DE102007018123A1 - Method for producing a structural component from an aluminum-based alloy - Google Patents

Method for producing a structural component from an aluminum-based alloy Download PDF

Info

Publication number
DE102007018123A1
DE102007018123A1 DE102007018123A DE102007018123A DE102007018123A1 DE 102007018123 A1 DE102007018123 A1 DE 102007018123A1 DE 102007018123 A DE102007018123 A DE 102007018123A DE 102007018123 A DE102007018123 A DE 102007018123A DE 102007018123 A1 DE102007018123 A1 DE 102007018123A1
Authority
DE
Germany
Prior art keywords
starting material
aluminum
scandium
alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102007018123A
Other languages
German (de)
Other versions
DE102007018123B4 (en
Inventor
Frank Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apworks GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Priority to DE102007018123A priority Critical patent/DE102007018123B4/en
Priority to PCT/DE2008/000616 priority patent/WO2008125092A1/en
Publication of DE102007018123A1 publication Critical patent/DE102007018123A1/en
Application granted granted Critical
Publication of DE102007018123B4 publication Critical patent/DE102007018123B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Die vorliegende Erfindung betrifft ein Rapid-Prototyping-Verfahren zur Herstellung eines Strukturbauteiles aus einer Aluminiumbasislegierung, wobei ein Ausgangswerkstoff von einer Wärmequelle punktweise aufgeschmolzen und unmittelbar danach wieder erstarren gelassen wird, wobei als Ausgangswerkstoff eine Aluminium-Scandium-Legierung mit einem Scandium(Sc)-Anteil von mindestens 0,4 Gew.-% verwendet wird.The present invention relates to a rapid prototyping method for producing a structural component from an aluminum-based alloy, wherein a starting material is melted pointwise by a heat source and allowed to solidify immediately thereafter, using as starting material an aluminum scandium alloy with a scandium (Sc). Proportion of at least 0.4 wt .-% is used.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Strukturbauteils aus einer Aluminiumbasislegierung mittels Rapid-Prototyping, wobei ein Ausgangswerkstoff von einer Wärmequelle lokal aufgeschmolzen wird und unmittelbar danach wieder schnell erstarrt, um somit lagenweise ein Bauteil mit gewünschter Endkontur aufzubauen.The The invention relates to a method for producing a structural component from an aluminum-based alloy by means of rapid prototyping, wherein a source material from a heat source locally melted and immediately afterwards solidifies again quickly, in layers to build a component with the desired final contour.

Erfindungsgemäß wird als Ausgangswerkstoff eine Aluminium-Scandium-Legierung für die Herstellung sogenannter „Rapid-Prototyping (RP)"-Bauteile verwendet. Darunter sind solche Bauteile zu verstehen, die ohne „Umwege", d. h. ohne weitere thermo-mechanische Prozessschritte, direkt und mit der gewünschten Endkontur hergestellt werden und derart belastbar sind, dass sie die mechanisch-technologischen Funktionen „normal" hergestellter Bauteile übernehmen können. Diese direkte Bauteilgenerierung ist in der Fachwelt unter einer Vielzahl von Namen oder Bezeichnungen bekannt – „direkt metal sintering" (DMS), „powder metal sintering", „laser assisted metal sintering, „fusing" oder „near net shaping", „solid free form fabrication (SF3)" etc. – was nachstehend ganz allgemein als „Rapid-Prototyping" bezeichnet wird. Bei der Herstellung höherer Stückzahlen wird in jüngster Zeit auch oft der Begriff „Rapid Manufacturing" verwendet. Im Folgenden soll jedoch lediglich der Begriff „Rapid-Prototyping" verwendet werden, was jedoch keinerlei einschränkend, beispielsweise auf eine nur geringe Stückzahl, zu verstehen ist.According to the invention, an aluminum-scandium alloy is used as the starting material for the production of so-called "rapid prototyping (RP)" components, which are to be understood as meaning components which, without "detours", ie without further thermo-mechanical process steps, directly and with The desired final contour can be produced and can be loaded in such a way that they can take on the mechanical-technological functions of "normally" produced components.This direct component generation is known in the art under a multiplicity of names or designations - "direct metal sintering" (DMS). "Powder metal sintering", "laser assisted metal sintering", "fusing" or "near net shaping", "solid free form fabrication (SF 3 )" etc. - which is generally referred to below as "rapid prototyping" In recent years, the term "rapid manufacturing" is often used to produce larger quantities. In the following, however, only the term "rapid prototyping" is to be used, but this is not meant to be limiting, for example to a small number of items.

Überall, wo sehr schnell oder unter hohem Zeitdruck Unikate bzw. hoch belastbare Bauteile für eine (Neu)Konstruktion gebraucht werden, sind solche direkten Produktgenerierungsverfahren von sehr großem Interesse. Neben Neukonstruktionen sind aber auch Reparaturen, oftmals sehr alter Bauteile, für welche keinerlei Fertigungs- und Vorrichtungsmittel mehr existieren, für die oben beschriebenen RP-Methoden ausgesprochen wichtig, da sonst schnelle und kostengünstige Reparaturen solcher Bauteile oder Komponenten nicht möglich wären.All over, where very fast or under high time pressure unique or highly resilient Components for a (new) construction are needed such direct product generation methods of very large Interest. In addition to new constructions are also repairs, often very old components, for which no manufacturing and Device means exist for the above-described RP methods extremely important, otherwise fast and inexpensive Repairs of such components or components not possible would.

Den oben genannten RP-Verfahren ist gemein, dass der Bauteil- bzw. RP-Werkstoff durch eine, in der Regel von einem CNC-Programm gesteuerten Wärmequelle (z. B. einem Laser oder einem Elektronenstrahl) lokal aufgeschmolzen wird und sofort danach wieder erstarrt. So wird inkrementell, dem CNC-Programm folgend, die 3-dimensionale Bauteilgeometrie mehr oder minder Punkt für Punkt bzw. Schritt für Schritt schichtweise bzw. lagenweise aufgebaut. Durch das Aufschmelzen und Erstarren besitzt das RP-Bauteil global betrachtet eine Gussstruktur, welche jedoch durch die hohe örtlich wirkende Abkühlgeschwindigkeit viel feinkörniger ist, als die Gussstruktur, die man in komplett in einem Durchgang gegossenen Bauteilen finden würde.The The aforementioned RP method has in common that the component or RP material by a heat source, usually controlled by a CNC program (For example, a laser or an electron beam) locally melted and solidifies immediately afterwards. This is how incremental, the CNC program following, the 3-dimensional component geometry more or less point for point or step by step in layers or in layers. By the melting and solidification the RP component has globally considered a cast structure, which however, by the high local cooling rate is much finer-grained, than the cast structure, which one in completely in one pass cast components would find.

Seit Mitte der 90-iger Jahre des letzten Jahrhunderts wird intensiv an der Methode des „direkten Aufbaus" von metallischen Strukturen durch das lokale Aufschmelzen und Erstarren eines Ausgangswerkstoffes gearbeitet. So hat die Firma AEROMET (Minnesota, USA) mittels CO2-Laser und der Zugabe von Titan-Legierungspulver rechnergestützt Bauteil für den Flugzeugbau hergestellt. Diese prinzipielle Vorgehensweise wurde von vielen anderen Firmen nachvollzogen, wobei einzelne Elemente des Prozesses verändert wurden.Since the mid-90s of the last century, intensive work has been done on the method of "directly building up" metallic structures through the local melting and solidification of a starting material, such as AEROMET (Minnesota, USA) using CO 2 lasers and the Addition of Titanium Alloy Powder Computer-aided Manufactured component for aircraft construction This principle procedure was followed by many other companies, whereby individual elements of the process were changed.

