DE102007061647A1 - Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung - Google Patents

Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung Download PDF

Info

Publication number
DE102007061647A1
DE102007061647A1 DE102007061647A DE102007061647A DE102007061647A1 DE 102007061647 A1 DE102007061647 A1 DE 102007061647A1 DE 102007061647 A DE102007061647 A DE 102007061647A DE 102007061647 A DE102007061647 A DE 102007061647A DE 102007061647 A1 DE102007061647 A1 DE 102007061647A1
Authority
DE
Germany
Prior art keywords
implant
range
layer
metallic material
biocorrodible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007061647A
Other languages
English (en)
Inventor
Bärbel Dr. Becher
Carsten Dr. Momma
Daniel Lootz
Antje Dr. Quade
Andreas Dr. Ohl
Karsten Dr. Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotronik VI Patent AG
Original Assignee
Biotronik VI Patent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotronik VI Patent AG filed Critical Biotronik VI Patent AG
Priority to DE102007061647A priority Critical patent/DE102007061647A1/de
Priority to EP08169550.4A priority patent/EP2072068B1/de
Priority to US12/339,965 priority patent/US20090164002A1/en
Publication of DE102007061647A1 publication Critical patent/DE102007061647A1/de
Priority to US13/758,639 priority patent/US8801778B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body

Abstract

Die Erfindung betrifft ein Implantat mit einem Grundkörper, der ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff besteht. Das Implantat zeichnet sich dadurch aus, dass zumindest die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig oder teilweise mit einer Beschichtung aus einer vernetzten CFx-Schicht mit einem F/C-Verhältnis im Bereich von 0,5 bis 1,5 bedeckt sind.

