DE10146901A1 - Verfahren und System zur Bearbeitung von Fehlerhypothesen - Google Patents

Verfahren und System zur Bearbeitung von Fehlerhypothesen

Info

Publication number
DE10146901A1
DE10146901A1 DE10146901A DE10146901A DE10146901A1 DE 10146901 A1 DE10146901 A1 DE 10146901A1 DE 10146901 A DE10146901 A DE 10146901A DE 10146901 A DE10146901 A DE 10146901A DE 10146901 A1 DE10146901 A1 DE 10146901A1
Authority
DE
Germany
Prior art keywords
error
hypothesis
checklist
processing
models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10146901A
Other languages
English (en)
Inventor
Gerhard Vollmar
Zaijun Hu
Pousga Kabore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intellectual Ventures II LLC
Original Assignee
ABB Research Ltd Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland filed Critical ABB Research Ltd Switzerland
Priority to DE10146901A priority Critical patent/DE10146901A1/de
Priority to CNA028186869A priority patent/CN1559034A/zh
Priority to EP02777189A priority patent/EP1451689A2/de
Priority to PCT/EP2002/010705 priority patent/WO2003029978A2/de
Priority to AU2002338765A priority patent/AU2002338765A1/en
Publication of DE10146901A1 publication Critical patent/DE10146901A1/de
Priority to US10/811,472 priority patent/US7246265B2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0245Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
    • G05B23/0248Causal models, e.g. fault tree; digraphs; qualitative physics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2257Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using expert systems

Abstract

Die Erfindung bezieht sich auf ein Verfahren und ein zu seiner Durchführung geeignetes System zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage. Es wird ein Datenverarbeitungssystem (1) verwendet, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) vorhanden sind.

Description

  • Die Erfindung betrifft ein Verfahren und ein System zur Ermittlung von Fehlerursachen und zur Durchführung ihrer Verifikation im Rahmen einer Modell-basierten Fehlerursachenanalyse. Die Erfindung ist geeignet zur Unterstützung einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage bzw. in einem damit durchgeführten technischen Prozeß.
  • Die Modell-basierte Fehlerursachenanalyse ist beispielsweise beschrieben in G. Vollmar, R. Milanovic, J. Kallela: Model-based Root Cause Analysis, Conference proceedings, 2001 Machinery Reliability Conference, April 2-4, Phoenix Arizona, published by RELIABILITY Magazine, c/o Industrial Communications, Inc. 1704 Natalie Nehs, Dr. Knoxville, TN 37931 USA. Das Verfahren stellt im Fall eines eintretenden Fehlerereignisses einem Fehleranalysten Informationen in solcher Weise bereit, daß er schnell und zielgerichtet die Fehlerursache finden kann. Der Fehleranalyst benötigt dazu einen Computer, der mit einem Web Browser ausgestattet ist und über eine Internetverbindung auf die Fehlerursachenanalysemodelle zugreifen kann. Ein Fehlermodell ist eine hierarchische, baumartige Struktur. Die oberste Ebene besteht aus dem Fehlerereignis. Die Ebenen darunter bestehen aus Knotenweiche jeweils Hypothesen darstellen. Diese Knoten sind baumartig miteinander verkettet. Jeder Knoten verfügt über eine Checkliste, an Hand derer sich Hypothesen verifizieren oder negieren lassen. Eine Checkliste setzt sich aus mehreren Checklistenpunkten zusammen. Diese Checklistenpunkte geben Anweisungen welche Informationen der Analyst braucht und wie er sie verarbeiten muß, um die Hypothese zu verifizieren. Bei der Suche nach einer Betriebsstörung in einer Anlage navigiert der Fehleranalyst von Knoten zu Knoten und überprüft seine Anlage an Hand der angehängten Checklisten. Wenn er eine Hypothese auf diese Art akzeptiert, navigiert er zum unterliegenden Fehlermodell bzw. zum Fehler der zur Störung seiner Anlage geführt hat.
  • Das Abarbeiten der Checklistenpunkte zur Verifikation von Fehlerhypothesen kann allerdings sehr aufwendig sein. Sämtliche aussagekräftigen Daten müssen gesammelt und verarbeitet werden. Oftmals sind die Daten, die man zur Verarbeitung heranziehen müßte, nicht mehr vorhanden oder nur schwierig und zeitaufwendig zu beschaffen. Nicht selten müssen die Daten mit komplexen mathematischen Funktionen zu aussagekräftigen Informationen weiterverarbeitet werden. Probleme entstehen insbesondere dann, wenn der Zeitaufwand dafür sehr hoch ist, oder wenn kein Fachmann für diese Aufgabe zur Verfügung steht.
  • Leitsysteme und Datenbanken, die Signale mit Zeitbezug speichern, verfügen prinzipiell über Daten, die zur Verifikation von Hypothesen herangezogen werden können. Auch gibt es Softwareprogramme, die diese Daten zu höherwertigen Informationen verdichten und verarbeiten können. Ein signifikanter verbleibender Nachteil der bekannten Vorgehensweise bei der Fehlerursachenanalyse besteht aber darin, daß die Information von Leitsystemen und deren Datenbanken den Systemen für die Fehlerursachenanalyse nicht automatisch zugänglich gemacht wird, und auch nicht rechnerunterstützt eine Verifikation von Hypothesen ermöglicht wird.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und ein System zur automatisierten Bearbeitung einer vorgegeben Fehlerhypothese anzugeben.
  • Diese Aufgabe wird durch ein Verfahren zur Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse gelöst, das die im Anspruch 1 angegebenen Merkmale aufweist. Ein entsprechendes System und vorteilhafte Ausgestaltungen sind in weiteren Ansprüchen angegeben.
  • Die Erfindung bezieht sich demnach auf ein Verfahren und ein System zur Ermittlung von Fehlerursachen und zur Durchführung ihrer Verifikation im Rahmen einer Fehlerursachenanalyse einschließlich einer rechnerunterstützten Bearbeitung von Checklistenpunkten auf Basis physikalischer Modelle zur Verifikation von Hypothesen. Das Verfahren und das System sind geeignet zur Unterstützung der Fehlerursachensuche im Fall von eintretenden Fehlerereignissen in industriellen Anlagen.
  • Online-Daten der industriellen Informationstechnologie, also z. B. aus einem Leitsystem oder Planungssystem werden dabei mit Hilfe physikalischer Modelle in Echtzeit in höherwertige Information für die Fehlerursachenanalyse überführt. Die physikalischen Modelle stellen somit die Information bereit, die zum Abarbeiten von Checklistenpunkten notwendig ist. Im Idealfall können sämtliche Checklistenpunkte durch physikalische Modelle automatisch abgearbeitet werden und somit eine vorgegebene Fehlerhypothese verifiziert werden. Damit erzielte Ergebnisse werden zweckmäßig über eine XML-Schnittstelle einem System für die Fehlerursachenanalyse bereitgestellt. Einem Fehleranalysten werden beim Abarbeiten eines Fehlerbaumes die Hypothesen und Checklistenpunkte signalisiert, die von den Modellen bereits abgearbeitet wurden.
  • Eine weitere Beschreibung des Verfahrens und eines zur Durchführung geeigneten Systems erfolgt nachstehend anhand eines in Zeichnungsfiguren dargestellten Ausführungsbeispiels.
  • Es zeigt:
  • Fig. 1 ein System zur automatischen Bearbeitung einer Fehlerhypothese,
  • Fig. 2 ein Verfahren zur automatischen Bearbeitung von Fehlerhypothesen,
  • Fig. 3 das physikalische Modell eines Prozesses,
  • Fig. 4 die prinzipielle Darstellung eines Fehlermodells,
  • Fig. 5 die Struktur eines Fehlerbaums,
  • Fig. 6 eine Fehlerhypothese "Energiezufuhr zu hoch", und
  • Fig. 7 eine automatisch verifizierte Checkliste.
  • Fig. 1 zeigt ein System 1 zur automatischen Bearbeitung von Fehlerhypothesen mit Hilfe physikalischer Modelle. Das System enthält eine Ein/Ausgabe Einrichtung 10, eine Hypothesenverarbeitungseinrichtung 20 und einen Datenspeicher 30.
  • Die Ein/Ausgabe Einrichtung 10 enthält einen Modell-Browser 11, mit dem ein Fehleranalytiker Fehlerbaum-basierte, mit RCA(root cause analysis)-Modelle bezeichnete wissensbasierte Modelle 33 bearbeiten kann. Es kann insbesondere damit eine Fehlerhypothese vorgegeben werden, deren Verifikation mittels des Systems automatisiert durchführbar ist.
  • Die Hypothesenverarbeitungseinrichtung 20 enthält eine mit Modell Engine bezeichnete Verarbeitungseinrichtung 21 für physikalische Modelle 31 und einen in Fig. 1 als RCA Modell Navigator bezeichneten Hypothesenbearbeiter 22. Die Verarbeitungseinrichtung 21 greift zyklisch auf Prozeßdaten zu, die ein Datenserver 40 bereitstellt, führt eine Berechnung von Anlagen- und Prozeßzuständen nach Vorgabe eines physikalischen Modells 31 durch, und speichert das Ergebnis in einem Datenspeicherbereich für Berechnungsergebnisse 32. Der Hypothesenbearbeiter 22 greift beim Bearbeiten einer Hypothese auf diese Berechnungsergebnisse 32, sowie auf Checklisten der wissensbasierten Modelle 33 zu.
  • Der Datenspeicher 30 enthält Speicherbereiche mit Dateien, in denen die physikalischen Modelle 31 und wissensbasierten Modelle 33 abgelegt sind, und in denen die Berechnungsergebnisse 32 gespeichert werden.
  • Fig. 2 zeigt das Verfahren zur automatischen Bearbeitung von Fehlerhypothesen mit Hilfe der in Fig. 1 generell, und in Fig. 3 beispielhaft dargestellten physikalischen Modelle. Der Fehleranalytiker navigiert zunächst zu einer Fehlerhypothese, um das Verfahren zu starten. In einem Verfahrensschritt 100 lädt der Hypothesenbearbeiter 22 die für die Verifikation der Hypothese erforderlichen Berechnungsergebnisse 32. In einem folgenden Schritt 200 lädt der Hypothesenbearbeiter 22 außerdem die Checkliste der betreffenden Hypothese aus den wissensbasierten Modellen 33. Fig. 6 zeigt ein Beispiel für eine solche Checkliste. In einem Schritt 300 führt der Hypothesenbearbeiter 22 einen Abgleich der Berechnungsergebnisse mit den Checklistenpunkten der Checkliste durch. Die Checklistenpunkte, für die Modelle hinterlegt sind, werden dabei automatisch ausgewertet. Jeder Checklistenpunkt enthält eine Bedingung zur Verifikation der Hypothese. In einem Schritt 400 wird durch den Hypothesenbearbeiter 22 gekennzeichnet, ob der Checklistenpunkt die Bedingung erfüllt oder nicht erfüllt. Fig. 7 zeigt beispielhaft, wie eine Checkliste nach der Bearbeitung ausgegeben wird.
  • Fig. 3 zeigt beispielhaft das physikalische Modell eines chemischen Prozesses in einem Reaktor. Das Modell ist in Form einer Differentialgleichung angegeben. Das Modell beschreibt die Prozeßparameter im fehlerfreien Zustand. Ein Fehler kann mit solch einem Modell durch den Vergleich des berechneten Parameters mit dem real gemessen Wert ermittelt werden. Beispielsweise können die Eintritts- und Austrittstemperaturen des Kühlwassers berechnet werden. Weicht die berechnete Austrittstemperatur vom gemessenen Wert ab, kann mit einem entsprechenden Gleichungssystem unter Beachtung bestimmter Randbedingungen auf einen Meßwertfehler geschlossen werden. Mit Hilfe der angegebenen Differentialgleichung kann z. B. mit T0 der Temperaturmeßfehler und mit V eine Leckage diagnostiziert werden.
  • Fig. 4 zeigt die prinzipielle Darstellung eines Fehlermodells als wissensbasiertes Modell 33. Die dargestellte oberste Ebene beinhaltet ein Prozeßmodell mit seinen Prozeßschritten. Jeder Prozeßschritt kann in weitere Prozeßschritte untergliedert sein. Zu jedem Prozeßschritt gibt es Fehlerereignisse und kritische Komponenten. Dazu gibt es wiederum Fehlerbäume mit Knoten. Die Knoten eines Fehlerbaumes repräsentieren Fehlerhypothesen. Wesentlicher inhaltlicher Bestandteil einer Fehlerhypothese ist eine Checkliste zur Verifikation. Auf die Inhalte einer Hypothese wird in Fig. 5 näher eingegangen.
  • Fig. 5 zeigt die Struktur eines Fehlerbaums. Das Modell hat einen hierarchischen Aufbau und enthält in der einfachsten Ausprägung zwei Ebenen. Die oberste Ebene repräsentiert das Fehlerereignis. Einem Fehlerereignis können mehrere Fehlerhypothesen unterlagert sein. Die logische Abhängigkeit kann folgendermaßen formuliert werden: Ein oder mehrere Fehlerhypothesen können Ursache für das Fehlerereignis sein. Fehlerereignis und Fehlerhypothese haben eine ähnliche inhaltliche Beschreibung. Die Fehlerhypothese kann zur tiefergehenden Analyse auf andere Fehlermodelle verweisen, d. h. ein Fehlerbaum kann sich aus mehreren Teilbäumen zusammensetzen. Die Verbindung wird durch das Attribut Fehlerbaumreferenz hergestellt.
  • Fig. 6 zeigt beispielhaft wie das System die Fehlerhypothese "Energiezufuhr zu hoch" einem Benutzer präsentiert. Eine Beschreibung der Fehlerhypothese erklärt dabei den Zusammenhang zwischen Fehler und möglicher Ursache. Eine Lokalisierung gibt den möglichen Fehlerort an; im Beispiel ist dies der Reaktor XY. Die Hypothese wird verifiziert, indem eine Verifikationscheckliste abgearbeitet wird. Die Prüfungen "Fehler Temperaturmessung" und "Leckage zum Kühlmantel" können durch ein physikalisches Modell automatisch verifiziert werden. eine Fehlerbaumreferenz ermöglicht für das Diagnosekriterium "Falsche Bedienanleitung" zur tieferen Diagnose den Zugang zu einem zugehörigen Fehlerbaum.
  • Fig. 7 zeigt beispielhaft, wie eine automatisch verifizierte Checkliste dargestellt wird. Bereits automatisch negativ verifizierte Diagnosekriterien sind dabei kursiv dargestellt. Ein positiv verifiziertes Diagnosekriterium wird fett dargestellt und mit Ausrufezeichen hervorgehoben. Noch zu prüfende Diagnosekriterien sind fett und mit Fragezeichen dargestellt.

Claims (3)

1. Verfahren zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage, wobei
a) ein Datenverarbeitungssystem (1) verwendet wird, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) vorhanden sind, und
b) nach der Vorgabe einer Fehlerhypothese durch einen Benutzer des Systems (1), das Mittel zur Hypothesenbearbeitung (22) unter Zugriff auf Ergebnisse einer Berechnung von Anlagen- und Prozeßzuständen, sowie unter Zugriff auf eine Checkliste der wissensbasierten Modelle (33), automatisiert eine Verifikation der Fehlerhypothese anhand von Bedingungen durchführt, die Checklistenpunkten der Checkliste zugeordnet sind, in einer Ergebnisliste das Verifikationsergebnis je Checklistenpunkt einträgt, und eine Ausgabe der Ergebnisliste bewirkt.
2. System zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage, wobei ein Datenverarbeitungssystem (1) vorhanden ist, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) enthalten sind.
3. System nach Anspruch 2, dadurch gekennzeichnet, daß das Datenverarbeitungssystem (1) dafür eingerichtet ist, daß nach der Vorgabe einer Fehlerhypothese durch einen Benutzer, das Mittel zur Hypothesenbearbeitung (22) unter Zugriff auf Ergebnisse einer Berechnung von Anlagen- und Prozeßzuständen, sowie unter Zugriff auf eine Checkliste der wissensbasierten Modelle (33), automatisiert eine Verifikation der Fehlerhypothese anhand von Bedingungen durchführt, die Checklistenpunkten der Checkliste zugeordnet sind, in einer Ergebnisliste das Verifikationsergebnis je Checklistenpunkt einträgt, und eine Ausgabe der Ergebnisliste bewirkt.
DE10146901A 2001-09-24 2001-09-24 Verfahren und System zur Bearbeitung von Fehlerhypothesen Ceased DE10146901A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10146901A DE10146901A1 (de) 2001-09-24 2001-09-24 Verfahren und System zur Bearbeitung von Fehlerhypothesen
CNA028186869A CN1559034A (zh) 2001-09-24 2002-09-24 用于处理故障假设的方法和系统
EP02777189A EP1451689A2 (de) 2001-09-24 2002-09-24 Verfahren und system zur bearbeitung von fehlerhypothesen
PCT/EP2002/010705 WO2003029978A2 (de) 2001-09-24 2002-09-24 Verfahren und system zur bearbeitung von fehlerhypothesen
AU2002338765A AU2002338765A1 (en) 2001-09-24 2002-09-24 Method and system for processing fault hypotheses
US10/811,472 US7246265B2 (en) 2001-09-24 2004-03-24 Method and system for automatically verifying fault hypotheses predetermined by a user

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10146901A DE10146901A1 (de) 2001-09-24 2001-09-24 Verfahren und System zur Bearbeitung von Fehlerhypothesen

Publications (1)

Publication Number Publication Date
DE10146901A1 true DE10146901A1 (de) 2003-05-15

Family

ID=7700018

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10146901A Ceased DE10146901A1 (de) 2001-09-24 2001-09-24 Verfahren und System zur Bearbeitung von Fehlerhypothesen

Country Status (6)

Country Link
US (1) US7246265B2 (de)
EP (1) EP1451689A2 (de)
CN (1) CN1559034A (de)
AU (1) AU2002338765A1 (de)
DE (1) DE10146901A1 (de)
WO (1) WO2003029978A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036912A1 (de) * 2004-07-29 2006-03-23 Siemens Ag Verfahren zur Bearbeitung von Computerprogrammproblemen, zugehöriges Computerprogramm und Computersystem
US8454894B2 (en) 2004-09-08 2013-06-04 Asmag-Holding Gmbh Device for evaluating biochemical samples

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038697A1 (en) * 2003-06-30 2005-02-17 Aaron Jeffrey A. Automatically facilitated marketing and provision of electronic services
US7409593B2 (en) * 2003-06-30 2008-08-05 At&T Delaware Intellectual Property, Inc. Automated diagnosis for computer networks
US7237266B2 (en) * 2003-06-30 2007-06-26 At&T Intellectual Property, Inc. Electronic vulnerability and reliability assessment
US7324986B2 (en) * 2003-06-30 2008-01-29 At&T Delaware Intellectual Property, Inc. Automatically facilitated support for complex electronic services
US7222003B2 (en) * 2005-06-24 2007-05-22 General Electric Company Method and computer program product for monitoring integrity of railroad train
US20140277612A1 (en) * 2013-03-14 2014-09-18 General Electric Company Automatic generation of a dynamic pre-start checklist
WO2018226234A1 (en) 2017-06-08 2018-12-13 Cummins Inc. Diagnostic systems and methods for isolating failure modes of a vehicle
CN112817789B (zh) * 2021-02-23 2023-01-31 浙江大华技术股份有限公司 一种基于浏览器传输的建模方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731537B2 (ja) 1987-09-11 1995-04-10 株式会社日立製作所 多重化制御装置
FR2636151B1 (fr) 1988-09-02 1990-10-12 Thomson Csf Dispositif de detection et de correction d'erreurs de donnees pour bus de transmission en parallele repondant triple
US5272704A (en) * 1989-08-18 1993-12-21 General Electric Company Method and apparatus for generation of multi-branched diagnostic trees
US5187773A (en) * 1990-07-06 1993-02-16 United Technologies Corporation Machine failure isolation using qualitative physics
US5604841A (en) * 1990-07-06 1997-02-18 United Technologies Corporation Hierarchical restructuring generic test templates and reusable value spaces for machine failure isolation using qualitative physics
JP2985505B2 (ja) * 1991-07-08 1999-12-06 株式会社日立製作所 品質情報収集診断システム及びその方法
EP0565761B1 (de) * 1992-04-15 1997-07-09 Mita Industrial Co. Ltd. Bilderzeugungsgerät mit Selbstdiagnosesystem
US5793933A (en) * 1993-09-13 1998-08-11 Kabushiki Kaisha Toshiba Computer-implemented system and method for constructing a system
US6282469B1 (en) * 1998-07-22 2001-08-28 Snap-On Technologies, Inc. Computerized automotive service equipment using multipoint serial link data transmission protocols
US6223143B1 (en) * 1998-08-31 2001-04-24 The United States Government As Represented By The Administrator Of The National Aeronautics And Space Administration Quantitative risk assessment system (QRAS)
US6633782B1 (en) * 1999-02-22 2003-10-14 Fisher-Rosemount Systems, Inc. Diagnostic expert in a process control system
US6298454B1 (en) * 1999-02-22 2001-10-02 Fisher-Rosemount Systems, Inc. Diagnostics in a process control system
JP2001249828A (ja) * 1999-12-28 2001-09-14 Toshiba Lsi System Support Kk 情報処理装置、不具合解析プログラムを格納したコンピュータ読み取り可能な記憶媒体、不具合解析方法、及びアプリケーションプログラム開発支援システム
WO2001055806A1 (de) * 2000-01-29 2001-08-02 Abb Research Ltd. Verfahren zum automatisierten generieren einer fehlerbaumstruktur
AU2000272739A1 (en) * 2000-08-09 2002-02-18 Abb Research Ltd System for determining error causes
US6820072B1 (en) * 2000-08-22 2004-11-16 Hewlett-Packard Development Company, L.P. Validation of probabilistic troubleshooters and diagnostic system
US6941257B2 (en) * 2000-12-30 2005-09-06 International Business Machines Corporation Hierarchical processing of simulation model events
GB0127552D0 (en) * 2001-11-16 2002-01-09 Abb Ab Analysing events

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036912A1 (de) * 2004-07-29 2006-03-23 Siemens Ag Verfahren zur Bearbeitung von Computerprogrammproblemen, zugehöriges Computerprogramm und Computersystem
US8454894B2 (en) 2004-09-08 2013-06-04 Asmag-Holding Gmbh Device for evaluating biochemical samples

Also Published As

Publication number Publication date
AU2002338765A1 (en) 2003-04-14
WO2003029978A3 (de) 2004-03-25
WO2003029978A2 (de) 2003-04-10
US20040205400A1 (en) 2004-10-14
EP1451689A2 (de) 2004-09-01
CN1559034A (zh) 2004-12-29
US7246265B2 (en) 2007-07-17

Similar Documents

Publication Publication Date Title
EP1250632B1 (de) System und verfahren zur ermittlung der produktionsanlagen-effektivität, von fehlerereignissen und der fehlerursachen
EP0789861B1 (de) Verfahren zur analyse von prozessdaten einer technischen anlage
EP1303797B1 (de) System zur unterstützung einer fehlerursachenanalyse
EP0894304B2 (de) Verfahren zur automatischen diagnose technischer systeme unter berücksichtigung eines effizienten wissenserwerbs und einer effizienten bearbeitung zur laufzeit
EP0852759B1 (de) Entwurfsverfahren für die anlagentechnik und rechnergestütztes projektierungssystem zur verwendung bei diesem verfahren
DE102005027378B3 (de) Dynamische Priorisierung von Prüfschritten in der Werkstattdiagnose
WO2002013015A1 (de) System zur ermittlung von fehlerursachen
WO2005111752A1 (de) Wissensbasiertes diagnosesystem für ein komplexes technisches system mit zwei getrennten wissensbasen zur verarbeitung technischer systemdaten und zur verarbeitung von kundenbeanstandungen
WO2001055806A1 (de) Verfahren zum automatisierten generieren einer fehlerbaumstruktur
WO2006105930A1 (de) Diagnosesystem zur bestimmung einer gewichteten liste möglicherweise fehlerhafter komponenten aus fahrzeugdaten und kundenangaben
EP0789864B1 (de) Überwachungssystem für eine technische anlage
WO2010112264A1 (de) Vorrichtung und verfahren zur erstellung eines prozessmodells
EP1657670A1 (de) System und Verfahren zur Status- und Fortschriftskontrolle eines technischen Prozesses oder eines technischen Projektes
DE10146901A1 (de) Verfahren und System zur Bearbeitung von Fehlerhypothesen
DE102006003125A1 (de) System und Verfahren zur Erstellung eines Strukturmodells eines realen Systems
EP3467489A1 (de) Verfahren zur bestimmung der geometrie einer fehlstelle und zur bestimmung einer belastbarkeitsgrenze
EP1250666B1 (de) Verfahren zum automatisierten ermitteln von fehlerereignissen
DE10133670A1 (de) Verfahren zur automatischen Erzeugung einer Wissensbasis für ein Diagnosesystem
DE19742448C1 (de) Diagnosemodul zum Erstellen einer Diagnose für elektrisch ansteuerbare Systeme und Diagnoseeinrichtung zum Erstellen einer Gesamtsystemdiagnose
DE102010044039A1 (de) Verfahren und Vorrichtung zur Qualitätsanalyse von Systemmodellen
EP1958101B1 (de) System und verfahren zur automatischen prüfung von planungsergebnissen
DE102021100566A1 (de) Verfahren zur Bereitstellung wenigstens einer Information über eine hydraulische Anlage
DE10210565A1 (de) System und Verfahren zur Vorhersage von Störungsauswirkungen
DE102013223467A1 (de) Entwicklungseinrichtung zur Konfiguration eines Modells eines technischen Systems zur Darstellung von Signalverläufen
EP3647893A1 (de) Verfahren und system zur zustandsüberwachung einer technischen einheit

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
8110 Request for examination paragraph 44
R082 Change of representative

Representative=s name: MUELLER - HOFFMANN & PARTNER PATENTANWAELTE, DE

Representative=s name: MUELLER - HOFFMANN & PARTNER PATENTANWAELTE, 81667

R081 Change of applicant/patentee

Owner name: DRAKAR TOULE LTD., LLC, WILMINGTON, US

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Effective date: 20111005

Owner name: DRAKAR TOULE LTD., LLC, US

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Effective date: 20111005

R082 Change of representative

Representative=s name: MUELLER HOFFMANN & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20111005

Representative=s name: MUELLER - HOFFMANN & PARTNER PATENTANWAELTE, DE

Effective date: 20111005

Representative=s name: MUELLER - HOFFMANN & PARTNER PATENTANWAELTE, 81667

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20120626