DE102005009820A1 - Elektronikbaugruppe mit organischen Logik-Schaltelementen - Google Patents

Elektronikbaugruppe mit organischen Logik-Schaltelementen Download PDF

Info

Publication number
DE102005009820A1
DE102005009820A1 DE102005009820A DE102005009820A DE102005009820A1 DE 102005009820 A1 DE102005009820 A1 DE 102005009820A1 DE 102005009820 A DE102005009820 A DE 102005009820A DE 102005009820 A DE102005009820 A DE 102005009820A DE 102005009820 A1 DE102005009820 A1 DE 102005009820A1
Authority
DE
Germany
Prior art keywords
signal
organic
output
electronic assembly
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102005009820A
Other languages
English (en)
Inventor
Andreas Dr. Ullmann
Alexander Knobloch
Merlin Welker
Walter Dr. Fix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PolyIC GmbH and Co KG filed Critical PolyIC GmbH and Co KG
Priority to DE102005009820A priority Critical patent/DE102005009820A1/de
Priority to EP06707103A priority patent/EP1854214B1/de
Priority to US11/817,258 priority patent/US7589553B2/en
Priority to AT06707103T priority patent/ATE505848T1/de
Priority to DE502006009297T priority patent/DE502006009297D1/de
Priority to PCT/EP2006/001523 priority patent/WO2006092216A1/de
Publication of DE102005009820A1 publication Critical patent/DE102005009820A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1731Optimisation thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference

Abstract

Die Erfindung betrifft eine Elektronikbaugruppe mit zwei oder mehr aus organischen Bauelementen, insbesondere organischen Feldeffekt-Transistoren, aufgebauten organischen Schaltelementen, die miteinander zu einer Logik-Schaltung verknüpft sind. Die Logik-Schaltung weist mindestens eine Filterbaugruppe (5) auf, die einen mit einem der organischen Logik-Schaltelemente verbundenen Eingang (53) und einen Ausgang (55) aufweist und so ausgestaltet ist, dass sie die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente erzeugten Signalstörungen aus den am Eingang (53) anliegenden Signalen ausfiltert und am Ausgang (55) ein regeneriertes binäres Signal bereitstellt.

Description

  • Die Erfindung betrifft eine Elektronikbaugruppe mit zwei oder mehr aus organischen Bauelementen, insbesondere organischen Feldeffekt-Transistoren aufgebauten Logik-Schaltelementen, die miteinander zu einer Logik-Schaltung verknüpft sind.
  • Logik-Schaltelemente wie beispielsweise NAND-Gatter, NOR-Gatter oder Inverter sind elementare Bestandteile einer digitalen elektronischen Schaltung. Die Schaltgeschwindigkeit der digitalen Schaltung hängt hierbei maßgeblich von der Schaltgeschwindigkeit der Logik-Schaltelemente ab, aus denen die digitale elektronische Schaltung zusammengesetzt ist.
  • In der herkömmlichen Silizium-Halbleitertechnologie werden Logik-Gatter durch Verwendung von n- als auch p-leitenden Transistoren realisiert, wodurch sich Gatter mit sehr hoher Schaltgeschwindigkeit realisieren lassen.
  • Weiter ist es bekannt, Logik-Gatter aus organischen Bauelementen aufzubauen. Üblicherweise wird hierbei ein herkömmlicher Widerstand anstelle des n-leitenden Transistors eingesetzt und die p-leitenden Transistoren durch organische Feldeffekt-Transistoren ersetzt. Nachteilig an diesen logischen Gattern mit organischen Feldeffekt-Transistoren ist, dass sie entweder eine geringe Umschaltgeschwindigkeit besitzen (wenn die Umladeströme, also die Integrale unter der Strom-Spannungskurve sehr verschieden sind) oder sich nicht ausschalten lassen (wenn der Spannungshub im Strom-Spannungsdiagramm zu gering ist).
  • Um die Schaltgeschwindigkeit von in organischer Halbleitertechnologie hergestellten digitalen Schaltungen zu erhöhen, wird in WO 2003/081 671 A3 vorgeschlagen, in Logik-Gattern den Widerstand durch einen zweiten organischen Feldeffekt-Transistor zu ersetzen, der als Widerstand eingesetzt wird. Hierzu werden organische Feldeffekt-Transistoren eingesetzt, die eine extreme dünne organische Halbleiterschicht (ca. 5 bis 30 nm) besitzen oder bei denen die Leitfähigkeit der organischen Halbleiterschicht durch gezielte Behandlung (beispielsweise Hydrazin-Behandlung und/oder gezielte Oxidation) soweit erniedrigt wurde, dass die Off-Ströme nur um etwa eine Größenordnung unter den On-Strömen liegen.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die mit einer aus organischen Bauelementen aufgebauten digitalen Schaltung erzielbare Verarbeitungs-Geschwindigkeit weiter zu erhöhen.
  • Diese Aufgabe wird von einer Elektronikbaugruppe mit zwei oder mehr aus organischen Bauelementen aufgebauten organischen Logik-Schaltelementen, die miteinander zu einer Logik-Schaltung verknüpft sind, gelöst, bei der die Logik-Schaltung mindestens eine Filterbaugruppe aufweist, die einen mit einem der organischen Logik-Schaltelemente verbundenen Eingang und einen Ausgang aufweist und die die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente erzeugten Signalstörungen aus dem am Eingang anliegenden Signal ausfiltert und am Ausgang ein regeneriertes binäres Signal bereit stellt.
  • Aufgrund der geringen Ladungsträger-Beweglichkeit der heute verfügbaren organischen Halbleiter und des andersartigen Funktionsprinzips organischer Feldeffekt-Transistoren sind die Schaltgeschwindigkeiten, die sich mit aus organischen Bauelementen aufgebauten digitalen Schaltungen erzielen lassen, um Größenordnungen kleiner als die, die in Silizium-Technologie aufgebaut sind.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass bei Erhöhung der Taktrate in komplexeren organischen Schaltkreisen bei der Verknüpfung unterschiedlicher Signale, die von unterschiedlich vielen organischen Bauelementen verarbeitet wurden, Synchronisationsprobleme entstehen. Die Flanken des einen Signals sind gegenüber dem anderen zeitlich versetzt, wodurch bei einer Verknüpfung kurzzeitige Störungen im kombinierten Ausgangssignal auftreten. Diese Störspitzen sind für die weitere Verarbeitung des Signals sehr störend, da sich diese Fehler dann weiter anhäufen und infolge fälschlich als Teil des Nutzsignals interpretiert werden. Diese Störungen werden durch die oben beschriebene Filterbaugruppe entfernt. Dadurch wird es möglich, die digitale Schaltung mit einer höheren Taktrate zu betreiben und damit die Geschwindigkeit der Informationsverarbeitung zu erhöhen.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüche bezeichnet.
  • Als organische Logik-Schaltelemente, die zu der Logik-Schaltung verknüpft sind, können beispielsweise organische Logik-Gatter wie UND-Gatter, ODER-Gatter, NAND-Gatter, NOR-Gatter oder Inverter, aber auch komplexere organische Logik-Schaltelemente wie Schieberegister oder Addierer verwendet werden. Je nach Komplexität der Logik-Schaltung werden in die Logik-Schaltung ein oder mehrere Filterbaugruppen eingebunden, wobei sich durch Erhöhung der Anzahl der verwendeten Filterbaugruppen im Regelfall einer Erhöhung der Verarbeitungsgeschwindigkeit der digitalen Schaltung erzielen lässt. Die Filterbaugruppen können hierbei zwischen zwei organischen Logik-Schaltelementen geschaltet sein, so dass sowohl der Eingang der Filterbaugruppe als auch der Ausgang der Filterbaugruppe mit einem Logik-Schaltelement verbunden ist. Es ist jedoch auch möglich, die Filterbaugruppe an einem Ausgang der Logik-Schaltung anzuordnen, so dass lediglich der Eingang der Filterbaugruppe mit einem Logik-Schaltelement der Logik-Schaltung verbunden ist und der Ausgang der Filterbaugruppe mit einem Ausgang der Logik-Schaltung verbunden ist.
  • Bevorzugt wird die Filterbaugruppe mit dem Ausgang eines organischen Logik-Schaltelements verbunden, das mehrere über unterschiedliche Zweige der Logik-Schaltung generierte binäre Eingangssignale miteinander logisch zu einem Ausgangssignal verknüpft.
  • Gemäß eines bevorzugten Ausführungsbeispiels der Erfindung besteht die Filterbaugruppe aus einem Tiefpassfilter und einer nachfolgenden diskretisierenden Verstärkerschaltung. Der Tiefpassfilter ist hierbei zur Ausfilterung der durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der vorgehenden Logik-Schaltelementen erzeugten Störungsspitzen ausgelegt. Die Grenzfrequenz des Tiefpassfilters wird so beispielsweise derart gewählt, dass die Amplitude der Störungsspitzen zwischen 50 und 70 % abgeschwächt wird. Die Störungsspitzen werden also einerseits von der nachfolgenden diskretisierenden Verstärkerschaltung eliminiert. Andererseits wird so die Verschiebung der Flanke eines nachfolgenden H-Pegels (H = High) des Nutzsignals minimal gehalten.
  • Vorzugsweise wird der Tiefpass als RC-Tiefpass aufgebaut und kann so kostengünstig in einer integrierten Schaltung realisiert werden.