Des Weiteren ist bekannt, dass in der Kunststoff-Spritzgusstechnik die Spritzformen aus legiertem Stahl, gerade zu Beginn in der schwierigen Prototypenphase, oftmals ebenfalls direkt aus Stahlpulvern (mit Hilfe eines Laserstrahls) aufgebaut (gesintert) werden, um schnell erste Tests ausführen zu können. Hier tummelt sich mittlerweile eine Vielzahl von Firmen bzw. Anwendern auf dem Markt, welche als Anlagentechnik zum Teil Eigenkonstruktionen benutzen oder auch kommerziell verfügbare Systemen kaufen.Of Furthermore, it is known that in plastic injection molding the Alloy steel injection molds, just starting in the difficult Prototype phase, often also directly from steel powders (with Help of a laser beam) can be built up (sintered) to fast to be able to carry out the first tests. Here you are Meanwhile, a large number of companies or users on the Market, which use as systems engineering partly own constructions or buy commercially available systems.

Die Anwendung des direkten Laser-Sinterns (DLS) auf hoch belastete Bauteile aus Al-Legierungen steckt noch in den Anfängen. Einerseits ist die Verfahrenstechnik schwierig (wie vom Schweißen her bekannt, neigen Al-Legierungen unerwünschterweise zur Poren- als auch zur Erstarrungsheißrissbildung, wodurch Legierungsauswahl und Prozessfenster eingegrenzt sind), andererseits sind die Festigkeitseigenschaften nicht ausreichend, um eine Substitution eines hoch belasteten Standardbauteils (z. B. aus dem Vollen gefrässt) zuzulassen.The Application of direct laser sintering (DLS) to heavily loaded components Al alloys are still in their infancy. On the one hand the process technology is difficult (as from welding Al alloys are undesirably prone to pore formation. as well as to the solidification hot cracking, thereby alloy selection and process windows are limited), on the other hand, the strength properties insufficient to substitute a heavily loaded standard component (eg, eaten whole).

So erfordern beispielsweise Al-Motorkomponenten (in Standardmotoren, aber auch im Motorsport), gefertigt über eine etablierte Prozesskette (Gießen, Schmieden und Zerspanen oder als reine Gussbauteile), Festigkeitsprofile von 250 MPa < Rm < 350 MPa, 150 MPa < Rpo,2 < 300 MPa und 3% < A5 < 10%. Zur Erfüllung solcher Forderungen sind werkstofftechnisch mehrere Schritte, beginnend mit dem Abguss, einer Löseglühung bei einer Temperatur größer 450°C, gefolgt vom Abschrecken in Wasser, was bekanntlich Verzugsprobleme mit sich bringt, und einer nachträglichen Warmauslagerung nötig.So For example, Al engine components (in standard engines, but also in motorsport), manufactured over an established Process chain (casting, forging and machining or as pure cast components), strength profiles of 250 MPa <Rm <350 MPa, 150 MPa <Rpo, 2 <300 MPa and 3% <A5 <10%. To fulfillment Such requirements are material technically several steps, starting with the casting, a annealing at a temperature greater than 450 ° C, followed by quenching in water, which is known to cause delay problems, and a subsequent heat aging necessary.

Im Motorbau, aber auch für andere Komponenten, werden seit vielen Jahren vorzugsweise AlSi7-12Mgxyz-Legierungen verwendet. Würde man diese Werkstoffe in Form von Pulver oder Draht zur direkten Bauteilgenerierung einsetzen (dies geschieht bisweilen), so lägen die erzielbaren Festigkeiten mit Rm < 250 MPa und Rpo,2 < 150 MPa sowie einer Dehnung < 10% so niedrig, dass ein direkter Einsatz im angestrebten Produkt nicht sinnvoll erscheint. Auch eine anschließende Warmauslagerung in einem Temperaturbereich von 100°C bis 250°C würde die Festigkeitseigenschaften nur unwesentlich verbessern.In engine construction, but also for other components, AlSi7-12Mgxyz alloys have been used for many years. If these materials were used in the form of powder or wire for direct component generation (this sometimes happens), the achievable strengths with Rm <250 MPa and Rpo, 2 <150 MPa and an elongation <10% would be so low that a direc The use in the desired product does not seem sensible. A subsequent thermal aging in a temperature range of 100 ° C to 250 ° C would improve the strength properties only slightly.

Einzig die schon zuvor angesprochene komplette Fertigungskette (Löseglühung, Abschrecken etc.) würde die Festigkeit deutlich verbessern.Only the previously mentioned complete production chain (annealing annealing, Quenching, etc.) would significantly improve the strength.

Andere Al-Werkstoffsysteme, die bisweilen zur Herstellung von Gussbauteilen verwendet werden, wie zum Beispiel AlZnMgxyz- oder AlCuxyz-Legierungen, eignen sich ebenfalls nur bedingt zum direkten Generieren von Bauteilen, da ihre Festigkeitseigenschaften aus konstruktiver Sicht unbefriedigend sind. Sie sind zudem korrosionsempfindlich und haben generell eine große Neigung zur Bildung von Erstarrungsheißrissen.Other Al material systems, sometimes for the production of cast components used, such as AlZnMgxyz or AlCuxyz alloys, are also only partially suitable for the direct generation of components, because their strength properties are unsatisfactory from a structural point of view. They are also sensitive to corrosion and generally have a large Tendency to form solidification cracks.

Somit besteht der Nachteil der bisher bekannten RP-Verfahren darin, dass die erreichbare Festigkeit der geschaffenen Strukturbauteile im Regelfall nicht ausreichend ist, um die entstandenen Strukturbauteile unmittelbar ihrer Verwertung zuführen zu können. Vielmehr müssen die Strukturbauteile meist einem Lösungsglühen – je nach Legierungszusammensetzung (Temperaturen höher als 450°C) – einem nachfolgenden Abschrecken und einer nachträglichen Warmauslagerung unterzogen werden, um Gefüge zu erreichen, die die geforderten Festigkeitseigenschaften aufweisen. Besonders beim Abschrecken tritt dann aber das Problem des Verzugs (und ungleichmäßig verteilter Eigenspannungen) auf, wodurch das Verfahren, dessen Ziel ja darin besteht, unmittelbar konturtreue Bauteile zu erhalten, infragegestellt wird.Consequently the disadvantage of the previously known RP methods is that the achievable strength of the created structural components in As a rule, it is not sufficient for the resulting structural components to be able to use it immediately. Rather, the structural components usually have a solution annealing - ever according to alloy composition (temperatures higher than 450 ° C) - a subsequent quenching and a subsequent heat aging are subjected to microstructure to achieve that have the required strength properties. Especially when quenching occurs but then the problem of delay (and unevenly distributed residual stresses) through which the process, the aim of which is therein, is immediate To obtain contoured components is questioned.

