DE102008038721A1 - Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters - Google Patents

Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters Download PDF

Info

Publication number
DE102008038721A1
DE102008038721A1 DE102008038721A DE102008038721A DE102008038721A1 DE 102008038721 A1 DE102008038721 A1 DE 102008038721A1 DE 102008038721 A DE102008038721 A DE 102008038721A DE 102008038721 A DE102008038721 A DE 102008038721A DE 102008038721 A1 DE102008038721 A1 DE 102008038721A1
Authority
DE
Germany
Prior art keywords
exhaust gas
oxidation catalyst
gas flow
exhaust
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102008038721A
Other languages
English (en)
Inventor
Andreas Döring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Nutzfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Nutzfahrzeuge AG filed Critical MAN Nutzfahrzeuge AG
Priority to DE102008038721A priority Critical patent/DE102008038721A1/de
Priority to EP09009540.7A priority patent/EP2154344B1/de
Priority to RU2009130674/06A priority patent/RU2490482C2/ru
Priority to US12/539,954 priority patent/US8756927B2/en
Priority to CN200910167017.5A priority patent/CN101676528B/zh
Publication of DE102008038721A1 publication Critical patent/DE102008038721A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters mit wenigstens einem stromauf des Partikelfilters angeordneten NO-Oxidationskatalysator zur Oxidation von NO, insbesondere zu NO2, der von einem Abgasstrom durchströmt wird. Erfindungsgemäß ist wenigstens eine stromauf des Partikelfilters (3) angeordnete, von einem weiteren Gasstrom, bzw. einem zweiten Abgasstrom (14) durchströmte Heizeinrichtung (8), insbesondere ein Heizkatalysator, vorgesehen, mittels der der weitere Gasstrom (14) erhitzt wird, wobei der erhitzte weitere Gasstrom (14) stromauf des Partikelfilters (3) mit dem vom NO-Oxidationskatalysator (6) kommenden, insbesondere mit NO2 beladenem Abgasstrom (15) vermischt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters nach dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters nach dem Oberbegriff des Anspruchs 11.
  • Insbesondere betrifft die Erfindung ein Verfahren und eine Vorrichtung zur Regeneration von Partikelfiltern bei mit Luftüberschuss betriebenen Brennkraftmaschinen, wie Dieselmotoren oder Benzinmotoren mit Direkteinspritzung, wie sie beispielsweise in Kraftfahrzeugen oder Nutzfahrzeugen zum Einsatz gelangen.
  • Zur Minimierung der kohlenstoffhaltigen Feinstoffpartikel werden in Fahrzeugen üblicherweise sogenannte Partikelabscheider oder Partikelfilter eingesetzt. Eine typische Partikelabscheider-Anordnung in Fahrzeugen ist beispielsweise aus EP 10 727 65 A2 bekannt. Derartige Partikelabscheider unterscheiden sich von den Partikelfiltern dadurch, dass der Abgasstrom entlang der Abscheidestrukturen geführt wird, während bei Partikelfiltern das Abgas durch das Filtermedium hindurchströmen muss. Infolge dieses Unterschiedes neigen Partikelfilter zur Verstopfung, was den Abgasgegendruck erhöht, das heißt eine unerwünschte Druckerhöhung am Abgasausgang einer Brennkraftmaschine hervorruft, was wiederum die Motorleistung mindert und einen erhöhten Kraftstoffverbrauch der Brennkraftmaschine zur Folge hat. Ein Beispiel für eine derartige Partikelfilter-Anordnung ist aus der EP 03 418 32 A2 bekannt.
  • Bei beiden vorstehend beschriebenen Anordnungen oxidiert jeweils ein stromauf des Partikelabscheiders bzw. des Partikelfilters angeordneter Oxidationskatalysator das Stickstoffmonoxid (NO) im Abgas mit Hilfe des ebenfalls enthaltenen Restsauerstoffes (O2) zu Stickstoffdioxid (NO2), und zwar gemäß folgender Gleichung: 2NO + O2 ↔ 2NO2
  • Dabei ist zu beachten, dass das Gleichgewicht der obigen Reaktion bei hohen Temperaturen auf der Seite von NO liegt. Dies hat wiederum zur Folge, dass die erzielbaren NO2-Anteile bei hohen Temperaturen aufgrund dieser thermodynamischen Begrenzung limitiert sind.
  • Das NO2 setzt sich wiederum im Partikelfilter mit den kohlenstoffhaltigen Feinstpartikeln zu CO, CO2, N2 und NO um. Mit Hilfe des starken Oxidationsmittels NO2 erfolgt somit eine kontinuierliche Entfernung der angelagerten Feinstoffpartikeln, so dass Regenerationszyklen, wie sie aufwendig bei anderen Anordnungen durchgeführt werden müssen, entfallen können. Man spricht in diesem Zusammenhang von einer passiven Regeneration, gemäß nachstehender Gleichungen: 2NO2 + C → 2NO + CO2 NO2 + C → NO + CO 2C + 2NO2 → N2 + 2CO2
  • Neben NO2 wird an den platinhaltigen NO-Oxidationskatalysatoren auch SO3 aus im Kraftstoff- und/oder Motorenöl enthaltenem Schwefel gebildet. Das SO3 und NO2 kondensieren an kalten Stellen im Abgastrakt zu hochkorrosiver Schwefel- bzw. Salpetersäure, so dass die Abgasanlage bis zu den Partikelfiltern in Edelstahl ausgeführt werden muss, um eine Korrosion zu vermeiden.
  • Gelingt keine vollständige Oxidation des im Partikelfilter eingelagerten Kohlenstoffs mit Hilfe von NO2, so steigen der Kohlenstoffanteil und damit der Abgasgegendruck stetig an. Um dies zu vermeiden, werden aktuell die Partikelfilter vermehrt mit einer katalytischen Beschichtung zur Oxidation von NO versehen ( EP 03 418 32 A2 ). Dabei handelt es sich konkret um platinhaltige Katalysatoren. Der Nachteil dieses Verfahrens besteht jedoch darin, dass das am Partikelfilter gebildete NO2 nur zur Oxidation von Partikeln dienen kann, die stromab der katalytisch aktiven Schicht zur NO-Oxidation abgeschieden wurden, das heißt somit innerhalb des Filtermediums. Bildet sich dagegen auf der Filteroberfläche und damit auf der katalytisch aktiven Schicht eine Schicht aus abgeschiedenen Partikeln, ein sogenannter Filterkuchen, aus, so liegt der partikelfilterseitige NO-Oxidationskatalysator stromab des Filterkuchens, so dass die dort abgeschiedenen Rußpartikel nicht mit Hilfe von NO2 aus dem, auf dem Partikelfilter aufgebrachten, NO-Oxidationskatalysator oxidiert werden können. Hinzu kommt noch, dass genau genommen, nur die auf der Rohgasseite aufgebrachte Katalysatorschicht zur Performance des Systems beiträgt, da das auf der Reingasseite katalytisch gebildete NO2 nicht mehr in Kontakt mit dem auf der Rohgasseite und innerhalb des Filtermaterials abgeschiedenen Ruß kommen kann.
  • Ein weiteres Problem der Beschichtung des Partikelfilters besteht darin, dass die geometrischen Oberflächen des Filters deutlich geringer als die der üblicherweise eingesetzten Katalysatorsubstrate sind. Der Grund hierfür liegt darin, dass die Filter relativ große freie Querschnitte und damit freies Volumen auf der Rohgasseite benötigen, um Ruß und Motorölasche einzulagern. Werden keramische Filtersubstrate eingesetzt, wird dies durch eine geringe Zelldichte von 50 cpsi bis 200 cpsi realisiert. Demgegenüber werden reine Katalysatoren üblicherweise mit Zelldichten von 400 cpsi bis 900 cpsi ausgeführt. Durch die Anhebung von 50 cpsi auf 900 cpsi ergibt sich eine Erhöhung der geometrischen Oberfläche von 1 m2/l auf 4 m2/l, wodurch erhebliche Umsatzsteigerungen an den Katalysatoren möglich werden.
  • Aus diesen Gründen kann, trotz der katalytischen Beschichtung des Filters, nicht auf einen NO-Oxidationskatalysator vor dem Partikelfilter verzichtet werden, so dass sich ein relativ großes Bauvolumen ergibt. Dies ist selbst dann der Fall, wenn die NO-Oxidationskatalysatoren und die Partikelfilter eine bauliche Einheit bilden, in dem der Eintrittsbereich des Partikelfilters als NO-Oxidationskatalysator ausgeführt ist, wie dies beispielsweise bei der DE 103 270 30 A1 beschrieben ist.
  • Obwohl durch diese Maßnahmen eine Rußoxidation wohl noch bis zu Temperaturen von 250°C möglich ist, gibt es dennoch Anwendungsfälle, in denen selbst diese Abgastemperaturen nicht erreicht werden und somit keine sichere Funktion des Partikelfilters sichergestellt werden kann. Dies tritt üblicherweise bei schwach belasteten und in Fahrzeugen verbauten Motoren, beispielsweise bei Personenkraftwagen, Linienbussen oder Müllfahrzeugen, die noch zusätzliche hohe Leerlaufanteile aufweisen, auf. Daher wird speziell in solchen Fällen eine zweite Möglichkeit der Partikelfilterregeneration angewendet, in dem die Abgastemperatur aktiv angehoben wird. Dies geschieht üblicherweise durch die Zugabe von Kohlenwasserstoffen (HC) stromauf von Katalysatoren, insbesondere HC-Oxidationskatalysatoren. Durch diese exotherme Reaktion bzw. Oxidation der Kohlenwasserstoffe an den Katalysatoren wird ein deutlicher Temperaturanstieg erreicht.
  • Gelingt dadurch eine Temperaturanhebung auf über 600°C, kommt es zu einer Oxidation bzw. zum Abbrennen des im Partikelfilter abgeschiedenen Kohlenstoffs mit Hilfe von Sauerstoff, gemäß nachstehender Gleichung: C + O2 → CO2
  • Allerdings besteht bei dieser sogenannten aktiven Filterregeneration die Gefahr, dass es durch das exotherme Abbrennen des kohlenstoffhaltigen Rußes zu einem starken Temperaturanstieg auf bis zu 1000°C und damit meist zur Schädigung des Partikelfilters und/oder nachgeschalteter Katalysatoren kommt. Da zudem die Temperaturerhöhung für mehrere Minuten aufrecht erhalten werden muss, um eine quantitative Oxidation der Rußpartikel sicherzustellen, ist der Bedarf an Kohlenwasserstoffen nicht unerheblich und verschlechtert den Wirkungsgrad der Brennkraftmaschine, da üblicherweise der Kraftstoff als Kohlenwasserstoffquelle verwendet wird.
  • Eine einfache Kombination dieser beiden Regenerationsarten, indem Kohlenwasserstoffe vor NO-Oxidationskatalysatoren zugegeben werden, ist nicht zielführend:
    Durch die Temperaturanhebung auf über 600°C wird an den NO-Oxidationskatalysatoren auf Grund der thermodynamischen Begrenzung kaum mehr NO2 gebildet. Zudem wird die Oxidation von NO durch die hohen Mengen an Kohlenwasserstoffen behindert, wodurch es zur starken Verminderung der NO2-Bildung kommt. Dies führt dazu, dass die Partikel allein mit Hilfe von Sauerstoff oxidiert werden müssen, da in dieser Phase kein NO2 zur Verfügung steht, was die Regenerationszeit verlängert.
  • Gleichzeitig sind die NO-Oxidationskatalysatoren gegenüber thermischer Schädigung weit weniger stabil, als Katalysatoren zur Kohlenwasserstoffoxidation, da es bei Temperaturen über 550°C zu einer irreversiblen Sinterung der Aktivkomponenten und damit einem Rückgang der NO-Oxidationsaktivität kommt.
  • Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters zur Verfügung zu stellen, mittels dem bzw. der auf baulich einfache und kompakte Weise eine funktionssichere und zuverlässige Partikelfilter-Regeneration erzielt werden kann.
  • Diese Aufgabe wird bezüglich des Verfahrens gelöst mit den Merkmalen des Anspruchs 1. Bezüglich der Vorrichtung wird diese Aufgabe gelöst mit den Merkmalen des Anspruchs 11. Vorteilhafte Ausgestaltungen hierzu sind jeweils Gegenstand der darauf rückbezogenen Unteransprüche.
  • Erfindungsgemäß ist wenigstens eine stromauf des Partikelfilters angeordnete, von einem weiteren Gasstrom durchströmte Heizeinrichtung, die insbesondere durch wenigstens einen Heizkatalysator gebildet ist, vorgesehen, mittels der der weitere Gasstrom erhitzt wird, wobei dieser erhitzte weitere Gasstrom dann stromauf des Partikelfilters mit einem von einem ein NO-Oxidationskatalysator kommenden, insbesondere mit NO2 beladenem Abgasstrom vermischt wird.
  • Das heißt, dass erfindungsgemäß stromauf des Partikelfilters wenigstens ein NO-Oxidationskatalysator und wenigstens eine Heizeinrichtung, insbesondere ein Heizkatalysator, strömungstechnisch parallel zueinander angebracht und von einem Abgasstrom (NO-Oxidationskatalysator) bzw. von einem weiteren Gasstrom (Heizeinrichtung) durchströmt werden. Durch den erhitzten weiteren Gasstrom kann somit die Temperatur am Partikelfilter angehoben werden, wobei gleichzeitig noch hohe Mengen an NO2 aus dem NO-Oxidationskatalysator zur Verfügung stehen, da im Bereich des NO-Oxidationskatalysators keine, sich zu ungunsten der NO2-Bildung auswirkende Tem peraturerhöhung erfolgt bzw. keine erhöhten Kohlenwasserstoffkonzentrationen, die zu einem Rückgang der NO-Oxidationsaktivität führen, vorliegen. Diese Temperaturerhöhung des Abgasstroms vor dem Partikelfilter findet somit in einem separaten Teil des Abgasstrangs, beabstandet vom NO-Oxidationskatalysator, statt, wobei dieser erhitzte Gasstrom dann stromab des NO-Oxidationskatalysators mit dem von diesem kommenden, mit NO2 beladenen Abgasstrom vermischt wird, um die Abgastemperatur dieses Abgasstroms vor dem Partikelfilter zu erhöhen. Erfindungsgemäß wird hier somit eine funktionssichere, die jeweiligen Vorteile, ausnutzende und negative Wechselwirkungen vermeidende Kombination einer aktiven und einer passiven Regeneration eines Partikelfilters zur Verfügung gestellt.
  • Aufgrund der dadurch möglichen hohen Temperaturen bei gleichzeitiger Unterstützung der Rußoxidation durch das starke Oxidationsmittel NO2 gelingt es, die Regenerationsdauer zu verkürzen und die Regenerationstemperatur auf ca. 400°C abzusenken. Dadurch wird die für die Temperaturerhöhung benötigte Kohlenwasserstoffmenge ebenso verringert wie die Gefahr eines unkontrollierbaren Temperaturanstieges und eine damit verbundene thermische Schädigung des Partikelfilters oder nachgeschalteter Katalysatoren.
  • Der weitere Gasstrom, über den die Temperaturanhebung realisiert wird, ist zum Beispiel von einem ladeluftseitigen Frischluftstrom oder von einem Ladeluftstrom stromab einer Einmündung einer Abgasrückführleitung einer externen Abgasrückführung abgezweigt. Damit kann auf einfache Weise sichergestellt werden, dass ausreichend Sauerstoff an der bevorzugt als Oxidationskatalysator ausgebildeten Heizeinrichtung zur Verfügung steht. Besonders bevorzugt ist jedoch eine Ausgestaltung, bei der der weitere Gasstrom durch einen vom Abgasstrang der Brennkraftmaschine abgezweigten Abgasstrom gebildet ist, der dann einen zweiten Abgasstrom ausbildet; auf diese bevorzugte Variante wird nachfolgend abgestellt, wobei überall dort, wo dies technisch sinnvoll ist, der zweite Abgasstrom im weiteren Sinne auch analog durch einen z. B. ladeluftseitigen Frischluftstrom ersetzt bzw. mit diesem vermischt werden kann.
  • Grundsätzlich kann der zu erhitzende zweite Abgasstrom von jeder geeigneten Stelle der Abgasanlage abgezogen und im erhitzten Zustand dann dem ersten Abgasstrom beigemischt werden. Besonders bevorzugt ist jedoch ein Aufbau, bei dem die, zum NO-Oxidationskatalysator und zur Heizeinrichtung hinführende Abgasleitung, in eine vom ersten Abgasstrom durchströmte erste Zweigleitung, in der der NO-Oxidationskatalysator angeordnet ist und in eine, von einem zweiten Abgasstrom durchströmte, zweite Zweigleitung aufgeteilt ist, in der die Heizeinrichtung strömungstechnisch parallel geschaltet zum NO-Oxidationskatalysator, angeordnet ist. Diese beiden Zweigleitungen werden dann stromab des NO-Oxidationskatalysators und der Heizeinrichtung wieder zu einer zum Partikelfilter führenden Abgasleitung zusammengeführt. Besonders bevorzugt ist es in Verbindung mit einer derartigen konkreten Ausgestaltung, die zweite Zweigleitung als Bypassleitung auszuführen, die von der gleichzeitig die erste Zweigleitung ausbildenden und zum NO-Oxidationskatalysator hinführenden Abgasleitung abgezweigt ist. Eine derartige Bypassleitung trägt dem Umstand Rechnung, dass die Abgasmenge bzw. der Abgasmassenstrom, der durch die insbesondere durch einen Heizkatalysator gebildete Heizeinrichtung geführt wird, in der Regel geringer ist als der durch den NO-Oxidationskatalysator geführte erste Abgasstrom.
  • Die Heizeinrichtung ist gemäß einer besonders bevorzugten Ausgestaltung durch einen Heizkatalysator ausgebildet, insbesondere durch einen Oxidationskatalysator, mittels dem durch eine exotherme Reaktion bzw. Oxidation eine Temperaturerhöhung des Abgasstroms erzielt werden kann. Der Oxidationskatalysator ist bevorzugt ein HC-Oxidationskatalysator, mittels dem Kohlenwasserstoffe unter Freisetzung von Wärmeenergie oxidiert werden. Die Kohlenwasserstoffe werden dabei bevorzugt durch Kraftstoff gebildet. Grundsätzlich können die Kohlenwasserstoffe aber auch dadurch zur Verfügung gestellt werden, dass über eine späte Nacheinspritzung des Kraftstoffs in den Brennraum hohe Kohlenwasserstoffemissionen im Abgas generiert werden. Besonders bevorzugt ist es jedoch, die Zugabe der Kohlenwasserstoffe durch eine im Abgastrakt vorgesehene, separate Zudosiervorrichtung, beispielsweise eine Einspritzdüse oder dergleichen, zuzudosieren. Diese Zudosierung erfolgt dann stromauf des Heizkatalysators, indem dem zweiten Abgasstrom zu vorgegebenen Zeiten eine vorgegebene Menge Kohlenwasserstoffe zudosiert bzw. zugedüst wird. Besonders bevorzugt ist eine entsprechend vorgegebener Steuer- und/oder Regelparameter erfolgende, zum Beispiel periodisch wiederkehrende, Zudosierung mit Hilfe einer elektronischen Kontrolleinheit.
  • Zum Zünden der zudosierten Kohlenwasserstoffe kann somit der zu erhitzende Abgasstrom über die bevorzugt als HC-Oxidationskatalysator ausgebildete Heizeinrichtung geführt werden, wodurch der Abgasstrom erhitzt wird. Die dadurch zu erzielende Heizleistung ist allerdings durch die vorhandene Sauerstoffmenge limitiert. Denn für den Fall, dass der Lambdawert den Wert 1 erreichen sollte, ist keine Oxidation der Kohlenwasserstoffe mehr möglich. Um dies zu vermeiden, wird vorgeschlagen, dem zu erhitzenden Abgasstrom, nach Erreichen einer bestimmten vorgegebenen Temperatur und/oder einer vorgegebenen Zeit und/oder bei Unterschreiten eines vorgegebenen Lambda- oder Sauerstoffwerts, Frischluft zuzuführen. Diese optionale Frischluftzuführung bewirkt ein Anheben des Lambdawertes und damit auch eine Anhebung der Heizleistung. Die Frischluft kann dabei generell ladeluftseitig abgezweigt werden, konkret zum Beispiel auch stromauf und/oder stromab einer Einmündung einer Abgasrückführleitung in eine Ladeluftleitung.
  • Üblicherweise ist der über den NO-Oxidationskatalysator geleitete Abgasstrom größer als der über den Heizkatalysator. Diese Aufteilung kann durch einfache strömungstechnische Maßnahmen erzielt werden, wie beispielsweise durch unterschiedliche hydraulische Durchmesser. Allerdings kann die Aufteilung auch aktiv, mit Hilfe von wenigstens einer variablen Drossel- und/oder Absperr vorrichtung erfolgen, die mit einer Steuer- und/oder Regeleinrichtung gekoppelt sein kann, mittels denen die Abgasmenge und/oder Abgasmasse des ersten und zweiten Abgasstroms entsprechend vorgegebener Mengen- und/oder Massestromparameter gesteuert vorgegeben oder eingeregelt werden kann. Die Drossel- und/oder Absperrvorrichtung kann beispielsweise durch eine Drossel- und/oder Absperrklappe oder aber auch durch ein Drossel- und/oder Absperrventil gebildet sein. Beispielsweise können diese Drossel- und/oder Absperrvorrichtungen im Verzweigungsbereich des ersten und zweiten Abgasstroms angeordnet sein und damit stromauf des NO-Oxidationskatalysators bzw. der Heizeinrichtung bzw. des Heizkatalysators. Insbesondere in Verbindung mit einer Art Bypassleitung, in der der Heizkatalysator bzw. die Heizeinrichtung angeordnet ist, also einer Parallelschaltung dieser Bauteile zum NO-Oxidationskatalysator, macht die Anordnung der mechanischen Mittel bzw. der Drossel- und/oder Absperrvorrichtung im Bereich einer den zweiten Abgasstrom führenden Abgasleitung Sinn.
  • Dies insbesondere auch dann, wenn der zweite Abgasstrom gemäß einer weiteren Ausführungsalternative stromauf eines Abgasturboladers abgezweigt wird. Denn ein Problem bei schwach belasteten Brennkraftmaschinen mit Abgasturbolader besteht darin, dass die Abgastemperaturen aufgrund der vom Turbolader geleiteten Verdichterarbeit noch tiefer sind als bei Brennkraftmaschinen ohne Abgasturboaufladung. Dies kann dazu führen, dass die Anspringtemperatur des zum Beispiel HC-Oxidationskatalysators als Heizkatalysator nicht erreicht und damit eine Eindüsung von Kohlenwasserstoffen unmöglich wird. Dieses Problem wird beim Einsatz einer zweistufigen Aufladung und/oder hohen Abgasrückführungsraten noch verstärkt. In diesem Fall bietet es sich dann an, dem über den zum Beispiel HC-Oxidationskatalysator als Heizkatalysator geleiteten Abgasstrom stromauf der Abgasturbine zu entnehmen und stromab der NO-Oxidationskatalysatoren wieder in erfindungsgemäßer Weise dem Abgasstrom zuzuführen. Dadurch liegt dann der zum Beispiel HC-Oxidationskatalysator als Heizkatalysator auf einem deutlich höheren Temperaturniveau, was eine Oxidation der eingedüsten Kohlenwasserstoffe auch bei den oben angesprochenen Problemfällen erlaubt. Da der Wirkungsgrad der Ladegruppe durch das Abblasen über den zum Beispiel HC-Oxidationskatalysator verschlechtert wird, sollte bei dieser Anordnung ein ansteuerbares Drossel- und/oder Absperrelement im stromauf der Turbine entnommenen Abgasstrom vorgesehen werden. Dadurch kann der Teilstrom im Nichtregenerationsbetrieb gedrosselt oder ganz abgeschaltet werden. Wird ein Waste-Gate zum Schutz des Turboladers und/oder der Brennkraftmaschine benötigt, bietet es sich an, den Teilstrom und die Drossel- oder Absperrvorrichtungen gleichzeitig auch als Waste-Gate zu verwenden.
  • Die Heizeinrichtung, insbesondere der Heizkatalysator, kann grundsätzlich außerhalb des Abgastraktes angeordnet werden, das heißt so, dass dieser nicht vom Abgas umströmt wird. Dies führt allerdings relativ schnell zu einer Auskühlung dieser Heizeinrichtung, insbesondere des Heizkatalysators. Sinnvoller ist es daher, die Heizeinrichtung, insbesondere den Heizkatalysator, so im Abgastrakt anzuordnen, dass er vom Abgas umströmt wird, wodurch die Wärmeverluste am Heizkatalysator verringert werden. Eine besonders platzsparende Anordnung besteht darin, die Heizeinrichtung, insbesondere den Heizkatalysator, durch den NO-Oxidationskatalysator wenigstens teilweise bzw. bereichsweise zu umgeben bzw. zu umschließen. Auch die Anbringung in einem gemeinsamen Gehäuse stellt eine sinnvolle Variante dar.
  • Um das System weiter zu verbessern, ist es weiterhin möglich, den bevorzugt als HC-Oxidationskatalysator ausgebildeten Heizkatalysator zusätzlich mit einer NO-Oxidationsaktivität zu versehen, wodurch die NO2-Anteile im Nicht-Regenerationsbetrieb angehoben und damit die Oxidation der Partikel mit Hilfe der passiven Regeneration verbessert werden. Dadurch gelingt es, die Intervalle zwischen den aktiven Temperaturanhebungen zu verlängern können. Allerdings ist darauf zu achten, dass der Heizkatalysator thermisch stabiler ausgeführt sein muss als der reine NO-Oxidationskatalysator. Dies hat üblicherweise eine geringere NO-Oxidationsaktivität im Vergleich zu den reinen NO-Oxidationskatalysatoren zur Folge, wie dies bereits zuvor erwähnt worden ist.
  • Um insbesondere beim Einsatz von HC-Oxidationskatalysatoren als Heizkatalysatoren hohe Kohlenwasserstoffkonzentrationen stromab des Partikelfilters zu vermeiden, kann dieser mit einem Katalysator zur Oxidation von Kohlenwasserstoffen versehen werden. Auch ein stromauf- und/oder stromab des Partikelfilters angebrachter bzw. angeordneter Katalysator mit Kohlenwasserstoffoxidationsaktivität ist denkbar.
  • Als Aktivkomponenten kommen sowohl für die NO- als auch für die HC-Oxidationskatalysatoren Metalle der Platinmetallgruppe in Frage, allerdings unterscheidet sich deren Zusammensetzung: Um die thermische Stabilität der HC-Oxidationskatalysatoren zu verbessern, liegt zum Beispiel deren Palladiumanteil höher als der der NO-Oxidationskatalysatoren. Für die HC-Oxidationskatalysatoren kommt grundsätzlich als Aktivelement auch Cer in Frage.
  • Die Aktivität beider Katalysatortypen kann zum Beispiel durch den Einsatz von Zeolithen zusätzlich erhöht werden.
  • Des Weiteren können im Abgastrakt bzw. Abgasstrang zusätzlich Katalysatoren zur NOX-Reduktion vorgesehen sein, wie beispielsweise wenigstens ein NOX-Speicherkatalysator und/oder wenigstens ein SCR-Katalysator. Die NOX-Speicherkatalysatoren können stromab der Oxidationskatalysatoren und/oder stromab des Partikelfilters angeordnet sein. Für die NOX-Speicherkatalysatoren werden Platin- und/oder Barium und/oder Calcium als Aktivkomponenten bevorzugt eingesetzt. Demgegenüber ist für die SCR-Katalysatoren der Einsatz von wolframoxidstabilisiertem Vanadiumpentoxid, vorzugsweise auf Titandioxidbasis, oder Eisenzeolithe oder Kupferzeolithe oder Kobaltzeolithe sinnvoll.
  • Nachfolgend wird die Erfindung mit Hilfe einer Zeichnung lediglich beispielhaft näher erläutert.
  • Es zeigen:
  • 1 schematisch eine erfindungsgemäße Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters gemäß einer ersten Ausführungsform,
  • 2 schematisch eine erfindungsgemäße Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters gemäß einer zweiten Ausführungsform, und
  • 3: schematisch eine erfindungsgemäße Vorrichtung zur Regeneration eines im Abgastrakt angeordneten Partikelfilters gemäß einer dritten Ausführungsform.
  • In 1 ist schematisch und lediglich beispielhaft eine erfindungsgemäße Regenerationsvorrichtung 1 für einen im Abgastrakt bzw. Abgasstrang 2 einer hier nicht dargestellten Brennkraftmaschine angeordneten Partikelfilter 3 gezeigt.
  • Konkret weist der Abgastrakt 2 hier eine Abgasleitung 5 auf. Stromauf des NO-Oxidationskatalysators 6 zweigt von der Abgasleitung 5 eine Bypassleitung 7 ab, in der ein HC-Oxidationskatalysator 8 angeordnet ist; in der nach der Abzweigstelle weitergeführten Abgasleitung 5' ist ein NO-Oxidationskatalysator 6 angeordnet. Stromab des HC-Oxidationskatalysators 8 und stromab des NO-Oxidationskatalysators 6 werden die Bypassleitung 7 und die Abgasleitung 5' wieder zu einer Abgasleitung 5'' zusammengeführt, in der ein Partikelfilter 3 angeordnet ist.
  • Ferner umfasst die Regenerationsvorrichtung 1 hier eine Zudosiervorrichtung 9 für Kraftstoff, die, wie dies hier äußerst schematisch dargestellt ist, mit einer Steuer- und Regeleinrichtung 10 gekoppelt ist. Die Zudosiereinrichtung 9 weist eine in die Bypassleitung 7 geführte Einspritzdüse 11 auf, über die der Kraftstoff 12 gesteuert bzw. geregelt mit der Steuer- und Regeleinrichtung 10 zu vorgegebenen Zeiten in vorgegebenen Mengen, bevorzugt periodisch, in die Bypassleitung 7 stromauf des HC-Oxidationskatalysators 8 eingedüst wird.
  • Wie dies der 1 weiter entnommen werden kann, ist stromauf des HC-Oxidationskatalysators 8 im Bereich der Bypassleitung 7 ferner eine Drosselklappe 13 angeordnet, die ebenfalls mit einer hier nicht dargestellten Steuer- und/oder Regeleinrichtung gekoppelt sein kann. Je nach der Stellung der Drosselklappe 13 kann die von einem von der Brennkraftmaschine kommenden Abgasstrom 4 in die Bypassleitung 7 abgezweigte Menge und Masse eines zweiten Abgasstroms 14 gesteuert vorgegeben bzw. geregelt werden. In der 1 ist mit strichlierten Linien die maximale Offenstellung der Drosselklappe 13 und punktiert die Geschlossenstellung der Drosselklappe 13 dargestellt. Der mit 21 bezeichnete Pfeil soll diese Variabilität der Drosselklappe verdeutlichen. Der nach Abzweigung des zweiten Abgasstroms 14 verbleibende erste Abgasstrom 15 durchströmt dann den NO-Oxidationskatalysator, wobei die Stickstoffmonoxide NO des ersten Abgasstroms im NO-Oxidationskatalysator 6 bei relativ niedrigen Temperaturen zu einem großen Teil zu NO2 aufoxidiert werden, so dass den NO-Oxidationskatalysator 6 ein mit einer großen Menge an NO2 beladener erster Abgasstrom verlässt. Im ersten Abgasstrom 15 kann ebenfalls eine Drossel- und/oder Absperrvorrichtung vorgesehen werden, um die Abgasmengen über die beiden Teilströme variieren zu können. Diese Vorrichtung ist aus Gründen der Übersichtlichkeit in 1 allerdings nicht dargestellt.
  • Der zweite Abgasstrom 14 nimmt entlang seines Strömungsweges stromauf des HC-Oxidationskatalysators 8 den eingedüsten Kraftstoff bzw. die eingedüsten Kohlenwasserstoffe auf und durchströmt kraftstoffangereichert den HC-Oxidationskatalysator 8, in dem dann eine exotherme Reaktion bzw. Oxidation stattfindet, aufgrund der der zweite Abgasstrom 14 auf eine vorgegebene Temperatur erhitzt wird.
  • Dieser erhitzte zweite Abgasstrom 14 wird dann stromab des NO-Oxidationskatalysators 6 wieder mit dem mit NO2 beladenen ersten Abgasstrom 15 vermischt wird, so dass anschließend, nach dem Vermischen der beiden Abgasströme 14, 15, ein heißer, mit einem großen Anteil an NO2 beladener Abgasstrom 16 zum Partikelfilter 3 strömt, wo die im Partikelfilter 3 eingelagerten kohlenstoffhaltigen Rußpartikel zu CO, CO2, N2 und NO umgesetzt werden, wodurch der Partikelfilter 3 regeneriert wird. Wie dies in der 1 lediglich strichliert eingezeichnet ist, kann dem zweiten Abgasstrom 14 eine vorgegebene Menge eines ladeluftseitigen Frischluftstroms 26 zugeführt werden, mit dem während des Regenerationsbetriebes zu vorgegebenen Zeiten die Heizleistung, insbesondere bei Unterschreiten eines vorgegebenen Lambda- oder Sauerstoffwertes, nochmals weiter erhöht werden kann.
  • Die 2 zeigt schematisch eine weitere Ausführungsform der erfindungsgemäßen Regenerationsvorrichtung 1, bei der zur Ausführungsform nach 1 gleiche Bauteile mit den gleichen Bezugszeichen versehen sind und hier zur Vermeidung von unnötigen Wiederholungen nicht mehr explizit näher erläutert sind. Im Unterschied zur Ausführungsform nach 1 wird hier der zweite Abgasstrom 14 stromauf einer Abgasturbine 17 eines Abgasturboladers 18, der neben der Abgasturbine 17 auch noch in üblicher Weise einen Abgasverdichter 19 aufweist, abgezogen. Dieser stromauf der Abgasturbine 17 vom Abgasstrom 4 abgezogene zweite Abgasstrom 14 strömt dann analog zur Ausgestaltung nach 1 über eine Drosselklappe 13 und eine Kraftstoff 12 einspritzende Einspritzdüse 11 zum HC-Oxidationskatalysalor 8, wo wiederum die exotherme Reaktion bzw. Oxidation stattfindet, das heißt ein erhitzter zweiter Abgasstrom 14 zur Verfügung gestellt wird.
  • Die Drosselklappe kann auch stromab der Zuführung der Kohlenwasserstoffe angeordnet sein. Dies ist beispielhaft in 2 dargestellt, in der eine weitere Drosselklappe 20 stromab des HC-Oxidationskatalysators 8 im Bereich der Einmündung der Bypassleitung 7 in die Abgasleitung S angeordnet ist. Diese kann zusätzlich zur Drosselklappe 13, aber auch ohne diese (hier nicht dargestellt) verbaut sein. Die hier dargestellte Drosselklappe 20 wirkt mit der Drosselklappe 13 zusammen, die sich je nach vorgegebener Parameter gegenseitig ergänzen können und zum Beispiel eine an sich bekannte Waste-Gate-Funktion zur Verfügung stellen können, um den Turbolader und/oder den Motor vor Beschädigungen zu schützen.
  • Stromab der Abgasturbine 17 strömt der verbleibende erste Abgasstrom 15 analog zur zuvor beschriebenen Art und Weise durch den NO-Oxidationskatalysator 6, wo das NO zu NO2 aufoxidiert wird, so dass anschließend stromab des NO-Oxidationskatalysators 6 bzw. stromab des HC-Oxidationskatalysators 8 der mit NO2 beladene erste Abgasstrom 15 mit dem heißen zweiten Abgasstrom 14 vermischt werden kann und ein heißer, mit NO2 beladener Abgasstrom 16 zum Partikelfilter 3 geführt werden kann. Die Funktionsweise und Wirkung der Regenerationsvorrichtung 1 der 2 entspricht hier derjenigen, wie sie in Verbindung mit der 1 bereits ausführlich erläutert und dargelegt worden ist. Insofern wird auf die zuvor gemachten Ausführungen verwiesen.
  • Lediglich beispielhaft und schematisch ist hier in der Ausgestaltung nach 2 dem Partikelfilter 3 noch ein zum Beispiel durch einen NOX-Speicherkatalysator oder einen SCR-Katalysator gebildeter NOX-Reduktionskatalysator 22 nachgeschaltet, mittels dem eine NOX-Reduktion des dem Partikelfilter 3 verlassenden Abgasstroms 23 möglich ist.
  • In der 3 ist schematisch und beispielhaft eine dritte Ausführungsform einer erfindungsgemäßen Regenerationsvorrichtung 1 gezeigt, bei der für eine besonders kompakte und damit platzsparende Bauweise der HC-Oxidationskatalysator 8 innerhalb eines den HC-Oxidationskatalysator 8 ringförmig umschließenden NO-Oxidationskatalysators 6 angeordnet und aufgenommen ist. Der über die Abgasleitung 5 in Richtung zu den beiden Katalysatoren 6, 8 strömende Abgasstrom 4 wird hier durch ein oder mehrere Strömungsleitelemente 24 in einen lediglich den NO-Oxidationskatalysator 6 durchströmenden ersten Abgasstrom 15 sowie in einen lediglich den HC-Oxidationskatalysator 8 durchströmenden zweiten Abgasstrom 14 aufgeteilt. Die Masse des durch den HC-Oxidationskatalysator 8 strömenden zweiten Abgasstroms 14 wird dabei durch die Geometrie der Strömungsleitelemente 24 und/oder durch mit diesen integral ausgebildeten oder zusätzlich zu diesen vorgesehenen Drossel- und/oder Absperrelementen, die hier nicht dargestellt sind, vorgegeben. So kann beispielsweise die Zuströmöffnung zu dem HC-Oxidationskatalysator 8 mittels einer Klappe oder einem Ventil als Sperrelement verschlossen oder mehr oder weniger freigegeben werden, wobei die Ansteuerung der Klappe bzw. des Ventils über eine elektronische Steuer- und/oder Regeleinrichtung erfolgen kann, und zwar in Abhängigkeit von vorgegebenen Betriebsparametern, analog zur zuvor in Verbindung mit den Ausgestaltungen der 1 und 2 geschilderten Ansteuerung der Drosselklappen 13 bzw. 20.
  • Unmittelbar vor einem Mündungsbereich der Strömungsleitelemente 24 ist hier wiederum eine Einspritzdüse 11 einer Zudosiereinrichtung 9 angeordnet, mittels der Kraftstoff 12 in den zweiten Abgasstrom 14 eingedüst werden kann, so dass im HC-Oxidationskatalysator 8 eine exotherme Reaktion stattfindet und ein den HC-Oxidationskatalysator 8 verlassender heißer Abgasstrom zusammen mit dem den NO-Oxidationskatalysator 6 durchströmenden ersten Abgasstrom 15 zu einem heißen, mit NO2 beladenen Abgasstrom 16 vermischt wird. Dieser heiße, mit NO2 beladen Abgasstrom 16 strömt dann durch den Partikelfilter 3 sowie anschließend durch einen NOX-Reduktionskatalysator 22, wie dies bereits zuvor in Verbindung mit der 2 beschrieben worden ist.
  • Die durch die Strömungsleitelemente 24 ausgebildeten Strömungsbereiche bilden hier dann analog zu den Ausgestaltungen nach den 1 und 2 wiederum von der Abgasleitung 5 abzweigende Zweigleitungen 5' und 7 aus, die dann im Bereich stromab des NO-Oxidationskatalysators 6 und stromab des HC-Oxidationskatalysators 8 wieder zu einer gemeinsamen Abgasleitung 5'' zusammengeführt werden.
  • Wie dies der schematischen Darstellung der 3 weiter entnommen werden kann, sind der NO-Oxidationskatalysator 6 und der HC-Oxidationskatalysator 8 hier bevorzugt in einem gemeinsamen Gehäuse 25 angeordnet.
  • Die vorstehend beschriebenen Ausführungen lassen sich selbstverständlich mit dem Fachmann zugänglichem Fachwissen auf vielfältige Weise ausgestalten, ohne den grundlegenden erfinderischen Gedanken zu verlassen. Den beschriebenen Ausführungsformen kommt somit nur Beispielcharakter zu.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - EP 1072765 A2 [0003]
    • - EP 0341832 A2 [0003, 0008]
    • - DE 10327030 A1 [0010]

Claims (35)

  1. Verfahren zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters mit wenigstens einem stromauf des Partikelfilters (3) angeordneten NO-Oxidationskatalysator (6) zur Oxidation von NO, insbesondere zu NO2, der von einem Abgasstrom (15) durchströmt wird, dadurch gekennzeichnet, dass wenigstens eine stromauf des Partikelfilters (3) angeordnete, von einem weiteren Gasstrom (14) durchströmte Heizeinrichtung (8), insbesondere ein Heizkatalysator, vorgesehen ist, mittels der der weitere Gasstrom (14) erhitzt wird, wobei der erhitzte weitere Gasstrom (14) stromauf des Partikelfilters (3) mit dem vom NO-Oxidationskatalysator (6) kommenden, insbesondere mit NO2 beladenen, Abgasstrom (15) vermischt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der weitere Gasstrom (14) von einem ladeluftseitigen Frischluftstrom und/oder oder von einem stromab der Einmündung einer Abgasrückführleitung in eine Ladeluftleitung vorhandenem Ladeluftstrom und/oder von einem einen zweiten Abgasstrom bildenden Abgasstrom der Brennkraftmaschine abgezweigt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein den weiteren Gasstrom bildender zweiter Abgasstrom (14) stromauf des NO-Oxidationskatalysators (6) und stromauf der Heizeinrichtung (8) von einem zum NO-Oxidationskatalysator (6) geführten Abgasstrom (4) abgezweigt wird dergestalt, dass ein erster Abgasstrom (15) den NO-Oxidationskatalysator (6) und ein zweiter Abgasstrom (14) die Heizeinrichtung (8) durchströmt und beide Abgasströme (14, 15) stromab des NO-Oxidationskatalysators (6) und der Heizeinrichtung (8) wieder zusammengeführt und zum Partikelfilter (3) geführt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dem weiteren Gasstrom (14), insbesondere einem zweiten Abgasstrom Kohlenwasserstoffe (12), insbesondere ein Kraftstoff, mittels einer Zudosiervorrichtung (9) zu vorgegebenen Zeiten in vorgegebener Menge, insbesondere periodisch, zudosiert und oxidiert werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Kohlenwasserstoffe (12) in dem weiteren Gasstrom (14) stromauf einer als Oxidationskatalysator ausgebildeten Heizeinrichtung (8) zudosiert werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass dem zweiten Abgasstrom (14) stromauf der als Oxidationskatalysator ausgebildeten Heizeinrichtung (8) zu vorgegebenen Zeiten und/oder bei Überschreiten einer vorgegebenen Abgastemperatur und/oder bei Unterschreiten eines vorgegebenen Lambdawerts und/oder bei Unterschreiten eines vorgegebenen Sauerstoffwerts eine vorgegebene Menge eines ladeluftseitigen Frischluftstroms (26) und/oder eine vorgegebene Menge eines stromab der Einmündung einer Abgasrückführleitung in eine Ladeluftleitung abgezweigten Ladeluftstroms zugeführt wird.
  7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Abgasmasse des ersten Abgasstroms (15) größer ist als diejenige des zweiten Abgasstroms (14).
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Abgasmasse des ersten und zweiten Abgasstroms (14, 15) mittels mindestens einer, mit einer Steuer- und/oder Regeleinrichtung ansteuerbaren Drossel- und/oder Absperrvorrichtung (13, 20) gesteuert vorgegeben oder eingeregelt wird.
  9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass der zweite Abgasstrom (14) stromauf mindestens eines Abgasturboladers (18) entnommen wird.
  10. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, dass wenigstens eine Drossel- und/oder Absperrvorrichtung (13, 20), die im Bereich einer den zweiten Abgasstrom (14) führenden Abgasleitung (7) angeordnet ist, als Waste-Gate fungiert.
  11. Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters mit wenigstens einem stromauf des Partikelfilters angeordneten, von einem Abgasstrom durchströmten NO-Oxidationskatalysator zur Oxidation von NO dadurch gekennzeichnet, dass wenigstens eine stromauf des Partikelfilters (3) angeordnete, von einem weiteren Gasstrom (14) durchströmte Heizeinrichtung (8), insbesondere ein Heizkatalysator, vorgesehen ist dergestalt, dass der weitere Gasstrom und der Abgasstrom (15) stromab des NO-Oxidationskatalysators (6) und der Heizeinrichtung (8) dem Partikelfilter (3) im vermischten Zustand zuführbar sind.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der weitere Gasstrom (14) ein ladeluftseitiger Frischluftstrom und/oder ein stromab einer Einmündung einer Abgasrückführleitung in eine Ladeluftleitung abgezweigter Ladeluftstrom und/oder ein einen zweiten Abgasstrom ausbildender Abgasstrom der Brennkraftmaschine ist.
  13. Vorrichtung nach Anspruch 12 dadurch gekennzeichnet, dass sich die zum NO-Oxidationskatalysator (6) und zur Heizeinrichtung (8) hinführende Abgasleitung (5) in eine vom ersten Abgasstrom (15) durchströmte erste Zweigleitung (5') in der der NO-Oxidationskatalysator (6) angeordnet ist, und in eine vom zweiten Abgasstrom (14) durchströmte zweite Zweigleitung (7) aufteilt, in der die Heizeinrichtung (8) parallel geschaltet zum NO-Oxidationskatalysator (6) angeordnet ist, und dass die beiden Zweigleitungen (5', 7) stromab des NO-Oxidationskatalysators (6) und der Heizeinrichtung (8) wieder zu einer zum Partikelfilter (3) führenden Abgasleitung (5'') zusammengeführt sind.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die zweite Zweigleitung (7) als Bypassleitung ausgeführt ist, die von der gleichzeitig die erste Zweigleitung (5') ausbildenden und zum NO-Oxidationskatalysator (6) hinführenden Abgasleitung (5) abgezweigt ist.
  15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Heizeinrichtung (8) durch einen Heizkatalysator gebildet ist.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Heizkatalysator (8) als Oxidationskatalysator ausgeführt ist.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass eine Zudosiervorrichtung (9) vorgesehen ist, mittels der dem weiteren Gasstrom (14), insbesondere dem zweiten Abgasstrom (14), stromauf des Heizkatalysators (8) ein Reduktionsmittel (12) für eine exotherme Reaktion zudosierbar ist.
  18. Vorrichtung nach Anspruch 16 und 17, dadurch gekennzeichnet, dass der Heizkatalysator (8) ein HC-Oxidationskatalysator ist, und dass das Reduktionsmittel (12) durch Kohlenwasserstoffe, vorzugsweise durch Kraftstoff, gebildet ist.
  19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die den zweiten Abgasstrom (14) führende Abgasleitung (7) mit einer mittels eines Absperrorgans absperrbaren Frischluftleitung strömungstechnisch gekoppelt ist, mit der der den zweiten Abgasstrom (14) führenden Abgasleitung (7) ein ladeluftseitiger Frischluftstrom und/oder ein stromab der Einmündung einer Abgasrückführleitung in eine Ladeluftleitung abgezweigter Ladeluftstrom zuführbar ist.
  20. Vorrichtung nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass der HC-Oxidationskatalysator (8) zusätzlich mit einer NO-Oxidationsaktivität versehen ist.
  21. Vorrichtung nach einem der Ansprüche 11 bis 20, dadurch gekennzeichnet, dass die bevorzugt als Heizkatalysator ausgebildete wenigstens eine Heizeinrichtung (8) so im Abgastrakt (2) angeordnet ist, dass dieser von wenigstens einem Abgasstrom des Abgastraktes (2) bereichsweise umströmt ist.
  22. Vorrichtung nach einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, dass der wenigstens eine NO-Oxidationskatalysator (6) die bevorzugt als Heizkatalysator ausgebildete Heizeinrichtung (8) wenigstens bereichsweise umschließt oder umgibt, wobei diese strömungstechnisch entkoppelt vom jeweiligen Abgas- bzw. Gasstrorn (14, 15) durchströmt sind.
  23. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass der wenigstens eine NO-Oxidationskatalysator (6) und die wenigstens eine Heizeinrichtung (8), insbesondere der wenigstens eine Heizkatalysator (8), in einem gemeinsamen Gehäuse untergebracht sind.
  24. Vorrichtung nach einem der Ansprüche 12 bis 23, dadurch gekennzeichnet, dass zur Regulierung der Masse des ersten und zweiten Abgasstroms (14, 15) mechanische, die Strömung beeinflussende Mittel und/oder eine Steuer- und/oder Regeleinrichtung vorgesehen ist bzw. sind, die wenigstens eine entsprechend vorgebbarer Mengen- und/oder Massenstromparameter ansteuerbare Drossel- und/oder Absperrvorrichtung (13, 20), insbesondere eine Drossel- und/oder Absperrklappe oder ein Drossel- und/oder Absperrventil, ansteuert.
  25. Vorrichtung nach einem der Ansprüche 13 bis 24, dadurch gekennzeichnet, dass wenigstens eine Drossel- und/oder Absperrvorrichtung (13, 20) in der ersten und/oder zweiten Zweigleitung (5', 7) angeordnet ist.
  26. Vorrichtung nach einem der Ansprüche 12 bis 25, dadurch gekennzeichnet, dass der zweite Abgasstrom (14) stromauf einer Abgasturbine (17) eines Abgasturboladers (18) abgezweigt ist.
  27. Vorrichtung nach einem der Ansprüche 12 bis 26, dadurch gekennzeichnet, dass wenigstens eine im Bereich der den zweiten Abgasstrom (14) führenden Abgasleitung (7) angeordnete Drossel- und/oder Absperrvorrichtung (13, 20) als Waste-Gate ausgebildet ist.
  28. Vorrichtung nach einem der Ansprüche 11 bis 27, dadurch gekennzeichnet, dass der wenigstens eine Partikelfilter (3) zusätzlich mit einer HC-Oxidationsaktivität versehen ist.
  29. Vorrichtung nach einem der Ansprüche 18 bis 29, dadurch gekennzeichnet, dass der wenigstens eine HC-Oxidationskatalysator (8) Elemente der Platinmetallgruppe und/oder Cer als Aktivkomponente aufweist.
  30. Vorrichtung nach einem der Ansprüche 11 bis 29, dadurch gekennzeichnet, dass der wenigstens eine NO-Oxidationskatalysator (6) Elemente der Platinmetallgruppe als Aktivkomponente aufweist.
  31. Vorrichtung nach Anspruch 29 und 30, dadurch gekennzeichnet, dass sich die Zusammensetzung des HC-Oxidationskatalysators (8) und des NO-Oxidationskatalysators (6) bezogen auf Elemente der Platinmetallgruppe als Aktivkomponente dergestalt unterscheidet, dass der Palladiumanteil des HC-Oxidationskatalysators (8) höher ist als derjenige des NO-Oxidationskatalysators (6).
  32. Vorrichtung nach einem der Ansprüche 11 bis 31, dadurch gekennzeichnet, dass im Abgastrakt (2) bzw. Abgasstrang zusätzlich wenigstens ein NOX-Reduktionskatalysator (22), insbesondere wenigstens ein NOX-Speicherkatalysator und/oder wenigstens ein SCR-Katalysator, angeordnet ist.
  33. Vorrichtung nach Anspruch 32, dadurch gekennzeichnet, dass der wenigstens eine NOX-Speicherkatalysator Platin und/oder Barium und/oder Calcium als Aktivkomponente aufweist.
  34. Vorrichtung nach Anspruch 32 oder 33, dadurch gekennzeichnet, dass der wenigstens eine SCR-Katalysator Vanadiumoxid und/oder Wolframoxid und/oder Eisen und/oder Kupfer und/oder Kobalt als Aktivkomponente aufweist.
  35. Vorrichtung nach einem der Ansprüche 11 bis 34, dadurch gekennzeichnet, dass wenigstens ein Teil der Katalysatoren Zeolithe aufweist.
DE102008038721A 2008-08-12 2008-08-12 Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters Pending DE102008038721A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102008038721A DE102008038721A1 (de) 2008-08-12 2008-08-12 Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
EP09009540.7A EP2154344B1 (de) 2008-08-12 2009-07-23 Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
RU2009130674/06A RU2490482C2 (ru) 2008-08-12 2009-08-11 Способ и устройство для регенерации расположенного в выпускном тракте двигателя внутреннего сгорания фильтра твердых частиц
US12/539,954 US8756927B2 (en) 2008-08-12 2009-08-12 Method and device for the regeneration of a particle filter arranged in the exhaust gas tract of an internal combustion engine
CN200910167017.5A CN101676528B (zh) 2008-08-12 2009-08-12 用于再生安装在内燃机废气管路中的颗粒过滤器的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008038721A DE102008038721A1 (de) 2008-08-12 2008-08-12 Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters

Publications (1)

Publication Number Publication Date
DE102008038721A1 true DE102008038721A1 (de) 2010-02-18

Family

ID=41262261

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008038721A Pending DE102008038721A1 (de) 2008-08-12 2008-08-12 Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters

Country Status (5)

Country Link
US (1) US8756927B2 (de)
EP (1) EP2154344B1 (de)
CN (1) CN101676528B (de)
DE (1) DE102008038721A1 (de)
RU (1) RU2490482C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU174571U1 (ru) * 2017-03-23 2017-10-20 Общество С Ограниченной Ответственностью "Научно-Производственная Компания "Промышленные Экологические Технологии" Устройство для очистки отработавших газов двигателя внутреннего сгорания
CN109667650A (zh) * 2019-02-14 2019-04-23 合肥宝发动力技术有限公司 基于主、被动再生dpf/gpf技术的免维护系统
DE102021132390A1 (de) 2021-12-09 2023-06-15 Ford Global Technologies, Llc Verfahren zum Betreiben eines Verbrennungsmotorsystems, Verbrennungsmotorsystem sowie Kraftfahrzeug

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038719A1 (de) 2008-08-12 2010-02-18 Man Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
DE102009032022A1 (de) * 2009-07-07 2011-01-13 Man Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
EP2305978B1 (de) * 2009-09-23 2016-11-16 MAN Truck & Bus AG Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
FR2962170B1 (fr) * 2010-06-30 2013-05-10 Valeo Sys Controle Moteur Sas Procede et dispositif de controle d'un moteur, ensemble d'un tel dispositif et d'un circuit d'alimentation en carburant du moteur
US8776495B2 (en) * 2010-09-13 2014-07-15 GM Global Technology Operations LLC Exhaust gas aftertreatment system and method of operation
DE102010044102A1 (de) * 2010-11-18 2012-05-24 Ford Global Technologies, Llc Abgasanlage für Brennkraftmaschinen mit Partikelfilter
JP6134721B2 (ja) * 2011-10-03 2017-05-24 ボルボ テクノロジー コーポレイション 内燃エンジンシステムおよび内燃エンジンシステムを備える車両
GB201200230D0 (en) 2012-01-09 2012-02-22 Eminox Ltd Exhaust system and method
US9089088B2 (en) 2013-01-09 2015-07-28 Cnh Industrial America Llc Baffle retention channel for an inductor box of an agricultural implement
DE102014005153B4 (de) * 2014-04-08 2023-12-14 Andreas Döring Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
AT516467A1 (de) * 2014-11-10 2016-05-15 Ge Jenbacher Gmbh & Co Og Katalysatoreinrichtung für eine stationäre Brennkraftmaschine
US10300435B2 (en) * 2015-02-26 2019-05-28 Ngk Spark Plug Co., Ltd. Ammonia generation apparatus and ammonia generation control apparatus
JP6696325B2 (ja) * 2016-06-29 2020-05-20 スズキ株式会社 車両の排気浄化装置
DE102017115408A1 (de) 2017-07-10 2019-01-10 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018104275A1 (de) * 2018-02-26 2019-08-29 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
CN113631801A (zh) 2019-03-27 2021-11-09 弗劳恩霍夫应用研究促进协会 废气排放控制装置、配备有该装置的内燃机和废气排放控制的方法
CN110566318B (zh) * 2019-09-30 2020-12-22 潍柴动力股份有限公司 一种发动机尾气处理系统及处理方法
US11268414B2 (en) * 2019-12-03 2022-03-08 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment component with bypass valve
EP3904650B1 (de) * 2020-04-28 2023-10-04 Liebherr-Components Colmar SAS Abgasnachbehandlungssystem
DE102020129497A1 (de) * 2020-11-09 2022-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Wärmeeintrag in zumindest eine Komponente einer Abgasnachbehandlungseinrichtung, Software und Steuer- oder Regeleinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341832A2 (de) 1988-05-13 1989-11-15 Johnson Matthey Inc. Behandlung von Dieselabgas
EP1072765A2 (de) 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
DE10327030A1 (de) 2003-06-16 2005-01-13 Oberland Mangold Gmbh Auffangeinheit für eine Abgasreinigungsvorrichtung

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020170C1 (de) * 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
US4404804A (en) * 1980-01-10 1983-09-20 Toyo Kogyo Co., Ltd. Internal combustion engine having a turbo-supercharger and a catalytic exhaust gas purifying device
US4449362A (en) * 1981-12-02 1984-05-22 Robertshaw Controls Company Exhaust system for an internal combustion engine, burn-off unit and methods therefor
JP2712758B2 (ja) * 1990-05-28 1998-02-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2783074B2 (ja) * 1991-10-29 1998-08-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3053703B2 (ja) * 1992-08-25 2000-06-19 三菱電機株式会社 2次エア制御装置
US5406790A (en) * 1992-12-11 1995-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
DE4443133B4 (de) * 1994-12-03 2011-06-16 J. Eberspächer GmbH & Co. KG Abgasnachbehandlungssystem eines ladedruckbetriebenen Verbrennungsmotors mit Partikelfilter und Brenner
JP3089989B2 (ja) * 1995-05-18 2000-09-18 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JPH0932540A (ja) * 1995-07-13 1997-02-04 Hino Motors Ltd ディーゼルエンジンの排ガス浄化装置
GB9913331D0 (en) * 1999-06-09 1999-08-11 Johnson Matthey Plc Treatment of exhaust gas
DE10024254A1 (de) * 2000-05-17 2001-12-06 Bosch Gmbh Robert Vorrichtung zur Abgasbehandlung
US6454047B1 (en) * 2000-10-17 2002-09-24 Bbnt Solutions Llc System and method for phases noise attenuation
JP2002276346A (ja) * 2001-03-23 2002-09-25 Hitachi Ltd ターボ過給機付き火花点火筒内噴射エンジンとその制御法
JP2002349241A (ja) * 2001-05-24 2002-12-04 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
KR100504422B1 (ko) * 2001-09-07 2005-07-29 미쓰비시 지도샤 고교(주) 엔진의 배기 정화 장치
RU2212546C1 (ru) * 2001-12-13 2003-09-20 Новиков Лев Анатольевич Способ очистки отработавших газов, в частности, дизельного двигателя и двигателя внутреннего сгорания и устройство для его осуществления
US6915629B2 (en) * 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust
JP2004100489A (ja) * 2002-09-05 2004-04-02 Hino Motors Ltd 排気白煙化防止装置
CA2422188A1 (en) * 2002-10-02 2004-04-02 Westport Research Inc. Bypass controlled regeneration of nox adsorbers
JP4045935B2 (ja) * 2002-11-25 2008-02-13 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP2004176663A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2004324587A (ja) * 2003-04-25 2004-11-18 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP4262522B2 (ja) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ エンジン用排気ガス処理装置および排気ガス処理方法
JP2005090450A (ja) * 2003-09-19 2005-04-07 Hino Motors Ltd 排気浄化装置
KR100534737B1 (ko) * 2003-10-24 2005-12-07 현대자동차주식회사 디젤 엔진의 입자상 물질 저감 시스템 및 저감 방법
KR100590959B1 (ko) * 2003-12-30 2006-06-19 현대자동차주식회사 디젤엔진용 doc/dpf 시스템
JP4254630B2 (ja) 2004-06-24 2009-04-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102004036036A1 (de) * 2004-07-24 2006-03-16 Daimlerchrysler Ag Abgassystem, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs
DE102004045178A1 (de) * 2004-09-17 2006-03-23 Zeuna-Stärker GmbH & Co. KG Abgasanlage eines Kfzs mit Dieselmotor
JP2006274838A (ja) * 2005-03-28 2006-10-12 Toyota Motor Corp 内燃機関の排気浄化システム
DE102005055240A1 (de) 2005-11-19 2007-05-31 Daimlerchrysler Ag Abgasnachbehandlungsvorrichtung für eine Brennkraftmaschine
US7562523B2 (en) * 2005-12-13 2009-07-21 Cummins, Inc Apparatus, system, and method for determining a regeneration cycle thermal ramp
WO2008081153A1 (en) 2006-12-28 2008-07-10 Perkins Engines Company Limited Exhaust apparatus
US7856808B2 (en) * 2007-06-25 2010-12-28 Detroit Diesel Corporation Method to re-open ash filled channels in diesel particulate filters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341832A2 (de) 1988-05-13 1989-11-15 Johnson Matthey Inc. Behandlung von Dieselabgas
EP1072765A2 (de) 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
DE10327030A1 (de) 2003-06-16 2005-01-13 Oberland Mangold Gmbh Auffangeinheit für eine Abgasreinigungsvorrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU174571U1 (ru) * 2017-03-23 2017-10-20 Общество С Ограниченной Ответственностью "Научно-Производственная Компания "Промышленные Экологические Технологии" Устройство для очистки отработавших газов двигателя внутреннего сгорания
CN109667650A (zh) * 2019-02-14 2019-04-23 合肥宝发动力技术有限公司 基于主、被动再生dpf/gpf技术的免维护系统
DE102021132390A1 (de) 2021-12-09 2023-06-15 Ford Global Technologies, Llc Verfahren zum Betreiben eines Verbrennungsmotorsystems, Verbrennungsmotorsystem sowie Kraftfahrzeug

Also Published As

Publication number Publication date
RU2490482C2 (ru) 2013-08-20
EP2154344B1 (de) 2017-10-18
EP2154344A2 (de) 2010-02-17
CN101676528A (zh) 2010-03-24
US8756927B2 (en) 2014-06-24
EP2154344A3 (de) 2016-04-27
RU2009130674A (ru) 2011-02-20
CN101676528B (zh) 2015-04-01
US20100037607A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
EP2154344B1 (de) Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
EP2379851B1 (de) Vorrichtung und verfahren zur regeneration eines im abgastrakt einer brennkraftmaschine angeordneten partikelfilters
EP2075050B1 (de) Verfahren und Vorrichtung zur Verbesserung der Hydrolyse eines Reduktionsmittels in einem Abgasnachbehandlungssystem
EP2154345B1 (de) Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
EP1892394B1 (de) Abgasnachbehandlungssystem
EP1892395B1 (de) Abgasnachbehandlungssystem
EP1900916B1 (de) Abgasnachbehandlungssystem
EP2635790B1 (de) Kraftfahrzeug-brennkraftmaschine mit abgasrückführung
EP3150814B1 (de) Verfahren zum betreiben eines abgasnachbehandlungssystems
DE102008038719A1 (de) Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
EP2743470B1 (de) Verfahren und vorrichtung zur anhebung der abgastemperatur im abgastrakt einer turboaufgeladenen brennkraftmaschine
EP2376749B1 (de) Verfahren zum betrieb von abgasnachbehandlungskomponenten sowie abgasnachbehandlungsvorrichtung
EP2644857B1 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
EP2452055B1 (de) Verfahren und vorrichtung zur regeneration eines im abgastrakt einer brennkraftmaschine angeordneten partikelfilters
DE102008017280B4 (de) Anordnung zur Beeinflussung des Umsatzverhaltens von Abgaskatalysatoren
EP1771644A1 (de) Abgassystem, insbesondere für eine brennkraftmaschine eines kraftfahrzeugs
DE19955324A1 (de) Vorrichtung und Verfahren zum Reduzieren von schädlichen Bestandteilen im Abgas einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
EP2305978B1 (de) Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
DE102009004416A1 (de) Verfahren zum Betrieb von Komponenten der Abgasnachbehandlung sowie Abgasnachbehandlungsvorrichung
DE102009005733A1 (de) Vorrichtung und Verfahren zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
DE102019123453A1 (de) Abgasnachbehandlungssystem und Verfahren zum Temperaturmanagement eines SCR-Katalysators in der Abgasanlage eines Verbrennungsmotors
DE102018117187A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungseinrichtung, Steuereinheit für eine Brennkraftmaschine und Brennkraftmaschine
DE102020126135A1 (de) Verbrennungsmotor sowie Verfahren zur innermotorischen Reduzierung der Stickoxidemissionen eines Verbrennungsmotors
DE102020117730A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

R081 Change of applicant/patentee

Owner name: MAN TRUCK & BUS AG, DE

Free format text: FORMER OWNER: MAN NUTZFAHRZEUGE AG, 80995 MUENCHEN, DE

Effective date: 20110406

R012 Request for examination validly filed
R012 Request for examination validly filed

Effective date: 20150422

R081 Change of applicant/patentee

Owner name: MAN TRUCK & BUS SE, DE

Free format text: FORMER OWNER: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

R016 Response to examination communication