  • Die Filterbaugruppe ist aus organischen Bauelementen aufgebaut. Bevorzugt besteht die Filterbaugruppe hierbei aus einem Widerstand und einer aus organischen Bauelementen aufgebauten diskretisierenden Verstärkerschaltung. Der RC-Tiefpass wird von dem Widerstand und der Eingangskapazität der Verstärkerschaltung gebildet. Bei einem besonders kostengünstigen Aufbau der Filterbaugruppe bildet der Widerstand und die Gate-Source-Kapazität des ersten organischen Feldeffekt-Transistors der Verstärkerschaltung hierbei den RC-Tiefpass. Diese beiden Bauelemente sind so gewählt, dass sich ein RC-Tiefpass mit einer Grenzfrequenz ergibt, die geeignet ist, die durch die unterschiedlichen Signallaufzeiten in den organischen Bauelementen der vorgehenden Logik-Schaltelemente erzeugten Störungsspitzen auszufiltern. Die Grenzfrequenz des Tiefpassfilters ist so in Abhängigkeit von den durch die unterschiedlichen Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente erzeugten Störungsspitze zu wählen. Diese hängen zum einen von den vorgehenden Logik-Schaltelementen und der Verknüpfung dieser Logik-Schaltelemente und zum anderen von der Taktfrequenz ab, mit der die Logik-Schaltung betrieben wird, und können beispielsweise durch Messung oder Simulation bestimmt werden.
  • Eine derartige Filterbaugruppe kann mit einer geringen Anzahl von Bauelementen realisiert werden und ist demnach mit geringem Aufwand in eine Logik-Schaltung integrierbar.
  • Gemäß eines weiteren bevorzugten Ausführungsbeispiels der Erfindung ist die Filterbaugruppe aus mehreren organischen Bauelementen aufgebaut, die derart verschaltet sind, dass die Filterbaugruppe den Pegel des am Eingang anliegenden Signals nur zu bestimmten, durch ein separates Taktsignal vorgegebenen Zeitpunkten an den Ausgang übernimmt und für die übrige Zeit den letzten vorausgegangenen Pegel am Ausgang beibehält. Das Taktsignal ist hierbei gegenüber dem Takt des am Eingang der Filterbaugruppe anliegenden Nutzsignals phasenverschoben. Die Phasenverschiebung ist hierbei so gewählt, dass die Filterbaugruppe zum Übernahmezeitpunkt keinesfalls ein Störsignal am Eingang vorfindet und somit einen korrekten Signalpegel übernimmt. Dieser wird dann von der Filterbaugruppe für den Rest der Taktperiode beibehalten, so dass am Ausgang ein Signal ohne Störungsspitzen entsteht.
  • Gute Ergebnisse lassen sich dadurch erzielen, dass die Phasenverschiebung des separaten Taktsignals gegenüber dem Takt des am Eingang anliegenden Signals zwischen 90 und 270° beträgt, vorzugsweise etwa 180° beträgt. Gemäß eines weiteren Ausführungsbeispiels der Erfindung wird die Phasenverschiebung so gewählt, dass die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der vorgehenden Logik-Schaltelemente erzeugten Störimpulse um mindestens 0,2 Periodenlängen von dem Übernahmezeitpunkt beabstandet sind. Hierzu ist es dann erforderlich, die Phasenlage der Störimpulse durch Messung oder durch Simulation zu ermitteln und eine Phasenverschiebung des separaten Taktsignals zu wählen, die dieser Beziehung entspricht.
  • Das separate Taktsignal für die Filterbaugruppe wird bevorzugt von einem aus organischen Feldeffekt-Transistoren aufgebauten Ringoszillator bereit gestellt. Bevorzugt wird das separate Taktsignal hierbei von dem Ringoszillator bereit gestellt, der das Taktsignals für die Logik-Schaltung generiert.
  • Das von dem Ringoszillator generierte Taktsignal kann hierbei über ein oder mehrere in Serie geschaltete Verzögerungsbauteile der Filterbaugruppe zugeführt werden, um auf diese Weise die gewünschte Phasenlage des separaten Taktsignals zu dem Nutzsignal am Eingang der Filterbaugruppe (stimmt aufgrund der Signallaufzeiten in der Regel nicht mit der Phasenlage des vom Ringoszillator generierten Taktsignals für die Logik-Schaltung überein) zu erzielen.
  • Der Bauelementeaufwand lässt sich weiter dadurch reduzieren, dass der Ringoszillator, der aus mehreren ringförmig hintereinander verschalteten organischen Schaltelementen besteht, an einem ersten Ausgang eines ersten Schaltelements das Taktsignal für die Logik-Schaltung entnommen ist, und an einem Ausgang eines zweiten, dem ersten Schaltelement nachfolgenden Schaltelements das separate Taktsignal für die Filterbaugruppe entnommen ist. Auf diese Weise lassen sich auch zwei und mehr Filterbaugruppen mit zueinander phasenverschobenen, jeweils passenden separaten Taktsignalen mit sehr geringen Bauelemente-Aufwand versorgen.
  • Die erfindungsgemäße Elektronikbaugruppe kann für eine Vielzahl von Anwendungen eingesetzt werden. Besonders hervorzuheben ist hierbei der Einsatz der erfindungsgemäßen Elektronikbaugruppe als RFID-Transponder oder als Sicherungselement insbesondere zur Sicherung von Wertdokumenten und Waren. Die erfindungsgemäße Elektronikbaugruppe liegt hierbei bevorzugt in Form eines flexiblen Folienelements vor, das mittels einer Kleberschicht mit dem zu sichernden Objekt, beispielsweise einem Wertdokument, wie einem Reisepass oder einem Geldschein, verbunden ist.
  • Im Folgenden wird die Erfindung anhand von mehreren Ausführungsbeispielen unter Zuhilfenahme der beiliegenden Zeichnungen beispielhaft erläutert.
  • 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Elektronikbaugruppe.
  • 2 zeigt ein Schaltbild einer Filterbaugruppe für die Elektronikbaugruppe nach 1.
  • 3 zeigt mehrere Diagramme zur Verdeutlichung des Signalflusses in der Elektronikbaugruppe nach 1.
  • 4 zeigt ein Schaltbild einer weiteren Ausführungsform einer Filterbaugruppe für die Elektronikbaugruppe nach 1.
  • 5 zeigt mehrere Diagramme zur Verdeutlichung des Signalflusses in der Elektronikbaugruppe nach 1.
  • 6 zeigt eine schematische Darstellung eines Ausschnitts einer weiteren erfindungsgemäßen Elektronikbaugruppe.
  • 1 zeigt eine Elektronikbaugruppe 10, die aus einem flexiblen, mehrschichtigen Folienkörper mit ein oder mehreren elektrischen Funktionsschichten besteht.
  • Die elektrischen Funktionsschichten des Folienkörpers bestehen aus (organisch) leitfähigen Schichten, organisch halbleitenden Schichten und/oder aus organischen Isolationsschichten, die zumindestens teilweise in strukturierter Form übereinander angeordnet sind. Neben diesen elektrischen Funktionsschichten umfasst den mehrschichtigen Folienkörper optional noch ein oder mehrere Trägerschichten, Schutzschichten, Dekorlagen, Haftvermittlungsschichten oder Kleberschichten. Die elektrisch leitfähigen Funktionsschichten bestehen vorzugsweise aus einer leitfähigen strukturierten Metallisierung, vorzugsweise aus Gold oder Silber. Es kann jedoch auch vorgesehen sein, diese Funktionsschicht aus einem anorganischen elektrisch leitfähigen Material auszubilden, beispielsweise aus Indium-Zinn-Oxid oder aus einen leitfähigen Polymer, beispielsweise aus Polyanilin oder Polypyrol, auszubilden. Die organisch halbleitende Funktionsschicht besteht beispielsweise aus konjugierten Polymeren, wie Polythiophenen, Polythlenylenvinylenen oder Polyfluorenderivaten, die als Lösung durch Spin-Coating, Raken oder Bedrucken aufgebaut werden. Als organische Halbleiterschicht eignen sich auch sogenannte „Small Moleküls", d. h. Oligomere wie Sexithiophen oder Pentacen, die durch eine Vakuumtechnik aufgedampft werden. Diese organischen Schichten werden bevorzugt durch en Druckverfahren (Tiefdruck, Siebdruck, Tampondruck) bereits partiell oder musterförmig strukturiert aufgebracht. Dazu sind die für die Schichten vorgesehenen organischen Materialien als lösbare Polymere ausgebildet, wobei der Begriff des Polymers hierbei, wie weiter oben bereits beschrieben, auch Oligomere und „Small Moleküls" einschließt.
  • Die elektrischen Funktionsschichten des Folienkörpers sind hierbei so ausgestaltet, dass sie die im Folgenden verdeutlichten elektrischen Schaltungen implementieren.
  • Bei der Elektronikbaugruppe 10 handelt es sich um einen RFID-Transponder mit einem Antennen-Schwingkreis 11, einem Gleichlichter 12, einem Modulator 13 und einer digitalen Logik-Schaltung 2. Es ist jedoch auch möglich, dass es sich bei der Elektronikbaugruppe 10 nach 1 um eine einem sonstigen Zweck dienende Elektronikbaugruppe handelt, die über eine digitale Logik-Schaltung verfügt. Aufgrund des Aufbaus der Elektronikbaugruppe 10 als flexibles mehrschichtiges Folienelement in polymerer Halbleitertechnologie eignet sich die Elektronikbaugruppe 10 hierbei besonders für Sicherheitsanwendungen und für Massenanwendungen. Neben den in 1 dargestellten Funktionsgruppen ist es für derartige Anwendungen von besonderem Vorteil, wenn die Elektronikbaugruppe 10 noch über ein in organischer Technologie gefertigtes Anzeigenelement, beispielsweise ein LC-Display aufweist, das von der Logik-Schaltung 2 angesteuert wird.
  • Die Logik-Schaltung 2 ist aus mehreren miteinander verknüpften Logik-Schaltelementen aufgebaut. Bei den einzelnen Logik-Schaltelementen handelt es sich beispielsweise um Logik-Gatter wie NOR- oder NAND-Gatter oder Inverter, oder auch um komplexere Logik-Schaltelemente, wie Schieberegister, Addierer usw. Die einzelnen Logik-Schaltelemente der Logik-Schaltung 2 sind hierbei bevorzugt wie in WO 03/081 671 A2 beschrieben aus organischen Feldeffekt-Transistoren aufgebaut, um eine möglichst hohe Schaltgeschwindigkeit der einzelnen Logik-Schaltelemente zu erzielen.
  • 1 zeigt einen Ausschnitt der Logik-Schaltung 2 mit mehreren Logik-Schaltelementen 21 und mehreren Filterbaugruppen 22, 23 und 24 die miteinander zur Erbringung einer Logik-Funktion verknüpft sind. Die Verknüpfung der Logik-Schaltelemente 21 nach 1 ist hierbei rein willkürlich lediglich zum Zwecke der Verdeutlichung der Erfindung gewählt und ist je nach der zu erzielenden Logik-Funktion zu wählen.
  • Zwischen die Logik-Schaltelemente 21 der Logik-Schaltung 2 sind, wie in 1 gezeigt, die Filterbaugruppen 22, 23 und 24 geschaltet. Die Filterbaugruppen 22, 23 und 24 verfügen über einen Eingang, der mit einem Ausgang eines der organischen Logik-Schaltelemente 21 verbunden ist und über einen Ausgang, der entweder mit einem Eingang eines weiteren der Logik-Schaltelemente 21 oder mit einem Ausgang der Logik-Schaltung 2 verbunden ist. Die Filterbaugruppen 22, 23 und 24 filtern jeweils die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der vorgehenden Logik-Schaltelemente erzeugten Signalstörungen aus dem am Eingang anliegenden Signal aus und stellen am Ausgang ein regeneriertes binäres Signal bereit.
  • Die Filterbaugruppe 22 besteht beispielsweise aus einer elektronischen Schaltung 3, wie sie in 2 gezeigt ist. Die Funktionsweise der Filterbaugruppe 22 wird nun im Folgenden anhand von 3 verdeutlicht.
  • 3 zeigt mehrere Diagramme 41 bis 45, die jeweils den zeitlichen Verlauf eines Signalpegels V an einer Stelle der Logik-Schaltung 2 zeigen, d. h. der Signalpegel V ist gegenüber der Zeit t aufgetragen.
  • Die Diagramme 41 und 42 zeigen den zeitlichen Verlauf der Eingangssignale, die an den Eingängen des der Filterbaugruppe 22 vorangehenden Logik-Schaltelements anliegen. Das Diagramm 43 zeigt den zeitlichen Verlauf des am Ausgang dieses Logik-Schaltelements anliegenden Ausgangssignals. Bei dem Logik-Schaltelement handelt es sich hier beispielsweise um ein NOR-Gatter.
  • Der Takt des Nutzsignals an dem jeweiligen Punkt der Logik-Schaltung 2 ist in den Diagrammen 41 bis 45 durch gestrichelte Linien angedeutet, wobei hier auch zu beachten ist, dass sich dieser Takt aufgrund der Signallaufzeiten durch das Logik-Schaltelement und durch die Filterbaugruppe am Eingang und am Ausgang des Logik-Schaltelements und am Eingang und Ausgang der Filterbaugruppe 22 unterscheiden kann.
  • Aufgrund des Schaltverhaltens der organischen Bauelemente in den in den Diagrammen 41 bis 43 verdeutlichten logischen Schaltelement vorangehenden logischen Schaltelementen entsteht der in den Diagrammen 41 und 42 verdeutlichte zeitliche Versatz der an diesem logischen Schaltelement anliegenden Eingangs-Signalen. Werden die beiden Eingangssignale von dem logischen Schaltelement miteinander verknüpft, so entsteht das in Diagramm 43 angedeutete Ausgangssignal, welches Störimpulse 46 aufweist. Das durch die Störimpulse 46 gestörte Signal wird nun der Filterbaugruppe 22 zugeführt. Die Filterbaugruppe 22 unterdrückt alle Störungen, die deutlich kürzer sind, als die Taktzeit des Nutzsignals und gewinnt damit ein ungestörtes Ausgangssignal. Die Filterbaugruppe 22 ist aus einem Tiefpassfilter, der Taktimpulse abschwächt, die deutlich kürzer als die Taktzeit des Nutzsignals sind, und einer nachfolgenden diskretisierenden Verstärkerschaltung aufgebaut.
  • Die Filterbaugruppe 22 besteht so beispielsweise aus der in 2 gezeigten Schaltung 3 mit einem Widerstand 35, zwei organischen Feldeffekt-Transistoren 38 und 39 und zwei organischen Load-Elementen 36 und 37. Die organischen Feldeffekt-Transistoren 38 und 39 und die organischen Load-Elemente 36 und 37 bilden eine diskretisierende Verstärkerschaltung. Bei den organischen Load-Elementen 36 und 37 kann es sich um die in WO 03/981 671 A2 geschilderten speziellen organischen Feldeffekt-Transistoren handeln, die einen Widerstand nachbilden. Bei dem Widerstand 35 handelt es sich bevorzugt um einen organischen Widerstand. Die Schaltung 3 verfügt weiter über einen Anschluss 32 für das Eingangssignal, einen Anschluss 34 für das Ausgangssignal, einen Anschluss 31 für die Versorgungsspannung und einen Erdanschluss 33.
  • Der Widerstand 35 wird zusammen mit der Eingangskapazität der Verstärkerstufe als RC-Tiefpass verwendet, der die zeitlich relativ kurzen Störimpulse 46 deutlich abschwächt, das langsamere Nutzsignal aber nur geringfügig stört. Der RC-Tiefpass wird so durch den Widerstand 35 in Verbindung mit der Gate-Source-Kapazität des organischen Feldeffekt-Transistors 38 realisiert. Das am Ausgang des RC- Tiefpasses anliegende Signal ist in dem Diagramm 44 gezeigt. Die Störimpulse 46 werden durch den RC-Tiefpass zu den Störimpulsen 47 abgeschwächt. Die anschließende Verstärkerstufe stellt zum einen die Flankensteilheit des Nutzsignals, die im RC-Tiefpass verschlechtert worden ist, wieder her und entfernt andererseits durch die Diskretisierung auf zwei digitale Pegelwerte die abgeschwächten Störimpulse 47 vollständig aus dem Signal. Am Ausgang der Verstärkerstufe liegt dann das in dem Diagramm 45 gezeigte Signal an, aus dem die Störungen beseitigt wurden.
  • Die Grenzfrequenz des RC-Tiefpasses ist bevorzugt mindestens doppelt, bevorzugt 3-4 fach so groß wie die Taktfrequenz des Nutzsignals.
  • Die Filterbaugruppe 23 wird von einer in 4 gezeigten Schaltung 5 gebildet. Die Funktion der Filterbaugruppe 23 wird nun im Folgenden anhand der in 5 gezeigten Diagramme verdeutlicht.
  • 5 zeigt mehrere Diagramme 61 bis 64, die den zeitlichen Verlauf des Signalpegels an unterschiedlichen Stellen der Logik-Schaltung 2 verdeutlichen. In den Diagrammen 61 bis 64 ist hierbei der Signalpegel V gegenüber der Zeit t aufgetragen. Auch hier ist, wie in 3, der Takt des Nutzsignals durch gestrichelte Linien angedeutet.
  • Am Eingang der Filterbaugruppe 23 liegt das in dem Diagramm 63 verdeutlichte Signal an, welches durch Störimpulse 66 gestört ist. Die Störimpulse 66 entstehen hierbei, wie bereits oben anhand von 3 verdeutlicht, durch die durch das Schaltverhalten der organischen Bauelemente bedingten unterschiedlichen Signallaufzeit in den organischen Bauelementen der vorangehenden Logik-Schaltelemente.
  • Die Filterbaugruppe 23 unterdrückt nun die Störimpulse 66 und stellt am Ausgang das im Diagramm 64 gezeigte regenerierte binäre Signal bereit. Die Filterbaugruppe 23 übernimmt hierzu den Pegel des Eingangssignal nur zu bestimmten, durch ein separates Taktsignal, vorgegebenen Zeiten an den Ausgang. Für die übrigen Zeiten behält die Filterbaugruppe 23 den letzten, vorausgegangenen Pegel am Ausgang bei. Das Diagramm 63 zeigt so mehrere Zeitpunkte 67, die von dem separaten Taktsignal vorgegeben sind und an denen der Eingangs-Pegel von der Filterbaugruppe 23 an den Ausgang übernommen wird.
  • Durch eine geeignete Phasenverschiebung des Taktsignals, beispielsweise durch die im Diagramm 63 gezeigte Phasenverschiebung um 180°, wird erreicht, dass die Filterbaugruppe 23 zum Übernahmezeitpunkt keinesfalls ein Störsignal am Eingang vorfindet und somit den korrekten Signalpegel übernimmt. Wie in dem Diagramm 63 gezeigt, sind zu den Zeitpunkten 67 die Störimpulse 66 bereits abgeklungen, so dass dort der korrekte Signalpegel anliegt. Dieser Signalpegel wird dann von der Filterbaugruppe 23 auch für den Rest der Taktperiode beibehalten, so dass am Ausgang das in dem Diagramm 64 gezeigte Signal ohne Störungsspitzen entsteht.
  • Die in 4 gezeigte Schaltung 5 stellt eine mögliche Realisierung der Filterbaugruppe 23 in organischer Halbleitertechnologie dar. Die Schaltung 5 weist mehrere organische Feldeffekt-Transistoren T und mehrere organische Load-Elemente L auf, die miteinander wie in 4 gezeigt, verbunden sind. Die Schaltung 4 weist einen Anschluss 53 für das Eingangssignal, einen Anschluss 54 für das externe Taktsignal, einen Anschluss 55 für das Ausgangssignal, einen Anschluss 51 für die Versorgungsspannung und einen Erdanschluss 54 auf.
  • Das externe Taktsignal wird hierbei durch ein oder mehrere in Serie geschaltete Verzögerungsbauteile aus dem Takt des Nutzsignals gewonnen. Als Verzögerungsbauteile können beispielsweise aus organischen Bauelementen aufgebaute Inverter verwendet werden. In einer bevorzugten Ausführungsform der Erfindung wird das separate Taktsignal aus dem Taktsignal generiert, das den Verarbeitungs-Takt der Logik-Schaltung 2 vorgibt. Die Phasenlage dieses Taktsignals zu dem am Eingang der Filterbaugruppe 23 vorliegenden Takt des Nutzsignals sowie die gewünschte Phasenverschiebung des separaten Taktsignals gegenüber dem Takt des Nutzsignals ist zu bestimmen. Sodann wird eine entsprechende Anzahl von Verzögerungsbauteilen hintereinander verschaltet, um das gewünschte separate Taktsignal zu generieren.
  • Eine weitere Möglichkeit der Generierung des separaten Taktsignals wird nun anhand des Ausführungsbeispiels nach 6 verdeutlicht:
    6 zeigt eine Elektronikbaugruppe 7 mit einer Logik-Schaltung 71 und einem Oszillator 75.
  • Die Logik-Schaltung 71 ist wie die Logik-Schaltung 2 nach 1 aufgebaut und verfügt über eine Vielzahl von miteinander verknüpften Logik-Schaltelementen. Im Weiteren sind mehrere Filterbaugruppen vorgesehen, die wie die Filterbaugruppe 23 nach 1 ausgestaltet sind. Von diesen Filterbaugruppen sind in 6 drei Filterbaugruppen 72, 73 und 74 gezeigt. Der Oszillator 75 stellt mehrere Taktsignale 80, 81, 82 und 83 bereit. Das Taktsignal 80 stellt das Taktsignal der Logik-Schaltung 71 dar und gibt die Schrittgeschwindigkeit der Verarbeitung von Informationen durch die Logik-Schaltung 71 vor. Die Taktsignale 81 bis 83 werden den Filterbaugruppen 72 bis 74 als separate Taktsignale zugeführt.
  • Der Oszillator 75 besteht aus einer Vielzahl von organischen Schaltelementen 76, die ringförmig hintereinander verschaltet sind. Bei den organischen Schaltelementen handelt es sich beispielsweise um aus organischen Feldeffekt-Transistoren aufgebauten Invertern. Wie in 6 gezeigt. werden die Taktsignal 80 bis 83 an den Ausgängen verschiedener organischer Schaltelemente 76 abgegriffen, so dass die Taktsignale 80 bis 83 gegeneinander phasenverschoben sind.
  • Wie bereits oben erläutert, wird so die Phasenverschiebung des jeweiligen separaten Taktsignals gegenüber dem Taktsignal 80 bestimmt und sodann dasjenige der organischen Schaltelemente 76 bestimmt, dessen Ausgangssignal den gewünschten Phasenversatz gegenüber dem am Abgriffspunkt des Taktsignals vorliegenden Signal besitzt.

Claims (20)

  1. Elektronikbaugruppe (10, 7) mit zwei oder mehr aus organischen Bauelementen, insbesondere organischen Feldeffekt-Transistoren aufgebauten organischen Schaltelementen (21), die miteinander zu einer Logik-Schaltung (2, 71) verknüpft sind, dadurch gekennzeichnet, dass die Logik-Schaltung (2, 71) mindestens eine Filterbaugruppe (22, 3, 5, 72, 73, 74) aufweist, die einen mit einem der organischen Logik-Schaltelemente (21) verbundenen Eingang und einen Ausgang aufweist und so ausgestaltet ist, dass sie die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente (21) erzeugten Signalstörungen aus dem am Eingang anliegenden Signal ausfiltert und am Ausgang ein regeneriertes binäres Signal bereit stellt.
  2. Elektronikbaugruppe (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Filterbaugruppe (3) einen Tiefpassfilter zur Ausfilterung von durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente (21) erzeugten Störungsspitzen und eine nachfolgende diskretisierende Verstärkerschaltung aufweist.
  3. Elektronikbaugruppen (10) nach Anspruch 2, dadurch gekennzeichnet, dass der Tiefpassfilter als RC-Tiefpassfilter aufgebaut ist.
  4. Elektronikbaugruppe (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Filterbaugruppe (3) einen Widerstand (35) und eine aus organischen Bauelementen (36 bis 39) aufgebaute diskretisierende Verstärkerschaltung aufweist und der Widerstand (35) zusammen mit der Eingangskapazität der Verstärkerschaltung einen RC-Tiefpassfilter bildet, der durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der Logik-Schaltelemente (21) erzeugte Störungsspitzen ausfiltert.
  5. Elektronikbaugruppe nach Anspruch 3, dadurch gekennzeichnet, dass der RC-Tiefpassfilter von der Gate-Source-Kapazität des ersten organischen Feldeffekttransistors (38) der Verstärkerschaltung gebildet ist.
  6. Elektronikbaugruppe (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Filterbaugruppe (5, 72, 73, 74) mehrere organische Bauelemente (T) aufweist, die derart verschaltet sind, dass die Filterbaugruppe (5, 72, 73, 74) den Pegel des am Eingang (53) anliegenden Signals nur zu bestimmten, durch ein separates Taktsignal (81, 82, 83) vorgegebenen Zeitpunkten an den Ausgang (55) übernimmt und für die übrige Zeit den letzten vorgegangenen Pegel am Ausgang (55) beibehält, wobei das separate Taktsignal (81, 82, 83) gegenüber dem Takt des am Eingang (53) anliegenden Signals phasenverschoben ist.
  7. Elektronikbaugruppe (10) nach Anspruch 6, dadurch gekennzeichnet, dass die Phasenverschiebung des separaten Taktsignals (81, 82, 83) gegenüber dem Takt des am Eingang (53) anliegenden Signals zwischen 90 und 270° beträgt, vorzugsweise etwa 180° beträgt.
  8. Elektronikbaugruppe (10) nach Anspruch 6 oder Anspruch 7, dadurch gekennzeichnet, dass die Phasenverschiebung so gewählt ist, dass die durch unterschiedliche Signallaufzeiten in den organischen Bauelementen der vorgehenden Logik-Schaltelemente (21) erzeugten Störimpulse um mindestens 0,2 Periodenlängen von dem Übernahmezeitpunkt beabstandet sind.
  9. Elektronikbaugruppe (7) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Elektronikbaugruppe (7) einen aus organischen Feldeffekt-Transistoren aufgebauten Ringoszillator (75) aufweist, der das separate Taktsignal (81, 82, 83) für die Filterbaugruppe (72, 73, 74) bereit stellt.
  10. Elektronikbaugruppe nach Anspruch 9, dadurch gekennzeichnet, dass der Ringoszillator (75) das separate Taktsignal (81, 82, 83) für zwei oder mehr Filterbaugruppen (72, 73, 74) bereit stellt.
  11. Elektronikbaugruppe (7) nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, dass der Ringoszillator (75) das Taktsignal (80) für die Logik-Schaltung (71) bereit stellt.
  12. Elektronikbaugruppe (7) nach Anspruch 11, dadurch gekennzeichnet, dass der Ringoszillator (75) mehrere ringförmig hintereinander verschaltete organische Schaltelemente (76) aufweist, dass am Ausgang eines ersten der Schaltelemente (76) das Taktsignal (80) für die Logikstichschaltung (71) entnommen ist und dass am Ausgang eines zweiten, dem ersten Schaltelement nachfolgenden Schaltelements (76) das separate Taktsignal (81, 82, 83) für die Filterbaugruppe (72, 73, 74) entnommen ist.
  13. Elektronikbaugruppe (7) nach Anspruch 12, dadurch gekennzeichnet, dass das zweite Schaltelement (76) an dessen Ausgang der Abgriff des separaten Taktsignal (81, 82, 83) erfolgt, aus der Anzahl der der Filterbaugruppe (72, 73, 74) vorangehenden Logik-Schaltelemente bestimmt ist.
  14. Elektronikbaugruppe nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass das Eingangs-Taktsignal der Logik-Schaltung ein oder mehreren seriell geschalteten Verzögerungsbauteilen zugeführt ist, die ausgangsseitig mit der Filterbaugruppe verbunden sind und das verzögerte Eingangs-Taktsignal der Filterbaugruppe als separates Taktsignal zuführen.
  15. Elektronikbaugruppe (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Filterbaugruppe (22) mit dem Ausgang eines Logik-Schaltelements (21) verbunden ist, das mehrere über unterschiedliche Zweige der Logik-Schaltung (29) generierte binäre Eingangssignale miteinander logisch zu einem Ausgangssignal verknüpft.
  16. Elektronikbaugruppe (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass sowohl der Eingang als auch der Ausgang der Filterbaugruppe mit einem organischen Logik-Schaltelement verbunden ist.
  17. Elektronikbaugruppe (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass der Ausgang der Filterbaugruppe mit einem Ausgang der Logik-Schaltung verbunden ist.
  18. Elektronikbaugruppe (10, 7) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Logik-Schaltung (2, 71) zwei oder mehr Filterbaugruppen (22, 72, 73, 74) aufweist.
  19. Elektronikbaugruppe (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Elektronikbaugruppe ein RFID- Transponder ist.
  20. Elektronikbaugruppe nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Elektronikbaugruppe ein flexibles Folienelement ist, das als Sicherungselement insbesondere für Wertdokumente und Ware dient.
DE102005009820A 2005-03-01 2005-03-01 Elektronikbaugruppe mit organischen Logik-Schaltelementen Ceased DE102005009820A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102005009820A DE102005009820A1 (de) 2005-03-01 2005-03-01 Elektronikbaugruppe mit organischen Logik-Schaltelementen
EP06707103A EP1854214B1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik-schaltelementen
US11/817,258 US7589553B2 (en) 2005-03-01 2006-02-21 Electronic module with organic logic circuit elements
AT06707103T ATE505848T1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik- schaltelementen
DE502006009297T DE502006009297D1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik-schaltelementen
PCT/EP2006/001523 WO2006092216A1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik-schaltelementen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005009820A DE102005009820A1 (de) 2005-03-01 2005-03-01 Elektronikbaugruppe mit organischen Logik-Schaltelementen

Publications (1)

Publication Number Publication Date
DE102005009820A1 true DE102005009820A1 (de) 2006-09-07

Family

ID=36649451

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005009820A Ceased DE102005009820A1 (de) 2005-03-01 2005-03-01 Elektronikbaugruppe mit organischen Logik-Schaltelementen
DE502006009297T Active DE502006009297D1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik-schaltelementen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502006009297T Active DE502006009297D1 (de) 2005-03-01 2006-02-21 Elektronikbaugruppe mit organischen logik-schaltelementen

Country Status (5)

Country Link
US (1) US7589553B2 (de)
EP (1) EP1854214B1 (de)
AT (1) ATE505848T1 (de)
DE (2) DE102005009820A1 (de)
WO (1) WO2006092216A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
US9722648B2 (en) * 2011-03-01 2017-08-01 Nxp Usa, Inc. Integrated circuit device, electronic device and method for frequency detection
DE102017115887A1 (de) * 2017-07-14 2019-01-17 Schölly Fiberoptic GmbH Endoskopieanordnung mit galvanischer Trennung und zugehöriges Verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048341A1 (en) * 2000-05-29 2001-12-06 Stmicroelectronics Ltd. Programmable glitch filter
WO2003081621A1 (en) * 2002-03-27 2003-10-02 N.C.E. Electrical (S) Pte Ltd Power outlet device
WO2003081671A2 (de) * 2002-03-21 2003-10-02 Siemens Aktiengesellschaft Logische bauteile aus organischen feldeffekttransistoren

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) 1973-10-12 1979-02-24
DE2407110C3 (de) 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor zum Nachweis einer in einem Gas oder einer Flüssigkeit einthaltenen Substanz
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4246298A (en) 1979-03-14 1981-01-20 American Can Company Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application
US4340057A (en) 1980-12-24 1982-07-20 S. C. Johnson & Son, Inc. Radiation induced graft polymerization
US4554229A (en) 1984-04-06 1985-11-19 At&T Technologies, Inc. Multilayer hybrid integrated circuit
EP0239808B1 (de) 1986-03-03 1991-02-27 Kabushiki Kaisha Toshiba Strahlungsdetektor
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
FI84862C (fi) 1989-08-11 1992-01-27 Vaisala Oy Kapacitiv fuktighetsgivarkonstruktion och foerfarande foer framstaellning daerav.
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FR2664430B1 (fr) 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
DE59105477D1 (de) 1991-10-30 1995-06-14 Fraunhofer Ges Forschung Belichtungsvorrichtung.
JP2709223B2 (ja) 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
JP3457348B2 (ja) 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
WO1995006240A1 (en) 1993-08-24 1995-03-02 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (ja) 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
CN1106696C (zh) 1994-05-16 2003-04-23 皇家菲利浦电子有限公司 带有有机半导体材料的半导体器件
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
JP2914287B2 (ja) * 1996-03-08 1999-06-28 日本電気株式会社 Pll回路
DE19629656A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
JPH1070441A (ja) * 1996-08-27 1998-03-10 Mitsubishi Electric Corp 半導体装置
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5946551A (en) 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100248392B1 (ko) 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
EP0968537B1 (de) 1997-08-22 2012-05-02 Creator Technology B.V. Feld-effekt-transistor, der im wesentlichen aus organischen materialien besteht
ES2199705T1 (es) 1997-09-11 2004-03-01 Prec Dynamics Corp Transpondor de identificacion con circuito integrado consistente de materiales organicos.
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
WO1999030432A1 (en) 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
AU739848B2 (en) 1998-01-28 2001-10-18 Thin Film Electronics Asa A method for generation of electrical conducting or semiconducting structures in three dimensions and methods for erasure of the same structures
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
JPH11249494A (ja) 1998-03-03 1999-09-17 Canon Inc ドラムフランジ、円筒部材、プロセスカートリッジ、電子写真画像形成装置
US6033202A (en) 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
CA2323879C (en) 1998-04-10 2007-01-16 E Ink Corporation Electronic displays using organic-based field effect transistors
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
PT1108207E (pt) 1998-08-26 2008-08-06 Sensors For Med & Science Inc Dispositivos de sensores ópticos
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
JP2000174616A (ja) * 1998-12-04 2000-06-23 Fujitsu Ltd 半導体集積回路
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
DE60035078T2 (de) 1999-01-15 2008-01-31 3M Innovative Properties Co., St. Paul Herstellungsverfahren eines Donorelements für Übertragung durch Wärme
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
WO2000052457A1 (en) 1999-03-02 2000-09-08 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
US6366017B1 (en) * 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
EP1085320A1 (de) 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw Vorrichtung auf Basis von organischem Material zur Erfassung eines Probenanalyts
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
BR0016670A (pt) * 1999-12-21 2003-06-24 Plastic Logic Ltd Métodos para formar um circuito integrado e para definir um circuito eletrônico, e, dispositivo eletrônico
JP2002162652A (ja) 2000-01-31 2002-06-07 Fujitsu Ltd シート状表示装置、樹脂球状体、及びマイクロカプセル
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
TW497120B (en) 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
JP3614747B2 (ja) 2000-03-07 2005-01-26 Necエレクトロニクス株式会社 昇圧回路、それを搭載したicカード及びそれを搭載した電子機器
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
JP2004506985A (ja) * 2000-08-18 2004-03-04 シーメンス アクチエンゲゼルシヤフト 封入された有機電子構成素子、その製造方法および使用
DE10043204A1 (de) 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10044842A1 (de) * 2000-09-11 2002-04-04 Siemens Ag Organischer Gleichrichter, Schaltung, RFID-Tag und Verwendung eines organischen Gleichrichters
DE10045192A1 (de) 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
KR20020036916A (ko) 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
GB2371910A (en) * 2001-01-31 2002-08-07 Seiko Epson Corp Display devices
JP3784271B2 (ja) * 2001-04-19 2006-06-07 松下電器産業株式会社 半導体集積回路とこれを搭載した非接触型情報媒体
JP2003089259A (ja) * 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) * 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6679036B2 (en) * 2001-10-15 2004-01-20 Shunchi Crankshaft Co., Ltd. Drive gear shaft structure of a self-moving type mower
US6812509B2 (en) * 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) * 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating
US7088145B2 (en) * 2002-12-23 2006-08-08 3M Innovative Properties Company AC powered logic circuitry
US6989697B2 (en) * 2004-01-15 2006-01-24 Organicid, Inc. Non-quasistatic phase lock loop frequency divider circuit
US7406297B2 (en) * 2005-05-30 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Clock generation circuit and semiconductor device provided therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048341A1 (en) * 2000-05-29 2001-12-06 Stmicroelectronics Ltd. Programmable glitch filter
WO2003081671A2 (de) * 2002-03-21 2003-10-02 Siemens Aktiengesellschaft Logische bauteile aus organischen feldeffekttransistoren
WO2003081621A1 (en) * 2002-03-27 2003-10-02 N.C.E. Electrical (S) Pte Ltd Power outlet device

Also Published As

Publication number Publication date
US20080204069A1 (en) 2008-08-28
US7589553B2 (en) 2009-09-15
EP1854214B1 (de) 2011-04-13
ATE505848T1 (de) 2011-04-15
EP1854214A1 (de) 2007-11-14
DE502006009297D1 (de) 2011-05-26
WO2006092216A1 (de) 2006-09-08

Similar Documents

Publication Publication Date Title
DE3708499A1 (de) Digitale gegentakt-treiberschaltung
DE2657948B2 (de) Logikschaltung
EP0591561B1 (de) Integrierte Schaltung zur Erzeugung eines Reset-Signals
DE4135528A1 (de) Tristate-treiberschaltung
DE3429309A1 (de) Elektronische dateneingabe-tastatur mit galvanische kontakte aufweisenden tasten
DE102005009820A1 (de) Elektronikbaugruppe mit organischen Logik-Schaltelementen
DE3842288A1 (de) Schaltungsanordnung zur erzeugung einer konstanten bezugsspannung
DE19529625C2 (de) Spannungsgesteuerter Oszillator
DE102007051648A1 (de) Pegelschieberschaltung
EP0735493B1 (de) Bus-Treiberschaltung
DE2435454A1 (de) Dynamischer binaerzaehler
DE102005009819A1 (de) Elektronikbaugruppe
DE3741029C2 (de)
EP0142182B1 (de) Schaltungsanordnung zum Umwandeln eines digitalen Eingangssignals in ein analoges Ausgangssignal
EP0748047A1 (de) Integrierte Pufferschaltung
DE102005024955A1 (de) Signalpegelumsetzungsschaltung zur Signalpegelverschiebung eines Logiksignals
DE2657169C3 (de) Anordnung zur Unterdrückung von positiven und negativen Störimpulsen einer bestimmten Breite
EP2068447B1 (de) Elektronikbaugruppe mit organischen Schaltelementen
DE102005050624B4 (de) CMOS-Pufferschaltung und Verwendung derselben
WO2009065791A1 (de) System zum abgleichen, einstellen und/oder programmieren von elektronischen geräten, insbesondere messgeräten, welche sensoren aufweisen, sowie schaltungsanordnung zum abgleichen, einstellen oder programmieren von elektronischen elementen, wie digitalen potentiometern
DE4427015C1 (de) Schaltungsanordnung zur Störsignalunterdrückung
DE19841757C1 (de) Schaltungsanordnung zur Anpassung des Ausgangssignals eines Ausgangstreibers an die gegebenen Verhältnisse
DE19922079C1 (de) Elektrischer Schaltkreis
DE112008000041B4 (de) Integrierter Schaltkreis
DE2341699C3 (de) Integrierte MOS-Halbleiterschaltung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: POLYIC GMBH & CO. KG, 91052 ERLANGEN, DE

8127 New person/name/address of the applicant

Owner name: POLYIC GMBH & CO.KG, 90763 FUERTH, DE

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20130416