Die Aufgabe der vorliegenden Erfindung besteht demnach darin, ein Verfahren zur Herstellung von konturgetreuen Strukturbauteilen aus Aluminiumbasislegierung anzugeben, mit dem Festigkeitseigenschaften erzielbar sind, die eine direkte bestimmungsgemäße Verwendung des generierten Strukturbauteils zulassen.The It is therefore an object of the present invention to provide a method for the production of conformal structural components made of aluminum-based alloy specify with the strength properties are achievable, the a direct intended use of the Allow generated structural part.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass in einem RP-Prozess, wobei ein Ausgangstoff aufgeschmolzen wird und unmittelbar danach wieder schnell erstarrt, um ein Bauteil mit gewünschter Endkontur lagenweise aufzubauen, als Ausgangswerkstoff eine Aluminium-Scandium-Legierung verwendet wird, deren Scandium (Sc)-Gehalt bei mindestes 0,4 Gew.-% liegt. Vorzugsweise liegt der Scandium (Sc)-Gehalt zwischen 0,41 Gew.-% und 2,0 Gew-%, besonders bevorzugt zwischen 0,8 Gew.-% und 1,4 Gew.-%.According to the invention solves this problem by providing, in an RP process, wherein a starting material is melted and immediately thereafter quickly solidifies again to a component with the desired Build up final contour layer by layer, as starting material an aluminum scandium alloy whose scandium (Sc) content is at least 0.4% by weight lies. Preferably, the scandium (Sc) content is between 0.41 Wt .-% and 2.0 wt%, more preferably between 0.8 wt .-% and 1.4% by weight.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist der Ausgangswerkstoff, also die Aluminium-Scandium-Legierung, zusätzlich das Element Magnesium auf und zwar im Bereich von 2,0 Gew.-% bis 10 Gew.-%. Die Magnesium (Mg)-Zulegierung liegt besonders bevorzugt zwischen 3,0 Gew.-% und 6,0 Gew.-% bzw. zwischen 4,0 Gew.-% und 5,0 Gew.-%.at a preferred embodiment of the invention Method, the starting material, so the aluminum scandium alloy, in addition the element magnesium in the range of 2.0 wt .-% to 10% by weight. The magnesium (Mg) alloy is more preferably intermediate 3.0 wt .-% and 6.0 wt .-% and between 4.0 wt .-% and 5.0 wt .-%.

Es hat sich gezeigt, dass erfindungsgemäß hergestellte Strukturbauteile aus Aluminium-Scandium-Ausgangswerkstoffen oder Aluminium-Magnesium-Scandium-Ausgangswerkstoffen der voranstehend spezifizierten Zusammensetzung hervorragende Materialeigenschaften aufweist, die ein direktes Verwenden des generierten Strukturbauteils zulassen. Die inhärent hohen Abkühlgeschwindigkeiten des RP-Verfahrens ermöglichen es, hohe Festigkeiten, hohe Streckgrenzen, hervorragendes Korrosionsverhalten sowie eine sehr gute Schweißbarkeit zu erzielen. Erfindungsgemäß hergestellte RP-Strukturbauteile weisen typischerweise eine Zugfestigkeit (Rm) von mehr als 300 MPa und eine Streckgrenze (Rpo.2) von mehr als 200 MPa sowie eine Bruchdehnung (A5) von über 10% auf.It has been shown that produced according to the invention Structural components made of aluminum scandium starting materials or Aluminum magnesium scandium starting materials of the above specified composition excellent material properties comprising directly using the generated structural component allow. The inherently high cooling rates of RP process make it possible to achieve high strengths, high yield strengths, excellent corrosion behavior and a very good weldability to achieve. RP structural components produced according to the invention typically have a tensile strength (Rm) of greater than 300 MPa and a yield strength (Rpo.2) of more than 200 MPa and an elongation at break (A5) of over 10%.

Zwar sind aus dem Stand der Technik Aluminiumwerkstoffsysteme mit Scandium und Magnesium bekannt (vergleiche US 3 619 181 , DE 100 248 594 A1 , US 625831881 ), jedoch werden die dort offenbarten Aluminiumwerkstoffsysteme mit Scandium bzw. Magnesium nur für Standardbleche verwendet. Ein Hinweis zur Verwendung solcher Werkstoffsysteme im Zusammenhang mit der direkten Bauteilgenerierung mittels Rapid-Prototyping-Verfahren, wie zum Beispiel dem direkten Metallsintern, findet sich nicht. Im Gegensatz dazu wird im Stand der Technik (vergleiche EP 0 918 095 A1 oder auch US 6 139 653 ) nur offenbart, Aluminium-Scandium-Werkstoffsysteme oder Aluminium-Magnesium-Scandium-Werkstoffsysteme für Feinguss oder auch Walzverfahren zu verwenden. Der entscheidende Vorteil, der durch die erfindungsgemäße Anwendung solcher an sich bekannten Werkstoffsysteme entsteht, ergibt sich durch die Kombination dieser Werkstoffsysteme mit dem RP-Verfahren und macht auf diese Weise das direkte Metallsintern von hochbelastbaren Strukturbauteilen aus Aluminiumlegierung möglich. Dabei wird auch der Umstand genutzt, dass das Aufschmelzen des Ausgangswerkstoffs gefolgt wird von einer Erstarrung mit nachfolgender schneller Abkühlung, auf Temperaturen < 350°C, da die freiwerdende Schmelzwärme problemlos in den Bauteilhalter (auf dem das Strukturbauteil aufgebaut wird) oder in das aufwachsende Strukturbauteil selbst abfließen kann.Although aluminum material systems with scandium and magnesium are known from the prior art (cf. US Pat. No. 3,619,181 . DE 100 248 594 A1 . US 625831881 ), however, the aluminum material systems disclosed there with scandium or magnesium are used only for standard metal sheets. An indication of the use of such material systems in connection with the direct component generation by means of rapid prototyping methods, such as direct metal sintering, is not found. In contrast, in the prior art (see EP 0 918 095 A1 or US 6,139,653 ) only discloses using aluminum scandium material systems or aluminum-magnesium-scandium material systems for precision casting or even rolling processes. The decisive advantage that results from the use according to the invention of such known material systems results from the combination of these material systems with the RP method and makes possible in this way the direct metal sintering of heavy-duty structural components made of aluminum alloy. It also uses the fact that the melting of the starting material is followed by solidification with subsequent rapid cooling to temperatures <350 ° C, since the released heat of fusion easily in the component holder (on which the structural component is built) or in the growing structural component can drain itself.

Die Attraktivität des erfindungsgemäßen Verfahrens kann dadurch gesteigert werden, dass gemäß einer weiteren Ausbildung der Erfindung, dem Ausgangswerkstoff solche zusätzlichen Legierungselemente beigefügt sind, die sich komplementär oder substitutiv zu Scandium verhalten, insbesondere Zr, Ti, Ta, Hf, Y, Er. Der Metallurge kennt alle diese Elemente als so genannte Dispersoide bildende Elemente (in der Regel in der stöchiometrischen Form Al3X), die zur Gefügeausbildung, thermo-mechanischen Gefügestabilisierung und Festigkeitssteigerung verwendet werden. Typischerweise liegt der Anteil dieser Disersoide bildenden Elemente pro Element bei maximal 2,0 Gew.-% und in Summe bei maximal 3,0 Gew.-%. Besonders bevorzugt liegt der Anteil der zu Skandium komplementären oder substituiven Elemente in Summe nicht über 0,8 Gew.-%.The attractiveness of the method according to the invention can be increased by the fact that according to a further embodiment of the invention, the starting material is accompanied by such additional alloying elements which behave complementarily or substitutively to scandium, in particular Zr, Ti, Ta, Hf, Y, Er. The metallurgist knows all these elements as so-called dispersoid-forming elements (usually in the stoichiometric form Al 3 X), which are used for microstructure, thermo-mechanical microstructural stabilization and strength enhancement. Typically, the proportion of these di-isoide-forming elements per element at a maximum of 2.0 wt .-% and a total of at most 3.0 wt .-%. Particularly preferably, the proportion of scandium-complementary or substituted elements in total is not more than 0.8 wt .-%.

Für das Werkstoffsystem Aluminium-Magnesium-Scandium eignen sich als weitere Legierungsbestandteile, je nach den gewünschten mechanisch technologischen Eigenschaften, die Elemente Zn, Mn, Ag, Li, Cu, Si, Fe wobei der Anteil dieser zusätzlichen Legierungselemente pro Element 0,05 Gew.-% bis 2,0 Gew.-% betragen kann.For the material system aluminum-magnesium-scandium are suitable as other alloy components, depending on the desired mechanical technological properties, the elements Zn, Mn, Ag, Li, Cu, Si, Fe wherein the proportion of these additional alloying elements may be from 0.05% to 2.0% by weight per element.

Herstellungsbedingt weisen die verwendeten Aluminium-Scandium-Legierungen bzw. Aluminium-Magnesium-Scandium-Legierungen bekanntlich Verunreinigungen anderer Elemente auf, deren Gehalt einzeln maximal 0,5 Gew.-% und in Summe nicht mehr als 1,0 Gew.-% beträgt.the preparation, have the aluminum scandium alloys or aluminum-magnesium-scandium alloys used It is known that impurities of other elements, their content individually not more than 0.5% by weight and in total not more than 1.0% by weight is.

Zudem können dem Ausgangswerkstoff vor oder während des RP-Pozesses weitere Beimischungen aus metallischen oder nicht metallischen (z. B. keramische) Materialien (z. B. als Pulver) zugesetzt werden.moreover can the source material before or during of the RP process further admixtures of metallic or not metallic (eg ceramic) materials (eg as a powder) added become.

Im Regelfall wird beim erfindungsgemäßen Verfahren der Ausgangswerkstoff in Form von Pulver oder Draht bereitgestellt. Die Kombination des Werkstoffsystems AlMgSc mit dem direkten Metallsintern zeigt jedoch auch sehr gute Ergebnisse des erzeugten Strukturbauteils, wenn der Ausgangswerkstoff vor dem Aufschmelzen, was in einer weiteren Ausbildung der Erfindung vorgeschlagen wird, als gesintertes, gegossenes oder extrudiertes Formteil vorliegt.in the Normally, in the method according to the invention the starting material is provided in the form of powder or wire. The combination of the material system AlMgSc with direct metal sintering shows but also very good results of the structural component produced, if the starting material before melting, resulting in another Forming the invention is proposed as a sintered, cast or extruded molding.

Zum Aufschmelzen des Ausgangswerkstoffes ist eine Vielzahl von Möglichkeiten gegeben. Üblicherweise erfolgt dies durch einen Laserstahl, einen Elektronenstrahl oder einen Lichtbogen. Es kann aber auch eine chemische, exotherme Reaktion verwendet werden, oder der Ausgangswerkstoff wird kapazitiv, konduktiv oder induktiv erwärmt. Auch eine beliebige Kombination dieser verschiedenen Wärmequellen ist möglich.To the Melting of the starting material is a variety of possibilities given. Usually this is done by a laser steel, an electron beam or an arc. But it can too a chemical, exothermic reaction can be used, or the starting material is heated capacitively, conductively or inductively. Also any Combination of these different heat sources is possible.

Bezüglich der erzielbaren Werkstoffeigenschaften erfolgt bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens die Abkühlung des aufgeschmolzenen Ausgangswerkstoffs mit einer Abkühlrate im Temperaturintervall Tliquidus – T350°C, die größer als 100 K/sec ist. Obwohl solche Abkühlraten im RP-Verfahren an sich inhärent sind, kann zur Erzielung höherer Abkühlraten eine zusätzliche Kühlung verwendet werden. Der große Vorteil dieser hohen Abkühlgeschwindigkeit liegt bezogen auf das Al(Mg)Sc-Werkstoffsystem in der Möglichkeit, gewisse Mengen von Scandium im übersättigten Mischkristall zwangsgelöst zu halten. Besitzt der verwendete RP-Prozess deutlich höhere Abkühlgeschwindigkeiten, dann ist sogar eine Anhebung des erforderlichen Scandium-Gehalts auf über 0,8 Gew.-% möglich.In terms of The achievable material properties takes place in a preferred Embodiment of the invention Procedure, the cooling of the molten starting material with a cooling rate in the temperature interval Tliquidus - T350 ° C, which is greater than 100 K / sec. Although such cooling rates inherent in the RP process can be used to achieve higher cooling rates an additional Cooling can be used. The big advantage of this high cooling rate is based on the Al (Mg) Sc material system in the possibility of certain amounts of scandium in the supersaturated solid solution to keep constrained. Owns the used RP process significantly higher cooling rates, then is even an increase in the required scandium content to about 0.8% by weight possible.

Zudem ist es vorteilhaft, wenn die Erstarrung und Abkühlung des aufgeschmolzenen Ausgangswerkstoffes unter Schutzgas oder im Vakuum stattfindet, wobei als Schutzgas bevorzugt ein solches oder Gemische solcher Gase zur Anwendung kommen, die im Stand der Technik zum Schweißen von Aluminiumwerkstoffen bekannt sind.moreover it is advantageous if the solidification and cooling of the molten starting material under inert gas or in a vacuum takes place, as inert gas preferably such or mixtures Such gases are used, which in the prior art for Welding of aluminum materials are known.

Obwohl im Regelfall nicht erforderlich, kann eine dem RP-Verfahren nachgeschaltete Wärmebehandlung die Materialeigenschaften des hergestellten Strukturbauteils noch verbessern und insbesondere die Festigkeit und Zähigkeit erhöhen. Die nachträgliche Wärmebehandlung kann typischenweise bei Temperaturen zwischen 100°C und 400°C für eine Dauer von 10 min bis 100 h erfolgen (z. B. 250°C–400°C/10 min–100 h oder 300°C–350°C/1 h–10 h). Besonders bevorzugt erfolgt die nachträglich Wärmebehandlung im Temperaturintervall von 250°C bis 400°C, für eine Dauer, die die Bildung kohärenter Al3Sc-Phasen bewirkt. D. h., durch die nachträgliche Wärmebehandlung ist eine zusätzliche, signifikante Verfestigung des Al(Mg)Sc-Materials (im RP-Bauteil) durch eine so genannte Ausscheidungshärtung über die Bildung kohärenter Al3Sc-Phasen möglich. Die so erzielbaren Festigkeiten liegen dann für die Zugfestigkeit als auch die Streckgrenze über 400 MPa bei immer noch, für eine direkte Anwendung, ausreichender Dehnung (A5 > 5%). In Folge dessen lässt sich die schon gute Festigkeit des direkt generierten Strukturbauteils durch die nachfolgende Wärmebehandlung deutlich steigern, ohne dass das Zähigkeits- und das Korrosionsverhalten anwendungsgefährdend verschlechtert wird. Selbstverständlich kann die Wärmebehandlung auch in mehreren Stufen und/oder Schritten ausgeführt werden.Although not normally required, a heat treatment downstream of the RP process can still improve the material properties of the structural component produced and, in particular, increase the strength and toughness. Subsequent heat treatment may typically be carried out at temperatures between 100 ° C and 400 ° C for a period of 10 minutes to 100 hours (e.g., 250 ° C-400 ° C / 10 minutes-100 hours or 300 ° C-350 ° C / 1 h-10 h). Particularly preferred is the subsequent heat treatment in the temperature range of 250 ° C to 400 ° C, for a duration that causes the formation of coherent Al 3 Sc phases. That is, the subsequent heat treatment, an additional, significant solidification of Al (Mg) Sc material (in the RP component) by a so-called precipitation hardening on the formation of coherent Al 3 Sc phases possible. The strengths that can be achieved are then still sufficient for the tensile strength and the yield strength above 400 MPa, for a direct application, sufficient elongation (A5> 5%). As a result, the already good strength of the directly generated structural component can be significantly increased by the subsequent heat treatment, without the toughness and the corrosion behavior being degraded in a way that endangers the application. Of course, the heat treatment can also be carried out in several stages and / or steps.

Des Weiteren kann das Strukturbauteil nach der nachträglichen Wärmebehandlung einer Schnellabkühlung (z. B. Abschrecken in Wasser) auf Raumtemperatur mit einer anschließenden Warmauslagerung im Temperaturbereich 100°C–250°C für eine Dauer von 10 min bis 100 h unterzogen werden.Of Furthermore, the structural component after the subsequent Heat treatment of a rapid cooling (eg Quenching in water) to room temperature followed by Hot storage in the temperature range 100 ° C-250 ° C be subjected to a period of 10 minutes to 100 hours.

Beispiel:Example:

Zum Nachweis des erfindungsgemäßen Verfahrens sowie der Vorteile eines damit hergestellten RP-Strukturbauteils, wurde folgender Versuch durchgeführt:
Mittels eines fokussierten Nd-YAG Laserstrahls (Laserleistung: 3000 Watt, Fokussierung: 150 mm, Fokusdurchmesser: 300 μm) wurde ein AlMg4,6Sc1,4-Draht (Durchmesser 1,0 mm, Fördervolumen 7 m/min, Prozessgeschwindigkeit 2m/min) aufgeschmolzen, um so direkt ein blockförmiges Bauteil zu generieren. Als Substrat, und damit gleichzeitig als Wärmesenke, wurde ein 20 mm dicker und 100 × 300 mm großer Block aus der Legierung AlMg5,2MnZnZr verwendet. Auf dieses Substrat wurde das AlMgSc-Bauteil zeilenförmig aufgebaut bis es eine Größe von 150 × 50 × 5 mm besaß. Eine zusätzliche Kühlung wurde nicht genutzt. Schließlich wurde das AlMgSc-Bauteil vom Substrat entfernt und dessen Eigenschaften metallkundlich bewertet. Aus dem RP-Bauteil wurden Zugproben in Anlehnung an EN 10 002 entnommen. Folgende Kennwerte wurden ermittelt:

  • a) Zugfestigkeit im direkt generierten Werkstoff zustand (Mittelwert aus 2 Messungen): Rm = 346 MPa Rpo,2 = 257 MPa A5 = 12%
  • b) Zugfestigkeit im direkt generierten Werkstoffzustand mit anschließender Wärmebehandlung 300°C/5 Std. (Mittelwert aus 2 Messungen): Rm = 450 MPa Rpo,2 = 400 MPa A5 = 5%
To demonstrate the method according to the invention and the advantages of an RP structural component produced therewith, the following experiment was carried out guided:
By means of a focused Nd-YAG laser beam (laser power: 3000 watts, focusing: 150 mm, focus diameter: 300 μm) was a AlMg4.6Sc1,4-wire (diameter 1.0 mm, delivery volume 7 m / min, process speed 2m / min) melted so as to directly generate a block-shaped component. As a substrate, and thus at the same time as a heat sink, a 20 mm thick and 100 × 300 mm block of AlMg5,2MnZnZr alloy was used. Onto this substrate, the AlMgSc device was line-shaped until it had a size of 150 × 50 × 5 mm. An additional cooling was not used. Finally, the AlMgSc component was removed from the substrate and its properties evaluated metallurgically. The RP component was subjected to tensile tests based on EN 10 002 taken. The following characteristic values were determined:
  • a) Tensile strength in the directly generated material state (average of 2 measurements): Rm = 346 MPa Rpo, 2 = 257 MPa A5 = 12%
  • b) Tensile strength in directly generated material condition followed by heat treatment 300 ° C / 5 hours (average of 2 measurements): Rm = 450 MPa Rpo, 2 = 400 MPa A5 = 5%

Diese Kennwerte sind deshalb besonders überraschend, da die metallografische Beurteilung des RP-Bauteilgefüges zeigte, dass die Querschnittsflächen der Zugproben durch einen Porenanteil von 5–10% massiv geschwächt waren. Bei einem porenfreien Querschnitt ist also eine noch höhere Zugfestigkeit zu erwarten.These Characteristics are therefore particularly surprising since the metallographic Assessment of the RP component structure showed that the cross-sectional areas the tensile specimens by a pore content of 5-10% massive were weakened. For a non-porous cross section So to expect an even higher tensile strength.

Die Festigkeitswerte zeigen, dass ein RP-Bauteil aus AlMgSc-Werkstoff durchaus unmittelbar als hoch belastetes Strukturbauteil verwendbar oder in eine hochbelastete Struktur integrierbar ist. Des Weiteren liegen die ermittelten Kennwerte (insbesondere mit Wärmenachbehandlung) erheblich über den Festigkeiten von bisher direkt generierten Al-Bauteilen. Es werden sogar die Festigkeiten klassisch hergestellter Gusskomponenten (z. B. Feinguss mit kompletter herkömmlicher Prozesskette zur Erzielung bester Werkstoffkennwerte Rm = 300–400 MPa) deutlich überschritten.The Strength values show that an RP component made of AlMgSc material quite directly usable as a highly loaded structural component or can be integrated into a highly loaded structure. Furthermore lie the determined characteristic values (in particular with heat aftertreatment) significantly above the strengths of previously directly generated Al components. There are even the strengths of classically produced cast components (eg investment casting with complete conventional process chain to achieve the best material parameters Rm = 300-400 MPa) clearly exceeded.

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • - US 3619181 [0017] US 3619181 [0017]
  • - DE 100248594 A1 [0017] - DE 100248594 A1 [0017]
  • - US 625831881 [0017] - US 625831881 [0017]
  • - EP 0918095 A1 [0017] - EP 0918095 A1 [0017]
  • - US 6139653 [0017] US 6139653 [0017]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • - EN 10 002 [0028] - EN 10 002 [0028]

Claims (26)

Verfahren zur Herstellung eines Strukturbauteils aus einer Aluminiumbasislegierung mittels Rapid-Prototyping, wobei ein Ausgangswerkstoff von einer Wärmequelle lokal aufgeschmolzen wird und unmittelbar danach wieder erstarrt, dadurch gekennzeichnet, dass als Ausgangswerkstoff eine Aluminium-Scandium-Legierung verwendet wird.A method for producing a structural component of an aluminum-based alloy by means of rapid prototyping, wherein a starting material is locally melted by a heat source and solidifies immediately thereafter, characterized in that as starting material an aluminum-scandium alloy is used. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminium-ckandium-Legierung verwendete wird, die einen Scandium (Sc)-Anteil von mindestens 0,4 Gew.-% enthält.Method according to claim 1, characterized in that that an aluminum-candandium alloy is used which has a Scandium (Sc) content of at least 0.4 wt .-% contains. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminium-Scandium-Legierung verwendete wird, die einen Scandium (Sc)-Anteil von 0,41 Gew.-% bis 2,0 Gew.-% enthält.Method according to claim 1, characterized in that that an aluminum-scandium alloy is used, the one Scandium (Sc) content of 0.41 wt .-% to 2.0 wt .-%. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminium-Scandium-Legierung verwendete wird, die einen Scandium (Sc)-Anteil von 0,8 Gew.-% bis 1,4 Gew.-% enthält.Method according to claim 1, characterized in that that an aluminum-scandium alloy is used, the one Scandium (Sc) content of 0.8 wt .-% to 1.4 wt .-%. Verfahren nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass eine Aluminium-Scandium-Legierung verwendet wird, der ein Magnesium (Mg)-Anteil von 2,0 Gew.-% bis 10,0 Gew.-% zulegiert ist.Method according to one of claims 1-4, characterized in that an aluminum scandium alloy is used which has a magnesium (Mg) content of 2.0% by weight to 10.0% by weight is zulegiert. Verfahren nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass eine Aluminium-Scandium-Legierung verwendet wird, der ein Magnesium (Mg)-Anteil von 3,0 Gew.-% bis 6,0 Gew.-% zulegiert ist.Method according to one of claims 1-4, characterized in that an aluminum scandium alloy is used which has a magnesium (Mg) content of 3.0% by weight to 6.0% by weight is zulegiert. Verfahren nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass eine Aluminium-Scandium-Legierung verwendet wird, der ein Magnesium (Mg)-Anteil von 4,0 Gew.-% bis 5,0 Gew.-% zulegiert ist.Method according to one of claims 1-4, characterized in that an aluminum scandium alloy is used which has a magnesium (Mg) content of 4.0% by weight to 5.0% by weight is zulegiert. Verfahren nach einem der Ansprüche Anspruch 5–7, dadurch gekennzeichnet, dass eine Aluminium-Magnesium-Scandium Legierung verwendet wird, die mindestens ein weiteres Legierungselemente der Gruppe bestehend aus Zn, Cu, Mn, Si, Li, Ag und Fe enthält, mit einem Anteil von 0,05 Gew-% bis 2,0 Gew.-% pro Element.Method according to one of the claims claim 5-7, characterized in that an aluminum-magnesium scandium Alloy is used which has at least one more alloying element the group consisting of Zn, Cu, Mn, Si, Li, Ag and Fe, at a level of from 0.05% to 2.0% by weight per element. Verfahren nach einem der Ansprüche 1–8, dadurch gekennzeichnet, dass ein Ausgangswerkstoff verwendet wird, dem zusätzlich solche Legierungselemente zugefügt sind, die sich zu Scandium (Sc) komplementär oder substitutiv verhalten, insbesondere Zr, Ti, Ta, Hf, Y, Er, wobei ihr Anteil in dem Ausgangswerkstoff einzeln 2,0 Gew.-% und in Summe 3,0 Gew.-% nicht überschreitet.Method according to one of claims 1-8, characterized in that a starting material is used, additionally added to such alloying elements are complementary to scandium (Sc) or substitutive Behavior, in particular Zr, Ti, Ta, Hf, Y, Er, with their share individually in the starting material 2.0 wt .-% and in total 3.0 wt .-% does not exceed. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass ein Ausgangswerkstoff verwendet wird, bei dem der Anteil der zu Scandium (Sc) kompatiblen Elemente in Summe einen Gehalt von 0,8 Gew.-% nicht überschreitet.Method according to claim 9, characterized in that that a starting material is used in which the proportion of to Scandium (Sc) compatible elements in total content of 0.8 wt .-% does not exceed. Verfahren nach einem der Ansprüche 1–9, dadurch gekennzeichnet, dass dem Ausgangswerkstoff vor oder während des Rapid-Prototyping-Prozesses weitere Beimengungen aus metallischen oder nichtmetallischen Materialien zugesetzt werden.Method according to one of claims 1-9, characterized characterized in that the starting material before or during the rapid prototyping process more admixtures of metallic or non-metallic materials are added. Verfahren nach einem der Ansprüche 1–11, dadurch gekennzeichnet, dass der Ausgangswerkstoff in Pulver- oder Drahtform vorliegt.Method according to one of claims 1-11, characterized characterized in that the starting material in powder or wire form is present. Verfahren nach einem der Ansprüche 1–11, dadurch gekennzeichnet, dass der Ausgangswerkstoff als gesintertes, gegossenes oder extrudiertes Formteil vorliegt.Method according to one of claims 1-11, characterized characterized in that the starting material is sintered, cast or extruded molding. Verfahren nach einem der Ansprüche 1–13, dadurch gekennzeichnet, dass zum Aufschmelzen des Ausgangswerkstoffes ein Laserstahl, ein Elektronenstrahl oder ein Lichtbogen verwendet wird.Method according to one of claims 1-13, characterized characterized in that for melting the starting material a Laser steel, an electron beam or an arc is used. Verfahren nach einem der Ansprüche 1–13, dadurch gekennzeichnet, dass zum Aufschmelzen des Ausgangswerkstoffes eine chemische exotherme Reaktion verwendet wird.Method according to one of claims 1-13, characterized characterized in that for melting the starting material a chemical exothermic reaction is used. Verfahren nach einem der Ansprüche 1–13, dadurch gekennzeichnet, dass der Ausgangswerkstoff kapazitiv, konduktiv oder induktiv erwärmt wird.Method according to one of claims 1-13, characterized characterized in that the starting material is capacitive, conductive or inductively heated. Verfahren nach einem der Ansprüche 1–13, dadurch gekennzeichnet, dass zur Erwärmung des Ausgangsstoffes eine beliebige Kombination der Methoden gemäß den Ansprüchen 14–16 verwendet wird.Method according to one of claims 1-13, characterized characterized in that for heating the starting material any combination of methods according to Claims 14-16 is used. Verfahren nach einem der Ansprüche 1–17, dadurch gekennzeichnet, dass die Abkühlung des aufgeschmolzenen Ausgangswerkstoffs im Temperaturintervall Tliquidus – T350°C mit einer Abkühlrate größer als 100 K/sec erfolgt.Method according to one of claims 1-17, characterized characterized in that the cooling of the molten Starting material in the temperature interval Tliquidus - T350 ° C with a cooling rate greater than 100 K / sec he follows. Verfahren nach einem der Ansprüche 1–18, dadurch gekennzeichnet, dass die Abkühlrate des aufgeschmolzenen Ausgangswerkstoffes durch eine zusätzliche Kühlung erhöht wird.Method according to one of claims 1-18, characterized characterized in that the cooling rate of the molten Starting material through additional cooling is increased. Verfahren nach einem der Ansprüche 1–19, dadurch gekennzeichnet, dass die Erstarrung und Abkühlung des aufgeschmolzenen Ausgangswerkstoffes unter Schutzgas oder im Vakuum stattfindet.Method according to one of claims 1-19, characterized characterized in that the solidification and cooling of the molten Starting material under inert gas or in vacuum takes place. Verfahren nach einem der Ansprüche 1–20, dadurch gekennzeichnet, dass das aus dem Ausgangswerkstoff hergestellte Strukturbauteil einer nachträglichen Wärmebehandlung bei Temperaturen zwischen 100°C und 400°C für eine Dauer von 10 min bis 100 h unterzogen wird.Method according to one of claims 1-20, characterized in that the structural component produced from the starting material of a subjected to subsequent heat treatment at temperatures between 100 ° C and 400 ° C for a period of 10 min to 100 h. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die nachträglich Wärmebehandlung im Temperaturintervall von 250°C–400°C erfolgt, für eine Dauer, die die Bildung kohärenter Al3Sc-Phasen bewirkt.A method according to claim 21, characterized in that the subsequent heat treatment takes place in the temperature interval of 250 ° C-400 ° C, for a duration which causes the formation of coherent Al 3 Sc phases. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass die nachträgliche Wärmebehandlung in mehreren Stufen und/oder Schritten ausgeführt wird.Method according to claim 21 or 22, characterized that the subsequent heat treatment in several Steps and / or steps is performed. Verfahren nach Anspruch 21, 22 oder 23, dadurch gekennzeichnet, dass das Strukturbauteil nach der nachträglichen Wärmebehandlung einer Schnellabkühlung auf Raumtemperatur unterzogen wird.A method according to claim 21, 22 or 23, characterized characterized in that the structural component after the subsequent Heat treatment of a rapid cooling to room temperature is subjected. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass nach der Schnellabkühlung eine weitere Warmauslagerung im Temperaturbereich 100°C–250°C für eine Dauer von 10 min bis 100 h erfolgt.Method according to Claim 24, characterized that after rapid cooling, another hot aging in the temperature range 100 ° C-250 ° C for a duration of 10 minutes to 100 hours. Verfahren nach einem der Ansprüche 1–25, dadurch gekennzeichnet, dass auf einem blockförmigen Basissubstrat aus einer Aluminium-Magnesium-Legierung ein drahtförmiges Ausgangsmaterial der Beschaffenheit AlMg4,6Sc1,4 mittels eines Laserstrahls zeilenweise aufgeschmolzen und abgekühlt wird und so ein AlMgSc-Strukturbauteil erzeugt wird.Method according to one of claims 1-25, characterized characterized in that on a block-shaped base substrate made of an aluminum-magnesium alloy a wire-shaped Starting material of the composition AlMg4,6Sc1,4 by means of a laser beam melted line by line and is cooled and so on AlMgSc structural component is generated.
DE102007018123A 2007-04-16 2007-04-16 Method for producing a structural component from an aluminum-based alloy Active DE102007018123B4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102007018123A DE102007018123B4 (en) 2007-04-16 2007-04-16 Method for producing a structural component from an aluminum-based alloy
PCT/DE2008/000616 WO2008125092A1 (en) 2007-04-16 2008-04-11 Method for producing a structural component made of an aluminum-based alloy using rapid prototyping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007018123A DE102007018123B4 (en) 2007-04-16 2007-04-16 Method for producing a structural component from an aluminum-based alloy

Publications (2)

Publication Number Publication Date
DE102007018123A1 true DE102007018123A1 (en) 2008-10-30
DE102007018123B4 DE102007018123B4 (en) 2009-03-26

Family

ID=39684386

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007018123A Active DE102007018123B4 (en) 2007-04-16 2007-04-16 Method for producing a structural component from an aluminum-based alloy

Country Status (2)

Country Link
DE (1) DE102007018123B4 (en)
WO (1) WO2008125092A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111365A1 (en) 2011-08-29 2013-02-28 Eads Deutschland Gmbh Surface passivation of aluminum-containing powder
WO2013179017A1 (en) * 2012-05-28 2013-12-05 Renishaw Plc Manufacture of metal articles
DE102012023090A1 (en) * 2012-11-27 2014-05-28 Eads Deutschland Gmbh Production of trochoidals for rotary piston engines
US20140271322A1 (en) * 2013-03-13 2014-09-18 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
DE102013012259B3 (en) * 2013-07-24 2014-10-09 Airbus Defence and Space GmbH Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
DE102015012095A1 (en) * 2015-09-16 2017-03-16 Audi Ag Method for producing a component, component and motor vehicle with such a component
DE102015221643A1 (en) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-Mg-Si alloy with scandium for the integral assembly of ALM structures
WO2018185259A1 (en) 2017-04-05 2018-10-11 Amag Casting Gmbh Starting material, use thereof, and additive manufacturing process using said starting material
WO2019155180A1 (en) 2018-07-09 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing aluminium alloy parts
WO2019155165A1 (en) 2018-02-08 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing an aluminum-chromium alloy part
FR3082763A1 (en) 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020012098A1 (en) 2018-07-09 2020-01-16 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020070451A1 (en) 2018-10-05 2020-04-09 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020070452A1 (en) 2018-10-05 2020-04-09 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020165542A1 (en) 2019-02-15 2020-08-20 C-Tec Constellium Technology Center Method for manufacturing an aluminum alloy part
WO2020260017A1 (en) 2019-06-28 2020-12-30 Airbus Defence and Space GmbH Cr-rich al alloy with high compressive- and shear strength
DE102019214740B3 (en) * 2019-09-26 2021-02-04 Daimler Ag Process for manufacturing a component from an aluminum alloy
WO2021156582A2 (en) 2020-05-13 2021-08-12 C-Tec Constellium Technology Center Method for producing an aluminium alloy part
WO2021156583A2 (en) 2020-05-13 2021-08-12 C-Tec Constellium Technology Center Method for producing an aluminium alloy part
DE102020131823A1 (en) 2020-12-01 2022-06-02 Airbus Defence and Space GmbH Aluminum alloy and method for additive manufacturing of lightweight components

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026139A1 (en) * 2010-07-05 2012-01-05 Mtu Aero Engines Gmbh Manufacturing component, preferably e.g. guide vane of a turbomachine, comprises selective laser melting raw material powder using process gas, hot isostatic pressing resulting component, and precipitation hardening resulting component
CN103184372B (en) * 2013-04-01 2015-05-06 北京工业大学 Electrochemical corrosion-resistant reinforced Al-Zr-Er alloy material and preparation method thereof
CN107649675A (en) * 2017-08-31 2018-02-02 西安铂力特增材技术股份有限公司 Wrought aluminium alloy metal powder material for increasing material manufacturing and preparation method thereof
CN107881382A (en) * 2017-12-04 2018-04-06 南京航空航天大学 A kind of increasing material manufacturing rare earth special modified high-strength aluminium alloy powder
CN109735749A (en) * 2019-01-17 2019-05-10 北京工业大学 A kind of alloy hot rolled stabilizing annealing technique of Al-Mg-Mn-Er-Zr
CN109576536B (en) * 2019-01-22 2021-01-12 中南大学 Special aluminum-manganese alloy powder formula for 3D printing and preparation method and printing method thereof
DE102019206451A1 (en) * 2019-05-06 2020-11-12 Airbus Defence and Space GmbH Process for 3D printing in a protective gas atmosphere and 3D printing device
CN110181051B (en) * 2019-06-18 2020-11-13 浙江工业大学 Laser remanufacturing narrow gap filling method under action of directional Lorentz force
CN110899698B (en) * 2019-12-19 2021-05-18 华中科技大学 Method for forming empennage to carry engine shell by adopting scandium-aluminum alloy and product
DE102021105453A1 (en) 2021-03-08 2022-09-08 Bayerische Motoren Werke Aktiengesellschaft Process for the additive manufacturing of a three-dimensional object
EP4159344A1 (en) 2021-09-30 2023-04-05 Airbus (S.A.S.) Aluminium-nickel alloy for manufacturing a heat conducting part, such as a heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817499A1 (en) * 1967-12-30 1969-08-14 Ti Group Services Ltd Aluminum alloys
US3619181A (en) 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
EP0918095A1 (en) 1997-11-20 1999-05-26 Alusuisse Technology &amp; Management AG Structural element made of a die-cast aluminium alloy
US6139653A (en) 1999-08-12 2000-10-31 Kaiser Aluminum & Chemical Corporation Aluminum-magnesium-scandium alloys with zinc and copper
US6258318B1 (en) 1998-08-21 2001-07-10 Eads Deutschland Gmbh Weldable, corrosion-resistant AIMG alloys, especially for manufacturing means of transportation
DE10248594A1 (en) 2001-12-14 2003-07-10 Eads Deutschland Gmbh Making aluminum sheet alloyed with scandium and zirconium and having high fracture resistance in e.g. aerospace applications, employs roller casting process and specified hot-working
EP1439239A1 (en) * 2003-01-15 2004-07-21 United Technologies Corporation An aluminium based alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3813795A (en) * 1994-09-26 1996-04-19 Ashurst Technology Corporation (Ireland) Limited High strength aluminum casting alloys for structural applications
US6248453B1 (en) * 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
AU2003265656A1 (en) * 2002-08-23 2004-03-11 Lockheed Martin Corporation High strength aluminum alloy and method of producing same
US6823928B2 (en) * 2002-09-27 2004-11-30 University Of Queensland Infiltrated aluminum preforms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817499A1 (en) * 1967-12-30 1969-08-14 Ti Group Services Ltd Aluminum alloys
US3619181A (en) 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
EP0918095A1 (en) 1997-11-20 1999-05-26 Alusuisse Technology &amp; Management AG Structural element made of a die-cast aluminium alloy
US6258318B1 (en) 1998-08-21 2001-07-10 Eads Deutschland Gmbh Weldable, corrosion-resistant AIMG alloys, especially for manufacturing means of transportation
US6139653A (en) 1999-08-12 2000-10-31 Kaiser Aluminum & Chemical Corporation Aluminum-magnesium-scandium alloys with zinc and copper
DE10248594A1 (en) 2001-12-14 2003-07-10 Eads Deutschland Gmbh Making aluminum sheet alloyed with scandium and zirconium and having high fracture resistance in e.g. aerospace applications, employs roller casting process and specified hot-working
EP1439239A1 (en) * 2003-01-15 2004-07-21 United Technologies Corporation An aluminium based alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EN 10 002

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590634A2 (en) 2011-08-29 2020-01-08 Airbus Defence and Space GmbH Surface passivation of aluminum containing powder
WO2013029589A1 (en) 2011-08-29 2013-03-07 Eads Deutschland Gmbh Surface passivation of aluminium-containing powder
DE102011111365A1 (en) 2011-08-29 2013-02-28 Eads Deutschland Gmbh Surface passivation of aluminum-containing powder
WO2013179017A1 (en) * 2012-05-28 2013-12-05 Renishaw Plc Manufacture of metal articles
DE102012023090A1 (en) * 2012-11-27 2014-05-28 Eads Deutschland Gmbh Production of trochoidals for rotary piston engines
DE102012023090B4 (en) * 2012-11-27 2017-10-19 Airbus Defence and Space GmbH Production of trochoidals for rotary piston engines
EP2735700A3 (en) * 2012-11-27 2016-06-29 Airbus Defence and Space GmbH Trochoid housing for a rotary piston engine and additive manufacturing process
US9267189B2 (en) * 2013-03-13 2016-02-23 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
US20140271322A1 (en) * 2013-03-13 2014-09-18 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
EP2829624A1 (en) 2013-07-24 2015-01-28 Airbus Defence and Space GmbH Aluminium material with improved precipitation hardening
DE102013012259B3 (en) * 2013-07-24 2014-10-09 Airbus Defence and Space GmbH Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
US10030293B2 (en) 2013-07-24 2018-07-24 Airbus Defence and Space GmbH Aluminum material having improved precipitation hardening
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
US9447484B2 (en) * 2013-10-02 2016-09-20 Honeywell International Inc. Methods for forming oxide dispersion-strengthened alloys
DE102015012095A1 (en) * 2015-09-16 2017-03-16 Audi Ag Method for producing a component, component and motor vehicle with such a component
DE102015221643A1 (en) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-Mg-Si alloy with scandium for the integral assembly of ALM structures
WO2018185259A1 (en) 2017-04-05 2018-10-11 Amag Casting Gmbh Starting material, use thereof, and additive manufacturing process using said starting material
US11597984B2 (en) 2017-04-05 2023-03-07 Amag Casting Gmbh Starting material, use thereof, and additive manufacturing process using said starting material
WO2019155165A1 (en) 2018-02-08 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing an aluminum-chromium alloy part
FR3082763A1 (en) 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
FR3082764A1 (en) 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2019155180A1 (en) 2018-07-09 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing aluminium alloy parts
WO2020012098A1 (en) 2018-07-09 2020-01-16 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020070451A1 (en) 2018-10-05 2020-04-09 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
WO2020070452A1 (en) 2018-10-05 2020-04-09 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
FR3086872A1 (en) 2018-10-05 2020-04-10 C-Tec Technology Center PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
FR3086873A1 (en) 2018-10-05 2020-04-10 C-Tec Constellium Technology Center PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
US11692240B2 (en) 2018-10-05 2023-07-04 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
FR3092777A1 (en) 2019-02-15 2020-08-21 C-Tec Constellium Technology Center Manufacturing process of an aluminum alloy part
WO2020165542A1 (en) 2019-02-15 2020-08-20 C-Tec Constellium Technology Center Method for manufacturing an aluminum alloy part
DE102019209458A1 (en) * 2019-06-28 2020-12-31 Airbus Defence and Space GmbH Cr-rich Al alloy with high compressive and shear strength
WO2020260017A1 (en) 2019-06-28 2020-12-30 Airbus Defence and Space GmbH Cr-rich al alloy with high compressive- and shear strength
DE102019214740B3 (en) * 2019-09-26 2021-02-04 Daimler Ag Process for manufacturing a component from an aluminum alloy
WO2021156582A2 (en) 2020-05-13 2021-08-12 C-Tec Constellium Technology Center Method for producing an aluminium alloy part
WO2021156583A2 (en) 2020-05-13 2021-08-12 C-Tec Constellium Technology Center Method for producing an aluminium alloy part
FR3110097A1 (en) 2020-05-13 2021-11-19 C-Tec Constellium Technology Center Manufacturing process of an aluminum alloy part
FR3110095A1 (en) 2020-05-13 2021-11-19 C-Tec Constellium Technology Center Manufacturing process of an aluminum alloy part
DE102020131823A1 (en) 2020-12-01 2022-06-02 Airbus Defence and Space GmbH Aluminum alloy and method for additive manufacturing of lightweight components

Also Published As

Publication number Publication date
DE102007018123B4 (en) 2009-03-26
WO2008125092A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
DE102007018123B4 (en) Method for producing a structural component from an aluminum-based alloy
DE112018001690B4 (en) HEAT TREATMENT METHOD FOR ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT, METHOD FOR PRODUCTION OF ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT, Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURED OBJECT, AND ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP2829624B1 (en) Aluminium material with improved precipitation hardening
EP3181711B1 (en) Aluminium alloy containing scandium for powder metallurgy technologies
DE102009034566B4 (en) Method for producing a tank for fuel
DE102015205316A1 (en) A method of producing a superalloy member having a powder bed-based additive manufacturing method and superalloy member
EP1888798B1 (en) Aluminium plain bearing alloy
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE102016216859A1 (en) A method of producing a component having a powder bed based additive manufacturing method and powder for use in such a method
AU2017257559A1 (en) Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
DE102017113780A1 (en) Subject and additive manufacturing process for manufacturing
EP3249064A1 (en) Additive manufacture of high temperature components from tial
DE102018133579A1 (en) Aluminum alloy powder for additive manufacturing and method of making a part by making from this powder
WO2012075993A2 (en) Process for producing an alscca alloy and also an aiscca alloy
DE102011116212A1 (en) Heat treatments of metal mixtures formed by ALM to form superalloys.
DE102007041775B3 (en) Production of metal castings with foam structure uses e.g. laser to melt to melt metal wire positioned near surface of casting, foaming agent being added to molten area and process continued in controlled way to produce whole structure
EP3455382A1 (en) Alpha-beta titanium alloys having aluminum and molybdenum, and products made therefrom
EP2952276B1 (en) Method for the heat treatment of a workpiece made from a nickel based alloy
WO2019034506A1 (en) Copper-based alloy for the production of bulk metallic glasses
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
DE102010055791A1 (en) Process for the manufacture of components made of refractory metals
DE102019214740B3 (en) Process for manufacturing a component from an aluminum alloy
EP3670691B1 (en) Magnesium alloy and its process of manufacture
EP2143809B1 (en) Aluminium alloy metal foams, its use and method for its manufacture

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140814

Owner name: APWORKS GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140814

R081 Change of applicant/patentee

Owner name: APWORKS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE