DE10122213C1 - Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound - Google Patents

Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound

Info

Publication number
DE10122213C1
DE10122213C1 DE10122213A DE10122213A DE10122213C1 DE 10122213 C1 DE10122213 C1 DE 10122213C1 DE 10122213 A DE10122213 A DE 10122213A DE 10122213 A DE10122213 A DE 10122213A DE 10122213 C1 DE10122213 C1 DE 10122213C1
Authority
DE
Germany
Prior art keywords
conductive
layer
produced
chemical compound
ofets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10122213A
Other languages
German (de)
Inventor
Juergen Ficker
Henning Rost
Saulo Ruiz Moreno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE10122213A priority Critical patent/DE10122213C1/en
Priority to PCT/DE2001/003645 priority patent/WO2002025750A1/en
Priority to EP01978173A priority patent/EP1323195A1/en
Priority to JP2002528856A priority patent/JP2004512675A/en
Priority to US10/381,032 priority patent/US20040026121A1/en
Application granted granted Critical
Publication of DE10122213C1 publication Critical patent/DE10122213C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Abstract

Electrode and/or conductor track (2') is produced by treating an organic functional polymer with a chemical compound. Preferred Features: The organic functional polymer is conductive before treatment with the chemical compound and is present as a layer (2). The chemical compound is a base or an oxidant. Regions (3) of the layer which are non-conducting are selectively removed.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von hoch­ aufgelösten leitfähigen Strukturen, insbesondere auf einem flexiblen Substrat. Das Verfahren ist zur Herstellung von or­ ganischen Feldeffekttransistoren (OFETs) und organischen Leuchtdioden (OLEDs) sowie von photoelektronischen Bauteilen allgemein geeignet.The invention relates to a method for generating high dissolved conductive structures, especially on a flexible substrate. The process is used to manufacture or ganic field effect transistors (OFETs) and organic Light-emitting diodes (OLEDs) and photoelectronic components generally suitable.

Zur Realisierung von all-organischen optoelektronischen Bau­ elementen, wie Feldeffekttransistoren oder Leuchtdioden wer­ den leitfähige und feinstrukturierte Elektroden bzw. Elektro­ denbahnen benötigt, die aus leitfähigen Polymeren hergestellt werden können. Solche leitfähigen Polymere sind aus der Lö­ sung verarbeitbar und können durch verschiedene Arbeitsmetho­ den flächig und homogen auf ein Substrat aufgebracht werden.For the realization of all-organic optoelectronic construction elements, such as field effect transistors or light emitting diodes the conductive and finely structured electrodes or electrical denbahnen needed, which are made of conductive polymers can be. Such conductive polymers are from Lö solution can be processed and can by different working methods which are applied flat and homogeneously to a substrate.

Zur Strukturierung der Elektroden bzw. Elektrodenbahnen sind im Prinzip zwei Arbeitsweisen bekannt.For structuring the electrodes or electrode tracks known in principle two ways of working.

Bei der photochemischen Strukturierung, bei welcher die zu strukturierende Funktionsschicht aus einem leitfähigen Poly­ mer und einer lichtempfindlichen, reduzierenden Verbindung, auch Photoinitiator genannt, besteht, wird die Schicht durch eine Schattenmaske mit UV-Licht bestrahlt. Dabei wird das leitfähige Polymer an den bestrahlten Stellen zu einer nicht­ leitenden Modifikation reduziert. Damit lassen sich bei­ spielsweise leitfähige Stege oder Finger in einer nichtlei­ tenden Matrix mit guter Auflösung erzeugen. Ein Nachteil da­ bei ist, dass die nichtleitende Modifikation des Polymeres, beispielsweise Polyanilin, luftempfindlich ist und durch Luftsauerstoff in kurzer Zeit wieder zur leitfähigen Form aufoxidiert wird. Es sind zusätzliche Vorkehrungen erforder­ lich, wie beispielsweise Bestrahlung und weitere Prozessie­ rung unter Schutzgas oder Verkapselung, um diese nichtleiten­ de, polymere Schicht zu schützen (vgl. C. J. Drury et al., Appl. Phys. Lett. 73 (1) (1998) 108 und G. H. Gelink et al., Appl. Phys. Lett. 77 (10 (2000) 1487).In photochemical structuring, in which the functional layer to be structured consists of a conductive polymer and a light-sensitive, reducing compound, also called a photoinitiator, the layer is irradiated with UV light through a shadow mask. The conductive polymer is reduced to a non-conductive modification at the irradiated points. This allows, for example, conductive bars or fingers to be generated in a non-conductive matrix with good resolution. A disadvantage here is that the non-conductive modification of the polymer, for example polyaniline, is sensitive to air and is quickly oxidized back to the conductive form by atmospheric oxygen. Additional precautions are required, such as radiation and further processing under protective gas or encapsulation, in order to protect this non-conductive, polymeric layer (cf. CJ Drury et al., Appl. Phys. Lett. 73 ( 1 ) ( 1998 ) 108 and GH Gelink et al., Appl. Phys. Lett. 77 (10 ( 2000 ) 1487).

In Synth. Met. 101 (1999) 705 wird von T. Mäkelä et al. eine Modifikation der lithographischen Strukturierung beschrieben, bei welcher auf die leitfähige Polymerschicht eine dünne Schicht eines Photoresists aufgebracht und durch eine Schat­ tenmaske mit UV-Licht belichtet wird. Die belichteten Stellen lassen sich dann mit einem basischen Lösungsmittel entfernen, wodurch die darunterliegenden Schichten durch Deprotonierung in eine nichtleitende Modifikation übergeführt werden. Die auf diese Weise erzeugten Strukturen sind nicht luftempfind­ lich. Der Nachteil dieser Methode besteht allerdings darin, dass im Verlauf der Zeit von den mit Base behandelten Berei­ chen basische Spezies in die extrem dünnen, leitfähigen Fin­ gerstrukturen hineindiffundieren, diese partiell deprotonie­ ren und damit deren Leitfähigkeit nachhaltig negativ beein­ flussen.In synth. Met. 101 ( 1999 ) 705 is described by T. Mäkelä et al. describes a modification of the lithographic structuring in which a thin layer of a photoresist is applied to the conductive polymer layer and is exposed to UV light through a shadow mask. The exposed areas can then be removed with a basic solvent, as a result of which the layers underneath are converted into a non-conductive modification by deprotonation. The structures created in this way are not sensitive to air. The disadvantage of this method, however, is that, over time, basic species from the areas treated with base diffuse into the extremely thin, conductive finger structures, partially deprotonate them and thus have a lasting negative impact on their conductivity.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfah­ ren anzugeben, mit dem sich hochaufgelöste leitfähige Struk­ turen aus organischen Materialien mit langer Lebensdauer er­ zeugen lassen.The object of the present invention is therefore a method to specify with which high-resolution conductive structure structures made of organic materials with a long lifespan have a father.

Gegenstand der vorliegenden Erfindung ist demnach ein Verfah­ ren zur Erzeugung von hochaufgelösten, leitfähigen Strukturen auf einem flexiblen Substrat durch Aufbringen einer leitfähi­ gen organischen Schicht und Strukturieren einer nichtleitfä­ higen organischen Matrix in der leitfähigen organischen Schicht, dass sich dadurch auszeichnet, dass man die nicht­ leitfähige Matrix mit einem nichtbasischen Lösungsmittel se­ lektiv entfernt.The present invention accordingly relates to a method ren for the generation of high-resolution, conductive structures on a flexible substrate by applying a conductive organic layer and structuring a non-conductive organic matrix in the conductive organic Layer that is characterized by the fact that one does not conductive matrix with a non-basic solvent se removed selectively.

Damit werden die ausgebildeten leitfähigen Strukturen, das sind Stege oder Finger auf dem Substrat, effektiv vor Zerstö­ rung durch aus den nichtleitenden Bereichen herausdiffundie­ renden basischen Spezies geschützt. Die ausgebildeten Struk­ turen sind nicht luftempfindlich, wodurch eine große Langle­ bigkeit von daraus erzeugten all-organischen, opto­ elektronischen Bauelementen garantiert ist.With this, the trained conductive structures, the are bridges or fingers on the substrate, effective against destruction  diffusion out of the non-conductive areas protected basic species. The trained structure doors are not sensitive to air, which makes them very long of all-organic, opto electronic components is guaranteed.

Im Rahmen der vorliegenden Erfindung wird unter Substrat die Trägerfolie verstanden. Sie kann bereits eine oder mehrere Funktionsschichten tragen oder nicht.In the context of the present invention, the substrate Understood carrier film. You can already have one or more Wear functional layers or not.

Vorzugsweise wird die leitfähige organische Schicht durch Ra­ keln, Spin-Coating oder im Siebdruckverfahren auf das Sub­ strat aufgebracht. Da die Polymermaterialien aus der Lösung auftragbar sind, wird insbesondere durch das letztere Verfah­ ren eine überaus homogene dünne Schicht erzeugt. Das leitfä­ hige organische Polymer ist vorzugsweise mit beispielsweise Camphersulfonsäure (CSA) dotiertes Polyanilin. Es können je­ doch auch andere leitfähige Polymere eingesetzt werden, so­ fern diese unter Einwirkung einer Base in den nichtleitenden Zustand übergehen.Preferably, the conductive organic layer is Ra cel, spin coating or screen printing on the sub strat upset. Because the polymer materials from solution can be applied, in particular by the latter procedure a very homogeneous thin layer. The guide hige organic polymer is preferably with, for example Camphorsulfonic acid (CSA) doped polyaniline. It can ever but other conductive polymers are also used, so far away under the action of a base in the non-conductive Overcome condition.

Vorzugsweise wird die nichtleitfähige organische Matrix durch Deprotonierung der leitfähigen Schicht in ausgewählten Berei­ chen ausgebildet. Hierzu wird beispielsweise zunächst die leitfähige Schicht aus dotiertem Polyanilin (PANI) erzeugt. Darauf wird eine dünne Schicht aus einem Photoresist, vor­ zugsweise einem positiv Photoresist, welcher kommerziell ver­ fügbar ist, erzeugt. Der Photoresist wird durch strukturier­ tes Belichten, beispielsweise mittels einer Schattenmaske, in ausgewählten Bereichen basenlöslich gemacht und diese basen­ löslichen Bereiche werden durch ein basisches Lösungsmittel abgelöst.The non-conductive organic matrix is preferably passed through Deprotonation of the conductive layer in selected areas Chen trained. For this purpose, for example, the conductive layer made of doped polyaniline (PANI). A thin layer of photoresist is placed on top preferably a positive photoresist, which ver is available. The photoresist is structured by exposure, for example using a shadow mask, in selected areas are made base-soluble and these base Soluble areas are replaced by a basic solvent replaced.

Vorteilhaft bei dieser Vorgehensweise ist, dass die darunter liegende, also freigelegte Polyanilinschicht durch das basi­ sche Lösungsmittel deprotoniert und damit nichtleitfähig wird. Als basische Lösungsmittel können flüssige Tetrabutyl­ ammoniumverbindungen bzw. Lösungen davon verwendet werden. Basische Lösungsmittel oder Entwickler, welche im Rahmen der Erfindung eingesetzt werden können, sind beispielsweise AZ 1512 HS (Merck).An advantage of this procedure is that the underlying, that is, exposed, polyaniline layer is deprotonated by the basic solvent and thus becomes non-conductive. Liquid tetrabutyl ammonium compounds or solutions thereof can be used as basic solvents. Basic solvents or developers which can be used in the context of the invention are, for example, AZ 1512 HS (Merck).

Der verbliebene Photoresist wird dann mit einem geeigneten Lösungsmittel, wie beispielsweise niedrigen Alkoholen oder Ketonen, abgelöst.The remaining photoresist is then covered with a suitable one Solvents such as low alcohols or Ketones, replaced.

Das Herauslösen der nichtleitfähigen Matrix mit einem nicht­ basischen Lösungsmittel kann vor oder nach diesem Schritt er­ folgen. Als nichtbasisches Lösungsmittel kann man insbesonde­ re Dimethylformamid, das vorher frisch destilliert wurde, verwenden. Damit wird gewährleistet, dass dieses Lösungsmit­ tel aminfrei ist. Gleichzeitig wird damit gewährleistet, dass eine Deprotonierung der feinen leitfähigen Finger durch das Amin unterbunden wird.The dissolution of the non-conductive matrix with a not basic solvent before or after this step he consequences. In particular, as a non-basic solvent right dimethylformamide, which was previously freshly distilled, use. This ensures that this solution with tel is amine free. At the same time, this ensures that a deprotonation of the fine conductive fingers by the Amin is prevented.

Das erfindungsgemäße Verfahren ist insbesondere zur Herstel­ lung von organischen Feldeffekttransistoren (OFETs), organi­ schen Leuchtdioden (OLEDs) oder photoelektronischen Bauteilen geeignet, bei denen leitfähige und feinstrukturierte Elektro­ den bzw. Elektrodenbahnen benötigt werden.The method according to the invention is in particular for the manufacture development of organic field effect transistors (OFETs), organi light-emitting diodes (OLEDs) or photoelectronic components suitable where conductive and fine-structured electrical the or electrode tracks are required.

Nachfolgend wird das erfindungsgemäße Verfahren unter Bezug­ nahme auf das in der einzigen Fig. 1 gezeigte Ablaufdiagramm näher erläutert.The method according to the invention is explained in more detail below with reference to the flow diagram shown in FIG. 1.

Zunächst wird auf einem Substrat 1, das beispielsweise aus Polyethylen-, Polyimid-, vorzugsweise jedoch Polyterephtha­ latfolie gebildet ist, eine leitfähige Schicht 2 aus mit Camphersulfonsäure (CSA) dotiertem Polyanilin (PANI), bei­ spielsweise durch Spin-Coating, homogen aufgebracht. Auf die­ ser leitfähigen Schicht 2 wird dann beispielsweise wieder durch Spin-Coating eine dünne Schicht 4 eines positiv- Photoresists aufgeschleudert, welche dann durch eine Schat­ tenmaske 5 mit UV-Licht belichtet wird. An den von Licht ge­ troffenen Stellen wird der Photoresist durch eine chemische Reaktion löslich, hier insbesondere basenlöslich gemacht. Das gesamte Substrat wird anschließend in ein basisches Lösungs­ mittel, wie Tetrabutylammoniumverbindungen oder AZ 1512 (Merck), getaucht, so dass die bestrahlten Bereiche des Pho­ toresists weggelöst werden. Gleichzeitig kommen die darunter liegenden leitfähigen Polyanilinbereiche, das sogenannte grü­ ne PANI, in Kontakt mit dem basischen Lösungsmittel bzw. Ent­ wickler, wobei das PANI deprotoniert und in eine nichtleiten­ de Modifikation, das sogenannte blaue PANI, übergeführt wird. Die Photoresistreste werden mit einem geeigneten Lösungsmit­ tel, vorzugsweise Isopropanol, entfernt. Dann wird das Sub­ strat in frisch destilliertes und damit aminfreies Dimethyl­ formamid (DMF) getaucht, wobei sich die nichtleitende Matrix 3 auflöst. Man erhält so leitfähige PANI-Stege bzw. - Elektroden bzw. -Elektrodenbahnen 2' in der durch die Schat­ tenmaske vorgegebenen Struktur. Gegebenenfalls kann das Sub­ strat nachträglich für kurze Zeit in eine wässrige Campher­ sulfonsäure (CSA)-Lösung eingelegt werden, um die Oberfläche der PANI-Elektroden bzw. -Elektrodenbahnen mit Camphersulfon­ säure zu sättigen, wodurch eine hohe Leitfähigkeit sicherge­ stellt wird. Andererseits könnte man das Herauslösen der nichtleitenden Matrix auch mit Dimethylformamid (DMF) durch­ führen, das bereits mit Camphersulfonsäure (CSA) versetzt ist.First, a conductive layer 2 made of camphorsulfonic acid (CSA) doped polyaniline (PANI), for example by spin coating, is applied homogeneously to a substrate 1 , which is formed, for example, from polyethylene, polyimide, but preferably polyterephthalate film. A thin layer 4 of a positive photoresist is then spun onto the conductive layer 2 , for example by spin coating, which is then exposed to UV light through a shadow mask 5 . At the areas hit by light, the photoresist is made soluble by a chemical reaction, in particular here made base-soluble. The entire substrate is then immersed in a basic solvent, such as tetrabutylammonium compounds or AZ 1512 (Merck), so that the irradiated areas of the photoresist are dissolved away. At the same time, the underlying conductive polyaniline areas, the so-called green PANI, come into contact with the basic solvent or developer, the PANI being deprotonated and converted into a non-conductive modification, the so-called blue PANI. The photoresist residues are removed with a suitable solvent, preferably isopropanol. Then the substrate is immersed in freshly distilled and thus amine-free dimethyl formamide (DMF), the non-conductive matrix 3 dissolving. In this way, conductive PANI webs or electrodes or electrode tracks 2 'are obtained in the structure predetermined by the shadow mask. If necessary, the substrate can be subsequently placed in an aqueous camphor sulfonic acid (CSA) solution for a short time in order to saturate the surface of the PANI electrodes or electrode tracks with camphorsulfonic acid, which ensures high conductivity. On the other hand, the non-conductive matrix could also be extracted with dimethylformamide (DMF), which has already been treated with camphorsulfonic acid (CSA).

Statt eines positiv-Photoresists kann natürlich auch ein ne­ gativ-Photoresist verwendet werden, welcher durch UV- Bestrahlung in den belichteten Bereichen vernetzt wird. Die nichtbelichteten Bereiche bleiben löslich und können durch ein geeignetes Lösungsmittel entfernt werden. Geeignete Pho­ toresistsysteme sind beispielsweise in Kirk-Othmer (3.) 17, Seiten 680 bis 708 beschrieben.Instead of a positive photoresist, it is of course also possible to use a negative photoresist which is crosslinked in the exposed areas by UV radiation. The unexposed areas remain soluble and can be removed with a suitable solvent. Suitable photoresist systems are described, for example, in Kirk-Othmer (3.) 17 , pages 680 to 708.

Mit dem erfindungsgemäßen Verfahren lassen sich so zuverläs­ sig hochaufgelöste leitende Strukturen auf Substraten erzeu­ gen, welche über eine große Langlebigkeit verfügen.The method according to the invention can thus be used reliably sig high-resolution conductive structures on substrates conditions that have a long service life.

Claims (8)

1. Verfahren zur Erzeugung von hochaufgelösten leitfähigen Strukturen auf einem flexiblen Substrat (1), durch Auf­ bringen einer leitfähigen organischen Schicht (2) und Strukturieren einer nichtleitfähigen organischen Matrix (3) in der leitfähigen organischen Schicht (2), dadurch gekennzeichnet, dass man die nichtleitfähige Matrix (3) mit einem nichtbasischen Lösungsmittel selektiv ent­ fernt.1. A method for producing high-resolution conductive structures on a flexible substrate ( 1 ), by bringing on a conductive organic layer ( 2 ) and structuring a non-conductive organic matrix ( 3 ) in the conductive organic layer ( 2 ), characterized in that selectively removes the non-conductive matrix ( 3 ) with a non-basic solvent. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die leitfähige organische Schicht (2) durch Rakeln, Spin-Coating oder im Siebdruckverfahren auf das Substrat aufgebracht wird.2. The method according to claim 1, characterized in that the conductive organic layer ( 2 ) is applied to the substrate by knife coating, spin coating or by screen printing. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich­ net, dass die leitfähige organische Schicht (2) aus do­ tiertem Polyanilin erzeugt wird.3. The method according to claim 1 or 2, characterized in that the conductive organic layer ( 2 ) is made of doped polyaniline. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die nichtleitfähige organische Matrix (3) durch Deproto­ nierung der leitfähigen Schicht (2) in ausgewählten Be­ reichen ausgebildet wird.4. The method according to claim 3, characterized in that the non-conductive organic matrix ( 3 ) is formed by deprotonation of the conductive layer ( 2 ) in selected areas. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Schicht (2) aus dotiertem Polyanilin (PANI) erzeugt wird, darauf eine Schicht (4) aus einem Photoresist er­ zeugt wird, welcher durch strukturiertes Belichten in ausgewählten Bereichen basenlöslich gemacht wird, die basenlöslichen Bereiche durch ein basisches Lösungsmit­ tel abgelöst werden, wobei die darunter liegende Poly­ anilinschicht deprotoniert und nichtleitfähig wird und in einem weiteren Schritt der verbliebene Photoresist abgelöst wird. 5. The method according to claim 4, characterized in that the layer ( 2 ) is produced from doped polyaniline (PANI), on which a layer ( 4 ) is produced from a photoresist which is made base-soluble in selected areas by structured exposure base-soluble areas are detached by a basic solvent, the underlying poly aniline layer becoming deprotonated and non-conductive and the remaining photoresist being detached in a further step. 6. Verfahren nach einem der Ansprüche 1 bis 5 zur Herstel­ lung von organischen Feldeffekttransistoren (OFETs).6. The method according to any one of claims 1 to 5 for the manufacture development of organic field effect transistors (OFETs). 7. Verfahren nach einem der Ansprüche 1 bis 5 zur Herstel­ lung von organischen Leuchtdioden (OLEDs).7. The method according to any one of claims 1 to 5 for the manufacture organic light-emitting diodes (OLEDs). 8. Verfahren nach einem der Ansprüche 1 bis 5 zur Herstel­ lung von photoelektronischen Bauteilen.8. The method according to any one of claims 1 to 5 for the manufacture development of photoelectronic components.
DE10122213A 2000-09-22 2001-05-08 Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound Expired - Fee Related DE10122213C1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10122213A DE10122213C1 (en) 2001-05-08 2001-05-08 Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound
PCT/DE2001/003645 WO2002025750A1 (en) 2000-09-22 2001-09-20 Electrode and/or conductor track for organic components and production method therefor
EP01978173A EP1323195A1 (en) 2000-09-22 2001-09-20 Electrode and/or conductor track for organic components and production method therefor
JP2002528856A JP2004512675A (en) 2000-09-22 2001-09-20 Electrode and / or conductor track for organic device and method of manufacturing the same
US10/381,032 US20040026121A1 (en) 2000-09-22 2001-09-20 Electrode and/or conductor track for organic components and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10122213A DE10122213C1 (en) 2001-05-08 2001-05-08 Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound

Publications (1)

Publication Number Publication Date
DE10122213C1 true DE10122213C1 (en) 2003-04-17

Family

ID=7683949

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10122213A Expired - Fee Related DE10122213C1 (en) 2000-09-22 2001-05-08 Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound

Country Status (1)

Country Link
DE (1) DE10122213C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561030A (en) * 1991-05-30 1996-10-01 Simon Fraser University Fabrication of electronically conducting polymeric patterns
US5976284A (en) * 1995-11-22 1999-11-02 The United States Of America As Represented By The Secretary Of The Navy Patterned conducting polymer surfaces and process for preparing the same and devices containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561030A (en) * 1991-05-30 1996-10-01 Simon Fraser University Fabrication of electronically conducting polymeric patterns
US5976284A (en) * 1995-11-22 1999-11-02 The United States Of America As Represented By The Secretary Of The Navy Patterned conducting polymer surfaces and process for preparing the same and devices containing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
G.H. Gelinck et al.: "High-performance all- polymer integrated circuits" in: "Applied Physics Letters", 77(2000)10, pp. 1487-1489 *
J. Bargon et al.: "Lithographic patternin of conducting polymers and their composites" in: "Synthetic Metals", 41-43 (1991), pp. 1111-1114 *
J. Drury et al.: "Low-cost all-polymer integrated circuits" in: "Applied Physics Letters", 73 (1998)1, pp. 108-110 *
Kirk-Othmer: "Encyclopedia of Chemical Techn.", 3·rd· Edition, Vol. 17- "Peroxides and Peroxy Compounds, Inorganic to Piping-Systems", (Buch), 1982, ISBN 0-471-02070-2, pp 680-708 - "Photo- reactive Polymers" *
T. Mäkelä et al.: "Lithographic patterning of conductive polyaniline" in: "Synthetic Metals", 101 (1999), pp. 705-706 *

Similar Documents

Publication Publication Date Title
DE60314610T2 (en) METHOD FOR THE PRODUCTION OF ORGANIC OPTOELECTRONIC AND ELECTRONIC COMPONENTS AND COMPONENTS OBTAINED THEREFROM
EP0910128B1 (en) Fabrication process for organic electroluminescent devices
DE69735483T3 (en) ORGANIC LIGHT-EMITTING COMPONENT AND ITS MANUFACTURE
DE69819270T2 (en) Electroluminescent device
DE69633523T2 (en) CONDUCTIVE PATTERNED POLYMER SURFACE, METHOD FOR THE PRODUCTION THEREOF AND METHOD OF CONTAINING THEREOF
DE102006045459B4 (en) Water mark defect prevention material and method for immersion lithography
DE10126860C2 (en) Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits
DE112007003000T5 (en) Organic electroluminescent element and method for its production
EP1323195A1 (en) Electrode and/or conductor track for organic components and production method therefor
EP1095413A1 (en) Production of structured electrodes
DE10047171A1 (en) Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound
DE10229118A1 (en) Process for the inexpensive structuring of conductive polymers by definition of hydrophilic and hydrophobic areas
EP1658647B1 (en) Integrated circuit comprising an organic semiconductor, and method for the production of an integrated circuit
DE3030660C2 (en) Method for the selective diffusion of a dopant into a semiconductor substrate
DE2740384A1 (en) METHOD OF SURFACE TREATMENT OF SUBSTRATES OF LIQUID CRYSTAL DISPLAY CELLS
DE10126859A1 (en) Production of conducting structures used in organic FETs, illuminated diodes, organic diodes and integrated circuits comprises directly or indirectly forming conducting pathways
WO2008043515A2 (en) Method for spatially structuring the light emitting diode of light emitting organic semiconductor components, semiconductor component produced according to said method, and use thereof
DE10122213C1 (en) Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound
DE10219122A1 (en) Process for the production of hard masks
DE112008001893T5 (en) Process and apparatus for improved pressure cathodes for organic electrical appliances
EP1563554B1 (en) Organic electronic component comprising the same organic material for at least two functional layers
DE10340641A1 (en) Production of a through-contact, especially an organic switch, for integrated plastic circuits comprises using a dispersion of a sulfonic acid derivative in an aqueous solvent mixture
DE102014117096B4 (en) Photolithography method for producing organic light-emitting diodes
DE3246403A1 (en) METHOD FOR DEVELOPING RELIEF STRUCTURES BASED ON RADIATION-CROSSLINKED POLYMER PRE-STAGES OF HIGH-HEAT-RESISTANT POLYMERS
Itoh et al. Excimer-laser micropatterned photobleaching as a means of isolating polymer electronic devices

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
8304 Grant after examination procedure
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: POLYIC GMBH & CO. KG, 91052 ERLANGEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: POLYIC GMBH & CO. KG, 91052 ERLANGEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: POLYIC GMBH & CO.KG, 90763 FUERTH, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20141202