老会降低干细胞制导(homing)机制的效率。端粒是染色体的物理末端,其含有高度保守的、串联重复的DNA序列。端粒参与线性DNA分子的复制和稳定性,作为细胞中计数机制发挥作用;随着每轮细胞分裂,端粒长度缩短,在预定的阈值,激活信号以起始细胞的老化。干细胞和身体细胞产生端粒酶,这会抑制端粒的缩短,但是它们的端粒在衰老和细胞胁迫期间仍会逐渐缩短。
采用细胞疗法医治疗多种疾病已有历史,但是这些应用中的大多数都是针对造血障碍(包括恶性的)的骨髓移植。在骨髓移植中,个体免疫系统被来自另一个个体的移植骨髓所重建。长期以来,该重建被归功于在骨髓中的造血干细胞的作用。
越来越多的证据表明,干细胞可在体外分化为特定细胞类型,其已显示出:通过移植进多种组织而具有专能潜力,并能穿过胚层,因此已成为针对细胞疗法的很多研究的主题。采用传统类型的移植时,免疫拒绝成为了细胞疗法的局限因素。接受者个体的表型和供体的表型将决定细胞或器官植入体是否将被免疫系统忍受或拒绝。
因此,本发明提供了下述方法和组合物,用于提供用于细胞再生/修复疗法的功能性免疫相容性干细胞。
在本发明的一种实施方式中,提供了治疗用再程序化细胞。治疗用再程序化指下述成熟方法,其中,按照本发明的教导,干细胞被暴露给刺激因子,以产生多能、专能或组织特异性的定型细胞。治疗用再程序化的方法可用多种干细胞来进行,包括但不限于,治疗用克隆细胞、杂交干细胞、胚胎干细胞、胎儿干细胞、专能成年祖细胞、脂肪来源的干细胞(ADSC)和原性细胞。
治疗用再程序化利用了下述事实:某些干细胞相对容易获得,例如,精原干细胞和脂肪来源的干细胞,并且通过暴露给刺激因子对这些细胞进行外遗传性(epigenetically)再程序化。这些治疗用再程序化细胞已改变了突变状态,成为更定型的细胞系代或更少定型的细胞系代。治疗用再程序化细胞因此能修复或再生有疾病的、受损害的、有缺陷的或遗传受损的组织。
治疗用再程序化使用刺激因子,包括但不限于,化学物质、生物化学物质和细胞提取物,以改变细胞的外遗传(epigenetic)程序化。这些刺激因子诱导供体DNA中的基因组甲基化改变,以及其它结果。本发明的实施方式包括:从全细胞、细胞质和核质来制备细胞提取物的方法,但是其它类型的细胞提取物也被包括在本发明的范围内。在非限制性的例子中,本发明的细胞提取物从干细胞,特别是胚胎干细胞制得。将供体细胞与化学物质、生物化学物质或细胞提取物一起培养预定的时间段,在非限制性的例子中为大约一小时至大约两小时,然后,在培养时期之后表达胚胎干细胞标记,例如Oct4的再程序化细胞被准备用于移植、低温贮藏或进一步成熟。
在本发明的一种特定实施方式中,对原性细胞(PSC)进行治疗用再程序化。原性细胞处于睾丸生精小管内层以及卵巢内层(分别为精原细胞和卵原细胞),它们已被确定为具有二倍体(2N)基因组,明显地未被衰老和细胞分裂影响所损害。因此,PSC具有接近生理初期状态的基因组。特别有用于本发明一种实施方式中的PSC的非限制性例子是精原干细胞。根据本文的教导,针对成熟方法制备治疗用再程序化PSC细胞,其中所述成熟方法使用与胚胎发生和器官发生期间发育中的胚胎和胎儿中存在的干细胞所经历的过程类似的手段。
根据本发明的教导制造的治疗用再程序化细胞可用于治疗目的,它们可被低温贮藏,用于进一步的用途,或者它们可在下述环境中进一步成熟为更定型的细胞系代:(1)在发育中的胚胎中,(2)在发育中的胎儿中,(3)在发育中的全器官培养物中,或(4)在类似于胚胎发生或器官发生环境的体外细胞环境中。
本发明的实施方式提供了下述方法,用于使治疗用再程序化细胞、干细胞和原性细胞在出生后环境中进一步成熟或分化为更定型的细胞系代,以提供更为定型的细胞,用于细胞再生/修复疗法。此外,成熟和分化过程提供了可用于治疗或替换产前及出生后器官中受损的细胞的治疗用细胞。
本发明还提供了被称为经过修饰的生殖细胞(MGC)的组合物,其中包含哺乳动物原性细胞或其细胞核,它们被转移进了摘除了细胞核的卵子,其中,PSC和卵子是从同一物种的动物或哺乳动物,或不同的动物或哺乳动物获得的。哺乳动物PSC可来自任何动物,其包括但不限于,小鼠、大鼠、人、非人类灵长类、猫、狗、马、猪、牛和绵羊。在一种实施方式中,PSC是哺乳动物精原细胞或其细胞核。在另一种实施方式中,PSC是哺乳动物卵原细胞或其细胞核。摘除细胞核和细胞核转移的其它方法也被包括进本发明的范围,其包括机械方法,以及使用电刺激的方法。可以使用来自精原细胞或卵原细胞的任何二倍体前体细胞的细胞核。
本发明的MGC是全能的、多能的、专能的或双能的。即,MGC能形成至少一种类型的组织,或者更具体地,MGC能形成多于一种类型的组织。
一旦产生了MGC,就可以通过本文所述的多种方法进行操作,产生能进行细胞修复/再生疗法的功能细胞。例如,可以以分步方式使MGC成熟至成熟干细胞典型的发育特定阶段。
在本文所述的分步方法中,MGC首先被扩展为6细胞阶段。MGC能扩展为超过6细胞的阶段,但是超过10细胞阶段,生殖细胞就开始分化为祖细胞或前体细胞。然后使用来自从不同妊娠至出生后阶段分离的细胞的暗示(cue),以分步方式令6细胞阶段的MGC成熟。来自妊娠至出生后供体的至少一组细胞被用于协助MGC的成熟。但是,MGC可能需要超过一组细胞来达到想要的成熟状态。成熟MGC被称为引物(primed)MGC。引物MGC具有足够的阶段特异性受体,使得:在体内或体外,向宿主动物或组织中移植时,MGC发挥与成熟干细胞类似的作用。用于筛选MGC已确定在它们的表面表达的受体群(constellation)的方法是本领域公知的。
此外,MGC和前胚胎、胚胎、胎儿或出生后干细胞(即,精原干细胞)可通过下述方法成熟:在含有下述成熟和分化信号的细胞环境中,体内培养所述细胞,所述信号适用于MGC或干细胞的目标用途。例如但不限于,胚胎干细胞在发育中的骨髓小环境中于胚胎中成熟。被称为造血的血细胞发育,在发育中的胚胎中的特定组织中历经离散的阶段,这在汇聚于骨髓之前发生,其在骨髓中在整个成年阶段持续。在发育中的胚胎中,造血干细胞前体首先在卵黄囊和被称为大动脉-性腺-中肾的区域中发育。在胚胎发生和器官发生期间,造血干细胞前体移动到肝脏,之后到脾,最后在出生之前定居到骨髓。因此,造血干细胞、间质干细胞以及专能成年祖细胞(MAPC)可由能从出生后生物分离得到的干细胞和MGC产生。体内成熟的可能位置包括但不限于,发育中的胚胎或发育中的胎儿内的位置,包括胚泡、胎盘、卵黄囊、侧大动脉胚脏壁、大动脉-性腺-中肾、子宫血管或胎儿肝脏。
本发明的一种实施方式提供了由任何动物产生的MGC,并且提供了用MGC进行治疗的方法,所述方法包括,将引物MGC注射进宿主动物。MGC可用来自同一物种的细胞或来自不同物种的细胞获得。此外,引物MGC可被移植进与组分细胞相同或不同物种的宿主。引物MGC可用于修复组织或治疗疾病。
在本发明的另一种实施方式中,提供了杂交干细胞,其可用于细胞再生/修复疗法。本发明的杂交干细胞是多能的,并且是针对目标受体定制的,从而使得它们能与受体免疫相容。杂交干细胞是供体细胞或其细胞核与宿主细胞的融合产物。典型地,融合在供体细胞核和摘除了细胞核的宿主细胞间发生。供体细胞可以是任何二倍体细胞,其包括但不限于,来自前胚胎、胚胎、胎儿和出生后生物的细胞。更具体地,供体细胞可以是原性细胞,其包括但不限于,卵原细胞,或者分化的或未分化的精原细胞,或胚胎干细胞。供体细胞的其它非限制性例子是,治疗用再程序化细胞、胚胎干细胞、胎儿干细胞和专能成年祖细胞。优选地,供体细胞具有目标受体的表型。宿主细胞可以从组织中分离,所述组织包括但不限于,前胚胎、胚胎、胎儿和出生后生物,更具体地,其可包括但不限于,胚胎干细胞、胎儿干细胞、专能成年祖细胞和脂肪来源的干细胞。在非限制性的例子中,用培养的细胞系作为供体细胞。供体和宿主细胞可来自相同个体或不同个体。
在本发明的一种实施方式中,淋巴细胞被用作供体细胞,使用两步法来纯化供体细胞。组织被分解之后,进行粘附步骤,以除去任何可能的污染性附着细胞,接着进行密度梯度纯化步骤。淋巴细胞的大多数是静止的(G0阶段),因此可能具有甲基化状态,能为再程序化赋予更高的可塑性。
在本发明的实施方式中用作供体细胞的专能或多能干细胞或细胞系被功能性地定义为:具有经历分化至多种细胞类型(包括但不限于,脂肪原性、神经原性、骨原性、软骨原性和心原性细胞类型)的能力的细胞。图2描述了ADSC向这五种细胞类型的分化。在本发明的一种实施方式中,ADSC展示出了最大的分化潜力,如果它们在第四次传代之前分化的话。
摘除宿主细胞的细胞核(以用于产生根据本发明教导的杂交干细胞)可使用多种方法来进行。在非限制性的例子中,将ADSC放到涂布有纤连蛋白的组织培养玻片上,用细胞松弛素D或细胞松弛素B来处理细胞。处理之后,细胞可被胰蛋白酶处理,再次平板培养,在摘除细胞核后可存活大约72小时。图3描述了按照本发明的教导制造的摘除细胞核的ADSC。
可使用本领域技术人员已知的大量融合方法中的一种来进行宿主细胞和供体细胞核的融合,这些方法包括但不限于:电融合、微注射、化学融合或基于病毒的融合,细胞融合的所有方法都被包括在本发明的范围内。图4-6描述了融合后二至六周时根据本发明的教导制造的杂交干细胞,显示出,随着培养时间的增加,被鉴定为供体细胞的细胞数量减少,大量的杂交干细胞被观察到。图7和8描述了通过荧光活化细胞拣选(FACS)(图7)和针对绿色荧光蛋白(GFP)表达进行的聚合酶链式反应(图8)对杂交干细胞进行的分析。
根据本发明的教导制造的杂交干细胞具有来自被摘除细胞核的宿主细胞的表面抗原和受体,但是具有来自发育上更年轻的细胞的细胞核。结果,本发明的杂交干细胞是细胞因子、趋化因子和其它细胞信号试剂能接受的,但具有不含衰老相关DNA损伤的细胞核。
根据本发明的教导制造的杂交干细胞可被诱导分化为多种细胞类型。例如但不欲对本发明的杂交干细胞的分化潜力加以限制,杂交干细胞可分化为脂肪原性细胞、骨原性细胞、软骨原性细胞、神经原性细胞和心原性细胞。分化可使用商业可获得的试剂盒或按照本领域技术人员已知的方法来进行。从根据本发明的教导制造的杂交干细胞产生的分化细胞的非限制性例子被描述于图9(脂肪原性分化)、图10(骨原性分化)、图11(软骨原性分化)、图12(神经原性分化)和图13(心原性分化)中。
根据本发明的教导制造的治疗用再程序化细胞和杂交干细胞可用于广泛的治疗应用,用于细胞再生/修复疗法。例如但不作为限制,本发明的治疗用再程序化细胞和杂交干细胞可用于补充下述动物中的干细胞,所述动物的天然干细胞由于衰老或切除手术(例如癌症放疗和化疗)已损耗。在另一种非限制性的例子中,本发明的治疗用再程序化细胞和杂交干细胞可用于器官再生和组织修复。在本发明的一种实施方式中,治疗用再程序化细胞和杂交干细胞可用于恢复受损的肌肉组织,包括营养不良的肌肉以及萎缩事件(例如心肌梗塞)损害的肌肉。在本发明的另一种实施方式中,本文公开的治疗用再程序化细胞和杂交干细胞可被用于改善动物(包括人)中创伤或手术后的伤痕。在该实施方式中,本发明的治疗用再程序化细胞和杂交干细胞被全身性施予,例如通过静脉方式,并移动到新鲜受伤的组织,所述组织由受损细胞分泌的循环细胞因子给养。在本发明的另一种实施方式中,治疗用再程序化细胞和杂交干细胞可被局部施予到需要修复或再生的治疗位点。
干细胞并非普遍对本发明的成熟方法敏感。因此,本发明的发明人开发了一种治疗用再程序化方法,由此可将干细胞诱导为对成熟因子敏感的状态。该治疗用再程序化方法可通过下述方法来完成:在合适条件下与刺激因子培养一段时间,该时间足够使得供体细胞对成熟敏感。
根据本发明的方法产生的MGC和杂交干细胞还适用于使用本发明的方法进行的治疗用再程序化和成熟。得到的成熟或分化的MGC、杂交干细胞和治疗用再程序化细胞提供了用于细胞再生/修复疗法的功能性的免疫相容性干细胞。
在用胚胎干细胞(ESC)进行成熟的情况下,细胞可能需要制备步骤,以使ESC能对成熟作出响应。ESC的制备步骤的非限制性的例子是,在暴露给成熟方法之前,将其诱导为胚状体或类似造血干细胞的状态。胚状体是胚胎干细胞的球形聚集物,其能经历分化。该制备步骤也可通过使用化学物质或细胞提取物来诱导,所述化学物质或细胞提取物能影响供体细胞的基因组状态,以在特定发育时期发挥功能。
下述实施例用于阐述本发明的一种或多种实施方式,但它们不被认为是将本发明限制到下述范围。
实施例1
成熟-前胚胎、胚胎移植
将从129/SvJ株系小鼠获得的胚胎干细胞(ESC)注射到孕后3.5天的C57BL/6J胚泡中。在胚泡中是内细胞团小环境,其中含有用于胚层建立以及最终地胚胎中所有细胞的上胚层。ESC细胞识别该小环境,并通过被适当定向成为胚胎本体来做出响应。短暂的培养期后,将胚泡移回假孕雌鼠,令其发育足月。内细胞团和细胞环境定向下的ESC细胞成熟为胚胎发生和器官发生中特定时期所需的不同干细胞和支持细胞。取决于ESC细胞响应于胚胎发生和器官发生期间存在的成熟因子的能力,诞生具有不同嵌合水平的嵌合小鼠。小鼠中的一些具有非常高的ESC细胞贡献,一些具有低水平的。ESC细胞在各个器官和小环境(提供器官保持和修复所需的细胞)中整合为不同的程度。如果ESC细胞在生殖系的小环境(性腺保持和修复所需的细胞所在地)中占一席之地(populate),那么得到的ESC来源的精原干细胞就能产生配子。当得到的小鼠嵌合体交配时,有三种可能的结果:100%的生殖系贡献,其中,所有F1都是129/SvJ来源的;混合的生殖系贡献,其中,F1是129/SvJ和C57BL/6J来源的;以及0%的生殖系贡献,其中,所有F1都是C57BL/6J来源的。在性腺中有下述小环境,其被用来提供下述细胞,所述细胞对配子的保持、修复和产生作出贡献,F1中混合群的存在表明,这些小环境允许了两种不同的干细胞(129/SvJ和C57BL/6J)群(population)共存在的可能性。类似于ESC细胞占据生殖系小环境的方式,ESC细胞也可能占据其它干细胞小环境,例如骨髓,从而允许干细胞(例如,造血、间质或专能成年祖细胞)的分离,并且治疗性地对它们加以使用。
实施例2
胚胎干细胞在发育中的胚胎中的成熟
在本实施例中,胚胎干细胞在发育中的骨髓小环境中成熟。被称为造血的血细胞发育,在发育中的胚胎中的特定组织中历经离散的阶段,这在汇聚于骨髓之前发生,其在骨髓中在整个成年阶段持续。在发育中的胚胎中,造血干细胞前体首先在卵黄囊和被称为大动脉-性腺-中肾(AGM)的区域中发育。在胚胎发生和器官发生期间,造血干细胞前体移动到肝脏,之后到脾,最后在出生之前定居到骨髓。在本具体的实施例中,产生造血、间质干细胞和专能成年祖细胞(MAPC),它们可从出生后生物中分离。
胚胎干细胞(ESC)从129/SvJ株系小鼠获得,用荧光报道基因(即GFP)对其进行了转染。宿主C57BL/6J雌性小鼠被进行交配,探查到阴栓的日子被记为E0.5。在孕期中的特定时间点(E7.5-E18.0),通过腹腔给予0.9%NaCl中的克他命(1.5mg/kg)和甲苯噻嗪(15mg/kg)来麻醉小鼠。通过皮下施予0.9%NaCl中的特布它林(0.5 mg/kg),减少子宫收缩。然后进行受限低中线(1imited low midline)剖腹手术,子宫的两端角状物呈现。
将顶端直径为大约<10-50μm的热拉拔(heat-pulled)玻璃微量移液管(Sutter Instrument Co.)连接到气动微融合泵上,用于将大约1×104至大约1×106的ESC以5psi.运送到胚胎中的位置。用于注射用于成熟ESC的位置包括但不限于,胎盘、卵黄囊、侧大动脉胚脏壁、大动脉-性腺-中肾、子宫静脉和胎儿肝脏。然后将子宫放回到腹中,关闭腹腔,令雌性小鼠恢复,怀孕至足月。出生后大约3个月,含有移植的ESC细胞的宿主小鼠被安乐死,股骨和胫骨被移下,放置于冰上的HBSS+(Gibco-BRL)/2%FBS(Hyclone)/10mM HEPES缓冲液(Gibco-BRL)中。清理骨头,使其不含肌肉和脂肪组织,将其放到冰上,直到处理完成。然后用HBSS+/2%FBS/10mM HEPES缓冲液冲洗胫骨和股骨,产生骨髓细胞的悬浮液。然后通过Ficoll-Hypaque分离收集骨髓单核细胞(BMMNC)。将BMMNC以1×105/cm2放置于MAPC培养基(60%DMEM-LG(Gibco,BRL),40%MCDB-201(Sigma),1X胰岛素-转铁蛋白-硒,1X亚油酸-牛血清清蛋白,10-9M地塞米松(Sigma),10-4M 2-磷酸抗坏血酸酯(Sigma),100个单位的青霉素,1000个单位的链霉素(GibcoBRL),2%胎牛血清(FCS;Hyclone Laboratories),10ng/mL hPPFG-BB(人类血小板来源的生长因子-BB,R&D Systems),10ng/mL mEGF(小鼠表皮生长因子,Sigma)以及1000个单位/mL的mLIF(小鼠白血病抑制因子,Chemicon))中涂布有纤连蛋白(FN;Sigma)的培养皿上。将BMMNC培养物保持为5×103/cm2,3-4周后,使用微磁珠分离器(Miltenyi Biotec)收获细胞,除去CD45+/Terr119+细胞。将CD45-/Terr119-细胞级分(~20%)以10个细胞/孔放置于FN(10ng/mL)处理过的96孔板,按照0.5-1.5×103/cm2的密度涂开。大约1%的孔产生持续的生长中MAPC培养物。MAPC的特征在于针对CD3、Gr-1、Mac-1、CD19、CD34、CD44、CD45、cKit和主要组织相容性复合物(MGC)组I和组II的染色阴性。
实施例3
治疗用克隆和成熟
本实施例描述了对人类原性细胞(供体细胞)的制备,其能响应成熟信号,用于治疗用的克隆。在一些情况下,供体细胞需要额外步骤来制备,以用于成熟。制备来自其它哺乳动物(包括人类)的原性细胞(PSC)所涉及的方法类似于本文中所述的,可能在对特异于该特定物种的培养基或化学物质的修饰方面有些例外。
进行卵巢刺激之后收集卵原细胞,并在G1.2培养基(Vitro Life,Goteborg,瑞典)中体外成熟。选出具有第一极体的卵原细胞用于细胞核摘除。在HEPES缓冲的不含Ca2+的含氨基酸CR2培养基(hCR2aa,其中补充有10%的FBS和5μg/mL的细胞松弛素B(Sigma))中进行细胞核摘除。用固定吸管将卵原细胞保持在合适的位置,用细针在透明带上制造出小裂缝。用针去掉含有中期II染色体的细胞质和第一极体。通过用Hoechst 33342(Sigma)对摘除细胞核的卵原细胞进行5分钟的染色,并在落射荧光下观察来验证细胞核摘除。然后将摘除细胞核的卵原细胞放置于HEPES缓冲的TCM-199培养基(Life Technologies)中,所述培养基补充有10%FBS。按照实施例9所述来制备供体细胞。将单个供体细胞放进摘除细胞核的卵原细胞的卵周隙,所述卵原细胞已用hCR2aa中的100μg/mL植物血球凝集素(Sigma)处理过。融合通过下述方法来进行:将供体PSC和摘除细胞核的卵子组合放置于融合培养基(0.26M甘露醇、0.1mM MgSO4、0.5mM HEPES和0.05%(w/v)BSA)中,在BTX 453,3.2mm缝隙的腔中,于3分钟平衡之后进行融合。使用BTX Electro-cell操作仪200,用两次DC脉冲(1.75-1.85kV/cm,15秒)来诱导融合。供体细胞核和摘除细胞核的卵子的融合产物现在被命名为经修饰的生殖细胞。然后在融合后对经修饰的生殖细胞进行2小时的培养。激活通过下述方法来进行:将经修饰的生殖细胞在G1.2培养基中暴露给10μM的钙离子载体A23187达5分钟,接着用2.0mM 6-二甲基氨基嘌呤(DMAP)进行培养,以及在6%CO2、5%O2、89%N2下在G1.2培养基中培养4小时。然后在G1.2培养基中对经修饰的生殖细胞进行10次清洗,再在G1.2培养基中培养48小时,接着在具有氨基酸的人类经修饰合成输卵管液(SOF)(hmSOFaa)中培养6天。HmSOFaa是通过将10mg/mL的人血清清蛋白和1.5 mM果糖加入到hmSOFaa中制得的。通过用0.1%链霉蛋白酶(Sigma)消化,从经修饰的生殖细胞移除透明带。通过免疫手术,从经修饰的生殖细胞分离出内细胞团(ICM),用100%抗人血清抗体(Sigma)对ICM进行20分钟的培养,接着再在37℃于5%CO2中暴露给豚鼠补体系统(Life Technologies)额外30分钟。在0.1%明胶涂布的4孔组织培养皿中,在丝裂霉素C失活的小鼠胚胎原代成纤维细胞(PMEF)饲养层(feeder layer)上培养从经修饰的生殖细胞分离出的ICM。在该阶段,经修饰的生殖细胞成熟为经修饰的胚胎干细胞。经修饰的干细胞被培养于DMEM/DMEM F12(1∶1)(Life Technologies)、0.1mM β-巯基乙醇(Sigma Aldrich,Corp.)、1%非必要氨基酸、100个单位/mL的青霉素、100μg/mL链霉素以及4ng/mL碱性成纤维细胞生长因子(bFGF;Life Technologies)中。此外,直到第一次传代,将2000个单位/mL的人LIF(白血病抑制因子,Chemicon)加入到培养基中。然后在细胞上进行染色体组型分析(karyotyping),仅保留整倍体的细胞系用于成熟。