Description

  • Die Erfindung betrifft ein Implantat mit einem Grundkörper, der ganz oder in Teilen aus einer biokorrodierbaren Legierung der Elemente Magnesium, Eisen, Zink, Molybdän und Wolfram besteht. Ein weiterer Aspekt der Erfindung liegt in der Bereitstellung eines Verfahrens zur Herstellung eines solchen Stents.
  • Technologischer Hintergrund und Stand der Technik
  • Implantate haben in vielfältiger Ausführungsform Anwendung in der modernen Medizintechnik gefunden. Sie dienen unter anderem der Unterstützung von Gefäßen, Hohlorganen und Gangsystemen (endovaskuläre Implantate), zur Befestigung und temporären Fixierung von Gewebeimplantaten und Gewebstransplantationen, aber auch zu orthopädischen Zwecken, zum Beispiel als Nagel, Platte oder Schraube.
  • So hat sich zum Beispiel die Implantation von Stents als eine der wirkungsvollsten therapeutischen Maßnahmen bei der Behandlung von Gefäßerkrankungen etabliert. Stents haben den Zweck, in Hohlorganen eines Patienten eine Stützfunktion zu übernehmen. Stents herkömmlicher Bauart weisen dazu eine filigrane Tragstruktur aus metallischen Streben auf, die zur Einbringung in den Körper zunächst in einer komprimierten Form vorliegt und am Ort der Applikation aufgeweitet wird. Einer der Hauptanwendungsbereiche solcher Stents ist das dauerhafte oder temporäre Weiten und Offenhalten von Gefäßverengungen, insbesondere von Verengungen (Stenosen) der Herzkranzgefäße. Daneben sind beispielsweise auch Aneurysmenstents bekannt, die zur Stützung beschädigter Gefäßwände dienen.
  • Der Grundkörper jedes Implantats, insbesondere von Stents, besteht aus einem Implantatwerkstoff. Ein Implantatwerkstoff ist ein nicht lebendes Material, das für eine Anwendung in der Medizin eingesetzt wird und mit biologischen Systemen in Wechselwirkung tritt. Grundvoraussetzungen für den Einsatz eines Werkstoffes als Implantatwerkstoff, der bei bestimmungsgemäßem Zweck mit der Körperumgebung in Kontakt steht, ist dessen Körperverträglichkeit (Biokompatibilität). Unter Biokompatibilität wird die Fähigkeit eines Werkstoffes verstanden, in einer spezifischen Anwendung eine angemessene Gewebereaktion hervorzurufen. Dies beinhaltet eine Anpassung der chemischen, physikalischen, biologischen und morphologischen Oberflächeneigenschaften eines Implantats an das Empfängergewebe mit dem Ziel einer klinisch erwünschten Wechselwirkung. Die Biokompatibilität des Implantatwerkstoffs ist weiterhin abhängig vom zeitlichen Ablauf der Reaktion des Biosystems in das implantiert wird. So treten relativ kurzfristig Reizungen und Entzündungen auf, die zu Gewebeveränderungen führen können. Biologische Systeme reagieren demnach in Abhängigkeit von den Eigenschaften des Implantatswerkstoffs in verschiedener Weise. Entsprechend der Reaktion des Biosystems können die Implantatswerkstoffe in bioaktive, bioinerte und degradierbare/resorbierbare Werkstoffe unterteilt werden. Für die Zwecke der vorliegenden Erfindung sind lediglich degradierbare/resorbierbare, metallische Implantatwerkstoffe von Interesse, die nachfolgend als biokorrodierbare metallische Werkstoffe bezeichnet werden.
  • Der Einsatz biokorrodierbarer metallischer Werkstoffe bietet sich insbesondere schon deshalb an, da zumeist nur ein zeitweiliger Verbleib des Implantats im Körper zur Erfüllung des medizinischen Zweckes erforderlich ist. Implantate aus permanenten Werkstoffen, also Werkstoffen, die im Körper nicht abgebaut werden, sind gegebenenfalls wieder zu entfernen, da es mittel- und langfristig auch bei hoher Biokompatibilität zu Abstoßungsreaktionen des Körpers kommen kann.
  • Ein Ansatz zur Vermeidung eines weiteren chirurgischen Eingriffs besteht demnach darin, das Implantat ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff zu formen. Unter Biokorrosion werden mikrobielle Vorgänge oder schlicht durch die Anwesenheit von Körpermedien bedingte Prozesse verstanden, die zu einem allmählichen Abbau der aus dem Werkstoff bestehen Struktur führen. Zu einem bestimmten Zeitpunkt verliert das Implantat oder zumindest der Teil des Implantates, der aus dem biokorrodierbaren Werkstoff besteht, seine mechanische Integrität. Die Abbauprodukte werden vom Körper weitgehend resorbiert. Die Abbauprodukte haben, wie beispielsweise beim Magnesium, im günstigsten Fall sogar eine positive therapeutische Wirkung auf das umgebende Gewebe. Geringe Mengen nicht resorbierbarer Legierungsbestandteile sind – sofern sie nicht toxische sind – tolerierbar.
  • Bekannte biokorrodierbare metallische Werkstoffe umfassen Reineisen und biokorrodierbare Legierungen der Hauptelemente Magnesium, Eisen, Zink, Molybdän und Wolfram. In DE 197 31 021 A1 wird unter anderem vorgeschlagen, medizinische Implantate aus einem metallischen Werkstoff zu formen, dessen Hauptbestandteil ein Element aus der Gruppe Alkalimetalle, Erdalkalimetalle, Eisen, Zink und Aluminium ist. Als besonders geeignet werden Legierungen auf Basis von Magnesium, Eisen und Zink beschrieben. Nebenbestandteile der Legierungen können Mangan, Cobalt, Nickel, Chrom, Kupfer, Cadmium, Blei, Zinn, Thorium, Zirkonium, Silber, Gold, Palladium, Platin, Silizium, Calcium, Lithium, Aluminium, Zink und Eisen sein. Weiterhin ist aus der DE 102 53 634 A1 der Einsatz einer biokorrodierbaren Magnesiumlegierung mit einem Anteil von Magnesium > 90%, Yttrium 3,7–5,5%, Seltenerdmetallen 1,5–4,4% und Rest < 1% bekannt, die sich insbesondere zur Herstellung einer Endoprothese, z. B. in Form eines Stent, eignet. Ungeachtet der erreichten Fortschritte auf dem Gebiet biokorrodierbarer Metalllegierungen sind die bisher bekannten Legierungen aufgrund ihres Korrosionsverhaltens nur beschränkt einsatzfähig. Insbesondere limitiert die relativ rasche Biokorrosion der Magnesiumlegierungen deren Einsatzgebiet.
  • Herkömmliche technische Einsatzgebiete von Formkörpern aus metallischen Werkstoffen, insbesondere Magnesiumlegierungen, außerhalb der Medizintechnik erfordern in der Regel eine weitgehende Unterbindung korrosiver Prozesse. Dementsprechend ist die Zielstellung der meisten technischen Verfahren zur Verbesserung des Korrosionsverhaltene eine vollständige Inhibierung korrosiver Prozesse. Dagegen sollte die Zielstellung zur Verbesserung des Korrosionsverhaltens der hier vorliegenden biokorrodierbaren metallischen Werkstoffe nicht in der vollständigen Unterbindung, sondern nur in der Hemmung korrosiver Prozesse liegen. Schon aus diesem Grunde eignen sich die meisten bekannten Maßnahmen zur Verbesserung des Korrosionsschutzes nicht. Ferner müssen für einen medizintechnischen Einsatz auch toxikologische Aspekte berücksichtigt werden. Des Weiteren sind korrosive Prozesse stark von dem Medium abhängig, in dem sie ablaufen, und daher dürfte eine Übertragbarkeit der unter herkömmlichen Umweltbedingungen auf technischem Gebiet gewonnenen Erkenntnisse zum Korrosionsschutz auf die Prozesse in physiologischer Umgebung nicht uneingeschränkt möglich sein.
  • Ein Ansatzpunkt bekannter technischer Verfahren zur Verbesserung des Korrosionsverhaltens (im Sinne einer Verstärkung des Korrosionsschutzes) sieht vor, eine korrosionsschützende Schicht auf dem aus dem metallischen Werkstoff bestehenden Formkörper zu erzeugen. Bekannte Verfahren zur Erzeugung einer korrosionsschützenden Schicht wurden unter dem Gesichtspunkt eines technischen Einsatzes des beschichteten Formkörpers – jedoch nicht medizintechnischen Einsatzes in biokorrodierbaren Implantaten in physiologischer Umgebung – entwickelt und optimiert. Diese bekannten Verfahren umfassen beispielsweise: das Aufbringen von Polymeren oder anorganischen Deckschichten, das Erzeugen einer Emaille, die chemische Konversion der Oberfläche, Heißgasoxidation, Anodisieren, Plasmaspritzen, Laserstrahl-Umschmelzen, PVD-Verfahren, Ionenimplantation oder Lackieren.
  • EP 0 993 308 B1 beschreibt einen permanenten Stent, der mittels eines PVD-Verfahrens mit einem Trägerpolymer beschichtet wird, an das Perfluoralkylketten gebunden sind. Aus EP 0 560 849 B1 ist ein Implantat mit einer fluorier ten, polymeren Oberfläche bekannt, die durch das Eintauchen des Implantats in eine Lösung und anschließende Trocknung des Implantats erzeugt wird. US 5,246,451 offenbart ein Plasmabeschichtungsverfahren für permanente vaskuläre Prothesen, bei dem eine polymere, fluorhaltige Schicht durch eine Plasmabehandlung erzeugt werden kann. Diese Polymerschicht wird anschließend – wiederum unter Einsatz eines Plasmas – funktionalisiert.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine verbesserte oder zumindest alternative Beschichtung für ein Implantat aus einem biokorrodierbaren metallischen Werkstoff bereitzustellen, die eine temporäre Inhibition, aber nicht vollständige Unterbindung der Korrosion des Werkstoffs in physiologischer Umgebung bewirkt.
  • Zusammenfassung der Erfindung
  • Die Erfindung geht aus von einem Implantat mit einem Grundkörper, der ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff besteht. Das Implantat zeichnet sich dadurch aus, dass zumindest die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig oder teilweise mit einer Beschichtung aus einer vernetzten CFX-Schicht mit einem F/C-Verhältnis im Bereich von 0.5 bis 1.5 bedeckt sind.
  • Das F/C-Verhältnis gibt neben der Oberflächenzusammensetzung auch Auskunft über die Vernetzungsanteile bzw. Vernetzungsgrad der aufgebrachten Schicht. Ein geringes F/C-Verhältnis wird durch eine stark vernetzte F/C-haltige Schicht verursacht. Ein hohes F/C-Verhältnis wie das von kommerziellem PTFE (F/C = 2) deutet auf eine kettenförmige, sehr wenig vernetzte F/C-haltige Schicht. Vorzugsweise sind die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig mit der CFx-Schicht bedeckt. Über das F/C-Verhältnis kann man das Korrosionsverhalten steuern. Bei gleicher Schichtdicke führt eine Erhöhung des F/C-Verhältnisses zu einer Verminderung der Korrosionsrate.
  • Es hat sich gezeigt, dass die Aufbringung einer Beschichtung der genannten Zusammensetzung nicht zur Ausbildung einer permanent vollständig oder weitgehend die Korrosion in physiologischer Umgebung inhibierenden Schutzschicht führt. Mit anderen Worten, in physiologischer Umgebung erfolgt dennoch eine Korrosion des Implantats, jedoch mit deutlich verzögerter Geschwindigkeit.
  • Nach einer bevorzugten Ausführungsform besitzt die CFx-Schicht eine Schichtdicke im Bereich von 1 nm bis 10 μm. Sofern das Implantat ein Stent ist, liegt eine Schichtdicke der CFx-Schicht vorzugsweise im Bereich von 1 nm bis 2 μm, insbesondere 50 nm bis 100 nm. Bei Schichtdicken unterhalb der angegebenen Untergrenze ist eine homogene Bedeckung der zu beschichtenden Bereiche des Grundkörpers nicht mehr sichergestellt, so dass eine reproduzierbare Einstellung eines gewünschten Korrosionsverhaltens erschwert ist. Oberhalb der genannten Grenze für die Schichtdicke können Eigenspannungen innerhalb der Schicht auftreten, die zu Inhomogenitäten führen, was wiederum eine reproduzierbare Einstellung des gewünschten Korrosionsverhaltens bedingen kann. Es versteht sich, dass mit steigender Schichtdicke die korrosionshemmende Wirkung der CFx-Schicht zunimmt. Zur Erzielung eines vorgebbaren Korrosionsverhaltens kann der Fachmann wie folgt vorgehen:
    Es werden Probenkörper aus dem biokorrodierbaren metallischen Werkstoff hergestellt und diese werden nach dem erfindungsgemäßen Verfahren beschichtet bis sich eine jeweils vorgebbare Schichtdicke der CFx-Schicht einstellt. Auf diese Weise können beispielsweise fünf Probenkörper mit unterschiedlich definierter Schichtdicke hergestellt werden, deren Korrosionsverhalten anschließend quantifiziert wird (zum Beispiel durch Bestimmung der Korrosionsrate) und die eine qualitative Voraussage des Zusammenhangs zwischen Schichtdicke und Korrosionsverhalten erlauben. Die erhaltenen Daten für das Korrosionsverhalten werden mit dem gewünschten Korrosionsverhalten verglichen. Zeigt der Vergleich noch signifikante Abweichungen zu jedem der von den Probenkörpern erhaltenen Werte, wird ausgehend von dem am nächsten liegenden Wert die Schichtdicke in weiteren Probenkörpern variiert. Letztendlich kann der Fachmann durch routinemäßiges Abarbeiten dieser Optimierungsprozedur eine Schichtdicke für das gewünschte Korrosionsverhalten ermitteln.
  • Vorzugsweise ist der biokorrodierbare metallische Werkstoff eine biokorrodierbare Legierung ausgewählt aus der Gruppe der Elemente Magnesium, Eisen, Zink, Molybdän und Wolfram; insbesondere ist der Werkstoff eine biokorrodierbare Magnesiumlegierung. Unter Legierung wird vorliegend ein metallisches Gefüge verstanden, deren Hauptkomponente Magnesium, Eisen, Zink, Molybdän oder Wolfram ist. Hauptkomponente ist die Legierungskomponente, deren Gewichtsanteil an der Legierung am höchsten ist. Ein Anteil der Hauptkomponente beträgt vorzugsweise mehr 50 Gew.-%, insbesondere mehr als 70 Gew.-%.
  • Besonders bevorzugt ist eine Magnesiumlegierung der Zusammensetzung Seltenerdmetalle 5,2–9,9 Gew.-%, davon Yttrium 3,7–5,5 Gew.-%, und Rest < 1 Gew.-%, wobei Magnesium den auf 100 Gew.-% fehlenden Anteil an der Legierung einnimmt. Diese Magnesiumlegierung bestätigte bereits in klinischen Versuchen ihre besondere Eignung, d. h. zeigt eine hohe Biokompatibilität, günstige Verarbeitungseigenschaften, gute mechanische Kennwerte. Durch in vivo Studien konnte gezeigt werden, dass die Magnesiumlegierung abgebaut beziehungsweise durch körpereigene Bestandteile ersetzt wird. Unter der Sammelbezeichnung „Seltenerdmetalle" werden vorliegend Scandium (21), Yttrium (39), Lanthan (57) und die 14 auf Lanthan (57) folgenden Elemente, nämlich Cer (58), Praseodym (59), Neodym (60), Promethium (61), Samarium (62), Europium (63), Gadolinium (64), Terbium (65), Dysprosium (66), Holmium (67), Erbium (68), Thulium (69), Ytterbium (70) und Lutetium (71) verstanden. Bevorzugt sind weiterhin Magnesiumlegierungen die bis zu 6 Gew.-% Zink enthalten. Besonders bevorzugt ist weiterhin eine Magnesiumlegierung der Zusammensetzung Yttrium 0,5–10 Gew.-%, Zink 0,5–6 Gew.-%, Calcium 0,05–1 Gew.-%, Mangan 0–0,5 Gew.-%, Silber 0–1 Gew.-%, Cer 0–1 Gew.-% sowie Zirkonium 0–1 Gew.-% oder Silizium 0–0,4 Gew.-%, wobei sich die Angaben auf Gew.-% an der Legierung beziehen und Magnesium sowie herstellungsbedingte Verunreinigungen den auf 100 Gew.-% verbleibenden Restanteil an der Legierung einnehmen.
  • Die Legierungen der Elemente Magnesium, Eisen, Zink, Molybdän oder Wolfram sind so in ihrer Zusammensetzung zu wählen, dass sie biokorrodierbar sind. Als biokorrodierbar im Sinne der Erfindung werden Legierungen bezeichnet, bei denen in physiologischer Umgebung ein Abbau/Umbau stattfindet, so dass der aus dem Werkstoff bestehende Teil des Implantates ganz oder zumindest überwiegend nicht mehr vorhanden ist. Als Prüfmedium zur Testung des Korrosionsverhaltens einer in Frage kommenden Legierung dient künstliches Plasma, wie es nach EN ISO 10993-15:2000 für Biokorrosionsuntersuchungen vorgeschrieben ist (Zusammensetzung NaCl 6,8 g/l, CaCl2 0,2 g/l, KCl 0,4 g/l, MgSO4 0,1 g/l, NaHCO3 2,2 g/l, Na2HPO4 0,126 g/l, NaH2PO4 0,026 g/l). Eine Probe der zu untersuchenden Legierung wird dazu in einem verschlossenen Probenbehälter mit einer definierten Menge des Prüfmediums bei 37°C gelagert. In zeitlichen Abständen – abgestimmt auf das zu erwartende Korrosionsverhalten – von wenigen Stunden bis zu mehreren Monaten werden die Proben entnommen und in bekannter Weise auf Korrosionsspuren untersucht. Das künstliche Plasma nach EN ISO 10993-15:2000 entspricht einem blutähnlichen Medium und stellt damit eine Möglichkeit dar, eine physiologische Umgebung im Sinne der Erfindung reproduzierbar nachzustellen.
  • Der Begriff Korrosion bezieht sich vorliegend auf die Reaktion eines metallischen Werkstoffes mit seiner Umgebung, wobei eine messbare Veränderung des Werkstoffs bewirkt wird, die – bei Einsatz des Werkstoffs in einem Bauteil – zu einer Beeinträchtigung der Funktion des Bauteils führt. Ein Korrosionssystem besteht vorliegend aus dem korrodierenden metallischen Werkstoff sowie einem flüssigen Korrosionsmedium, das in seiner Zusammensetzung die Verhältnisse in physiologischer Umgebung nachstellt oder ein physiologisches Medium, insbesondere Blut ist. Werkstoffseitig beeinflussen die Korrosion Faktoren, wie die Zusammensetzung und Vorbehandlung der Legierung, mikro- und submikroskopische Inhomogenitäten, Randzoneneigenschaften, Temperatur- und mechanischer Spannungszustand und insbesondere die Zusammensetzung einer die Oberfläche bedeckenden Schicht. Auf Seiten des Mediums wird der Korrosionsprozess durch Leitfähigkeit, Temperatur, Temperaturgradienten, Azidität, Volumen-Oberflächen-Verhältnis, Konzentrationsunterschied sowie Strömungsgeschwindigkeit beeinflusst.
  • An der Phasengrenzfläche zwischen Werkstoff und Medium laufen Redox-Reaktionen ab. Für eine schützende bzw. hemmende Wirkung müssen vorhandene Schutzschichten und/oder die Produkte der Redox-Reaktionen eine gegen das Korrosionsmedium ausreichend dichte Struktur ausbilden, eine bezogen auf die Umgebung erhöhte thermodynamische Stabilität aufweisen und im Korrosionsmedium wenig löslich oder unlöslich sein. In der Phasengrenzfläche, genauer in einer sich in diesem Bereich ausbildenden Doppelschicht, laufen Ad- und Desorptionsprozesse ab. Die Vorgänge in der Doppelschicht sind geprägt von den dort ablaufenden kathodischen, anodischen und chemischen Teilprozessen. Fremdstoffablagerungen, Verunreinigungen und Korrosionsprodukte beeinflussen den Korrosionsprozess. Die Vorgänge bei der Korrosion sind demnach hoch komplex und lassen sich gerade im Zusammenhang mit einem physiologischen Korrosionsmedium, also Blut oder künstlichem Plasma, nicht oder nur im geringen Umfang voraussagen, da Vergleichsdaten fehlen. Schon aus diesem Grunde ist das Auffinden einer korrosionshemmenden Beschichtung, d. h. einer Beschichtung, die nur zur temporären Herabsetzung der Korrosionsrate eines metallischen Werkstoffs der weiter oben genannten Zusammensetzung in physiologischer Umgebung dient, eine außerhalb der Routine eines Fachmanns liegende Maßnahme.
  • Der Vorgang der Korrosion lässt sich durch Angabe einer Korrosionsrate quantifizieren. Ein zügiger Abbau ist mit einer hohen Korrosionsrate verbunden, und umgekehrt. Bezogen auf den Abbau des gesamten Formkörpers wird eine im Sinne der Erfindung modifizierte Oberfläche zur Herabsetzung der Korrosionsrate führen. Im Fall von Koronarstents sollte vorzugsweise die mechanische Integrität der Struktur über ein Zeitraum von drei Monaten oder mehr nach Implantation aufrechterhalten werden.
  • Implantate im Sinne der Erfindung sind über ein chirurgisches Verfahren oder minimalinvasives Verfahren in den Körper eingebrachte Vorrichtungen und umfassen Befestigungselemente für Knochen, beispielsweise Schrauben, Platten oder Nägel, chirurgisches Nahtmaterial, Darmklammern, Gefäßclips, Prothesen im Bereich des Hart- und Weichgewebes, beispielsweise Stents, und Ankerelemente für Elektroden, insbesondere von Schrittmachern oder Defibrillatoren. Das Implantat besteht ganz oder in Teilen aus dem biokorrodierbaren Werkstoff. Wenn das Implantat nur in Teilen aus dem biokorrodierbaren Werkstoff besteht, so ist dieser Teil entsprechend zu beschichten.
  • Vorzugsweise ist das Implantat ein Stent. Stents herkömmlicher Bauart weisen eine filigrane Struktur aus metallischen Streben auf, die zur Einbringung in den Körper zunächst in einem nicht-expandierten Zustand vorliegt und die am Ort der Applikation dann in einen expandierten Zustand aufgeweitet wird. Bei Stents bestehen besondere Anforderungen an die korrosionshemmende Schicht: Die mechanische Belastung des Materials während der Expansion des Implantats hat Einfluss auf den Verlauf des Korrosionsprozesses und es ist davon auszugehen, dass die Spannungsrisskorrosion in den belasteten Bereichen verstärkt wird. Eine korrosionshemmende Schicht sollte diesen Umstand berücksichtigen. Weiterhin könnte eine harte korrosionshemmende Schicht während der Expansion des Stents abplatzen und eine Rissbildung in der Schicht bei Expansion des Implantats dürfte unvermeidbar sein. Schließlich sind die Dimensionen der filigranen metallischen Struktur zu beachten und es sollte nach Möglichkeit nur eine dünne, aber auch gleichmäßige korrosionshemmende Schicht erzeugt werden. Es hat sich nun gezeigt, dass das Aufbringen der erfindungsgemäßen Beschichtung ganz oder zumindest weitgehend diesen Anforderungen genügt.
  • Ein weiterer Aspekt der Erfindung liegt in der Bereitstellung eines Verfahrens zur Herstellung eines Implantats mit einem Grundkörper, der ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff besteht, wobei zumindest die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig oder teilweise mit einer Beschichtung aus einer vernetzten CFx-Schicht mit einem F/C-Verhältnis im Bereich von 0.5 bis 1.5 bedeckt sind. Das erfindungsgemäße Verfahren umfasst die Schritte:
    • (i) Bereitstellen einer Plasmabeschichtungsanlage sowie eines Implantatrohlings mit einem Grundkörper, der ganz oder in Teilen aus dem biokorrodierbaren metallischen Werkstoff besteht; und
    • (ii) Beschichten der Rohlingsoberfläche in der Plasmabeschichtungsanlage durch Plasmabehandlung in Gegenwart einer oder mehrerer Verbindungen ausgewählt aus der Gruppe umfassend Fluoralkane der Formel CnF2n+2, Fluoralkene der Formel CnF2n und Fluoralkine der Formel CnF2n-2 sowie zyklische Fluorkohlenstoffverbindungen mit 3 bis 10 Kohlenstoffatomen, wobei n = 2 bis 10 ist, und unter den folgenden Bedingungen während der Plasmabehandlung: – einem Druck im Bereich von 0,01 bis 10 mbar, – einer Flussrate im Bereich von 1 bis 100 sccm und – einer eingekoppelten Leistung im Bereich von 300 bis 1000 W im Falle eines Mikrowellenplasmas oder einer eingekoppelten Leistung im Bereich von 10 bis 500 W im Falle eines Radiofrequenzplasmas.
  • Dem erfindungsgemäßen Verfahren liegt die Erkenntnis zugrunde, dass die Beschichtung von biokorrodierbaren metallischen Werkstoffen für Implantate sich besonders effektiv mit Hilfe eines Plasmaverfahrens durchführen lässt. Weiterhin ist die Wahl des Reaktivgases für die Plasmabeschichtung als auch der Betriebsparameter während der Plasmabehandlung ein wesentliches Element des erfindungsgemäßen Verfahrens, um zur gewünschten CFX-Schicht zu gelangen.
  • Für die Behandlung mit Plasma kann eine herkömmliche Plasmabeschichtungsanlage Einsatz finden. Das zu beschichtende Implantat sollte sich außerhalb der aktiven Zone im sogenannten „afterglow" des Plasmas befinden. Arbeiten im „afterglow" hat den Vorteil, dass keine elektrischen Felder auf die zu beschichtenden Proben (beispielsweise ein metallischer Stent) eingekoppelt werden können, die den Prozess durch unzulässige Überhitzungsgefahr stören könnten.
  • Vorzugsweise liegt die eingekoppelte Leistung im Falle einer Anregung des Plasmas durch Mikrowellen im Bereich von 500 bis 900 W.
  • Eine weiter bevorzugte Verfahrensvariante sieht vor, dass der herrschende Druck sowohl im Fall des Radiofrequenzplasmas als auch des Mikrowellenplasmas im Bereich von 0,1 mbar bis 5 mbar liegt.
  • Weiterhin ist bevorzugt wenn eine Kettenlänge n der eingesetzten Fluoralkanen, Fluoralkenen und Fluoralkinen Fluorcycloalkanen im Bereich von n = 3 bis n = 6 liegt. Zyklische Fluorkohlenstoffverbindungen mit 3 bis 10 Kohlenstoffatomen im Sinne der Erfindung umfassen alle Ringverbindungen mit einem ringförmigen Kohlenstoffgrundgerüst aus 3 bis 10 Kohlenstoffatomen, dessen freie Valenzen an den einzelnen Kohlenstoffatomen durch Fluor abgedeckt sind. Die zyklischen Fluorkohlenstoffverbindungen können C-C-Doppelbindungen und C-C-Dreifachbindungen enthalten und gegebenenfalls ein aromatisches System bilden. Besonders bevorzugt ist Hexafluorbenzol.
  • Schließlich ist bevorzugt, wenn die Flussrate, die sich über das Trägergas realisieren lässt, im Bereich von 30 bis 60 sccm, insbesondere bei 50 sccm liegt.
  • Ein weiterer Aspekt der Erfindung liegt in der Bereitstellung eines Implantats, das mit Hilfe des zuvor beschriebenen erfindungsgemäßen Verfahrens hergestellt wurde.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert.
  • Ein Stent aus der kommerziell erwerbbaren Magnesium-Legierung WE43 (nach ASTM) mit einem Seltenerdmetallanteil von etwa 3 Gew.-% ohne Yttrium und einem Yttriumanteil von etwa 4 Gew.-% wird in einer Plasmabeschichtungsanlage der Firma Plasma-finish GmbH eingebracht. Die Lage des Stents in der Beschichtungsanlage wird so vorgegeben, dass er sich im „afterglow" des zu erzeugenden Plasmas befindet. Anschließend wird als Reaktivgas Hexafluorbenzol C6F6 mit einer Flussrate von 50 sccm zugeführt, wobei Argon als Trägergas agiert. Der Prozessdruck beträgt 0.5 mbar. Die eingekoppelte Plasmaleistung wird auf 800 W geregelt, wobei die Anregung des Plasmas durch Mikrowellen erfolgt. Die Beschichtungszeit beträgt 2 min.
  • Nach der Entnahme des Stents kann die erhaltene vernetzte CFx-Schicht mit oberflächensensitiven Methoden strukturell nachgewiesen werden. Ein F/C-Verhältnis beträgt 0,6. Die Schichtdicke beträgt ca. 150 nm.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 19731021 A1 [0007]
    • - DE 10253634 A1 [0007]
    • - EP 0993308 B1 [0010]
    • - EP 0560849 B1 [0010]
    • - US 5246451 [0010]
  • Zitierte Nicht-Patentliteratur
    • - EN ISO 10993-15:2000 [0018]
    • - EN ISO 10993-15:2000 [0018]

Claims (12)

  1. Implantat mit einem Grundkörper, der ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff besteht, dadurch gekennzeichnet, dass zumindest die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig oder teilweise mit einer Beschichtung aus einer vernetzten CFx-Schicht mit einem F/C-Verhältnis im Bereich von 0.5 bis 1.5 bedeckt sind.
  2. Implantat nach Anspruch 1, bei dem der biokorrodierbare metallische Werkstoff eine biokorrodierbare Legierung ausgewählt aus der Gruppe Magnesium, Eisen, Zink, Molybdän und Wolfram ist.
  3. Implantat nach Anspruch 2, bei dem der biokorrodierbare metallische Werkstoff eine Magnesiumlegierung ist.
  4. Implantat nach einem der vorhergehenden Ansprüche, bei dem das Implantat ein Stent ist.
  5. Implantat nach einem der vorhergehenden Ansprüche, bei dem die CFx-Schicht eine Schichtdicke im Bereich von 1 nm bis 10 μm aufweist.
  6. Implantat nach Anspruch 5, bei dem das Implantat ein Stent ist und die CFx-Schicht eine Schichtdicke im Bereich von 1 nm bis 2 μm aufweist.
  7. Implantat nach Anspruch 6, bei dem die CFx-Schicht eine Schichtdicke im Bereich von 50 nm bis 100 nm aufweist.
  8. Verfahren zur Herstellung eines Implantats mit einem Grundkörper, der ganz oder in Teilen aus einem biokorrodierbaren metallischen Werkstoff besteht, wobei zumindest die aus dem biokorrodierbaren metallischen Werkstoff bestehenden Teile des Grundkörpers vollständig oder teilweise mit einer Beschichtung aus einer vernetzten CFx-Schicht mit einem F/C- Verhältnis im Bereich von 0.5 bis 1.5 bedeckt sind und das Verfahren die Schritte umfasst: (i) Bereitstellen einer Plasmabeschichtungsanlage sowie eines Implantatrohlings mit einem Grundkörper, der ganz oder in Teilen aus dem biokorrodierbaren metallischen Werkstoff besteht; und (ii) Beschichten der Rohlingsoberfläche in der Plasmabeschichtungsanlage durch Plasmabehandlung in Gegenwart einer oder mehrerer Verbindungen ausgewählt aus der Gruppe umfassend Fluoralkane der Formel CnF2n+2, Fluoralkene der Formel CnF2n, Fluoralkine der Formel CnF2n-2 und zyklische Fluorkohlenstoffverbindungen mit 3 bis 10 Kohlenstoffatomen, wobei n = 2 bis 10 ist, und unter den folgenden Bedingungen während der Plasmabehandlung: – einem Druck im Bereich von 0,01 bis 10 mbar, – einer Flussrate im Bereich von 1 bis 100 sccm und – einer eingekoppelten Leistung im Bereich von 300 bis 1000 W im Falle eines Mikrowellenplasmas oder einer eingekoppelten Leistung im Bereich von 10 bis 500 W im Falle eines Radiofrequenzplasmas.
  9. Verfahren nach Anspruch 8, bei dem ein Druck im Schritt (ii) im Bereich von 0,1 bis 5 mbar liegt.
  10. Verfahren nach einem der Ansprüche 7 bis 9, bei dem eine Flussrate im Schritt (ii) im Bereich von 30 bis 60 sccm liegt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, bei dem im Falle eines Mikrowellenplasmas eine eingekoppelte Leistung im Schritt (ii) im Bereich von 500 bis 900 W liegt.
  12. Verfahren nach einem der Ansprüche 7 bis 11, bei dem n = 3 bis 6 ist.
DE102007061647A 2007-12-20 2007-12-20 Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung Withdrawn DE102007061647A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102007061647A DE102007061647A1 (de) 2007-12-20 2007-12-20 Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung
EP08169550.4A EP2072068B1 (de) 2007-12-20 2008-11-20 Implantat mit einem grundkörper aus einer biokorrodierbaren legierung
US12/339,965 US20090164002A1 (en) 2007-12-20 2008-12-19 Implant with a base body of a biocorrodible alloy
US13/758,639 US8801778B2 (en) 2007-12-20 2013-02-04 Implant with a base body of a biocorrodible alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007061647A DE102007061647A1 (de) 2007-12-20 2007-12-20 Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung

Publications (1)

Publication Number Publication Date
DE102007061647A1 true DE102007061647A1 (de) 2009-07-02

Family

ID=40459720

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007061647A Withdrawn DE102007061647A1 (de) 2007-12-20 2007-12-20 Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung

Country Status (3)

Country Link
US (1) US20090164002A1 (de)
EP (1) EP2072068B1 (de)
DE (1) DE102007061647A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727221B2 (en) 2001-06-27 2010-06-01 Cardiac Pacemakers Inc. Method and device for electrochemical formation of therapeutic species in vivo
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
JP2009545407A (ja) 2006-08-02 2009-12-24 ボストン サイエンティフィック サイムド,インコーポレイテッド 三次元分解制御を備えたエンドプロテーゼ
DE602007011114D1 (de) 2006-09-15 2011-01-20 Boston Scient Scimed Inc Biologisch erodierbare endoprothese mit biostabilen anorganischen schichten
WO2008034066A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
WO2008034013A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
JP2010503489A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生体内分解性内部人工器官およびその製造方法
WO2008036548A2 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
ES2506144T3 (es) 2006-12-28 2014-10-13 Boston Scientific Limited Endoprótesis bioerosionables y procedimiento de fabricación de las mismas
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8118857B2 (en) * 2007-11-29 2012-02-21 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US20090287301A1 (en) * 2008-05-16 2009-11-19 Boston Scientific, Scimed Inc. Coating for medical implants
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
DE102008037200B4 (de) * 2008-08-11 2015-07-09 Aap Implantate Ag Verwendung eines Druckgussverfahrens zur Herstellung eines Implantats aus Magnesium sowie Magnesiumlegierung
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2403546A2 (de) 2009-03-02 2012-01-11 Boston Scientific Scimed, Inc. Selbstpufferende medizinische implantate
US8435281B2 (en) 2009-04-10 2013-05-07 Boston Scientific Scimed, Inc. Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8888841B2 (en) 2010-06-21 2014-11-18 Zorion Medical, Inc. Bioabsorbable implants
US9561308B2 (en) 2010-06-25 2017-02-07 Fort Wayne Metal Research Products Corporation Biodegradable composite wire for medical devices
US8986369B2 (en) 2010-12-01 2015-03-24 Zorion Medical, Inc. Magnesium-based absorbable implants
WO2014145672A1 (en) * 2013-03-15 2014-09-18 Thixomat, Inc. High strength and bio-absorbable magnesium alloys
CN109797315B (zh) * 2019-03-01 2021-07-13 湖南华耀百奥医疗科技有限公司 一种医用可降解锌基复合材料及其制备方法与应用
US20220354999A1 (en) 2021-05-10 2022-11-10 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246451A (en) 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
EP0560849B1 (de) 1990-12-07 1996-08-21 Vascutek Limited Fluorierte oberfläche von polymeren implantaten
DE19604173A1 (de) * 1996-02-06 1997-08-07 Hartwig Prof Dr Hoecker Verfahren zur Erzeugung antithrombogener Oberflächen auf extrakorporal und/oder intrakorporal zu verwendenden medizinischen Gegenständen
DE19731021A1 (de) 1997-07-18 1999-01-21 Meyer Joerg In vivo abbaubares metallisches Implantat
EP0842207B1 (de) * 1995-08-03 2003-09-03 Paul J. Santerre Fluoroligomere oberflächen modifizierungsmittel für polymere und die hieraus hergestellte gegenstände
US20040063805A1 (en) * 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
DE10253634A1 (de) 2002-11-13 2004-05-27 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Endoprothese
EP0993308B1 (de) 1997-06-24 2004-07-21 Schering Aktiengesellschaft Mit fluoralkylgruppen beschichtete stents, verfahren zu ihrer herstellung und ihre verwendung zur restenoseprophylaxe
WO2005051453A1 (en) * 2003-11-19 2005-06-09 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
DE102006038231A1 (de) * 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Implantat aus einem biokorrodierbaren metallischen Werkstoff mit einer Beschichtung aus einer Organosiliziumverbindung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796023B2 (ja) * 1985-08-23 1995-10-18 ワシントン リサ−チ フアンデイシヨン 表面の性質が改良された高分子眼内レンズ
WO1989011836A1 (en) * 1988-06-07 1989-12-14 Biogold Inc. Implantable artifact and method of making
US5888591A (en) * 1996-05-06 1999-03-30 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
DE102005018356B4 (de) * 2005-04-20 2010-02-25 Eurocor Gmbh Resorbierbare Implantate
US8021676B2 (en) * 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US20070172666A1 (en) * 2006-01-24 2007-07-26 Denes Ferencz S RF plasma-enhanced deposition of fluorinated films

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560849B1 (de) 1990-12-07 1996-08-21 Vascutek Limited Fluorierte oberfläche von polymeren implantaten
US5246451A (en) 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
EP0842207B1 (de) * 1995-08-03 2003-09-03 Paul J. Santerre Fluoroligomere oberflächen modifizierungsmittel für polymere und die hieraus hergestellte gegenstände
DE19604173A1 (de) * 1996-02-06 1997-08-07 Hartwig Prof Dr Hoecker Verfahren zur Erzeugung antithrombogener Oberflächen auf extrakorporal und/oder intrakorporal zu verwendenden medizinischen Gegenständen
EP0993308B1 (de) 1997-06-24 2004-07-21 Schering Aktiengesellschaft Mit fluoralkylgruppen beschichtete stents, verfahren zu ihrer herstellung und ihre verwendung zur restenoseprophylaxe
DE19731021A1 (de) 1997-07-18 1999-01-21 Meyer Joerg In vivo abbaubares metallisches Implantat
US20040063805A1 (en) * 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
DE10253634A1 (de) 2002-11-13 2004-05-27 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Endoprothese
WO2005051453A1 (en) * 2003-11-19 2005-06-09 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
DE102006038231A1 (de) * 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Implantat aus einem biokorrodierbaren metallischen Werkstoff mit einer Beschichtung aus einer Organosiliziumverbindung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EN ISO 10993-15:2000

Also Published As

Publication number Publication date
EP2072068B1 (de) 2017-03-29
EP2072068A3 (de) 2012-12-12
EP2072068A2 (de) 2009-06-24
US20090164002A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
EP2072068B1 (de) Implantat mit einem grundkörper aus einer biokorrodierbaren legierung
EP2085100B1 (de) Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung und einer korrosionshemmenden Beschichtung
DE102008006654A1 (de) Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung
EP2087915B1 (de) Implantat mit einem Grundkörper aus einer biokorrodierbaren Eisenlegierung
DE102006060501A1 (de) Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat
DE102008043970A1 (de) Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat
EP1886702B1 (de) Implantat aus einem biokorrodierbaren metallischen Werkstoff mit einer Beschichtung aus einer Organosiliziumverbindung
EP2172233B1 (de) Implantat mit einem Grundkörper aus einer biokorrodierbaren Manganlegierung
EP2014317B1 (de) Implantat mit einer oberflächennahen magnesiumhaltigen Diffusionsschicht und dazugehöriges Herstellungsverfahren
EP2457601B1 (de) Markerkomposit und medizinisches Implantat mit einem Röntgenmarker
WO2019182003A1 (ja) 生体吸収性ステント
DE102007034019A1 (de) Stent mit einer Beschichtung oder Füllung einer Kavität
DE102007042451A1 (de) Stent mit einem Grundkörper aus einer biokorrodierbaren Legierung
EP2767294B1 (de) Biokorrodierbares Implantat mit korrosionshemmender Beschichtung
DE102015101264A1 (de) Biodegradierbare Legierung sowie deren Herstellung und Verwendung, insbesondere zur Herstellung von Stents und anderen Implantaten
EP2332588A2 (de) Biokorrodierbares Implantat mit korrosionshemmender Beschichtung
EP2415489B1 (de) Polylactid-beschichtetes Implantat aus einer biokorrodierbaren Magnesiumlegierung
EP2236163A2 (de) Implantat aus einem biokorrodierbaren metallischen Werkstoff mit einer nanopartikel-haltigen Silanbeschichtung und dazugehöriges Herstellungsverfahren
US8801778B2 (en) Implant with a base body of a biocorrodible alloy
EP2678047B1 (de) Implantat aus einer biokorrodierbaren magnesiumlegierung
DE102006011348B4 (de) Verfahren zur Erzeugung einer in physiologischer Umgebung korrosionshemmenden Schicht auf einem Formkörper
EP2767295A1 (de) Biokorrodierbares Implantat mit korrosionshemmender Beschichtung
EP2433660B1 (de) Beschichtetes Implantat aus einer biokorrodierbaren Magnesiumlegierung
DE10325410B4 (de) Verfahren zur Herstellung einer nickelarmen Oberfläche auf Nitinol
DE102020121729B4 (de) Implantatwerkstoff und dessen Verwendung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee