DE102012205529A1 - Manganoxid-Kondensator zur Verwendung in extremen Umgebungen - Google Patents

Manganoxid-Kondensator zur Verwendung in extremen Umgebungen Download PDF

Info

Publication number
DE102012205529A1
DE102012205529A1 DE102012205529A DE102012205529A DE102012205529A1 DE 102012205529 A1 DE102012205529 A1 DE 102012205529A1 DE 102012205529 A DE102012205529 A DE 102012205529A DE 102012205529 A DE102012205529 A DE 102012205529A DE 102012205529 A1 DE102012205529 A1 DE 102012205529A1
Authority
DE
Germany
Prior art keywords
capacitor
anode
capacitor assembly
capacitor element
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102012205529A
Other languages
English (en)
Inventor
Martin Biler
Jan Petrzilek
Ivana Zednickova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102012205529A1 publication Critical patent/DE102012205529A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/003Apparatus or processes for encapsulating capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/032Inorganic semiconducting electrolytes, e.g. MnO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G2009/05Electrodes or formation of dielectric layers thereon characterised by their structure consisting of tantalum, niobium, or sintered material; Combinations of such electrodes with solid semiconductive electrolytes, e.g. manganese dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Abstract

Eine Kondensatorbaugruppe zur Verwendung in Umgebubereitgestellt. Insbesondere umfasst die Kondensatorbaugruppe ein Kondensatorelement, das einen anodisch oxidierten porösen gesinterten Körper enthält, der mit einem festen Manganoxid-Elektrolyten beschichtet ist. Um dazu beizutragen, die Verwendung der Kondensatorbaugruppe bei Anwendungen mit hoher Spannung (z. B. über etwa 35 Volt) und hoher Temperatur (z. B. über etwa 175°C) zu erleichtern, ist das Kondensatorelement innerhalb eines Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, eingeschlossen und hermetisch versiegelt. Vermutlich können das Gehäuse und die Inertgasatmosphäre die Menge an Sauerstoff und Feuchtigkeit, die dem Mangandioxid zugeführt wird, begrenzen. Auf diese Weise ist es weniger wahrscheinlich, dass der feste Elektrolyt unter extremen Bedingungen eine nachteilige Reaktion eingeht, was die thermische Stabilität der Kondensatorbaugruppe erhöht. Die Kondensatorbaugruppe der vorliegenden Erfindung funktioniert nicht nur gut in Umgebungen mit sowohl hoher Spannung als auch hoher Temperatur, sondern kann auch eine hohe volumetrische Effizienz aufweisen.

Description

  • Querverweis auf verwandte Anmeldung
  • Die vorliegende Anmeldung beansprucht die Priorität der vorläufigen US-Anmeldung Aktenzeichen 61/472,871 (eingereicht am 7. April 2011), auf die hiermit ausdrücklich Bezug genommen wird.
  • Hintergrund der Erfindung
  • Mangandioxid ist als fester Elektrolyt in Elektrolytkondensatoren bekannt und weit verbreitet. Solche Kondensatoren werden herkömmlicherweise dadurch gebildet, dass man zuerst eine aus einem Ventilmetall (z. B. Tantal) bestehende Anode unter Bildung einer Beschichtung aus einem dielektrischen Oxid anodisiert und danach die oxidbeschichtete Anode in eine wässrige Lösung von Mangannitrat taucht. Nach einer ausreichenden Zeit wird die feuchte Anode erhitzt, was eine pyrolytische Zersetzung des Mangannitrats zu Mangandioxid bewirkt. Das Kondensatorelement wird außerdem typischerweise mit Graphit- und Silberschichten beschichtet und dann in ein Harz eingebettet. Leider besteht ein Problem bei herkömmlichen Manganoxid-Kondensatoren darin, dass das Einbettungsharz (z. B. Epoxidharz) in extremen Umgebungen, d. h. mit hoher Temperatur (z. B. über etwa 175°C) und/oder hoher Spannung (z. B. über etwa 35 Volt) häufig instabil ist. Versuche, das Harz zu entfernen, können jedoch die elektrischen Eigenschaften beeinträchtigen, da dann Feuchtigkeit mit dem Kondensatorelement in Kontakt kommen kann.
  • Daher besteht zurzeit ein Bedürfnis nach einem Festelektrolytkondensator mit verbesserter Leistungsfähigkeit unter Bedingungen mit hoher Temperatur und/oder hoher Spannung.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird eine Kondensatorbaugruppe offenbart, die ein Kondensatorelement umfasst, das eine aus einem anodisch oxidierten gesinterten porösen Körper gebildete Anode und einen festen Elektrolyten, der die Anode beschichtet, umfasst. Der feste Elektrolyt umfasst ein Manganoxid. Die Baugruppe umfasst auch ein Gehäuse, das einen Innenraum definiert, innerhalb dessen sich das Kondensatorelement befindet, wobei der Innenraum eine Gasatmosphäre aufweist, die ein Inertgas enthält. Ein Anoden-Endteil steht in elektrischer Verbindung mit dem Anodenkörper, und ein Kathoden-Endteil steht in elektrischer Verbindung mit dem festen Elektrolyten.
  • Gemäß einer anderen Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Bildung einer Kondensatorbaugruppe offenbart. Das Verfahren umfasst das Positionieren eines Kondensatorelements innerhalb eines Innenraums eines Gehäuses, wobei das Kondensatorelement einen anodisch oxidierten gesinterten Anodenkörper umfasst, der mit einem festen Elektrolyten beschichtet ist. Der feste Elektrolyt umfasst ein Manganoxid. Der Anodenkörper wird mit einem Anoden-Endteil elektrisch verbunden, und der feste Elektrolyt wird mit einem Kathoden-Endteil elektrisch verbunden. Das Kondensatorelement wird innerhalb des Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, hermetisch versiegelt.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
  • 1 eine Querschnittsansicht einer Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung;
  • 2 eine Querschnittsansicht einer anderen Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung;
  • 3 eine Querschnittsansicht noch einer anderen Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung; und
  • 4 eine Draufsicht auf noch eine andere Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung eine Kondensatorbaugruppe zur Verwendung in Umgebungen mit hoher Temperatur und hoher Spannung. Insbesondere umfasst die Kondensatorbaugruppe ein Kondensatorelement, das einen anodisch oxidierten porösen gesinterten Körper enthält, der mit einem festen Manganoxid-Elektrolyten beschichtet ist. Um dazu beizutragen, die Verwendung der Kondensatorbaugruppe bei Anwendungen mit hoher Spannung (z. B. über etwa 35 Volt) und hoher Temperatur (z. B. über etwa 175°C) zu erleichtern, ist das Kondensatorelement innerhalb eines Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, eingeschlossen und hermetisch versiegelt. Vermutlich können das Gehäuse und die Inertgasatmosphäre die Menge an Sauerstoff und Feuchtigkeit, die dem Mangandioxid zugeführt wird, begrenzen. Auf diese Weise ist es weniger wahrscheinlich, dass der feste Elektrolyt unter extremen Bedingungen eine nachteilige Reaktion eingeht, was die thermische Stabilität der Kondensatorbaugruppe erhöht. Die Kondensatorbaugruppe der vorliegenden Erfindung funktioniert nicht nur gut in Umgebungen mit sowohl hoher Spannung als auch hoher Temperatur, sondern kann auch eine hohe volumetrische Effizienz aufweisen.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
  • I. Kondensatorelement
  • A. Anode
  • Für Hochspannungsanwendungen ist es oft wünschenswert, dass die Anode des Kondensatorelements aus einem Pulver mit einer relativ geringen spezifischen Ladung gebildet wird, wie weniger als etwa 70000 Mikrofarad·Volt pro Gramm (”μF·V/g”), in einigen Ausführungsformen etwa 2000 μF·V/g bis etwa 65000 μF·V/g und in einigen Ausführungsformen etwa 5000 bis etwa 50000 μF·V/g. Obwohl Pulver mit einer geringen spezifischen Ladung zuweilen wünschenswert sein mögen, ist dies selbstverständlich keineswegs eine Bedingung. Das Pulver kann nämlich auch eine relativ hohe spezifische Ladung von etwa 70000 Mikrofarad·Volt pro Gramm (”μF·V/g”) oder mehr, in einigen Ausführungsformen etwa 80000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 90000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 100000 μF·V/g oder mehr und in einigen Ausführungsformen etwa 120000 bis etwa 250000 μF·V/g aufweisen.
  • Das Pulver kann ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw., enthalten. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Die Teilchen des Pulvers können flockenartig, eckig, knotenförmig sowie Gemische oder Variationen davon sein. Die Teilchen haben auch typischerweise eine Siebgrößenverteilung von wenigstens etwa 60 mesh, in einigen Ausführungsformen etwa 60 bis etwa 325 mesh und in einigen Ausführungsformen etwa 100 bis etwa 200 mesh. Ferner beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 2,0 m2/g. Der Ausdruck ”spezifische Oberfläche” bezieht sich auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Ebenso beträgt die Schüttdichte (oder Scott-Dichte) typischerweise etwa 0,1 bis etwa 5,0 g/cm3, in einigen Ausführungsformen etwa 0,2 bis etwa 4,0 g/cm3 und in einigen Ausführungsformen etwa 0,5 bis etwa 3,0 g/cm3.
  • Um den Bau des Anodenkörpers zu erleichtern, können noch weitere Komponenten zu dem Pulver gegeben werden. Zum Beispiel kann ein Bindemittel und/oder Gleitmittel eingesetzt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Anodenkörper gepresst werden. Zu den geeigneten Bindemitteln gehören etwa Campher, Stearin- und andere Seifenfettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Polyvinylalkohole, Naphthalin, Pflanzenwachs und Mikrowachse (gereinigte Paraffine). Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind Wasser, Alkohole usw. Wenn Bindemittel und/oder Gleitmittel verwendet werden, kann ihr Prozentanteil von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht erforderlich sind.
  • Das resultierende Pulver kann kompaktiert werden, wobei man irgendeine herkömmliche Pulverpressform verwendet. Die Pressform kann zum Beispiel eine Einplatz-Kompaktierpresse sein, bei der eine Matrize und ein oder mehrere Stempel verwendet werden. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, bei denen nur eine Matrize und ein einziger Unterstempel verwendet werden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter-/Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Nach dem Kompaktieren kann der resultierende Anodenkörper dann in jede gewünschte Form geschnitten werden, wie quadratisch, rechteckig, kreisförmig, oval, dreieckig, sechseckig, achteckig, siebeneckig, fünfeckig usw. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Der Anodenkörper kann dann einem Schritt des Erhitzens unterzogen werden, bei dem der größte Teil, wenn nicht alles, eines Bindemittels/Gleitmittels, falls vorhanden, entfernt wird. Zum Beispiel wird der Anodenkörper typischerweise in einem Ofen erhitzt, der bei einer Temperatur von etwa 150°C bis etwa 500°C arbeitet. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist.
  • Sobald er gebildet ist, wird der Anodenkörper dann gesintert. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Gegebenenfalls kann auch ein Anodenanschluss an dem Anodenkörper befestigt werden, der sich in Längsrichtung erstreckt. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung (z. B. vor der Kompaktierung und/oder dem Sintern).
  • Die Anode wird auch mit einem Dielektrikum beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • B. Manganoxid
  • Wie erwähnt, enthält das Kondensatorelement auch ein Manganoxid (z. B. MnO2) als festen Elektrolyten. Das Manganoxid kann durch pyrolytische Zersetzung eines Vorläufers (z. B. Mangannitrat (Mn(NO3)2)) gebildet werden, wie es im US-Patent Nr. 4,945,452 (Sturmer et al.) beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird. Zum Beispiel kann ein mit Dielektrikum beschichteter Anodenkörper mit einer Lösung, die den Vorläufer enthält, in Kontakt gebracht (z. B. eingetaucht, untergetaucht, besprüht usw.) und danach zur Umwandlung in das Oxid erhitzt werden. Falls gewünscht, können mehrere Auftragungsschritte eingesetzt werden, um die gewünschte Dicke zu erreichen. In einer Ausführungsform wird der Anodenkörper zum Beispiel in eine erste Lösung eines Manganoxid-Vorläufers eingetaucht, erhitzt und dann in eine zweite Lösung eines Manganoxid-Vorläufers eingetaucht und erhitzt. Dieses Verfahren kann wiederholt werden, bis die gewünschte Dicke erreicht ist.
  • Während die Bestandteile der Manganoxid-Vorläufer-Lösung(en) bei jedem Auftragungsschritt variieren können, wenn mehrere Schritte eingesetzt werden, kann es im Allgemeinen wünschenswert sein, dass wenigstens eine der Lösungen ein Dispergiermittel enthält, bei dem es sich um eine organische Verbindung handelt, die eine hydrophile Struktureinheit und eine hydrophobe Struktureinheit aufweist. Die hydrophile Struktureinheit kann zum Beispiel ein Sulfonat, Phosphonat, Carboxylat, Thiol, Sulfonsäureester, Phosphit, Phosphonit, Phosphinit, Phosphat, Sulfat, Phosphorsäureester, Sulfoxid, Sulfon, Amino usw. sowie Gemische und/oder Salze davon umfassen. Im Unterschied zu herkömmlichen Tensiden ist die hydrophobe Struktureinheit des Dispergiermittels im Allgemeinen zu klein, um die Oberflächenspannung der Lösung wesentlich zu reduzieren. Zum Beispiel kann die hydrophobe Struktureinheit ein aromatisches oder heterocyclisches Ringsystem mit 6 bis 14 Kohlenstoffatomen (substituiert oder unsubstituiert) sein, wie Benzol, Naphthalin, Anthracen, Toluol, Xylol, Pyridin, Chinolin, Isochinolin, Pyrazin, Acridin, Pyrimidin, Pyridazin usw.
  • Da das Dispergiermittel die Oberflächenspannung der Lösung nicht wesentlich senkt, kann es eine Oberflächenspannung haben, die ungefähr dieselbe wie die des Wassers ist. Zum Beispiel kann das Verhältnis der Oberflächenspannung von Wasser (bei 20°C) zur Oberflächenspannung des Dispergiermittels (bei einer Konzentration von 1 Gew.-% in Wasser und bei 20°C) etwa 0,5 bis etwa 2,0 betragen, in einigen Ausführungsformen etwa 0,8 bis etwa 1,2 und in einigen Ausführungsformen etwa 0,9 bis etwa 1,1. In bestimmten Ausführungsformen beträgt die Oberflächenspannung des Dispergiermittels (bei einer Konzentration von 1 Gew.-% in Wasser und bei 20°C) etwa 50 bis etwa 95 dyn pro Zentimeter, in einigen Ausführungsformen etwa 55 bis etwa 80 dyn pro Zentimeter und in einigen Ausführungsformen etwa 58 bis etwa 68 dyn pro Zentimeter. Die Oberflächenspannung von Wasser beträgt etwa 70 dyn pro Zentimeter. Im Gegensatz dazu haben herkömmliche Tenside typischerweise eine viel niedrigere Oberflächenspannung. Zum Beispiel haben Triton X-100 und Erkantol® NR vermutlich beide eine Oberflächenspannung von ungefähr 30 dyn pro Zentimeter (bei einer Konzentration von 1 Gew.-% in Wasser und bei 20°C). Wie in der Technik wohlbekannt ist, kann die Oberflächenspannung unter Verwendung von kommerziell erhältlichen Krafttensiometern oder optischen Tensiometern (auch als Kontaktwinkelmesser oder Goniometer bekannt) gemäß ISO 304 (1985), Cor (1: 1998) und/oder ASTM D 1331-89 (Verfahren A) gemessen werden.
  • In einer besonderen Ausführungsform kann das Dispergiermittel zum Beispiel eine organische Verbindung mit der folgenden Struktur oder ein Salz davon enthalten:
    Figure 00110001
    wobei
    R1 eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen ist;
    R2 eine hydrophile Struktureinheit ist, wie Sulfonat, Phosphonat, Carboxylat, Thiol, Sulfonsäureester, Phosphit, Phosphonit, Phosphinit, Phosphat, Sulfat, Phosphorsäureester, Sulfoxid, Sulfon, Amino usw. und Kombinationen davon;
    m = 0 bis 8, in einigen Ausführungsformen 0 bis 4 und in einer Ausführungsform 0 beträgt;
    p = 1 bis 8, in einigen Ausführungsformen 1 bis 4 und in einer Ausführungsform 1 beträgt; und
    n = 1 bis 100 und in einigen Ausführungsformen 2 bis 30 beträgt. Man sollte sich darüber im Klaren sein, dass die Gruppen R1 und R2 an ein oder mehrere der Kohlenstoffatome des Ringsystems gebunden sein können. Außerdem kann die Verbindung gegebenenfalls auch als Salz vorliegen, bei dem das Kation ein Alkalimetall (z. B. Natrium, Kalium, Ammonium usw.), Erdalkalimetall (z. B. Calcium), Ammonium (NH4 +) usw. ist. Vergleichbare Verbindungen mit einem Benzolkern können ebenfalls verwendet werden.
  • Das Molekulargewicht des Dispergiermittels kann im Allgemeinen nach Wunsch variieren, beträgt aber typischerweise etwa 10000 Gramm pro Mol oder weniger, in einigen Ausführungsformen etwa 6000 Gramm pro Mol oder weniger und in einigen Ausführungsformen etwa 2000 bis etwa 5000 Gramm pro Mol.
  • Geeignete Ausgangsstoffe zur Bildung solcher Dispergiermittel sind in der Technik wohlbekannt und umfassen zum Beispiel Naphthalin-α-sulfonsäure (Dihydrat), Naphthalin-β-sulfonsäure (Monohydrat), 2-Methylnaphthalin-6-sulfonsäure usw. Ein besonders gut geeignetes Dispergiermittel, das in der vorliegenden Erfindung eingesetzt werden kann, ist ein Alkali- oder Erdalkalimetallsalz einer kondensierten Naphthalinsulfonsäure. Solche Verbindungen können so hergestellt werden, wie es im US-Patent Nr. 3,067,243 beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird. Zum Beispiel kann die Verbindung hergestellt werden, indem man Naphthalin mit Schwefelsäure sulfoniert, das sulfonierte Naphthalin mit Formaldehyd kondensiert und dann das so erhaltene Kondensat mit einer Base (z. B. Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid usw.) neutralisiert. Das resultierende Salz der kondensierten Naphthalinsulfonsäure kann die folgende Struktur haben:
    Figure 00120001
    wobei
    R2 = SO3 ist;
    p eine ganze Zahl von 1 bis 8 ist;
    n = 1 bis 100 beträgt; und
    M = Natrium, Kalium oder Calcium ist. Besonders gut geeignete Natrium-, Kalium- oder Calciumsalze von kondensiertem Naphthalinsulfonat sind unter dem Handelsnamen DAXAD von Geo Specialty Chemicals kommerziell erhältlich.
  • Anstatt die Oberflächenspannung zu beeinflussen, trägt das Dispergiermittel der vorliegenden Erfindung dazu bei, Tröpfchen, die zunächst entstehen, wenn der Manganoxid-Vorläufer mit der Oberfläche des Dielektrikums in Kontakt kommt, zu ”dispergieren”. Da diese Tröpfchen dispergiert werden, kann der Manganoxid-Vorläufer in sehr kleine Zwischenräume zwischen den Anodenteilchen eindringen und dadurch den Grad der Oberflächenbedeckung erhöhen. Weiterhin ermöglicht es die Reduktion der Tröpfchenbildung auch, dass die Beschichtung eine filmartige Konfiguration annimmt, die einen bestimmten Bereich des Dielektrikums im Wesentlichen bedeckt. Dadurch werden die Qualität des resultierenden Oxids sowie sein Oberflächenbedeckungsgrad verbessert, und dadurch werden auch die elektrischen Eigenschaften des Kondensators verbessert.
  • Um die gewünschte Verbesserung der Imprägnierung des Manganoxid-Vorläufers zu erreichen, ohne andere Merkmale des Kondensators ungünstig zu beeinflussen, ist es im Allgemeinen wünschenswert, dass die Konzentration des Dispergiermittels selektiv innerhalb eines bestimmten Bereichs gesteuert wird. Zum Beispiel kann die Lösung, in die der Anodenkörper zuerst eingetaucht wird, das Dispergiermittel in einer Menge von etwa 0,001 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,005 Gew.-% bis etwa 2 Gew.-% und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% enthalten. Der oder die Vorläufer (z. B. Mangannitrat) kann ebenso etwa 1 Gew.-% bis etwa 55 Gew.-%, in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 15 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 10 Gew.-% der Lösung ausmachen.
  • Ein Träger, wie Wasser, wird ebenfalls in der Lösung eingesetzt. Wässrige Lösungen der vorliegenden Erfindung können zum Beispiel Wasser in einer Menge von etwa 30 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 40 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 50 Gew.-% bis etwa 95 Gew.-% enthalten. Neben den oben genannten Komponenten kann die Mangannitratlösung auch andere Additive enthalten, die die Bildung des resultierenden Oxids verbessern. In einer Ausführungsform kann zum Beispiel ein Alkohol verwendet werden, um die Benetzbarkeit des Dielektrikums mit der Lösung zu erhöhen. Geeignete Alkohole sind zum Beispiel Methanol, Ethanol, n-Propanol, Isopropanol, Butanol usw. sowie Gemische davon. Die Konzentration des bzw. der Alkohole, falls welche eingesetzt werden, kann etwa 0,1 Gew.-% bis etwa 50 Gew.-% und in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 2 Gew.-% betragen.
  • Man sollte sich darüber im Klaren sein, dass die tatsächlichen Mengen der Komponenten in der Lösung in Abhängigkeit von Faktoren wie der Teilchengröße und Verteilung von Teilchen in der Anode, der Temperatur, bei der die Zersetzung durchgeführt wird, der Identität des Dispergiermittels, der Identität des Trägers, der Identität des Alkohols usw. variieren können. Weiterhin sollte man sich auch darüber im Klaren sein, dass in verschiedenen Auftragungsschritten unterschiedliche Konzentrationen eingesetzt werden können. Zum Beispiel kann eine erste Gruppe von einem oder mehreren Tauchschritten eingesetzt werden, in denen der Manganoxid-Vorläufer in einer ersten Konzentration vorhanden ist. Danach kann eine zweite Gruppe von einem oder mehreren Tauchschritten eingesetzt werden, in denen der Manganoxid-Vorläufer in einer zweiten Konzentration vorhanden ist. In einigen Fällen kann die zweite Konzentration höher sein als die erste Konzentration.
  • Die Zeitdauer, in der der Anodenkörper mit der Manganoxid-Vorläuferlösung in Kontakt ist, kann nach Wunsch variieren. Zum Beispiel kann der Anodenkörper während einer Zeit im Bereich von etwa 10 Sekunden bis etwa 10 Minuten in eine solche Lösung eingetaucht werden. Die Zeit kann für jeden einzelnen Tauchschritt gleich oder verschieden sein. Der mit Dielektrikum beschichtete Anodenkörper kann sich auf Raumtemperatur befinden oder vor dem Kontakt mit der Vorläuferlösung vorgetrocknet werden.
  • In jedem Fall wird die Komponente, sobald sie während der gewünschten Zeitdauer mit der Vorläuferlösung in Kontakt gebracht wurde, auf eine ausreichende Temperatur erhitzt, um den Vorläufer (z. B. Mangannitrat) pyrolytisch in ein Oxid umzuwandeln. Das Erhitzen kann zum Beispiel in einem Ofen bei einer Temperatur von etwa 150°C bis etwa 300°C, in einigen Ausführungsformen etwa 180°C bis etwa 290°C und in einigen Ausführungsformen etwa 190°C bis etwa 260°C erfolgen. Das Erhitzen kann in einer feuchten oder trockenen Atmosphäre durchgeführt werden. Die Zeit für die Umwandlung hängt von der Ofentemperatur, der Wärmeübertragungsgeschwindigkeit und der Atmosphäre ab, beträgt jedoch im Allgemeinen etwa 3 bis etwa 5 Minuten. Nach der Pyrolyse kann der Leckstrom aufgrund einer Beschädigung der dielektrischen Schicht während der Abscheidung des Mangandioxids zuweilen hoch sein. Um diese Leckage zu reduzieren, kann der Kondensator in einem Anodisierungsbad reformiert werden, wie in der Technik bekannt ist. Zum Beispiel kann der Kondensator in einen Elektrolyten, wie er oben beschrieben ist, eingetaucht und dann einem Gleichstrom ausgesetzt werden.
  • IV. Weitere Komponenten des Kondensators
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann gegebenenfalls eine Schutzbeschichtung zwischen dem Dielektrikum und dem festen Elektrolyten aufgetragen werden, zum Beispiel eine, die aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch) besteht. Solche Materialien können einen spezifischen Widerstand von mehr als etwa 10 Ohm·cm haben, in einigen Ausführungsformen mehr als etwa 100, in einigen Ausführungsformen mehr als etwa 1000 Ohm·cm, in einigen Ausführungsformen mehr als etwa 1 × 105 Ohm·cm und in einigen Ausführungsformen mehr als etwa 1 × 1010 Ohm·cm. Einige harzartige Materialien, die in der vorliegenden Erfindung verwendet werden können, sind unter anderem Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) usw. Zu den geeigneten Estern von Fettsäuren gehören zum Beispiel unter anderem Ester von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Eleostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Schellolsäure usw. Diese Ester von Fettsäuren haben sich als besonders nützlich erwiesen, wenn sie in relativ komplexen Kombinationen unter Bildung eines ”trocknenden Öls” verwendet werden, das es dem resultierenden Film ermöglicht, schnell zu einer stabilen Schicht zu polymerisieren. Zu diesen trocknenden ölen gehören etwa Mono-, Di- und/oder Triglyceride, die ein Glyceringerüst mit einem, zwei bzw. drei Fettacylresten, die verestert sind, aufweisen. Einige geeignete trocknende Öle, die verwendet werden können, sind zum Beispiel unter anderem Olivenöl, Leinöl, Ricinusöl, Tungöl, Sojaöl und Schellack. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im US-Patent Nr. 6,674,635 (Fife et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Falls gewünscht, kann gegebenenfalls eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht auf das Teil aufgetragen werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungskollektor für den Kondensator wirken, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem festen Elektrolyten einschränken. Solche Beschichtungen können einen Teil oder den gesamten festen Elektrolyten bedecken.
  • Allgemein gesprochen, sind die Kondensatorelemente im Wesentlichen frei von Harzen, die die Elemente einbetten, wie sie häufig bei herkömmlichen Festelektrolytkondensatoren eingesetzt werden. Unter Anderem kann die Einbettung der Kondensatorelemente zu einer Instabilität in extremen Umgebungen führen, d. h. hohe Temperatur (z. B. über etwa 175°C) und/oder hohe Spannung (z. B. über etwa 35 Volt).
  • II. Gehäuse
  • Wie erwähnt, werden die Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt. Die hermetische Versiegelung erfolgt typischerweise in Gegenwart einer Gasatmosphäre, die wenigstens ein Inertgas enthält, um die Oxidation des festen Elektrolyten während der Verwendung zu hemmen. Das Inertgas kann zum Beispiel Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon umfassen. Typischerweise bilden Inertgase den größten Teil der Atmosphäre innerhalb des Keramikgehäuses, wie zum Beispiel 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an Nichtinertgasen eingesetzt werden, wie Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen bilden die Nichtinertgase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses. Zum Beispiel kann der Feuchtigkeitsgehalt (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 1% oder weniger und in einigen Ausführungsformen etwa 0,01 bis etwa 5% betragen.
  • Zur Bildung des Gehäuses kann eine Vielzahl von Materialien verwendet werden, wie Metalle, Kunststoffe, Keramik usw. In einer Ausführungsform umfasst das Gehäuse zum Beispiel eine oder mehrere Schichten aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem keramischen Material, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw. sowie Kombinationen davon, umfassen.
  • Das Gehäuse kann jede beliebige Form haben, wie zylindrisch, D-förmig, rechteckig, dreieckig, prismatisch usw. In den 12 ist zum Beispiel eine Ausführungsform einer Kondensatorbaugruppe 100 gezeigt, die ein Gehäuse 122 und ein Kondensatorelement 120 enthält. In dieser besonderen Ausführungsform ist das Gehäuse 122 im Wesentlichen rechteckig. Typischerweise haben das Gehäuse und das Kondensatorelement dieselbe oder eine ähnliche Form, so dass das Kondensatorelement leicht im Innenraum untergebracht werden kann. In der gezeigten Ausführungsform zum Beispiel haben sowohl das Kondensatorelement 120 als auch das Gehäuse 122 eine im Wesentlichen rechteckige Form.
  • Falls gewünscht, kann die Kondensatorbaugruppe der vorliegenden Erfindung eine relativ hohe volumetrische Effizienz aufweisen. Um diese hohe Effizienz zu erleichtern, nimmt das Kondensatorelement typischerweise einen wesentlichen Teil des Volumens des Innenraums des Gehäuses ein. Zum Beispiel kann das Kondensatorelement etwa 30 Vol.-% oder mehr, in einigen Ausführungsformen etwa 50 Vol.-% oder mehr, in einigen Ausführungsformen etwa 60 Vol.-% oder mehr, in einigen Ausführungsformen etwa 70 Vol.-% oder mehr, in einigen Ausführungsformen etwa 80 Vol.-% bis etwa 98 Vol.-% und in einigen Ausführungsformen etwa 85 Vol.-% bis 97 Vol.-% des Innenraums des Gehäuses einnehmen. Zu diesem Zweck ist die Differenz zwischen den Abmessungen des Kondensatorelements und denjenigen des durch das Gehäuse definierten Innenraums typischerweise relativ gering.
  • Wenn wir uns zum Beispiel auf 1 beziehen, so kann das Kondensatorelement 120 eine Länge haben (ausschließlich der Länge des Anodenanschlusses 6), die relativ ähnlich der Länge eines durch das Gehäuse 122 definierten Innenraums 126 ist. Zum Beispiel liegt das Verhältnis der Länge der Anode zur Länge des Innenraums im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98. Das Kondensatorelement 120 kann eine Länge von etwa 5 bis etwa 10 Millimetern aufweisen, und der Innenraum 126 kann eine Länge von etwa 6 bis etwa 15 Millimetern aufweisen. Ähnlich kann das Verhältnis der Höhe des Kondensatorelements 120 (in –z-Richtung) zur Höhe des Innenraums 126 im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98 liegen. Das Verhältnis der Breite des Kondensatorelements 120 (in –x-Richtung) zur Breite des Innenraums 126 kann auch im Bereich von etwa 0,50 bis 1,00, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99, in einigen Ausführungsformen etwa 0,70 bis etwa 0,99, in einigen Ausführungsformen etwa 0,80 bis etwa 0,98 und in einigen Ausführungsformen etwa 0,85 bis etwa 0,95 liegen. Zum Beispiel kann die Breite des Kondensatorelements 120 etwa 2 bis etwa 7 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 3 bis etwa 10 Millimeter betragen, und die Höhe des Kondensatorelements 120 kann etwa 0,5 bis etwa 2 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 0,7 bis etwa 6 Millimeter betragen.
  • Obwohl es keineswegs erforderlich ist, kann das Kondensatorelement so an dem Gehäuse befestigt sein, dass außerhalb des Gehäuses für die anschließende Integration in eine Schaltung ein Anoden-Endteil und ein Kathoden-Endteil gebildet werden. Die besondere Konfiguration der Endteile kann von dem Verwendungszweck abhängen. In einer Ausführungsform kann die Kondensatorbaugruppe zum Beispiel so geformt werden, dass sie oberflächenmontierbar und dennoch mechanisch robust ist. Zum Beispiel kann der Anodenanschluss elektrisch mit äußeren, oberflächenmontierbaren Anoden- und Kathoden-Endteilen (z. B. Feldern, Blechen, Platten, Rahmen usw.) verbunden sein. Solche Endteile können sich durch das Gehäuse hindurch erstrecken, um den Kondensator anzuschließen. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke der Kondensatorbaugruppe minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,1 bis etwa 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden die Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, und die Montagefläche wird auch mit einer Zinnlötschicht versehen. In einer anderen Ausführungsform werden bei den Endteilen dünne äußere Metallschichten (z. B. Gold) auf einer Grundmetallschicht (z. B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
  • In bestimmten Ausführungsformen können Verbindungselemente innerhalb des Innenraums des Gehäuses eingesetzt werden, um die Verbindung mit den Endteilen in einer mechanisch stabilen Weise zu erleichtern. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so kann die Kondensatorbaugruppe 100 ein Verbindungselement 162 umfassen, das aus einem ersten Teil 167 und einem zweiten Teil 165 besteht. Das Verbindungselement 162 kann aus leitfähigen Materialien ähnlich wie die äußeren Endteile bestehen. Der erste Teil 167 und der zweite Teil 165 können einstückig ausgebildet sein, oder es können separate Teile sein, die miteinander verbunden sind, entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall). In der gezeigten Ausführungsform befindet sich der zweite Teil 165 in einer Ebene, die im Wesentlichen parallel zu einer Längsrichtung, in der sich der Anschluss 6 erstreckt (z. B. –y-Richtung), verläuft. Der erste Teil 167 ist in dem Sinne ”hochstehend”, dass er sich in einer Ebene befindet, die im Wesentlichen senkrecht zur Längsrichtung, in der sich der Anschluss 6 erstreckt, verläuft. Auf diese Weise kann der erste Teil 167 die Bewegung des Anschlusses 6 in der horizontalen Richtung einschränken, um den Oberflächenkontakt und die mechanische Stabilität während der Verwendung zu verstärken. Falls gewünscht, kann ein isolierendes Material 7 (z. B. ein TeflonTM-Ring) um den Anschluss 6 herum eingesetzt werden.
  • Der erste Teil 167 kann auch einen Montagebereich besitzen (nicht gezeigt), der mit einem Anodenanschluss 6 verbunden ist. Der Bereich kann eine ”U-Form” aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6 weiter zu verstärken. Die Verbindung des Bereichs mit dem Anschluss 6 kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird der Bereich zum Beispiel durch Laserschweißen an dem Anodenanschluss 6 befestigt. Unabhängig von der gewählten Technik kann der erste Teil 167 jedoch den Anodenanschluss 6 in einer im Wesentlichen horizontalen Ausrichtung halten, um die Maßhaltigkeit der Kondensatorbaugruppe 100 weiter zu verstärken.
  • Wenn wir uns wiederum auf 1 beziehen, so ist eine Ausführungsform der vorliegenden Erfindung gezeigt, bei der das Verbindungselement 162 und das Kondensatorelement 120 über ein Anoden- und ein Kathoden-Endteil 127 bzw. 129 mit dem Gehäuse 122 verbunden ist. Insbesondere umfasst das Gehäuse 122 eine Außenwand 123 und zwei einander gegenüberliegende Seitenwände 124, zwischen denen ein Hohlraum 126 gebildet ist, der das Kondensatorelement 120 umfasst. Die Außenwand 123 und die Seitenwände 124 können aus einer oder mehreren Schichten eines Metalls, Kunststoffs oder Keramikmaterials, wie es oben beschrieben ist, bestehen. In dieser besonderen Ausführungsform enthält das Anoden-Endteil 127 einen ersten Bereich 127a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem Verbindungselement 162 verbunden ist, und einen zweiten Bereich 127b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 201 sorgt. Ähnlich enthält das Kathoden-Endteil 129 einen ersten Bereich 129a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem festen Elektrolyten des Kondensatorelements 120 verbunden ist, und einen zweiten Bereich 129b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 203 sorgt. Man sollte sich darüber im Klaren sein, dass sich nicht der gesamte Teil solcher Bereiche innerhalb oder außerhalb des Gehäuses zu befinden braucht.
  • In der gezeigten Ausführungsform erstreckt sich eine leitfähige Bahn 127c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Ähnlich erstreckt sich eine leitfähige Bahn 129c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Die leitfähigen Bahnen und/oder Bereiche der Endteile können getrennt oder einstückig sein. Die Bahnen können sich nicht nur durch die Außenwand des Gehäuses erstrecken, sondern können sich auch an anderen Stellen befinden, wie außerhalb der Außenwand. Selbstverständlich ist die vorliegende Erfindung keineswegs auf die Verwendung von leitfähigen Bahnen zur Bildung der gewünschten Endteile beschränkt.
  • Unabhängig von der besonderen eingesetzten Konfiguration kann die Verbindung der Endteile 127 und 129 mit dem Kondensatorelement 120 unter Verwendung jeder bekannten Technik erfolgen, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird zum Beispiel ein leitfähiger Kleber 131 verwendet, um den zweiten Teil 165 des Verbindungselements 162 mit dem Anoden-Endteil 127 zu verbinden. Ähnlich wird ein leitfähiger Kleber 133 verwendet, um die Kathode des Kondensatorelements 120 mit dem Kathoden-Endteil 129 zu verbinden. Die leitfähigen Kleber können aus leitfähigen Metallteilchen, die in einer Harzzusammensetzung enthalten sind, bestehen. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Gegebenenfalls kann sich auch eine polymere Einspannung in Kontakt mit einer oder mehreren Flächen der Kondensatorelemente, wie der hinteren Fläche, vorderen Fläche, oberen Fläche, unteren Fläche, Seitenflächen oder irgendeiner Kombination davon befinden. Die polymere Einspannung kann die Wahrscheinlichkeit des Abblätterns des Kondensatorelements von dem Gehäuse reduzieren. In dieser Hinsicht besitzt die polymere Einspannung typischerweise ein bestimmtes Maß an Festigkeit, das es ihr ermöglicht, das Kondensatorelement in einer relativ fixierten Position zu halten, auch wenn es Schwingungskräften ausgesetzt ist, aber nicht so fest, dass es Risse bekommt. Die Einspannung kann zum Beispiel eine Zugfestigkeit von etwa 1 bis etwa 150 Megapascal (”MPa”), in einigen Ausführungsformen etwa 2 bis etwa 100 MPa, in einigen Ausführungsformen etwa 10 bis etwa 80 MPa und in einigen Ausführungsformen etwa 20 bis etwa 70 MPa besitzen, gemessen bei einer Temperatur von etwa 25°C. Es ist normalerweise wünschenswert, dass die Einspannung nicht elektrisch leitend ist.
  • Es kann zwar eine Vielzahl von Materialien, die die oben genannten gewünschten Festigkeitseigenschaften aufweisen, eingesetzt werden, doch hat sich gezeigt, dass härtbare duroplastische Harze zur Verwendung in der vorliegenden Erfindung besonders gut geeignet sind. Beispiele für solche Harze sind etwa Epoxidharze, Polyimide, Melaminharze, Harnstoff-Formaldehyd-Harze, Polyurethane, Silikonpolymere, Phenolharze usw. In bestimmten Ausführungsformen können in der Einspannung zum Beispiel ein oder mehrere Polyorganosiloxane eingesetzt werden. Siliciumgebundene organische Gruppen, die in diesen Polymeren verwendet werden, können einwertige Kohlenwasserstoff- und/oder einwertige halogenierte Kohlenwasserstoffgruppen enthalten. Solche einwertigen Gruppen haben typischerweise 1 bis etwa 20 Kohlenstoffatome, vorzugsweise 1 bis 10 Kohlenstoffatome, und Beispiele dafür sind unter Anderem Alkyl (z. B. Methyl, Ethyl, Propyl, Pentyl, Octyl, Undecyl und Octadecyl); Cycloalkyl (z. B. Cyclohexyl); Alkenyl (z. B. Vinyl, Allyl, Butenyl und Hexenyl); Aryl (z. B. Phenyl, Tolyl, Xylyl, Benzyl und 2-Phenylethyl) und halogenierte Kohlenwasserstoffgruppen (z. B. 3,3,3-Trifluorpropyl, 3-Chlorpropyl und Dichlorphenyl). Typischerweise handelt es sich bei wenigstens 50% und besonders bevorzugt wenigstens 80% der organischen Gruppen um Methyl. Beispiele für solche Methylpolysiloxane sind etwa Polydimethylsiloxan (”PDMS”), Polymethylhydrogensiloxan usw. Noch andere geeignete Methylpolysiloxane sind etwa Dimethyldiphenylpolysiloxan, Dimethyl/methylphenylpolysiloxan, Polymethylphenylsiloxan, Methylphenyl/dimethylsiloxan, Vinyldimethyl-terminiertes Polydimethylsiloxan, Vinylmethyl/dimethylpolysiloxan, Vinyldimethyl-terminiertes Vinylmethyl/dimethylpolysiloxan, Divinylmethyl-terminiertes Polydimethylsiloxan, Vinylphenylmethyl-terminiertes Polydimethylsiloxan, Dimethylhydro-terminiertes Polydimethylsiloxan, Methylhydro/dimethylpolysiloxan, Methylhydro-terminiertes Methyloctylpolysiloxan, Methylhydro/phenylmethylpolysiloxan usw.
  • Das Organopolysiloxan kann auch eine oder mehrere seitenständige und/oder endständige polare funktionelle Gruppen enthalten, wie Hydroxy-, Epoxy-, Carboxy-, Amino-, Alkoxy-, Methacryl- oder Mercaptogruppen, die dem Polymer einen gewissen Grad der Hydrophilie verleihen. Zum Beispiel kann das Organopolysiloxan wenigstens eine Hydroxygruppe und gegebenenfalls im Durchschnitt wenigstens zwei siliciumgebundene Hydroxygruppen (Silanolgruppen) pro Molekül enthalten. Beispiele für solche Organopolysiloxane sind zum Beispiel Dihydroxypolydimethylsiloxan, Hydroxytrimethylsiloxypolydimethylsiloxan usw. Weitere Beispiele für hydroxymodifizierte Organopolysiloxane sind in der US-Patentanmeldung Veröffentlichungsnummer 2003/0105207 (Kleyer et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Alkoxymodifizierte Organopolysiloxane können ebenfalls eingesetzt werden, wie Dimethoxypolydimethylsiloxan, Methoxytrimethylsiloxypolydimethylsiloxan, Diethoxypolydimethylsiloxan, Ethoxytrimethylsiloxypolydimethylsiloxan usw. Noch andere geeignete Organopolysiloxane sind solche, die mit wenigstens einer aminofunktionellen Gruppe modifiziert sind. Beispiele für solche aminofunktionellen Polysiloxane sind zum Beispiel diaminofunktionelle Polydimethylsiloxane. Verschiedene andere geeignete polare funktionelle Gruppen für Organopolysiloxane sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2010/00234517 (Plantenberg et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Epoxidharze sind ebenfalls für die Verwendung in der vorliegenden Erfindung besonders gut geeignet. Beispiele für geeignete Epoxidharze sind zum Beispiel Epoxidharze des Glycidylether-Typs, wie Epoxidharze des Bisphenol-A-Typs, Epoxidharze des Bisphenol-F-Typs, Epoxidharze des Phenol-Novolak-Typs, Epoxidharze des Orthokresol-Novolak-Typs, bromierte Epoxidharze und Epoxidharze des Biphenyl-Typs, cyclische aliphatische Epoxidharze, Epoxidharze des Glycidylester-Typs, Epoxidharze des Glycidylamin-Typs, Epoxidharze des Kresol-Novolak-Typs, Epoxidharze des Naphthalin-Typs, Epoxidharze des Phenolaralkyl-Typs, Epoxidharze des Cyclopentadien-Typs, heterocyclische Epoxidharze usw. Noch weitere geeignete leitfähige Kleberharze sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) und im US-Patent Nr. 7,554,793 (Chacko), beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Falls gewünscht, können in der polymeren Einspannung auch Härtungsmittel eingesetzt werden, um zur Förderung der Härtung beizutragen. Die Härtungsmittel machen typischerweise etwa 0,1 bis etwa 20 Gew.-% der Einspannung aus. Beispielhafte Härtungsmittel sind zum Beispiel Amine, Peroxide, Anhydride, Phenolverbindungen, Silane, Säureanhydridverbindungen und Kombinationen davon. Spezielle Beispiele für geeignete Härtungsmittel sind Dicyandiamid, 1-(2-Cyanoethyl)-2-ethyl-4-methylimidazol, 1-Benzyl-2-methylimidazol, Ethylcyanopropylimidazol, 2-Methylimidazol, 2-Phenylimidazol, 2-Ethyl-4-methylimidazol, 2-Undecylimidazol, 1-Cyanoethyl-2-methylimidazol, 2,4-Dicyan-6,2-methylimidazolyl-(1)-ethyl-s-triazin und 2,4-Dicyano-6,2-undecylimidazolyl-(1)-ethyl-s-triazin, Imidazoliumsalze (wie 1-Cyanoethyl-2-undecylimidazoliumtrimellithat, 2-Methylimidazoliumisocyanurat, 2-Ethyl-4-methylimidazoliumtetraphenylborat und 2-Ethyl-1,4-dimethylimidazoliumtetraphenylborat usw. Noch andere geeignete Härtungsmittel sind Phosphinverbindungen, wie Tributylphosphin, Triphenylphosphin, Tris(dimethoxyphenyl)phosphin, Tris(hydroxypropyl)phosphin und Tris(cyanoethyl)phosphin; Phosphoniumsalze, wie Tetraphenylphosphoniumtetraphenylborat, Methyltributylphosphoniumtetraphenylborat und Methyltricyanoethylphosphoniumtetraphenylborat; Amine, wie 2,4,6-Tris(dimethylaminomethyl)phenol, Benzylmethylamin, Tetramethylbutylguanidin, N-Methylpiperazin und 2-Dimethylamino-1-pyrrolin; Ammoniumsalze, wie Triethylammoniumtetraphenylborat; Diazabicyclo-Verbindungen, wie 1,5-Diazabicyclo[5.4.0]-7-undecen, 1,5-Diazabicyclo[4.3.0]-5-nonen und 1,4-Diazabicyclo[2.2.2]octan; Salze von Diazabicyclo-Verbindungen, wie das Tetraphenylborat, Phenolsalz, Phenol-Novolak-Salz und 2-Ethylhexansäure-Salz usw.
  • Es können auch noch andere Additive eingesetzt werden, wie Photoinitiatoren, Viskositätsmodifikatoren, Suspensionshilfsmittel, Pigmente, Entspannungsmittel, Kopplungsmittel (z. B. Silan-Kopplungsmittel), nichtleitende Füllstoffe (z. B. Ton, Siliciumoxid, Aluminiumoxid usw.), Stabilisatoren usw. Zu den geeigneten Photoinitiatoren gehören zum Beispiel etwa Benzoin, Benzoinmethylether, Benzoinethylether, Benzoin-n-propylether, Benzoinisobutylether, 2,2-Dihydroxy-2-phenylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 2,2-Diethoxyacetophenon, Benzophenon, 4,4-Bis(diallylamino)benzophenon, 4-Dimethylaminobenzoesäure, Alkyl-4-dimethylaminobenzoat, 2-Ethylanthrachinon, Xanthon, Thioxanthon, 2-Chlorthioxanthon usw. Wenn sie eingesetzt werden, machen solche Additive typischerweise etwa 0,1 bis etwa 20 Gew.-% der gesamten Zusammensetzung aus.
  • Wenn wir uns zum Beispiel wieder auf 1 beziehen, so ist eine Ausführungsform gezeigt, in der sich eine einzige polymere Einspannung 197 in Kontakt mit einer oberen Fläche 181 und einer hinteren Fläche 177 des Kondensatorelements 120 befindet. Während in 1 eine einzelne Einspannung gezeigt ist, sollte man sich darüber im Klaren sein, dass auch getrennte Einspannungen eingesetzt werden können, um dieselbe Funktion zu erfüllen. Tatsächlich können allgemeiner gesagt eine beliebige Zahl von polymeren Einspannungen eingesetzt werden und sich in Kontakt mit jeder gewünschten Fläche des Kondensatorelements befinden. Wenn mehrere Einspannungen eingesetzt werden, können sie miteinander in Kontakt stehen oder physisch getrennt bleiben. Zum Beispiel kann in einer Ausführungsform eine zweite polymere Einspannung (nicht gezeigt) eingesetzt werden, die mit der oberen Fläche 181 und der vorderen Fläche 179 des Kondensatorelements 120 in Kontakt steht. Die erste polymere Einspannung 197 und die zweite polymere Einspannung (nicht gezeigt) können in Kontakt miteinander stehen oder auch nicht. In noch einer anderen Ausführungsform kann eine polymere Einspannung auch mit einer unteren Fläche 183 und/oder einer oder mehreren Seitenflächen des Kondensatorelements 120 in Kontakt stehen, entweder in Verbindung mit oder anstelle von anderen Flächen.
  • Unabhängig davon, wie sie angebracht wird, ist es typischerweise wünschenswert, dass sich die polymere Einspannung auch in Kontakt mit wenigstens einer Fläche des Gehäuses befindet, um dazu beizutragen, das Kondensatorelement weiter gegenüber möglichem Abblättern mechanisch zu stabilisieren. Zum Beispiel kann sich die Einspannung in Kontakt mit einer Innenfläche einer oder mehrerer Seitenwände, der Außenwand, des Deckels usw. befinden. In 1 befindet sich die polymere Einspannung 197 zum Beispiel in Kontakt mit einer Innenfläche 107 der Seitenwand 124 und einer Innenfläche 109 der Außenwand 123. Während sie sich in Kontakt mit dem Gehäuse befindet, ist es dennoch wünschenswert, dass wenigstens ein Teil des durch das Gehäuse definierten Innenraums frei bleibt, damit das Inertgas durch den Innenraum strömen und den Kontakt des festen Elektrolyten mit Sauerstoff einschränken kann. Zum Beispiel bleiben typischerweise wenigstens etwa 5% des Innenraumvolumens frei von dem Kondensatorelement und der polymeren Einspannung, und in einigen Ausführungsformen sind es etwa 10% bis etwa 50% des Innenraumvolumens.
  • Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Packung hermetisch versiegelt. Wie zum Beispiel wiederum in 1 gezeigt ist, kann das Gehäuse 122 auch einen Deckel 125 umfassen, der auf einer oberen Fläche von Seitenwänden 124 platziert wird, nachdem das Kondensatorelement 120 und die polymere Einspannung 197 innerhalb des Gehäuses 122 positioniert sind. Der Deckel 125 kann aus Keramik, Metall (z. B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. bestehen. Falls gewünscht, kann sich ein Versiegelungselement 187 zwischen dem Deckel 125 und den Seitenwänden 124 befinden, um zu einer guten Abdichtung beizutragen. In einer Ausführungsform zum Beispiel kann das Versiegelungselement eine Glas-Metall-Versiegelung, einen Kovar®-Ring (Goodfellow Cambridge, Ltd.) usw. umfassen. Die Höhe der Seitenwände 124 ist im Allgemeinen so, dass der Deckel 125 nicht mit einer Fläche des Kondensatorelements 120 in Kontakt kommt, so dass er nicht kontaminiert wird. Die polymere Einspannung 197 kann mit dem Deckel 125 in Kontakt stehen oder auch nicht. Wenn er in der gewünschten Position platziert ist, wird der Deckel 125 mit Hilfe von bekannten Techniken, wie Schweißen (z. B. Widerstandsschweißen, Laserschweißen usw.), Löten usw., hermetisch an den Seitenwänden 124 versiegelt. Das hermetische Versiegeln erfolgt im Allgemeinen in Gegenwart von Inertgasen, wie es oben beschrieben ist, so dass die resultierende Baugruppe im Wesentlichen frei von reaktiven Gasen, wie Sauerstoff oder Wasserdampf, ist.
  • Man sollte sich darüber im Klaren sein, dass die beschriebenen Ausführungsformen nur beispielhaft sind und dass in der vorliegenden Erfindung auch verschiedene andere Konfigurationen eingesetzt werden können, um ein Kondensatorelement und eine polymere Einspannung hermetisch innerhalb eines Gehäuses zu versiegeln. Wenn wir uns zum Beispiel auf 2 beziehen, so ist eine andere Ausführungsform einer Kondensatorbaugruppe 200 gezeigt, bei der ein Gehäuse 222 eingesetzt wird, das eine Außenwand 123 und einen Deckel 225 umfasst, zwischen denen ein Innenraum 126 entsteht, der das Kondensatorelement 120 und die polymere Einspannung 197 umfasst. Der Deckel 225 umfasst eine Außenwand 223, die mit wenigstens einer Seitenwand 224 einstückig ausgebildet ist. In der gezeigten Ausführungsform sind zum Beispiel zwei einander gegenüberliegende Seitenwände 224 im Querschnitt gezeigt. Die Außenwände 223 und 123 erstrecken sich beide in einer seitlichen Richtung (–y-Richtung) und verlaufen im Wesentlichen parallel zu einander und zur seitlichen Richtung des Anodenanschlusses 6. Die Seitenwand 224 erstreckt sich von der Außenwand 223 ausgehend in einer Längsrichtung, die im Wesentlichen senkrecht zur Außenwand 123 steht. Ein distales Ende 500 des Deckels 225 ist durch die Außenwand 223 definiert, und ein proximales Ende 501 ist durch eine Lippe 253 der Seitenwand 224 definiert.
  • Die Lippe 253 erstreckt sich von der Seitenwand 224 ausgehend in seitlicher Richtung, die im Wesentlichen parallel zur seitlichen Richtung der Außenwand 123 stehen kann. Der Winkel zwischen der Seitenwand 224 und der Lippe 253 kann variieren, beträgt aber typischerweise etwa 60° bis etwa 120°, in einigen Ausführungsformen etwa 70° bis etwa 110° und in einigen Ausführungsformen etwa 80° bis etwa 100° (z. B. etwa 90°). Die Lippe 253 definiert auch einen umlaufenden Rand 251, der im Wesentlichen senkrecht zur seitlichen Richtung, in der sich die Lippe 253 und die Außenwand 123 erstrecken, verlaufen kann. Der umlaufende Rand 251 befindet sich jenseits des äußeren Umfangs der Seitenwand 224 und kann im Wesentlichen koplanar zu einem Rand 151 der Außenwand 123 verlaufen. Die Lippe 253 kann mit Hilfe einer beliebigen bekannten Technik, wie Schweißen (z. B. Widerstands- oder Laserschweißen), Löten, Leim usw., an der Außenwand 123 versiegelt werden. Zum Beispiel wird in der gezeigten Ausführungsform ein Versiegelungselement 287 (z. B. Glas-Metall-Siegel, Kovar®-Ring usw.) zwischen den Komponenten eingesetzt, um deren Befestigung zu erleichtern. Unabhängig davon kann die oben beschriebene Verwendung einer Lippe eine stabilere Verbindung zwischen den Komponenten ermöglichen und die Versiegelung und die mechanische Stabilität der Kondensatorbaugruppe verbessern.
  • In der vorliegenden Erfindung können noch andere mögliche Gehäusekonfigurationen eingesetzt werden. Zum Beispiel zeigt 3 eine Kondensatorbaugruppe 300 mit einer ähnlichen Gehäusekonfiguration wie in 2, außer dass Endstifte 327b bzw. 329b als externe Abschlüsse für die Anode bzw. Kathode eingesetzt werden. Insbesondere erstreckt sich der Endstift 327a durch eine in der Außenwand 323 gebildete Bahn 327c hindurch und wird mit Hilfe von bekannten Techniken (z. B. Schweißen) mit dem Anodenanschluss 6 verbunden. Ein zusätzlicher Abschnitt 327a kann eingesetzt werden, um den Stift 327b zu befestigen. Ebenso erstreckt sich der Endstift 329b durch eine in der Außenwand 323 gebildete Bahn 329c hindurch und wird über einen leitfähigen Kleber 133 mit der Kathode verbunden, wie es oben beschrieben ist.
  • Die in den 13 gezeigten Ausführungsformen werden hier in Verbindung mit einem einzigen Kondensatorelement diskutiert. Man sollte sich jedoch darüber im Klaren sein, dass auch mehrere Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt sein können. Die mehreren Kondensatorelemente können unter Verwendung einer Vielzahl von Techniken an dem Gehäuse befestigt werden. 4 zeigt zum Beispiel eine besondere Ausführungsform einer Kondensatorbaugruppe 400, die zwei Kondensatorelemente enthält und nun ausführlicher beschrieben wird. Insbesondere umfasst die Kondensatorbaugruppe 400 ein erstes Kondensatorelement 420a in elektrischer Verbindung mit einem zweiten Kondensatorelement 420b. In dieser Ausführungsform sind die Kondensatorelemente so ausgerichtet, dass sich ihre Hauptflächen in einer horizontalen Konfiguration befinden. Das heißt, eine Hauptfläche des Kondensatorelements 420a, die durch dessen Breite (–x-Richtung) und Länge (–y-Richtung) definiert ist, befindet sich angrenzend an eine entsprechende Hauptfläche des Kondensatorelements 420b. Die Hauptflächen sind also im Wesentlichen koplanar. Alternativ dazu können die Kondensatorelemente auch so angeordnet sein, dass ihre Hauptflächen nicht koplanar sind, sondern in einer bestimmten Richtung, wie der –z-Richtung oder der –x-Richtung, senkrecht aufeinander stehen. Selbstverständlich brauchen sich die Kondensatorelemente nicht in derselben Richtung zu erstrecken.
  • Die Kondensatorelemente 420a und 420b befinden sich innerhalb eines Gehäuses 422, das eine Außenwand 423 und Seitenwände 424 und 425 enthält, die zusammen einen Innenraum 426 definieren. Obwohl es nicht gezeigt ist, kann ein Deckel eingesetzt werden, der die oberen Flächen der Seitenwände 424 und 425 bedeckt und die Baugruppe 400 versiegelt, wie es oben beschrieben ist. Gemäß der vorliegenden Erfindung wird auch eine polymere Einspannung eingesetzt, die dazu beiträgt, die Schwingung der Kondensatorelemente einzudämmen. In 4 befinden sich zum Beispiel getrennte polymere Einspannungen 497a und 497b angrenzend an und in Kontakt mit den Kondensatorelementen 420a bzw. 420b.
  • Wie oben bereits ausführlicher diskutiert wurde, können sich die polymeren Einspannungen 497a und 497b an einer Vielzahl verschiedener Orte befinden. Weiterhin kann eine der Einspannungen weggelassen werden, oder zusätzliche Einspannungen können eingesetzt werden. In bestimmten Ausführungsformen kann es zum Beispiel wünschenswert sein, eine polymere Einspannung zwischen den Kondensatorelementen einzusetzen, um die mechanische Stabilität weiter zu verbessern.
  • Neben den Kondensatorelementen enthält die Kondensatorbaugruppe auch ein Anoden-Endteil, mit dem Anodenanschlüsse der jeweiligen Kondensatorelemente elektrisch verbunden sind, und ein Kathoden-Endteil, mit dem die Kathoden der jeweiligen Kondensatorelemente elektrisch verbunden sind. Wenn wir uns zum Beispiel wieder auf 4 beziehen, so sind die Kondensatorelemente gezeigt, wie sie parallel mit einem gemeinsamen Kathoden-Endteil 429 verbunden sind. In dieser besonderen Ausführungsform wird das Kathoden-Endteil 429 zunächst in einer Ebene bereitgestellt, die im Wesentlichen parallel zur unteren Fläche der Kondensatorelemente verläuft, und kann mit leitfähigen Bahnen (nicht gezeigt) in elektrischem Kontakt stehen. Die Kondensatorbaugruppe 400 umfasst auch Verbindungselemente 427 und 527, die mit Anodenanschlüssen 407a bzw. 407b der Kondensatorelemente 420a und 420b verbunden sind. Insbesondere enthält das Verbindungselement 427 einen hochstehenden Teil 465 und einen planaren Teil 463, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Ebenso enthält das Verbindungselement 527 einen hochstehenden Teil 565 und einen planaren Teil 563, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Selbstverständlich sollte man sich darüber im Klaren sein, dass auch eine Vielzahl anderer Typen von Verbindungsmechanismen eingesetzt werden kann.
  • Als Ergebnis der vorliegenden Erfindung kann die Kondensatorbaugruppe ausgezeichnete elektrische Eigenschaften aufweisen, auch wenn sie Umgebungen mit hoher Temperatur und hoher Spannung ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe auch eine relativ hohe ”Durchschlagsspannung” (Spannung, bei der der Kondensator versagt), wie etwa 35 Volt oder mehr, in einigen Ausführungsformen etwa 50 Volt oder mehr, in einigen Ausführungsformen etwa 60 Volt oder mehr und in einigen Ausführungsformen etwa 60 Volt bis etwa 100 Volt aufweisen, die bestimmt wird, indem man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Ebenso kann es auch sein, dass der Kondensator relativ hohe Stromspitzen aushält, was bei Hochspannungsanwendungen ebenfalls üblich ist. Der maximale Spitzenstrom kann zum Beispiel etwa das Doppelte der Nennspannung oder mehr betragen, etwa in einem Bereich von etwa 40 Ampère oder mehr liegen, in einigen Ausführungsformen etwa 60 Ampère oder mehr und in einigen Ausführungsformen etwa 120 Ampère bis etwa 250 Ampère.
  • Ebenso kann die Kapazität etwa 1 Millifarad pro Quadratzentimeter (”mF/cm2”) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2 betragen. Die Kapazität kann bei einer Arbeitsfrequenz von 120 Hz und einer Temperatur von 25°C bestimmt werden. Außerdem kann der Kondensator auch einen relativ hohen Prozentsatz seiner Feuchtkapazität aufweisen, was ihn in die Lage versetzt, in Gegenwart von Luftfeuchtigkeit nur einen geringen Kapazitätsverlust und/oder Fluktuation aufzuweisen. Dieses Leistungsmerkmal wird durch die ”prozentuale Trocken-zu-Feucht-Kapazität” quantifiziert, die durch die Gleichung Trocken-zu-Feucht-Kapazität = (1 – ([Feucht – Trocken]/Feucht)) × 100 bestimmt wird.
  • Die Kondensatorbaugruppe der vorliegenden Erfindung kann zum Beispiel eine prozentuale Trocken-zu-Feucht-Kapazität von etwa 80% oder mehr aufweisen, in einigen Ausführungsformen etwa 85% oder mehr, in einigen Ausführungsformen etwa 90% oder mehr und in einigen Ausführungsformen etwa 92% bis 100%.
  • Die Kondensatorbaugruppe kann auch einen äquivalenten Serienwiderstand (”ESR”) von weniger als etwa 50 Ohm aufweisen, in einigen Ausführungsformen weniger als etwa 25 Ohm, in einigen Ausführungsformen etwa 0,01 bis etwa 10 Ohm und in einigen Ausführungsformen etwa 0,05 bis etwa 5 Ohm, gemessen bei einer Arbeitsfrequenz von 100 kHz. Außerdem kann der Leckstrom, der sich im Allgemeinen auf den Strom bezieht, der von einem Leiter über einen Isolator zu einem benachbarten Leiter fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel ist der Zahlenwert des normierten Leckstroms eines Kondensators der vorliegenden Erfindung in einigen Ausführungsformen kleiner als etwa 1 μA/μF·V, in einigen Ausführungsformen kleiner als etwa 0,5 μA/μF·V und in einigen Ausführungsformen kleiner als etwa 0,1 μA/μF·V, wobei ”μA” Mikroampère bedeutet und ”μF·V” das Produkt aus der Kapazität und der Nennspannung ist.
  • Die elektrischen Eigenschaften, wie sie oben beschrieben sind, können selbst nach einer während einer erheblichen Zeitdauer bei hohen Temperaturen erfolgenden Alterung aufrechterhalten werden. Zum Beispiel können die Werte etwa 100 Stunden oder länger, in einigen Ausführungsformen etwa 300 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 2500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden, 1200 Stunden oder 2000 Stunden) bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C und in einigen Ausführungsformen etwa 100°C bis etwa 225°C (z. B. 100°C, 125°C, 150°C, 175°C oder 200°C) aufrechterhalten werden.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23°C ± 2°C.
  • Kapazität
  • Die Kapazität wurde mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C.
  • Leckstrom
  • Der Leckstrom (”DCL”) wurde mit einer Leckstrom-Testeinrichtung gemessen, die den Leckstrom bei einer Temperatur von 25°C und der Nennspannung nach mindestens 60 Sekunden misst.
  • Beispiel 1
  • Eine Tantalanode (5,20 mm × 3,70 mm × 0,85 mm) wurde bei 125 V in einem flüssigen Elektrolyten auf 10 μF anodisiert. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die gesamte Anode 150 s lang in eine wässrige Lösung von Mangan(II)nitrat (1050 kg/m3) eintaucht und dann bei 250°C zersetzt. Dieser Schritt wurde zweimal wiederholt. Danach wurde das Teil 150 s lang in eine wässrige Lösung von Mangan(II)nitrat (1150 kg/m3) eingetaucht und dann bei 250°C zersetzt. Dieser Schritt wurde achtmal wiederholt. Danach wurde das Teil in eine wässrige Lösung von Mangan(II)nitrat (1300 kg/m3) eingetaucht und dann bei 250°C zersetzt. Dieser Schritt wurde achtmal wiederholt. Dann wurde das Teil in Mangan(II)nitrat mit hoher relativer Dichte getaucht, und dann wurde das Teil mit Graphit und Silber beschichtet. Ein Leiterrahmenmaterial auf Kupferbasis wurde verwendet, um den Montagevorgang fertigzustellen. Ein einzelnes Kathodenverbindungselement wurde mit Hilfe eines Silberklebers an der unteren Fläche des Kondensatorelements befestigt.
  • Der Tantaldraht des Kondensatorelements wurde dann durch Laserschweißen mit einem Anodenverbindungselement verbunden.
  • Dann wurden das Anoden- und das Kathodenverbindungselement des Leiterrahmens an ein Gold-Kathoden-Endteil geklebt und an ein Gold-Anoden-Endteil geschweißt, das sich innerhalb eines Keramikgehäuses mit einer Länge von 11,00 mm, einer Breite von 6,00 mm und einer Dicke von 2,20 mm befand. Das Gehäuse wies vergoldete Lötpunkte auf dem unteren Innenteil des Keramikgehäuses auf. Der für die Kathodenverbindung eingesetzte Kleber war eine Zinnlötpaste (EPO-Tek E3035), und der Kleber wurde nur zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt aufgetragen. Danach wurde ein Kovar®-Deckel mit einer Länge von 9,95 mm, einer Breite von 4,95 mm und einer Dicke von 0,10 mm über der Oberseite des Behälters platziert, und zwar dicht über dem Versiegelungsring des Keramikgehäuses (Kovar®-Ring mit einer Dicke von 0,30 mm), so dass es keinen direkten Kontakt zwischen der Innenfläche des Deckels und der Außenfläche des befestigten Kondensators gab. Die resultierende Baugruppe wurde in eine Schweißkammer gebracht und 120 Minuten lang mit Stickstoffgas gespült, bevor ein Nahtschweißverfahren zwischen dem Versiegelungsring und dem Deckel durchgeführt wurde. Nach dem Nahtschweißen wurde kein zusätzliches Einbrennen oder Flicken durchgeführt. Auf diese Weise wurden viele Teile (50) hergestellt, und dann wurden ihre elektrischen Eigenschaften (d. h. Leckstrom, ESR und Kapazität nach Alterung) getestet, indem man die Teile mit Lötpaste an einer PCB-Platte befestigte. Die Messungen wurden bei 25°C durchgeführt und dann nach 500 Stunden Lagerung bei einer Temperatur von 200°C, 215°C und 230°C bei einer angelegten Nennspannung von 0 V wiederholt. Die Ergebnisse sind im Folgenden aufgeführt.
    Bedingungen DCL [μA] ESR [mOhm] CAP [μF]
    bei 25°C 0,21–0,26 131–136 9,6–9,9
    nach 500 Stunden bei 200°C 0,53 142 10,1
    nach 500 Stunden bei 215°C 0,42 162 9,7
    nach 500 Stunden bei 230°C 0,63 197 9,8
  • Wie angegeben, konnten die Kondensatorbaugruppen auch unter extremen Bedingungen mit hoher Temperatur relativ stabile elektrische Eigenschaften aufrechterhalten.
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6322912 [0017]
    • US 6391275 [0017]
    • US 6416730 [0017]
    • US 6527937 [0017]
    • US 6576099 [0017]
    • US 6592740 [0017]
    • US 6639787 [0017]
    • US 7220397 [0017]
    • US 6197252 [0020]
    • US 4945452 [0025]
    • US 3067243 [0030]
    • US 6674635 [0037]
    • US 7554793 [0054]
  • Zitierte Nicht-Patentliteratur
    • Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0018]
    • ISO 304 (1985) [0027]
    • ASTM D 1331-89 [0027]

Claims (18)

  1. Kondensatorbaugruppe, umfassend: ein Kondensatorelement, das eine aus einem anodisch oxidierten, gesinterten porösen Körper gebildete Anode und einen die Anode bedeckenden festen Elektrolyten umfasst, wobei der feste Elektrolyt ein Manganoxid umfasst; ein Gehäuse, das einen Innenraum definiert, innerhalb dessen das Kondensatorelement positioniert ist, wobei der Innenraum eine Gasatmosphäre aufweist, die ein Inertgas enthält; ein Anoden-Endteil, das in elektrischer Verbindung mit dem Anodenkörper steht; und ein Kathoden-Endteil, das in elektrischer Verbindung mit dem festen Elektrolyten steht.
  2. Kondensatorbaugruppe gemäß Anspruch 1, wobei der poröse Körper aus Tantal- oder Nioboxidpulver gebildet ist.
  3. Kondensatorbaugruppe gemäß Anspruch 2, wobei das Pulver eine spezifische Ladung von weniger als etwa 70000 μF·V/g aufweist.
  4. Kondensatorbaugruppe gemäß Anspruch 1, wobei das Manganoxid in Form eines Films vorliegt, der wenigstens einen Teil des Dielektrikums im Wesentlichen gleichmäßig beschichtet.
  5. Kondensatorbaugruppe gemäß Anspruch 1, wobei das Kondensatorelement etwa 30 Vol.-% oder mehr des Innenraums ausfüllt.
  6. Kondensatorbaugruppe gemäß Anspruch 1, wobei Inertgase etwa 50 Gew.-% bis 100 Gew.-% der Gasatmosphäre ausmachen.
  7. Kondensatorbaugruppe gemäß Anspruch 1, wobei das Gehäuse aus Metall, Kunststoff, Keramik oder einer Kombination davon gebildet ist.
  8. Kondensatorbaugruppe gemäß Anspruch 1, die weiterhin einen Anschluss umfasst, der sich in seitlicher Richtung vom porösen Körper der Anode weg erstreckt, wobei sich der Anschluss innerhalb des Innenraums des Gehäuses befindet.
  9. Kondensatorbaugruppe gemäß Anspruch 8, die weiterhin ein Verbindungselement umfasst, das einen ersten Teil enthält, der im Wesentlichen senkrecht zur seitlichen Richtung des Anodenanschlusses positioniert und mit diesem verbunden ist.
  10. Kondensatorbaugruppe gemäß Anspruch 9, wobei das Verbindungselement weiterhin einen zweiten Teil enthält, der im Wesentlichen parallel zur seitlichen Richtung, in der sich der Anodenanschluss erstreckt, angeordnet ist.
  11. Kondensatorbaugruppe gemäß Anspruch 10, wobei sich der zweite Teil innerhalb des Gehäuses befindet.
  12. Verfahren zur Bildung einer Kondensatorbaugruppe, wobei das Verfahren Folgendes umfasst: Positionieren eines Kondensatorelements innerhalb eines Innenraums eines Gehäuses, wobei das Kondensatorelement einen anodisch oxidierten, gesinterten Anodenkörper umfasst, der mit einem festen Elektrolyten bedeckt ist, wobei der feste Elektrolyt ein Manganoxid umfasst; elektrisches Verbinden des Anodenkörpers des Kondensatorelements mit einem Anoden-Endteil und des festen Elektrolyten des Kondensatorelements mit einem Kathoden-Endteil; und hermetisches Versiegeln des Kondensatorelements innerhalb des Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält.
  13. Verfahren gemäß Anspruch 12, wobei das Kondensatorelement durch anodisches Oxidieren eines gesinterten Anodenkörpers unter Bildung einer dielektrischen Beschichtung, In-Kontakt-Bringen des mit dem Dielektrikum beschichteten Anodenkörpers mit einer Manganoxid-Vorläuferlösung und pyrolytisches Umwandeln des Vorläufers in ein Manganoxid als festen Elektrolyten gebildet wird.
  14. Verfahren gemäß Anspruch 13, wobei es sich bei dem Manganoxid-Vorläufer um Mangannitrat handelt.
  15. Verfahren gemäß Anspruch 14, wobei die Vorläuferlösung ein Dispergiermittel enthält.
  16. Verfahren gemäß Anspruch 15, wobei das Verhältnis der Oberflächenspannung von Wasser (bei 20°C) zur Oberflächenspannung des Dispergiermittels (bei einer Konzentration von 1 Gew.-% in Wasser und bei 20°C) etwa 0,5 bis etwa 2,0 beträgt.
  17. Verfahren gemäß Anspruch 12, wobei die Lösung eine wässrige Lösung ist.
  18. Verfahren gemäß Anspruch 12, wobei der Vorläufer bei einer Temperatur von etwa 150°C bis etwa 300°C pyrolytisch zum Oxid umgewandelt wird.
DE102012205529A 2011-04-07 2012-04-04 Manganoxid-Kondensator zur Verwendung in extremen Umgebungen Pending DE102012205529A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161472871P 2011-04-07 2011-04-07
USUS,61/472,871 2011-04-07
USUS,13/313,367 2011-12-07
US13/313,367 US8947857B2 (en) 2011-04-07 2011-12-07 Manganese oxide capacitor for use in extreme environments

Publications (1)

Publication Number Publication Date
DE102012205529A1 true DE102012205529A1 (de) 2012-10-11

Family

ID=46026481

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012205529A Pending DE102012205529A1 (de) 2011-04-07 2012-04-04 Manganoxid-Kondensator zur Verwendung in extremen Umgebungen

Country Status (8)

Country Link
US (3) US8947857B2 (de)
JP (2) JP6184661B2 (de)
KR (1) KR101929254B1 (de)
CN (2) CN108198690B (de)
DE (1) DE102012205529A1 (de)
FR (1) FR2973929A1 (de)
GB (1) GB2489786B (de)
HK (1) HK1254372A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
GB2512480B (en) * 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
WO2014165038A1 (en) * 2013-03-13 2014-10-09 Kemet Electronics Corporation Low energy milling to produce flake powders
US9439296B2 (en) * 2013-08-30 2016-09-06 Shindengen Electric Manufacturing Co., Ltd. Electrical equipment, production method thereof and design method of electrical equipment
US9620294B2 (en) * 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9947479B2 (en) 2015-11-16 2018-04-17 Vishay Sprague, Inc. Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting
CN108369867A (zh) * 2015-12-18 2018-08-03 凯米特电子公司 利用膜进行封装物厚度控制的电容器及制造方法
US10186382B2 (en) 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
US10381165B2 (en) * 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US10763046B2 (en) * 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
KR102397418B1 (ko) 2016-10-18 2022-05-12 교세라 에이브이엑스 컴포넌츠 코포레이션 고체 전해질 커패시터 조립체
US10741333B2 (en) * 2016-10-18 2020-08-11 Avx Corporation Solid electrolytic capacitor with improved leakage current
EP3529816A4 (de) 2016-10-18 2020-09-02 AVX Corporation Festelektrolytkondensator mit verbesserter leistung bei hohen temperaturen und spannungen
JP7113285B2 (ja) * 2017-01-13 2022-08-05 パナソニックIpマネジメント株式会社 電解コンデンサ
CN110419087A (zh) 2017-03-06 2019-11-05 阿维科斯公司 固体电解电容器组装件
US20180366270A1 (en) * 2017-06-15 2018-12-20 General Electric Company Devices having low inductance and methods of manufacturing the same
WO2019005535A1 (en) 2017-06-29 2019-01-03 Avx Corporation MODULE CONTAINING HERMETICALLY SEALED CAPACITORS
EP3649661A4 (de) 2017-07-03 2021-03-31 AVX Corporation Festelektrolytkondensator mit einer nanobeschichtung
JP7275055B2 (ja) 2017-07-03 2023-05-17 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 固体電解キャパシタアセンブリ
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11024464B2 (en) * 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
JP7178609B2 (ja) * 2018-11-30 2022-11-28 パナソニックIpマネジメント株式会社 電解コンデンサ
KR20230095978A (ko) * 2020-10-27 2023-06-29 교세라 에이브이엑스 컴포넌츠 코포레이션 통기구를 갖는 수지 층을 포함하는 표면 실장형 울트라커패시터 장치
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor
CN113628886B (zh) * 2021-08-16 2023-03-14 标瑞新能源技术(重庆)有限公司 一种钽电解电容器阴极被膜方法及材料
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067243A (en) 1959-07-28 1962-12-04 Nopco Chem Co Preparation of salts of naphthalene sulfonic acid-formaldehyde condensates
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142886A (en) * 1959-08-07 1964-08-04 Texas Instruments Inc Method of making glass encased electrolytic capacitor assembly and article resultingtherefrom
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
GB1069685A (en) 1965-08-31 1967-05-24 Mallory & Co Inc P R Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies
US3581159A (en) * 1969-11-12 1971-05-25 Union Carbide Corp Solid electrolyte capacitor having improved counterelectrode system
US4085435A (en) 1976-06-14 1978-04-18 Avx Corporation Tantalum chip capacitor
JPS5220672B2 (de) * 1973-08-20 1977-06-04
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
JPS5934130Y2 (ja) * 1979-02-19 1984-09-21 日立コンデンサ株式会社 チップ型固体電解コンデンサ
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4755908A (en) 1987-08-17 1988-07-05 Gardner Edward P Capacitor
DE3843412A1 (de) 1988-04-22 1990-06-28 Bayer Ag Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH03127813A (ja) 1989-10-13 1991-05-30 Kao Corp 固体電解コンデンサの製造方法
JPH03178116A (ja) * 1989-12-06 1991-08-02 Matsushita Electric Ind Co Ltd チップ状固体電解コンデンサの製造方法
EP0440957B1 (de) 1990-02-08 1996-03-27 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
JP2853376B2 (ja) * 1991-07-10 1999-02-03 松下電器産業株式会社 コンデンサの製造方法
US5198968A (en) 1992-07-23 1993-03-30 Avx Corporation Compact surface mount solid state capacitor and method of making same
US5357399A (en) 1992-09-25 1994-10-18 Avx Corporation Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor
US5314606A (en) 1993-02-16 1994-05-24 Kyocera America, Inc. Leadless ceramic package with improved solderabilty
US5394295A (en) 1993-05-28 1995-02-28 Avx Corporation Manufacturing method for solid state capacitor and resulting capacitor
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5495386A (en) 1993-08-03 1996-02-27 Avx Corporation Electrical components, such as capacitors, and methods for their manufacture
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5638253A (en) 1994-04-28 1997-06-10 Rohm Co. Ltd. Package-type solid electrolytic capacitor
JP3479570B2 (ja) * 1994-04-28 2003-12-15 ローム株式会社 パッケージ型固体電解コンデンサの構造
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JPH0893030A (ja) * 1994-09-27 1996-04-09 Matsushita Electric Works Ltd 衛生洗浄装置
US5608261A (en) 1994-12-28 1997-03-04 Intel Corporation High performance and high capacitance package with improved thermal dissipation
JP2778495B2 (ja) 1994-12-28 1998-07-23 日本電気株式会社 耐熱性導電性高分子並びにその導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3127813B2 (ja) 1995-12-05 2001-01-29 ヤマハ株式会社 オーディオ用アンプの保護回路
WO1997036303A1 (fr) 1996-03-26 1997-10-02 Hitachi Chemical Co., Ltd. Composition de pate pour la preparation d'un electrolyte solide et procede de fabrication d'un condensateur electrolytique solide
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
JP3863232B2 (ja) 1996-09-27 2006-12-27 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の構造及びコンデンサ素子におけるチップ体の固め成形方法
TW388043B (en) 1997-04-15 2000-04-21 Sanyo Electric Co Solid electrolyte capacitor
JPH1174158A (ja) * 1997-08-27 1999-03-16 Hitachi Chem Co Ltd 固体電解質形成用ペースト組成物、これを用いた固体電解コンデンサ及びその製造方法
JPH11112157A (ja) 1997-09-30 1999-04-23 Kyocera Corp 電子部品用ケースとこれを用いた電子部品及び電解コンデンサ
US6042624A (en) 1998-04-03 2000-03-28 Medtronic, Inc. Method of making an implantable medical device having a flat electrolytic capacitor
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
JP3942000B2 (ja) 1999-06-01 2007-07-11 ローム株式会社 パッケージ型固体電解コンデンサの構造及びその製造方法
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
JP3959220B2 (ja) 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ 表面実装用非水電解電池および表面実装用電気二重層キャパシタ
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
EP2289964A3 (de) 2000-11-22 2014-01-01 Heraeus Precious Metals GmbH & Co. KG Dispergierbare Polymerpulver
WO2003019593A1 (en) 2001-08-22 2003-03-06 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP4609828B2 (ja) * 2001-08-22 2011-01-12 株式会社村田製作所 固体電解コンデンサ及びその製造方法
DE10164260A1 (de) 2001-12-27 2003-07-17 Bayer Ag Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene
JP2003283086A (ja) * 2002-01-21 2003-10-03 Hitachi Cable Ltd 配線基板、配線基板の製造方法及び配線基板を用いた電子部品
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
JP3748851B2 (ja) * 2002-12-20 2006-02-22 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の製造方法
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
EP1614122A1 (de) 2003-04-02 2006-01-11 H.C. Starck GmbH & Co. KG Spezielle oxidationsmittel zur herstellung leitfähiger polymere
US7348097B2 (en) * 2003-06-17 2008-03-25 Medtronic, Inc. Insulative feed through assembly for electrochemical devices
JP2005039168A (ja) 2003-06-27 2005-02-10 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
DE502004011120D1 (de) 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
DE10343873A1 (de) 2003-09-23 2005-04-21 Starck H C Gmbh Verfahren zur Reinigung von Thiophenen
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
ES2329898T3 (es) 2003-10-17 2009-12-02 H.C. Starck Gmbh Condensadores electroliticos con capa externa de polimero.
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
DE10357571A1 (de) 2003-12-10 2005-07-28 H.C. Starck Gmbh Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
US6995972B2 (en) 2004-01-28 2006-02-07 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2005217129A (ja) 2004-01-29 2005-08-11 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
JP4550519B2 (ja) 2004-08-10 2010-09-22 セイコーインスツル株式会社 電気化学セルおよびその製造方法
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
JP2006108185A (ja) * 2004-09-30 2006-04-20 Nippon Chemicon Corp 電解コンデンサ
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
KR100671780B1 (ko) 2005-02-25 2007-01-19 배석규 실험용 교반장치
JP2006278875A (ja) 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 固体電解コンデンサ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
US20060260713A1 (en) 2005-04-22 2006-11-23 Pyszczek Michael F Method and apparatus for providing a sealed container containing a detectable gas
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
US7092242B1 (en) * 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
WO2007058036A1 (ja) 2005-11-17 2007-05-24 Nagase Chemtex Corporation ポリ(3,4-ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
US7582958B2 (en) 2005-12-08 2009-09-01 International Rectifier Corporation Semiconductor package
DE102006002797A1 (de) 2006-01-20 2007-08-02 H. C. Starck Gmbh & Co. Kg Verfahren zur Herstellung von Polythiophenen
JP2007200950A (ja) 2006-01-23 2007-08-09 Fujitsu Media Device Kk 積層型固体電解コンデンサ
JP5013772B2 (ja) 2006-01-31 2012-08-29 三洋電機株式会社 電気二重層キャパシタ
DE102006020744A1 (de) 2006-05-04 2007-11-08 H. C. Starck Gmbh & Co. Kg Verfahren zur Stabilisierung von Thiophenderivaten
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
DE102006044067A1 (de) 2006-09-20 2008-03-27 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP4440911B2 (ja) 2006-10-13 2010-03-24 ニチコン株式会社 固体電解コンデンサ
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
US7724502B2 (en) 2007-09-04 2010-05-25 Avx Corporation Laser-welded solid electrolytic capacitor
DE102007046904A1 (de) 2007-09-28 2009-04-09 H.C. Starck Gmbh Partikel mit Kern-Schale-Struktur für leitfähige Schichten
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
WO2009077389A1 (de) 2007-12-14 2009-06-25 Henkel Ag & Co. Kgaa Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
JP5132374B2 (ja) * 2008-03-18 2013-01-30 三洋電機株式会社 固体電解コンデンサ及びその製造方法
JP2009231320A (ja) * 2008-03-19 2009-10-08 Hitachi Aic Inc 固体電解コンデンサおよびその製造方法
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
DE102008024805A1 (de) 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008036525A1 (de) 2008-08-06 2010-02-11 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
CN102210037A (zh) 2008-09-09 2011-10-05 Cap-Xx有限公司 用于电子设备的封装
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
US8203827B2 (en) * 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
KR101032206B1 (ko) * 2009-03-09 2011-05-02 삼성전기주식회사 고체 콘덴서 및 그 제조방법
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
KR101598831B1 (ko) * 2009-10-14 2016-03-03 삼성전자주식회사 자기저항소자, 이를 포함하는 정보저장장치 및 상기 정보저장장치의 동작방법
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824122B2 (en) * 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8379372B2 (en) * 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8947857B2 (en) * 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067243A (en) 1959-07-28 1962-12-04 Nopco Chem Co Preparation of salts of naphthalene sulfonic acid-formaldehyde condensates
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASTM D 1331-89
Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309
ISO 304 (1985)

Also Published As

Publication number Publication date
GB2489786B (en) 2015-04-15
US10014120B2 (en) 2018-07-03
KR20120115172A (ko) 2012-10-17
GB201204438D0 (en) 2012-04-25
KR101929254B1 (ko) 2019-03-12
JP2016165018A (ja) 2016-09-08
CN102737858A (zh) 2012-10-17
GB2489786A (en) 2012-10-10
US9508492B2 (en) 2016-11-29
CN108198690B (zh) 2020-06-26
US8947857B2 (en) 2015-02-03
US20170084398A1 (en) 2017-03-23
CN108198690A (zh) 2018-06-22
JP6184661B2 (ja) 2017-08-23
JP2012222342A (ja) 2012-11-12
US20150179349A1 (en) 2015-06-25
FR2973929A1 (fr) 2012-10-12
HK1254372A1 (zh) 2019-07-19
US20120257329A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
DE102012205529A1 (de) Manganoxid-Kondensator zur Verwendung in extremen Umgebungen
DE102012205607A1 (de) Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität
DE102012205589A1 (de) Gehäusekonfiguration für einen Festelektrolytkondensator
DE102012205600A1 (de) Festelektrolytkondensatorbaugruppe mit mehreren Anoden
DE102013205881A9 (de) Festelektrolytkondensator mit erhöhter mechanischer Stabilität unter extremen Bedingungen
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102013204358A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102014214945A1 (de) Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102011117190A1 (de) Volumetrisch effizienter Flüssigelektrolytkondensator
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102013204374A1 (de) Flüssigkeitskondensatorkathode, die ein alkylsubstituiertes Poly(3,4-ethylendioxythiophen) enthält
DE102013204351A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer kolloidalen Suspension gebildet ist
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102016208806A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
DE102016203110A1 (de) Wärmeleitendes Einbettungsmaterial für eine Kondensatorbaugruppe
DE102016214217A1 (de) Mehrfache Anschlussdrähte unter Verwendung eines Trägerdrahts für Elektrolytkondensatoren mit niedrigem ESR
DE102011108509A1 (de) Mechanisch robuste Festelektrolytkondensator-Baugruppe
DE102015223278A1 (de) Flüssigelektrolytkondensator, der eine vertiefte planare Anode und eine Halteeinrichtung enthält
DE102016207610A1 (de) Festelektrolytkondensator mit hoher Kapazität
DE112020002422T5 (de) Delaminierungsresistenter festelektrolytkondensator
DE102016204380A1 (de) Integrierter Microchip aus Tantal

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US