实施例4
从睾丸中分离原性细胞
睾丸被切开并去膜。使用细剪刀剪碎睾丸组织,将其转移进培养基(DMEM/F12),所述培养基含有1mg/mL的I型胶原酶(Sigma)和0.5mg/mL的DNase(Sigma)。在37℃于震荡水浴(以110周期/分钟运行)中进行10分钟的消化。通过以单位重力沉淀10分钟来分离间细胞,在DMEM/F12中清洗。
在与第一步消化步骤一样的条件下,在I型胶原酶(1mg/mL)、DNase(0.5mg/mL)和透明质酸酶(Sigma;0.5mg/mL)的混合物中,对睾丸组织的基膜(basal lamina)组分进行最后的消化。用培养基和含有1mM EDTA(Sigma)和0.5%胎牛血清的PBS连续地清洗获得的单细胞悬浮液。通过将细胞悬浮液经50μm的尼龙筛过滤来除去白膜的未被消化残余。整个过程中所有细胞都被保持于5℃。将分离的睾丸细胞悬浮(5×106个细胞/mL)于含有0.5%FBS的PBS(PBS/FBS)中。然后将细胞与初次抗体在冰上培养20分钟,用过量的PBS/FBS洗两次,用于FACS分析。初次抗体包括R-藻红蛋白(PE)-桥联的抗α6整联蛋白、别藻蓝蛋白(APC)-桥联的抗c-kit以及生物素化的抗αv整联蛋白。对于使用二级试剂的实验,进一步地将细胞与APC-桥联的链亲合素一起培养20分钟,以探测生物素化的抗体。所有抗体或二级试剂都以5μg/ml使用。对照细胞不用抗体处理。最后一次清洗之后,将细胞重新悬浮(107个细胞/mL)于2mL含有1μg/mL碘化丙啶(Sigma)的PBS/FBS中,经35μm孔径的尼龙筛过滤至管中,在黑暗中于冰上保存,直到进行分析。基于抗体染色和它们的相对粒度或内部复杂性(侧向角散射(side scatter),SSC)对细胞进行拣选。通过装备有488nm氩(200mW)和633nm氦氖(35mW)激光的双激光FACStar Plus(Becton Dichinson)来进行细胞拣选。氩激光被用于激发PE和碘化丙啶,并且575 DF 26滤光器用于收集PE的发射,610 DF 20滤光器用于收集碘化丙啶的发射。氖激光被用于激发APC,用675 DF 20滤光器探测发射。在数据收集时,通过除去碘化丙啶阳性的事件,去除死细胞。在含有2mL冰冷的DMEM(补充有10%FBS)(DMEM/FBS)的5mL聚苯乙烯管中,对细胞进行拣选。α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。
实施例5
从卵巢分离原性细胞
对动物进行麻醉,取下卵巢。或者,可以从对卵巢的打孔活检来分离原性细胞(PSC)。然后在显微镜辅助下分离PSC。原性细胞具有干细胞的形态(即,大、圆且光滑),是从卵巢中机械取回的。
实施例6
用化学因子进行治疗用再程序化
本实施例描述了对PSC的治疗用再程序化,从而其能在成熟期间发挥功能,恰当响应,这是通过用化学物质诱导基因组甲基化的改变来实现的。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。然后将细胞或其中含有的细胞核物质暴露给不同浓度的DNA去甲基化试剂,它们包括但不限于,5-氮杂-2’-脱氧胞苷、组蛋白去乙酰酶抑制剂、正丁酸或曲古菌素A。在基因组修饰之后,原性细胞被准备用来经历成熟过程。
实施例 7
用全细胞提取物因子进行治疗用再程序化
本实施例描述了对PSC的治疗用再程序化,从而其能在成熟期间发挥功能,恰当响应,这是通过用从胚胎干细胞获得的全细胞(核质/细胞质)提取物诱导基因组甲基化的改变来实现的。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作可再程序化的细胞。这些细胞被贮存于冰上,直到暴露给全细胞提取物。
为制备来自胚胎干细胞(ESC)的全细胞提取物,用冰冷的PBS对细胞清洗三次,接着在细胞裂解缓冲液(50mM NaCl,5mM MgCl2,20mM Hepes,pH 8.2,以及1 mM二硫苏糖醇)中清洗。然后在350xg下对细胞进行离心,重新悬浮于1.5倍体积的含蛋白酶抑制剂的细胞裂解缓冲液中,在冰上培养45分钟。然后通过脉冲超声波对细胞进行均质化,在16,000xg下于4℃对全细胞裂解物进行20分钟的离心。然后收集上清液,蛋白浓度测定为大约6mg/mL。
用冰冷的PBS对前面分离的PSC洗三次,再在HBSS中洗两次。然后再在350xg下于4℃对细胞进行5分钟的离心,以每14μL冰冷的HBSS中10,000个细胞的比例重新悬浮。然后在37℃对细胞进行2分钟的培养,接着以115ng/mL至230ng/mL的终浓度(取决于细胞数量)加入链球菌溶血素O(SLO;Sigma),持续震荡下在37℃培养50分钟,保持细胞不沉淀。然后在500xg下于4℃对细胞进行5分钟的离心,移去上清液。然后将PSC与50μL前面制备的胚胎干细胞全细胞提取物(含有ATP再生系统以及四种三磷酸核苷中的每种1mM)在37℃培养1-2小时。然后将细胞重新悬浮于准备培养基(1%非必要氨基酸,1%L-谷氨酰胺,100个单位/mL的青霉素,100μg/mL链霉素、0.1mMβ-巯基乙醇,3000个单位/mL的LIF,处于DMEM/20%FBS中)中的2mM CaCl2溶液中,放置于48孔皿的一个孔中,所述的皿已用0.1%的明胶(含有丝裂霉素C失活的胚胎原代成纤维细胞(PEF)层)预处理过。此外,还可以在48孔皿(已用0.1%的明胶(含有丝裂霉素C失活的PEF层)预处理过)中对用提取物处理过的PCS和50%满盘(confluent)的ESC进行共培养。24小时后,将不附着于饲养层的细胞移出,用不附着的细胞重复进行第二次提取物暴露过程。培养再程序化的细胞(附着的细胞),针对胚胎干细胞特异性标记(即,REX1,OCT4)加以分析,在暴露给成熟过程之前检验体外分化潜力。
实施例8
用细胞质提取物因子来进行治疗用再程序化
本实施例描述了对PSC的治疗用再程序化,从而其能在成熟期间发挥功能,恰当响应,这是通过用来自胚胎干细胞的细胞质提取物诱导基因组修饰来实现的。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作可再程序化的细胞。这些细胞被贮存于冰上,直到暴露给细胞质提取物。
为制备胚胎干细胞提取物,将ESC培养至满盘。使用含有10μg/mL细胞松弛素B的Ficoll-400(30%、25%、22%、18%和15%)的不连续密度梯度来制备ESC细胞质。小心地将12.5%Ficoll-400中的千万ESC放置到梯度顶端,以40,000rpm于36℃进行30分钟的离心。从15%和/或18%的水平收集细胞质。然后用冰冷的PBS对细胞质洗三次,接着在细胞裂解缓冲液中清洗。然后在350xg下对细胞质进行离心,重新悬浮于1.5倍体积的含蛋白酶抑制剂的细胞裂解缓冲液中,在冰上培养45分钟。然后通过脉冲超声波对细胞质进行均质化,然后在16,000xg下于4℃对细胞质进行20分钟的离心。然后收集上清液,蛋白浓度测定为大约6mg/mL。
按照实施例7所述的方法,将前文分离的PSC与细胞质提取物一起培养。
实施例9
用核质提取物因子来进行治疗用再程序化
本实施例描述了对PSC的治疗用再程序化,从而其能在成熟期间发挥功能,恰当响应,这是通过用来自胚胎干细胞的细胞核(核质)提取物诱导基因组修饰来实现的。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作可再程序化的细胞。这些细胞被贮存于冰上,直到暴露给细胞核提取物。
为制备胚胎干细胞细胞核(核质)提取物,将ESC培养至满盘。使用含有10μg/mL细胞松弛素B的Ficoll-400(30%、25%、22%、18%和15%)的不连续密度梯度来制备ESC核质。小心地将12.5%Ficoll-400中的千万ESC放置到梯度顶端,以40,000rpm于36℃进行30分钟的离心。从30%的水平收集核质。然后用冰冷的PBS对核质洗三次,接着在细胞裂解缓冲液中洗。然后在350xg下对核质进行离心,重新悬浮于1.5倍体积的含蛋白酶抑制剂的细胞裂解缓冲液中,在冰上培养45分钟。然后通过脉冲超声波对核质进行均质化,然后在16,000xg下于4℃对核质进行20分钟的离心。然后收集上清液,蛋白浓度测定为大约6mg/mL。
按照实施例7所述的方法,将前文分离的PSC与核质提取物一起培养。
实施例10
杂交干细胞制造
本实施例描述了杂交干细胞的产生。本实施例展示的方法可用于:使用任何摘除细胞核的(前胚胎、胚胎、胎儿或出生后)干细胞作为宿主细胞以及使用PSC或任何细胞(前胚胎、胚胎、胎儿或出生后)作为供体来产生杂交干细胞,仅有的限制是供体细胞是二倍体(2N)。此外,供体细胞或其细胞核可被遗传修饰,以校正遗传障碍,通过基于干细胞的疗法传递经校正的基因或转基因体。供体细胞和宿主细胞可通过下述方法融合,所述方法包括但不限于,电、病毒、化学或机械融合。此外,可通过下述方法来摘除宿主细胞的细胞核,所述方法包括但不限于,化学手段、x-射线照射、激光照射或机械手段。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。这些细胞被贮存于冰上,直到与摘除细胞核的胚胎干细胞融合。
为制备胚胎干细胞细胞质,将ESC培养至满盘。然后使用含有10μg/mL细胞松弛素B的Ficoll-400(30%、25%、22%、18%和15%)的不连续密度梯度来制备ESC细胞质。小心地将12.5%Ficoll-400中的千万ESC放置到梯度顶端,以40,000rpm于36℃进行30分钟的离心。从15%和/或18%的区域收集细胞质,并贮存于冰上,直到细胞融合。
在细胞脉冲融合培养基(CytoPulse)中对供体细胞(PSC)或其细胞核洗三次,以5×106个细胞或细胞核重新悬浮于150μL冰冷的细胞脉冲融合培养基中。在细胞脉冲融合培养基中对摘除了细胞核的宿主细胞(ESC)洗三次,以1×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。轻柔混合两种细胞群,将其放置于细胞脉冲(Cytopulse)融合腔中,采用下述参数进行电融合:正弦前,开始电压:65伏,持续:50伏,频率:0.8kHz,终点电压:65伏;脉冲,振幅:200伏,持续:0.05毫秒;以及正弦后,开始电压:65伏,持续:50秒,频率:0.8kHz,终点电压:5伏。然后令细胞保留在腔中于37℃恢复30分钟。融合后15分钟,加入FBS至最终的血清浓度为10%,再培养15分钟。然后通过在室温下于500xg离心5分钟,取出融合的细胞,在DPBS/20%血清中洗一次,重新悬浮于准备培养基中。再将融合的细胞放置于48孔板的孔中,所述的板已用0.1%的明胶(含有丝裂霉素C失活的PEF层)预处理过。此外,还可以在48孔皿(已用0.1%的明胶(含有丝裂霉素C失活的PEF层)预处理过)中对干细胞杂交体和50%满盘的ESC进行共培养。融合的细胞经历多次传代扩展,以确定杂交干细胞的稳定性以及供体细胞基因组的再程序化。然后对杂交干细胞进行染色体组型分析,仅保留整倍体的细胞系用于成熟。
在一种实验中,对来自TgN(GFPU)5Nagy小鼠的脂肪来源干细胞(ADSC)摘除细胞核,所述细胞本质地表达绿色荧光蛋白(GFP),通过电融合令细胞质与来自R26R小鼠的淋巴细胞融合。该株系小鼠被选为本实验的淋巴细胞来源,仅因为在它们的细胞核中存在Neo标记。宿主细胞中GFP的存在允许对宿主细胞加以跟踪。培养通过该融合产生的杂交干细胞,针对GFP的存在(指示带细胞核的宿主细胞的存在,而非干细胞杂交体的存在)进行分析。融合后两周内,在培养物中可以看到个体GFP(-)细胞(图4),这是可能的融合产物;在四周内,存在GFP(-)细胞的克隆(图5)。针对GFP(-)细胞对这些细胞进行拣选,通过培养来扩展。
针对GFP(宿主细胞核)和Neo(供体细胞核)的存在,用荧光活化细胞拣选(FACS)来对本发明上述实施方式中产生的杂交干细胞进行进一步表征。通过单细胞聚合酶链式反应分析,杂交干细胞被验证为供体细胞核和摘除细胞核的宿主细胞的杂交体(图8)。
实施例11
胚状体产生
通过从培养基中撤除LIF,诱导前面分离的DSC,形成胚状体。通过将数滴20μL(每滴1200个细胞)放置到非粘着组织培养皿的盖子上来诱导聚集,随后颠倒灭菌PBS。培养基补充有成纤维细胞生长因子2和血管内皮生长因子A165。从培养基中移除LIF以及液滴形成的日子是第0天。液滴于37℃和5%CO2的环境中于培养皿盖子上悬挂3-5天。3-5天后,液滴每滴被转移到8孔培养玻片的孔中。所有分析都在四个或多个胚状体上进行三或更多次。
实施例12
用成熟的干细胞来修复梗塞的心肌
下述实施例描述了一种方法,其中,来自出生后来源的治疗用再程序化PSC在异种移植胎绵羊模型中成熟为出生后干细胞,其被用于基于细胞的疗法,用于修复梗塞的心肌。除使用新鲜分离的PSC之外,还可使用冷冻的或贮藏的干细胞。
按照实施例4所述来分离原性细胞。α6-整联蛋白hi/SSClo/c-kit(-)群被用作可再程序化的细胞。通过暴露给不同浓度的DNA去甲基化试剂,例如5-氮杂-2’-脱氧胞苷、组蛋白去乙酰酶抑制剂、正丁酸或曲古菌素A,来对供体细胞或其中的细胞核物质进行治疗用再程序化。在本实施例的治疗用克隆中,在去甲基化之后,治疗用再程序化PSC被准备用于经历成熟过程。
进行卵巢刺激之后收集卵原细胞,其在G1.2培养基中体外成熟(中期II)。选出具有第一极体的卵原细胞用于细胞核摘除。在补充有10%的FBS和5μg/mL的细胞松弛素B的hCR2aa中进行细胞核摘除。用固定吸管将卵原细胞保持在合适的位置,用细针在透明带上制造出小裂缝。用针去掉含有中期II染色体的细胞质和第一极体。通过用Hoechst 33342对摘除细胞核的卵原细胞进行5分钟的染色,并在落射荧光下观察来验证细胞核摘除。然后将摘除细胞核的卵原细胞放置于HEPES缓冲的TCM-199培养基中,所述培养基补充有10%FBS。按照实施例9所述来制备供体细胞。将单个供体细胞放进摘除细胞核的卵原细胞的卵周隙,所述卵原细胞已用hCR2aa中的100μg/mL植物血球凝集素处理过。融合通过下述方法来进行:将供体PSC和摘除细胞核的宿主细胞组合放置于融合培养基(0.26M甘露醇、0.1mM MgSO4、0.5mM HEPES和0.05%(w/v)BSA)中,在BTX 453,3.2mm缝隙的腔中,于3分钟平衡之后进行融合。使用BTX Electro-cell操作仪200,用两次DC脉冲(1.75-1.85kV/cm,15秒)来诱导融合。供体细胞核和摘除细胞核的宿主细胞的融合产物现在被命名为经修饰的生殖细胞。然后在融合后对经修饰的生殖细胞进行2小时的培养。激活通过下述方法来进行:将经修饰的生殖细胞在G1.2培养基中暴露给10μM的钙离子载体A23187达5分钟,接着与2.0mM DMAP一起进行培养,以及在6%CO2、5%O2、89%N2下在G1.2培养基中培养4小时。然后在G1.2培养基中对经修饰的生殖细胞进行10次清洗,再在G1.2培养基中培养48小时,接着在具有氨基酸的人类经修饰SOF(hmSOFaa)中培养6天。HmSOFaa是通过将10mg/mL的人血清清蛋白和1.5mM果糖加入到hmSOFaa中制得的。通过用0.1%链霉蛋白酶消化,从经修饰的生殖细胞移除透明带。通过免疫手术,从经修饰的生殖细胞分离出ICM,用100%抗人血清抗体对ICM进行20分钟的培养,接着再在37℃于5%CO2中暴露给豚鼠补体系统额外30分钟。在0.1%明胶涂布的4孔组织培养皿中,在丝裂霉素C失活的PEF饲养层上培养从经修饰的生殖细胞分离出的ICM。在该阶段,经修饰的生殖细胞成熟为经修饰的ESC。经修饰的ESC被培养于DMEM/DMEM F12(1∶1)、0.1mMβ-巯基乙醇、1%非必要氨基酸、100个单位/mL的青霉素、100μg/mL链霉素以及4ng/mL bFGF中。此外,直到第一次传代,将2000个单位/mL的人LIF加入到培养基中。然后在细胞上进行染色体组型分析,仅保留整倍体的细胞系用于成熟。
在一些情况下,ESC可能必须在成熟前经历制备步骤。非限制性的例子是在暴露给成熟过程之前诱导成为胚状体或类造血干细胞环境的ESC。此外,成熟制备可能通过下述方法来诱导,所述方法包括但不限于,胚胎干细胞或其细胞核暴露给化学、生物化学或细胞提取物(细胞质和/或细胞核)。
使用羊膜气泡方案,将一百万雄性ESC注射进免疫前(怀孕第48-62天)的雌性胎绵羊接受者。简言之,在48小时的禁食时期后,对母羊注射克他命(10mg/kg,肌注),其通过气管吸入获得0.5-1.0%的氟烷-氧混合物。向颈外静脉插管,用于施予流体和抗生素(二百万U的青霉素和400mg卡纳霉素)。通过中线切开暴露子宫,通过电烙术分开子宫肌层,保留羊膜完整。在直接观察下,于羊膜囊内操作胎羊,将胚胎干细胞注射进胎羊的腹膜腔。关闭子宫和母体壁,令胎羊至足月。
出生后大约3月,对含有移植的胚胎干细胞的宿主绵羊安乐死。在用H2O裂解红细胞以前,通过在Lymphocyte Separation Medium(BioWhittaker)上进行Ficoll密度分离,分离出单细胞核骨髓细胞(BMC)。通过Y染色体的存在选出雄性细胞,将1×106个BMC/ml放置于Teflon袋(Vuelife,Cell Genix)中,在补充有2%热失活自体而浆的X-Vivo 15培养基(BioWhittaker)中对其进行培养。第二天,收获BMC,在最终悬浮于肝素化盐水之前,用肝素化盐水洗三次。存活率被测定为大约93±3%。对细胞进行肝素化,过滤,以防止在冠状动脉内移植期间出现细胞结块和微栓塞。过夜培养之后收获的单细胞核细胞的平均数最为2.8×107,其由0.65±0.4%的AC133-阳性细胞和2.1±0.28%的CD34阳性细胞构成。对临床使用的细胞制剂进行的所有微生物试验都证实为阴性。作为存活率和质量的体外对照,在H5100培养基(Stem CellTechnology)中生长的1×105个细胞被发现能在培养物中产生间质细胞。冷冻BMC细胞,将其贮藏于细胞存贮库用于进一步的用途。
在心肌梗塞时,解冻低温贮藏的细胞,并进行培养。急性梗塞发作五至九天后,将细胞直接植入到梗塞区域。这是使用放置于梗塞相关动脉的球囊导管来完成的。在之前梗塞血管闭塞的位置放置球囊之后,进行6至7次经皮冠状动脉成形术(PTCA),每次2至4分钟。这段时间中,通过球囊导管进行冠状动脉内的细胞移植,其中使用6至7份2至3ml细胞悬浮液的高压灌注物,其中每份都含有大约1.5-4×106个单细胞核细胞。血管成形术完全防止了细胞的倒流,同时产生了在球囊膨胀位置外的流动停止(stop-flow),协助细胞的高压灌注物进入到梗塞区域。因此,允许用于细胞迁移的接触时间延长。
实施例13
制造脂肪来源的杂交干细胞
下面简单描述了对杂交干细胞的制备,从而其能在基于细胞的疗法中发挥功能,恰当响应。该杂交干细胞获得自摘出了细胞核的脂肪来源干细胞(宿主细胞)和PSC或其细胞核(供体细胞)。可选地,在用作用于杂交干细胞的供体细胞之前,脂肪来源的干细胞(ADSC)可被治疗用再程序化。
脂肪来源的干细胞获得自129/SvJ小鼠。简言之,取下包围胃肠的内脏脂肪,用灭菌剪刀剪碎。然后用等体积的不含钙/镁的Dulbecco’s磷酸缓冲盐水(DPBS-)对切开的脂肪进行三次清洗,每个清洗步骤之后在500×g下离心5分钟,以除去漂浮的脂肪细胞。将I型胶原酶(0.075%,Sigma)加入到剪碎的脂肪组织中,混合物在37℃、轻柔搅拌下培养30分钟,向混合物中加入等体积的DMEM(含有10%FBS)。然后在500xg下对混合物进行10分钟的离心,将细胞沉淀重新悬浮于含有10%FBS的DMEM中。然后将混合物经100μm尼龙筛过滤,在500xg下离心10分钟,重新悬浮于含有10%FBS和1X抗生素/抗真菌素的DMEM(基础培养基)中。然后培养细胞进行四次传代,将其涂布到25×75mm组织培养玻片上,所述玻片上涂布有10ng/mL纤连蛋白。在制造杂交干细胞的当天,向培养基中加入2μg/mL的细胞松弛素D(终浓度),在37℃对玻片进行120分钟的培养。120分钟的培养步骤之后,在浮桶式离心机中,基础培养基中,于10,000xg对玻片进行1小时的离心。两小时回收期后,对细胞进行胰蛋白酶处理,其被制备来进行细胞融合。
按照实施例4所述来制备原性细胞,α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。在细胞脉冲融合培养基(CytoPulse)中对供体细胞或其细胞核洗三次,以5×106个细胞或细胞核重新悬浮于150μL冰冷的细胞脉冲融合培养基中。前面分离的摘除了细胞核的宿主细胞(脂肪来源的干细胞)从玻片上被胰蛋白酶处理,在细胞脉冲融合培养基中洗三次,以1×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。轻柔混合两种细胞群,将其放置于细胞脉冲融合腔中,采用下述参数进行电融合:正弦前,开始电压:65伏,持续:50伏,频率:0.8kHz,终点电压:65伏;脉冲,振幅:200伏,持续:0.05毫秒;以及正弦后,开始电压:65伏,持续:50秒,频率:0.8kHz,终点电压:5伏。然后令细胞保留在腔中于37℃恢复30分钟。融合后15分钟,加入FBS至最终的血清浓度为10%,再培养15分钟。然后取出融合的细胞,在DPBS/20%血清中洗一次,重新悬浮于基础培养基中。
实施例14
产生专能成年祖杂交干细胞
下面简单描述了对杂交干细胞的制备,从而其能在基于细胞的疗法中发挥功能,恰当响应。该杂交干细胞获得自摘出了细胞核的专能成年祖细胞(宿主)和PSC或其细胞核(供体细胞)。可选地,在用作用于杂交干细胞的供体细胞之前,专能成年祖细胞(MAPC)可被治疗用再程序化。
收集骨髓细胞(BMC),将其重新悬浮于培养基中,并放置于冰上。通过Ficoll-Hypaque分离收集骨髓单核细胞(BMMNC),将其以1×105/cm2放置于MAPC培养基中涂布有纤连蛋白的培养皿上。将BMMNC培养物保持为5×103/cm2,3-4周后,收获细胞,使用微磁珠分离器除去CD45+/Terr119+细胞。将CD45-/Terr119-群(~20%)以10个细胞/孔放置于FN处理过的96孔皿上,按照0.5-1.5×103/cm2的密度涂开。大约1%的孔产生持续的生长中MAPC培养物。然后通过涂布到25×75mm组织培养玻片上,令这些细胞扩展,用于细胞核摘除,所述玻片上涂布有纤连蛋白。在制造杂交干细胞的当天,向培养基中加入2μg/mL的细胞松弛素D(终浓度),在37℃对玻片进行120分钟的培养。120分钟的培养步骤之后,在浮桶式离心机中,MAPC培养基中,于10,000xg对玻片进行1小时的离心。两小时回收期后,对细胞进行胰蛋白酶处理,其被制备来进行细胞融合。
按照实施例4所述来制备供体细胞(PSC),α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。在细胞脉冲融合培养基中对供体细胞或其细胞核洗三次,以5×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。前面分离的摘除了细胞核的宿主细胞(MAPC)从玻片上被胰蛋白酶处理,在细胞脉冲融合培养基中洗三次,以1×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。轻柔混合两种细胞群,将其放置于细胞脉冲融合腔中,采用下述参数进行电融合:正弦前,开始电压:65伏,持续:50伏,频率:0.8kHz,终点电压:65伏;脉冲,振幅:200伏,持续:0.05毫秒;以及正弦后,开始电压:65伏,持续:50秒,频率:0.8kHz,终点电压:5伏。然后令细胞保留在腔中于37℃恢复30分钟。融合后15分钟,加入FBS至最终的血清浓度为10%,再对细胞进行15分钟的培养。然后取出融合的细胞,在DPBS/20%血清中洗一次,重新悬浮于MAPC培养基中。
实施例15
用杂交干细胞修复梗塞的心肌
下文描述了一种方法,其中,杂交干细胞被用于基于细胞的疗法,以修复梗塞的心肌。在该实施例中,患者处于心肌梗塞的高风险中。杂交干细胞获得自摘除了细胞核的宿主细胞(骨髓细胞)和出生后供体细胞(PSC)。宿主细胞可以从患者或从干细胞存贮库或任何细胞来源获得,不考虑HLA类型的免疫排斥,因为制造的杂交干细胞将含有来自患者PSC的基因组物质。
按照实施例4所述来分离出生后供体细胞,α6-整联蛋白hi/SSClo/c-kit(-)群被用作供体细胞。在一些情况下,供体细胞或其细胞核可以在与宿主细胞融合前经历制备步骤,使其更容易被宿主细胞质所接受。制备步骤还可以包括但不限于,通过化学、生物化学或细胞提取物进行诱导,所述化学、生物化学或细胞提取物能影响供体细胞的基因组状态,使其具有功能性,并且能被宿主细胞质接受。
在用H2O裂解红细胞以前,通过在Lymphocyte Separation Medium上进行Ficoll密度分离,分离出单细胞核骨髓细胞(BMC)。为了过夜培养,将1×106个BMC/ml放置于Teflon袋中,在补充有2%热失活自体血浆的X-Vivo 15培养基中对其进行培养。第二天,收获BMC,在最终悬浮于肝素化盐水之前,用肝素化盐水洗三次。存活率为大约93±3%。进行肝素化,过滤,以防止在冠状动脉内移植期间出现细胞结块和微栓塞。过夜培养之后收获的单细胞核细胞的平均数量为2.8×107,其由0.65±0.4%的AC133-阳性细胞和2.1±0.28%的CD34阳性细胞构成。对细胞制剂进行的所有微生物试验都为阴性。作为存活率和质量的体外对照,在H5100培养基中生长的1×105个细胞被发现能在培养物中产生间质细胞。
然后培养新鲜的或前述低温贮藏的宿主细胞,将其涂布到25×75mm组织培养玻片上,所述玻片上涂布有纤连蛋白。在制造杂交干细胞的当天,向培养基中加入2μg/mL的细胞松弛素D(终浓度),在37℃对玻片进行120分钟的培养。120分钟的培养步骤之后,在浮桶式离心机中,X-Vivo 15培养基(补充有2%热失活自体血浆)或H5100培养基(含有2μg细胞松弛素D)中,于10,000xg对玻片进行1小时的离心。两小时回收期后,对细胞进行胰蛋白酶处理,其被制备来进行细胞融合。从玻片对细胞进行胰蛋白酶处理,制备来进行细胞融合。在细胞脉冲融合培养基中对供体细胞或其细胞核洗三次,以5×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。在细胞脉冲融合培养基中对摘除了细胞核的宿主细胞(BMC)洗三次,以1×106个细胞重新悬浮于150μL冰冷的细胞脉冲融合培养基中。轻柔混合两种细胞群,将其放置于细胞脉冲融合腔中,采用下述参数进行电融合:正弦前,开始电压:65伏,持续:50伏,频率:0.8kHz,终点电压:65伏;脉冲,振幅:200伏,持续:0.05毫秒;以及正弦后,开始电压:65伏,持续:50秒,频率:0.8kHz,终点电压:5伏。然后令细胞保留在腔中于37℃恢复30分钟。融合后15分钟,加入FBS至最终的血清浓度为10%,再对细胞进行15分钟的培养。然后取出融合的细胞,在DPBS/20%血清中洗一次,重新悬浮于X-Vivo 15培养基(补充有2%热失活自体血浆)或H5100培养基中。对细胞进行培养和扩展,以用于HLA-类型相容性检验。然后冷冻细胞,贮藏于细胞存贮库中,用于进一步的细胞疗法使用。
在心肌梗塞时,解冻低温贮藏的杂交干细胞,并进行培养。急性梗塞发作五至九天后,将细胞直接植入到梗塞区域。这是使用放置于梗塞相关动脉的球囊导管来完成的。在之前梗塞血管闭塞的位置精确放置球囊之后,进行6至7次经皮冠状动脉成形术(PTCA),每次2至4分钟。这段时间中,通过球囊导管进行冠状动脉内的细胞移植,其中使用6至7份2至3ml细胞悬浮液的高压灌注物,其中每份都含有大约1.5-4×106个细胞。血管成形术完全防止了细胞的倒流,同时产生了在球囊膨胀位置外的流动停止(stop-flow),协助细胞的高压灌注物进入到梗塞区域。因此,允许用于细胞迁移的接触时间延长。
除非另有指明,本说明书和权利要求书中使用的表示成分数量,以及分子量、反应条件等性质的所有数字都应当被理解为:在所有情况下,用术语“大约”加以了修饰。因此,除非有相反含义的说明,本说明书和所附权利要求书中示出的数量参数都是约数,它们可以根据本发明想要获得的性质而变动。至少,并且并非对权利要求书范围等同原则的应用加以限制,每个数量参数至少应按照报道的有效数字的数,以及应用普通的凑整技术来解释。虽然示出本发明宽广范围的数字范围和参数是约数,但是特别实施例中所示的数值却被尽可能地精确报道。但是,任何数值,必然含有一定误差,这是它们分别的检验测量方法中发现的标准偏差必然导致的。
除非本文另有指明,或与上下文明显矛盾,描述本发明的上下文中使用的术语“一个”、“一种”和“这个”以及类似提法应当被理解为既包括单数又包括复数。本文中数值范围的复述仅仅用作速记方法,用于该范围内每个单独的值。除非本文另有指明,每个单独的值被包括进说明书,这与在本文个别复述一样。本文所述的所有方法都可以以任何合适的顺序来进行,除非本文另有指明,或与上下文明显矛盾。除非另有指明,本文提供的任何及所有例子,或者示例性的语言(例如,“例如”)仅用来更好地阐述本发明,而非对发明范围加以限制。说明书中任何语句都不应被解释为:表示对本发明的实践来说必要的、不要求保护的要素。
本文公开的本发明的替换性要素或实施方式的分组不应被理解为限制。每个组成员可被个别提到或被个别要求保护,或以与该组其它成员或本文中找到的其它要素的任何组合被提到或要求保护。可以预见到,为了方便和/或可专利性的理由,组中的一个或多个成员可被包括进一组或从中删除。当任何此类包括或删除发生时,说明书在本文中被看作为含有经过改动的组,因此满足所附权利要求书中所用的马库什组的撰写描述。
本文中描述了本发明的优选实施方式,其包括发明人已知用来开展本发明的最佳模式。当然,在阅读前述说明书的基础上,对这些优选实施方式中的改动对于本领域普通技术人员来说将是明显的。本发明的发明人期待本领域技术人员合适地采用此类改动,发明人希望本发明以除了本文特别描述的方式之外的方式被实现。因此,只要适用法律允许,本发明包括对所附权利要求中提到的主体进行的所有改动和等同物。此外,所有可能的变化中,上面提到的要素的任何组合都被包括进本发明,除非本文另有指明,或与上下文明显矛盾。
此外,本说明书中提到了大量参考文献,包括专利和印刷公开物。上述参考文献和印刷公开物中的每种在此都通过引用被个别地整体包括进本文。
最后,应当理解,本文公开的本发明实施方式是为了阐述本发明的原理。可以进行的其它改动也落在本发明的范围内。因此,举例而言,而非限制,可按照本文的教导来使用本发明的替代性构造。因此,本发明不被限制为:与本文所述和所示出的完全准确。

Claims (26)

1.一种治疗用再程序化方法,所述方法包括:
分离干细胞;
将所述干细胞与包含刺激因子的培养基接触,所述刺激因子能诱导所述干细胞发育为治疗用再程序化细胞;
从所述培养基中回收所述治疗用再程序化细胞;以及
将所述治疗用再程序化细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。
2.如权利要求1所述的治疗用再程序化方法,其中,所述干细胞选自由胚胎干细胞、胎儿干细胞、身体干细胞、专能成年祖细胞、杂交干细胞、经过修饰的生殖细胞、脂肪来源的干细胞以及原性细胞构成的组。
3.如权利要求2所述的治疗用再程序化方法,其中,所述原性细胞是精原干细胞。
4.如权利要求1所述的治疗用再程序化方法,其中,所述刺激因子选自由化学物质、生物化学物质和细胞提取物构成的组。
5.如权利要求4所述的治疗用再程序化方法,其中,所述刺激因子是选自由5-氮杂-2’-脱氧胞苷、组蛋白去乙酰酶抑制剂、正丁酸和曲古菌素A构成的组的化学物质。
6.如权利要求4所述的治疗用再程序化方法,其中,所述刺激因子是选自由全细胞提取物、细胞质提取物和核质提取物所构成的组的细胞提取物。
7.如权利要求6所述的治疗用再程序化方法,其中,所述细胞提取物分离自干细胞,所述干细胞选自由胚胎干细胞、胎儿神经干细胞、专能成年祖细胞、杂交干细胞和原性细胞构成的组。
8.如权利要求1所述的治疗用再程序化方法,其中,所述宿主是哺乳动物。
9.如权利要求1所述的治疗用再程序化方法,其中,所述干细胞分离自所述宿主。
10.如权利要求1所述的治疗用再程序化方法,还包括如下步骤:使所述治疗用再程序化细胞成熟,以定型为组织特异性系代。
11.一种治疗用再程序化方法,包含:
分离精原干细胞(SSC);
将所述SSC与包含刺激因子的培养基接触,所述刺激因子能诱导所述SSC发育为全能细胞;
从所述培养基中回收所述全能细胞;以及
将所述全能细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。
12.一种治疗用再程序化方法,包括:
提供杂交干细胞;
将所述杂交干细胞与包含刺激因子的培养基接触,所述刺激因子能诱导所述杂交干细胞发育为全能细胞;
从所述培养基中回收所述全能细胞;以及
将所述全能细胞或由其成熟的细胞植入到需要治疗用再程序化细胞的宿主中。
13.一种治疗用再程序化细胞,包含:
已被暴露给刺激因子的SSC,所述刺激因子已导致所述SSC成熟或分化为全能或多能细胞。
14.一种治疗用再程序化细胞,包含:
已被暴露给刺激因子的多能干细胞,所述刺激因子已导致所述多能干细胞成熟或分化为更定型的细胞系代。
15.一种方法,用于制造杂交干细胞,所述方法包含:
获得供体细胞,其中,所述供体细胞是双倍体;
获得宿主细胞;
对所述宿主细胞摘除细胞核;
将所述供体细胞或其细胞核与所述宿主细胞融合;以及
分离出所述杂交干细胞。
16.如权利要求15所述的方法,其中,所述供体细胞选自由胚胎干细胞、身体细胞、原性细胞和治疗用再程序化细胞所构成的组。
17.如权利要求15所述的方法,其中,所述供体细胞处于G0期。
18.如权利要求15所述的方法,其中,所述宿主细胞选自由胚胎干细胞、胎儿神经干细胞和专能成年祖细胞构成的组。
19.如权利要求15所述的方法,还包括如下步骤:在所述获得步骤之后并且在所述摘除细胞核步骤之前培养所述宿主细胞历经四次传代。
20.如权利要求15所述的方法,其中,所述供体细胞和所述宿主细胞来自哺乳动物。
21.如权利要求15所述的方法,其中,所述供体细胞和所述宿主细胞来自同一个体。
22.如权利要求15所述的方法,其中,通过选自由化学、机械、物理、x-射线照射以及激光照射摘除细胞核所构成的组的方法,来摘除所述宿主细胞的细胞核。
23.如权利要求15所述的方法,还包括如下步骤:在与所述供体细胞融合之前,对所述已摘除细胞核的宿主细胞进行大约三天的培养。
24.如权利要求15所述的方法,其中,所述融合步骤包括选自由电融合、微注射、化学融合或基于病毒的融合构成的组的融合方法。
25.如权利要求15所述的方法,其中,所述分离步骤包括荧光活化的细胞拣选。
26.如权利要求15所述的方法,还包括在所述分离步骤之后培养所述杂交干细胞。
CNA2005800187835A 2004-06-08 2005-02-16 治疗用再程序化、杂交干细胞和成熟 Pending CN1973033A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/864,788 2004-06-08
US10/864,788 US20050090004A1 (en) 2003-01-16 2004-06-08 Stem cell maturation for all tissue lines
US60/588,146 2004-07-15

Publications (1)

Publication Number Publication Date
CN1973033A true CN1973033A (zh) 2007-05-30

Family

ID=35355248

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2005800187820A Pending CN1973032A (zh) 2004-06-08 2005-01-24 用于所有组织细胞系的干细胞成熟方法
CNA2005800187835A Pending CN1973033A (zh) 2004-06-08 2005-02-16 治疗用再程序化、杂交干细胞和成熟

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2005800187820A Pending CN1973032A (zh) 2004-06-08 2005-01-24 用于所有组织细胞系的干细胞成熟方法

Country Status (10)

Country Link
US (1) US20050090004A1 (zh)
EP (1) EP1758988A2 (zh)
JP (1) JP2008501362A (zh)
CN (2) CN1973032A (zh)
AU (1) AU2005254931A1 (zh)
BR (1) BRPI0511872A (zh)
CA (1) CA2567975A1 (zh)
IL (1) IL179926A0 (zh)
RU (1) RU2006147266A (zh)
WO (1) WO2005123901A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612556A (zh) * 2009-06-10 2012-07-25 Bts研究国际股份有限公司 制备杂交细胞/嵌合细胞的方法及其应用
CN105246494A (zh) * 2013-04-19 2016-01-13 高丽大学校产学协力团 刺激毛发生长或防止毛发脱落的包括神经干细胞的提取物的组合物及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060182724A1 (en) * 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
CN108265026B (zh) * 2018-04-02 2020-12-22 中国水产科学研究院北戴河中心实验站 一种牙鲆卵原细胞分离纯化方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US44976A (en) * 1864-11-08 Improvement in latches
US40111A (en) * 1863-09-29 Improvement in cartridges
US120934A (en) * 1871-11-14 Improvement in refrigerators
US103949A (en) * 1870-06-07 Improvement in thread-controller tor sewing-machine
US199935A (en) * 1878-02-05 Improvement in lathe-chucks for turning stone
US90723A (en) * 1869-06-01 Improvement in velocipede
US138948A (en) * 1873-05-13 Improvement in ore-washers
US229908A (en) * 1880-07-13 Edwaed nunatf
US151053A (en) * 1874-05-19 Improvement in thill-couplings
US19046A (en) * 1858-01-05 Shears fob
US143737A (en) * 1873-10-14 Improvement in splint-planes
US132346A (en) * 1872-10-15 Improvement in machines for upsetting tires
US167481A (en) * 1875-09-07 Improvement in hot-air registers
US27330A (en) * 1860-02-28 Bell-pull
US27331A (en) * 1860-02-28 fuller
US49236A (en) * 1865-08-08 Improvement in locomotive-boilers
US137204A (en) * 1873-03-25 Improvement in casting bottoms on sheet-metal vessels
US232430A (en) * 1880-09-21 allen
US46410A (en) * 1865-02-14 warren
US104616A (en) * 1870-06-21 Petefia
US46722A (en) * 1865-03-07 Improvement in binding attachments for sewing-machines
US211603A (en) * 1879-01-21 Improvement in clover-seed separators
US12513A (en) * 1855-03-13 guiwits
US5763266A (en) * 1989-06-15 1998-06-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells
US5882918A (en) * 1995-08-08 1999-03-16 Genespan Corporation Cell culture incubator
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
GB9517780D0 (en) * 1995-08-31 1995-11-01 Roslin Inst Edinburgh Biological manipulation
GB9517779D0 (en) * 1995-08-31 1995-11-01 Roslin Inst Edinburgh Biological manipulation
WO1997025413A1 (en) * 1996-01-09 1997-07-17 The Regents Of The University Of California Ungulate embryonic stem-like cells, making and using the cells to produce a transgenic ungulate
US5994619A (en) * 1996-04-01 1999-11-30 University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Production of chimeric bovine or porcine animals using cultured inner cell mass cells
US5905042A (en) * 1996-04-01 1999-05-18 University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Cultured inner cell mass cell lines derived from bovine or porcine embryos
US7696404B2 (en) * 1996-08-19 2010-04-13 Advanced Cell Technology, Inc. Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
US20010012513A1 (en) * 1996-08-19 2001-08-09 University Of Massachusetts Embryonic or stem-like cell lines produced by cross species nuclear transplantation
US20020012655A1 (en) * 1997-01-10 2002-01-31 Steven L. Stice Cloned ungulate embryos and animals, use of cells, tissues and organs thereof for transplantation therapies including parkinson's disease
US6215041B1 (en) * 1997-01-10 2001-04-10 University Of Mmassachusetts Cloning using donor nuclei from a non-quiesecent somatic cells
US6235969B1 (en) * 1997-01-10 2001-05-22 University Of Massachusetts Cloning pigs using donor nuclei from non-quiescent differentiated cells
US5945577A (en) * 1997-01-10 1999-08-31 University Of Massachusetts As Represented By Its Amherst Campus Cloning using donor nuclei from proliferating somatic cells
US6331406B1 (en) * 1997-03-31 2001-12-18 The John Hopkins University School Of Medicine Human enbryonic germ cell and methods of use
US6090622A (en) * 1997-03-31 2000-07-18 The Johns Hopkins School Of Medicine Human embryonic pluripotent germ cells
US6156569A (en) * 1997-08-04 2000-12-05 University Of Massachusetts Office Of Vice Chancellor For Research At Amherst Prolonged culturing of avian primordial germ cells (PGCs) using specific growth factors, use thereof to produce chimeric avians
CA2307807C (en) * 1997-10-23 2008-09-02 Andrea G. Bodnar Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
AU6218899A (en) * 1998-10-12 2000-05-01 Geron Bio-Med Limited Porcine oocytes with improved developmental competence
US6667176B1 (en) * 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6781030B1 (en) * 1998-11-02 2004-08-24 Trustee Of Tufts College, Ballou Hall Methods for cloning mammals using telophase oocytes
US20040199935A1 (en) * 1999-06-30 2004-10-07 Chapman Karen B. Cytoplasmic transfer to de-differentiate recipient cells
US20020046410A1 (en) * 2000-09-06 2002-04-18 Robert Lanza Method for generating immune-compatible cells and tissues using nuclear transfer techniques
US6808704B1 (en) * 1999-09-07 2004-10-26 Advance Cell Technology, Inc. Method for generating immune-compatible cells and tissues using nuclear transfer techniques
US6280718B1 (en) * 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
CA2393071A1 (en) * 1999-12-07 2001-06-14 Monash University Long-term cell culture compositions and genetically modified animals derived therefrom
GB0001401D0 (en) * 2000-01-22 2000-03-08 Univ Edinburgh Methods for amplifying genetic material and use thereof
US6602711B1 (en) * 2000-02-21 2003-08-05 Wisconsin Alumni Research Foundation Method of making embryoid bodies from primate embryonic stem cells
GB2360522A (en) * 2000-03-24 2001-09-26 Geron Corp A strategy for maintaining pregnancy
US6458589B1 (en) * 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
US7250294B2 (en) * 2000-05-17 2007-07-31 Geron Corporation Screening small molecule drugs using neural cells differentiated from human embryonic stem cells
US6576464B2 (en) * 2000-11-27 2003-06-10 Geron Corporation Methods for providing differentiated stem cells
US20030027331A1 (en) * 2000-11-30 2003-02-06 Yan Wen Liang Isolated homozygous stem cells, differentiated cells derived therefrom, and materials and methods for making and using same
EP1356035B1 (en) * 2000-12-22 2011-03-16 Kyowa Hakko Kirin Co., Ltd. Methods for cloning non-human mammals using reprogrammed donor chromatin or donor cells
WO2002072762A2 (en) * 2001-03-08 2002-09-19 Advanced Cell Technology, Inc. Use of rna interference for the creation of lineage specific es and other undifferentiated cells and production of differentiated cells in vitro by co-culture
US20030049236A1 (en) * 2001-07-27 2003-03-13 Arhus Amt Immortalized stem cells
US20030211603A1 (en) * 2001-08-14 2003-11-13 Earp David J. Reprogramming cells for enhanced differentiation capacity using pluripotent stem cells
BR0212098A (pt) * 2001-08-23 2004-08-03 Reliance Life Sciences Pvt Ltd Método de isolamento de massa celular interna para o estabelecimento de linhas de células tronco embriÈnicas humanas (hesc)
WO2003018780A1 (en) * 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
JP2004248505A (ja) * 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
EP1456374A4 (en) * 2001-11-26 2005-08-17 Advanced Cell Tech Inc METHODS FOR THE PRODUCTION AND USE OF REPROGRAMME HUMAN SOMATIC CELL CORES AND AUTOLOGOUS AND ISOGENIC HUMAN STEM CELLS
IL162131A0 (en) * 2001-12-07 2005-11-20 Geron Corp Islet cells from human embryonic stem cells
EP1468088A4 (en) * 2002-01-16 2006-02-15 Primegen Biotech Llc STEM CELL TIRES FOR ALL TISSUE TYPES
EP1513921A1 (en) * 2002-05-31 2005-03-16 Apollo Life Sciences Pty Ltd. A method of cell therapy using fused cell hybrids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612556A (zh) * 2009-06-10 2012-07-25 Bts研究国际股份有限公司 制备杂交细胞/嵌合细胞的方法及其应用
CN107012126A (zh) * 2009-06-10 2017-08-04 Bts 研究国际股份有限公司 制备杂交细胞/嵌合细胞的方法及其应用
CN105246494A (zh) * 2013-04-19 2016-01-13 高丽大学校产学协力团 刺激毛发生长或防止毛发脱落的包括神经干细胞的提取物的组合物及其制造方法

Also Published As

Publication number Publication date
WO2005123901A3 (en) 2006-03-09
EP1758988A2 (en) 2007-03-07
CA2567975A1 (en) 2005-12-29
IL179926A0 (en) 2007-05-15
JP2008501362A (ja) 2008-01-24
RU2006147266A (ru) 2008-07-20
US20050090004A1 (en) 2005-04-28
CN1973032A (zh) 2007-05-30
BRPI0511872A (pt) 2008-01-15
AU2005254931A1 (en) 2005-12-29
WO2005123901A2 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
US20090263357A1 (en) Therapeutic Reprogramming, Hybrid Stem Cells and Maturation
Vodička et al. The miniature pig as an animal model in biomedical research
Al-Awqati et al. Stem cells in the kidney
Ogawa et al. The niche for spermatogonial stem cells in the mammalian testis
Tamagawa et al. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro
Bishop et al. Embryonic stem cells
Nagashima et al. Growing human organs in pigs—A dream or reality?
Dvash et al. Human embryonic stem cells as a model for early human development
Kumar et al. Stem cells: An overview with respect to cardiovascular and renal disease
JP2003503071A (ja) 脱分化レシピエント細胞への細胞質移入
Bhagavati et al. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice
US20080044392A1 (en) Isolation of Stem Cell-Like Cells and Use Thereof
WO1995010599A1 (en) Embryonic stem cell-like cells
JP4571387B2 (ja) ヒト羊膜由来サイドポピュレーション細胞及びその用途
EP2014316A1 (en) Method of preparing organ for transplantation
CN1973033A (zh) 治疗用再程序化、杂交干细胞和成熟
WO2006084229A2 (en) Use of nuclear material to therapeutically reprogram differentiated cells
JPWO2008150030A1 (ja) G−csfを用いた心筋細胞への分化誘導方法
CA2567692A1 (en) Therapeutic reprogramming, hybrid stem cells and maturation
Thomas et al. Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential
Moustafa et al. The fate of transplanted cells in mouse blastocysts in vitro
Ajmal et al. Organ Regeneration Through Stem Cells and Tissue Engineering
AU2006210463A1 (en) Use of nuclear material to therapeutically reprogram differentiated cells
Tada Nuclear reprogramming: an overview
Geens Strategies for fertility preservation and restoration in the male

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication