DE102015007054A1 - Method and device for determining the thickness of thin organic layers - Google Patents

Method and device for determining the thickness of thin organic layers Download PDF

Info

Publication number
DE102015007054A1
DE102015007054A1 DE102015007054.1A DE102015007054A DE102015007054A1 DE 102015007054 A1 DE102015007054 A1 DE 102015007054A1 DE 102015007054 A DE102015007054 A DE 102015007054A DE 102015007054 A1 DE102015007054 A1 DE 102015007054A1
Authority
DE
Germany
Prior art keywords
fluorescence
thickness
organic layers
determining
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102015007054.1A
Other languages
German (de)
Inventor
Thomas Huth-Fehre
Michael Tummuscheit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102015007054.1A priority Critical patent/DE102015007054A1/en
Publication of DE102015007054A1 publication Critical patent/DE102015007054A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4776Miscellaneous in diffuse reflection devices
    • G01N2021/4783Examining under varying incidence; Angularly adjustable head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N2021/646Detecting fluorescent inhomogeneities at a position, e.g. for detecting defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Es wird ein Verfahren zur Bestimmung der Dicke organischer Schichten, insbesondere von Schmierstofffilmen, auf rauen Oberflächen, insbesondere von Metalloberflächen, vorgeschlagen, bei dem die Oberfläche mit Strahlung mit Infrarotanteill bestrahlt wird und die reflektierte Strahlung in Wellenlängenbereichen gemessen wird, die für Grundschwingungen der in der Beschichtung vorkommenden Moleküle charakteristisch sind und derselbe Messfleck mit UV-Licht geeigneter Wellenlänge zur Fluoreszenz angeregt wird und diese Fluoreszenz quantitativ erfasst wird.The invention relates to a method for determining the thickness of organic layers, in particular lubricant films, on rough surfaces, in particular of metal surfaces, in which the surface is irradiated with infrared radiation and the reflected radiation is measured in wavelength ranges corresponding to those in the Coating occurring molecules are characteristic and the same spot is excited with UV light of suitable wavelength to fluorescence and this fluorescence is detected quantitatively.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Bestimmen der Dicke organischer Schichten, insbesondere Ölfilmen, auf rauhen Oberflächen, insbesondere Metalloberflächen.The invention relates to a method for determining the thickness of organic layers, in particular oil films, on rough surfaces, in particular metal surfaces.

Hintergrund der Erfindung:Background of the invention:

Die Kenntnis der Beschichtungsdicke ist z. B. bei der Produktion von Bandstahl oder Aluminium von größter Wichtigkeit, um sowohl eine vollständige, als auch eine gleichmäßig dicke Beölung, die für bestimmte Weiterverarbeitungsschritte unabdingbar ist, garantieren zu können und die in diesem Produktionszweig enormen Reklamationskosten zu vermeiden. Problematisch in diesem Bereich ist dabei, dass die verwendeten Oberflächen zum einen sehr vielfältig sind und sie zum anderen eine gewisse und zum Messzeitpunkt oft unbekannte Rauigkeit aufweisen. Zur berührungslosen und zerstörungsfreien Ermittlung der Dicke von Schichten auf Oberflächen sind verschiedene Verfahren bekannt. Für glatte Oberflächen, wie sie z. B. Wafer und polierte Optiken aufweisen, finden die Ellipsometrie (Beispiel-Schriften: US 4695162 , US 5220405 , US 4453828 , US 5999267 ) und die Interferenz an dünnen Schichten (Beispiel-Schriften: US 4606641 , US 4254337 , 3708229 ) Anwendung. Viele Oberflächen sind für derartige Verfahren jedoch zu rauh (z. B. Bandstahl, Gussteile, Drehteile, ...).The knowledge of the coating thickness is z. As in the production of steel strip or aluminum of utmost importance to both a complete, as well as a uniformly thick lubrication, which is essential for certain processing steps to guarantee, and to avoid the enormous cost of this production branch complaint costs. A problem in this area is that the surfaces used are on the one hand very diverse and on the other hand have a certain and at the time of measurement often unknown roughness. For non-contact and non-destructive determination of the thickness of layers on surfaces, various methods are known. For smooth surfaces, as z. As wafers and polished optics, find the ellipsometry (example fonts: US 4695162 . US 5220405 . US 4453828 . US 5999267 ) and the interference on thin layers (example fonts: US 4606641 . US 4254337 . 3708229 ) Application. However, many surfaces are too rough for such processes (eg strip steel, castings, turned parts, ...).

Stand der Technik:State of the art:

Um organische Schichten auf rauhen Oberflächen bestimmen zu können, bietet sich die Messung der Infrarotabsorption der Schicht an. Zur empfindlichsten Messung ist dazu die Grundschwingung der Moleküle heranzuziehen.In order to be able to determine organic layers on rough surfaces, it is useful to measure the infrared absorption of the layer. For the most sensitive measurement, the fundamental vibration of the molecules should be used.

Alternativ wird auch die UV-stimulierte Fluoreszenz der Schichten erfasst und mit der Schichtdicke korreliert.Alternatively, the UV-stimulated fluorescence of the layers is detected and correlated with the layer thickness.

IR-Absorption:IR absorption:

Dazu wird die Oberfläche mit Strahlung, die von der interessierenden Beschichtung absorbiert wird, beleuchtet und das zurück gestreute Licht eingesammelt und spektral selektiv detektiert, woraus dann das spektrale Reflexionsvermögen der Oberfläche ermittelt wird. Hierbei ist es vorteilhaft, nur das außerhalb des Direktreflexes diffus gestreute Licht zu erfassen. Das so gemessene Reflexionsvermögen lässt sich als Produkt des Reflexionsvermögens der reinen Oberfläche mit dem Absorptionsspektrum der zu vermessenden Schicht auffassen. Kennt man das spektrale Reflexionsvermögen der reinen Oberfläche, so lässt sich die Absorption bestimmen und mit Hilfe des Lambert-Beer'schen Gesetzes oder einer seiner Näherungen für dünne Schichten in eine Schichtdicke umrechnen. Das Reflexionsvermögen der reinen Oberfläche lässt sich entweder an unbeschichtetem Material direkt messen, oder muss an beschichtetem Material durch Messung der Absorption außerhalb der Molekülabsorptionsbande ermittelt und dann für den Bereich der Molekülabsorption extrapoliert werden. Dies geschieht am besten, wenn der Untergrund auf beiden Seiten der Schmierstoffabsorption erfasst wird, wie in den Schriften WO 9412865 A und WO 01/92820 offenbart.For this purpose, the surface is illuminated with radiation, which is absorbed by the coating of interest, and the backscattered light is collected and spectrally selectively detected, from which the spectral reflectance of the surface is determined. In this case, it is advantageous to detect only the light scattered diffusely outside the direct reflection. The reflectivity measured in this way can be considered as the product of the reflectivity of the clean surface with the absorption spectrum of the layer to be measured. Knowing the spectral reflectance of the pure surface, the absorption can be determined and converted into a layer thickness with the help of Lambert-Beer's law or one of his approximations for thin layers. The reflectance of the clean surface can either be measured directly on uncoated material, or measured on coated material by measuring the absorbance outside the molecular absorption band, and then extrapolated for the range of molecular absorption. This is best done if the substrate is detected on both sides of the lubricant absorption, as in the writings WO 9412865 A and WO 01/92820 disclosed.

UV-Fluoreszenz:UV fluorescence:

Diese Methode wird schon seit vielen Jahren benutzt, wie in den Schriften JP5052527 , JP3264850 oder JP000H09113231A beispielhaft dargelegt. In diesen Schriften wird die Linienstrahlung des Quecksilberdampfs zur Anregung benutzt.This method has been used for many years, as in the scriptures JP5052527 . JP3264850 or JP000H09113231A exemplified. In these writings, the line radiation of mercury vapor is used for excitation.

Nachteile des Standes der Technik:Disadvantages of the prior art:

IR-Absorption:IR absorption:

Das Lambert-Beer-Gesetz beschreibt einen logarithmischen Zusammenhang zwischen der Absorption und der Schichtdicke. Weist die Schicht z. B. durch Tröpfchenbildung so kleinräumige Inhomogenitäten auf, dass Gebiete unterschiedlicher Schichtdicke gleichzeitig vom Messstrahl erfasst werden, so findet eine lineare Mittelung über einen nichtlinearen Prozess statt, was zu starken Abweichungen (Minderanzeigen) des Messergebnisses führen kann. Besonders bei elektrostatisch aufgetragenen wachshaltigen Beschichtungen kann es zu stalagnitenartigen Anhäufungen kommen, bei denen die Minderanzeige mehr als einen Faktor 10 betragen kann.The Lambert-Beer law describes a logarithmic relationship between the absorption and the layer thickness. Does the layer z. B. by droplet formation so small-scale inhomogeneities that areas of different layer thickness are detected simultaneously by the measuring beam, so a linear averaging over a non-linear process takes place, which can lead to strong deviations (Minderanzeigen) of the measurement result. Especially in the case of electrostatically applied wax-containing coatings, stalagmite-like accumulations can occur, in which the reduced indication can amount to more than a factor of 10.

UV-Fluoreszenz:UV fluorescence:

  • – Da im gesamten UV die molekulare Absorption schwächer ist, als im IR bei den Wellenlängen der C-H-Grundschwingung, sind die Sättigungseffekte schwacher und die Fehlmessung bei räumlicher Integration über inhomogen beschichtete Flächen ebenfalls schwächer. Bei extrem dreidimensional strukturierten Beschichtungen wie den oben beschriebenen „Stalagniten” kehrt sich durch Oberflächenvergrößerung der Effekt sogar um und kann bis zu dem Fünffachen an Zuvielanzeige bewirken.Since molecular absorption is weaker in the entire UV than in the IR at the wavelengths of the C-H fundamental, the saturation effects are weaker and the mismatch in spatial integration over inhomogeneously coated surfaces is also weaker. In the case of extremely three-dimensionally structured coatings such as the "stalagnites" described above, surface enlargement actually reverses the effect and can cause up to five times more indication.
  • – Der Hauptnachteil ist jedoch in der Abhängigkeit der Fluoreszenzstärke von der genauen chemischen Zusammensetzung der Nachbarschaft der fluoreszierenden Moleküls zu sehen.The main drawback, however, is the dependence of fluorescence intensity on the exact chemical composition of the neighborhood of the fluorescent molecule.

Bei komplexen Schmierstoffen muss nicht nur individuell auf den Schmierstoff kalibriert werden, sondern es sind schon Unterschiede zwischen verschiedenen Chargen der gleichen Mixtur messbar, wie in der Dissertation Trockel (Bestimmung dünner Ölschichten auf Stahloberflächen mit Hilfe der Fluoreszenzspektroskopie – Dissertation zur Erlangung des akademischen Gerades „Dr. rer. nat.” vorgelegt von Jessica Trockel an der Fakultät für Chemie der Universität Duisburg-Essen bei Prof. Dr. Karl Molt, September 2010) dargelegt.Complex lubricants must not only be calibrated individually for the lubricant, but differences between different batches of the same mixture must be measurable. like in the Dissertation Trockel (Determination of thin layers of oil on steel surfaces with the help of fluorescence spectroscopy - Dissertation to obtain the academic line "Dr. rer. Nat." Submitted by Jessica Trockel at the Faculty of Chemistry of the University of Duisburg-Essen with Prof. Dr. Karl Molt, September 2010) explained.

Als weitere Komplikation, die besonders bei dünnen Schichten hervortritt, wirkt der Umstand, dass die beschichtete Oberfläche im direkten Kontakt zum fluoreszierenden Molekül als „quenchendes Medium” auftritt, das Anregungsenergie in Wärme verwandelt und somit die Fluoreszenz schwächt.A further complication, which particularly occurs with thin layers, is the fact that the coated surface, in direct contact with the fluorescent molecule, acts as a "quenching medium", converting the excitation energy into heat and thus weakening the fluorescence.

Aufgabe:Task:

Der Erfindung liegt nun die Aufgabe zu Grunde, die beiden oben beschrieben Messprinzipien so zu kombinieren, dass sie sich gegenseitig ihre Nachteile ausgleichen und so im Vergleich zum Stand der Technik eine präzisere Messung der Schmierstoffauflage möglich wird, insbesondere bei dünnen Schichten, Oberflächen variierender Rauhigkeit und Struktur und bei unbekannten oder schwankenden Schmierstoffzusammensetzungen.The invention is based on the object to combine the two measuring principles described above so that they compensate each other for their disadvantages and thus in comparison to the prior art, a more precise measurement of the lubricant support is possible, especially for thin layers, surfaces of varying roughness and Structure and unknown or fluctuating lubricant compositions.

Synergien der beiden Methoden:Synergies of the two methods:

  • – das nach WO 01/92820 ermittelte Reflexionsvermögender Oberfläche wird benutzt, um die Fluoreszenzstärke darauf zu normieren.- after WO 01/92820 Reflective power of the surface is used to normalize the fluorescence intensity thereon.
  • – wenn bei Messungen an laufenden Bändern das UV-Signal sich ändert, während die IR-Methode konstante Werte liefert, ist von einer Änderung der Ölzusammensetzung auszugehen.- If, in measurements on running bands, the UV signal changes, while the IR method gives constant values, a change in the oil composition can be assumed.
  • – Wenn sich beide Signale gleichsinnig ändern, ist von einer Schichtdickenvariation auszugehen.- If both signals change in the same direction, a layer thickness variation can be assumed.
  • – Wenn sich die Signale beider Methoden gegensinnig ändern, ist von Inhomogenitäten der Beschichtung auszugehen.- If the signals of both methods change in opposite directions, inhomogeneities of the coating can be assumed.

Vorteilhafte Weiterentwicklungen:Advantageous further developments:

  • – Beide Methoden (IR und UV) vermessen die räumlich möglichst selbe Fläche, oder im Falle gleichförmig bewegter Bänder identisch geformte und in Bandlaufrichtung gegeneinander verschobene Flächen so nacheinander, dass die erhobenen Daten von ein und dem selben Messfleck stammen.- Both methods (IR and UV) measure the spatially identical surface, or in the case of uniformly moving bands identically shaped and in the strip running direction against each other shifted surfaces so sequentially that the collected data from one and the same spot.
  • – Nur vom infraroten Licht wird nur der außerhalb des Direktreflexes diffus zurück gestreute Anteil eingesammelt.- Only from the infrared light, only the outside of the direct reflection diffused back scattered portion is collected.
  • – Bei einer oder beiden Methoden kann durch das sequenzielle Einschalten mehrerer die Oberfläche unter verschiedenen Winkeln beleuchtenden Lichtquellen das räumliche Streuvermögen der Oberfläche und der Beschichtung genauer erfasst und zur Verbesserung des Schichtdickenmesswertes eingesetzt werden. Eine hierfür geeignete Vorrichtung ist in 1 gezeigt.In one or both methods, the sequential switching on of several light sources illuminating the surface at different angles enables the spatial scattering power of the surface and the coating to be more accurately detected and used to improve the measured layer thickness. A suitable device is in 1 shown.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • US 4695162 [0002] US 4695162 [0002]
  • US 5220405 [0002] US 5220405 [0002]
  • US 4453828 [0002] US 4453828 [0002]
  • US 5999267 [0002] US 5999267 [0002]
  • US 4606641 [0002] US 4606641 [0002]
  • US 4254337 [0002] US 4254337 [0002]
  • US 3708229 [0002] US 3708229 [0002]
  • WO 9412865 A [0005] WO 9412865 A [0005]
  • WO 01/92820 [0005, 0010] WO 01/92820 [0005, 0010]
  • JP 5052527 [0006] JP 5052527 [0006]
  • JP 3264850 [0006] JP 3264850 [0006]
  • JP 00009113231 A [0006] JP 00009113231 A [0006]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • Dissertation Trockel (Bestimmung dünner Ölschichten auf Stahloberflächen mit Hilfe der Fluoreszenzspektroskopie – Dissertation zur Erlangung des akademischen Gerades „Dr. rer. nat.” vorgelegt von Jessica Trockel an der Fakultät für Chemie der Universität Duisburg-Essen bei Prof. Dr. Karl Molt, September 2010) [0008] Dissertation Trockel (Determination of thin layers of oil on steel surfaces with the help of fluorescence spectroscopy - Dissertation to obtain the academic line "Dr. rer. Nat." Submitted by Jessica Trockel at the Faculty of Chemistry of the University of Duisburg-Essen with Prof. Dr. Karl Molt, September 2010) [0008]

Claims (2)

Verfahren zur Bestimmung der Dicke von organischen Schichten, dadurch gekennzeichnet, dass die beschichtete Oberfläche mit Strahlung, die in der zu messenden Beschichtung eine Grundschwingung der Moleküle anregen kann, beleuchtet wird und das zurückgestreute Licht eingesammelt und spektral selektiv detektiert wird und derselbe Messfleck mit UV-Licht geeigneter Wellenlänge zur Fluoreszenz angeregt wird und diese Fluoreszenz quantitativ erfasst wird.Method for determining the thickness of organic layers, characterized in that the coated surface is illuminated with radiation which can excite a fundamental vibration of the molecules in the coating to be measured and the backscattered light is collected and spectrally selectively detected and the same measuring spot is irradiated with UV light. Light of suitable wavelength is excited to fluorescence and this fluorescence is detected quantitatively. Verfahren nach Anspruch 1, bei dem nur vom infraroten Licht nur der außerhalb des Direktreflexes diffus zurückgestreute Anteil eingesammelt wird.Method according to Claim 1, in which only the portion diffused back diffusely outside the direct reflection is collected by the infrared light.
DE102015007054.1A 2015-06-02 2015-06-02 Method and device for determining the thickness of thin organic layers Pending DE102015007054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102015007054.1A DE102015007054A1 (en) 2015-06-02 2015-06-02 Method and device for determining the thickness of thin organic layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015007054.1A DE102015007054A1 (en) 2015-06-02 2015-06-02 Method and device for determining the thickness of thin organic layers

Publications (1)

Publication Number Publication Date
DE102015007054A1 true DE102015007054A1 (en) 2016-12-08

Family

ID=57352362

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015007054.1A Pending DE102015007054A1 (en) 2015-06-02 2015-06-02 Method and device for determining the thickness of thin organic layers

Country Status (1)

Country Link
DE (1) DE102015007054A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988242B1 (en) 2017-01-11 2018-06-05 Otis Elevator Company Elevator rail healthy monitoring method
EP3566791A1 (en) * 2018-05-07 2019-11-13 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and system for detecting the surface allocation of a coating on a surface of a sheet-shaped test specimen
DE102018126837A1 (en) 2018-10-26 2020-04-30 Emg Automation Gmbh Process for the automated control and regulation of a machine for applying lubricant and device for the automated control and regulation of a machine for applying lubricant
WO2020187521A1 (en) * 2019-03-20 2020-09-24 Siempelkamp Maschinen- Und Anlagenbau Gmbh Apparatus for monitoring the lubricating state of a rotating belt, to which a lubricant has been applied, for transporting material to be pressed
WO2021148160A1 (en) 2020-01-23 2021-07-29 Emg Automation Gmbh Method for quantitatively detecting a surface covering of a substance covering a substrate and measuring device
CN113624782A (en) * 2020-05-08 2021-11-09 柯尼卡美能达株式会社 Cladding percentage detection device and method, image forming apparatus, and computer-readable recording medium storing cladding percentage detection program
CN113624782B (en) * 2020-05-08 2024-04-26 柯尼卡美能达株式会社 Coating rate detection device and method, image forming device, and computer-readable recording medium storing coating rate detection program

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708229A (en) 1970-01-07 1973-01-02 Thomson Csf System for measuring optical path length across layers of small thickness
NL7809366A (en) * 1978-09-14 1980-03-18 Tno Assessment method for oil slick from aircraft - has laser system to measure layer thickness and oil composition using results of IR and ultra-violet irradiation
US4254337A (en) 1978-09-04 1981-03-03 Asahi-Dow Limited Infrared interference type film thickness measuring method and instrument therefor
US4453828A (en) 1981-12-02 1984-06-12 Advanced Semiconductor Products, Inc. Apparatus and methods for measuring the optical thickness and index of refraction of thin, optical membranes
US4606641A (en) 1983-08-31 1986-08-19 Nippon Kokan Kabushiki Kaisha Apparatus for measuring film thickness
US4695162A (en) 1984-05-24 1987-09-22 Victor Company Of Japan, Ltd. Film thickness measuring apparatus
JPH0377003A (en) * 1989-08-21 1991-04-02 Kawasaki Steel Corp Method for measuring coating amount of oil on surface of steel sheet
JPH03264850A (en) 1990-03-15 1991-11-26 Kawasaki Steel Corp Method and apparatus for measuring amount of applied oil on steel plate surface
JPH0552527A (en) 1991-08-27 1993-03-02 Kawasaki Steel Corp Method and apparatus for measuring oil film weight
US5220405A (en) 1991-12-20 1993-06-15 International Business Machines Corporation Interferometer for in situ measurement of thin film thickness changes
WO1994012865A1 (en) 1992-11-27 1994-06-09 Thiokol Corporation Surface inspection and characterization system and process
JPH09113231A (en) 1995-10-13 1997-05-02 Kobe Steel Ltd Instrument for measuring quantity of oil applied to surface
US5999267A (en) 1999-03-08 1999-12-07 Zawaideh; Emad Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films
WO2001092820A1 (en) 2000-05-26 2001-12-06 Infralytic Gmbh Method and device for determining the thickness of transparent organic layers
US6962670B1 (en) * 2000-08-16 2005-11-08 Eastman Chemical Company Determination of layer thickness or non-uniformity of layer thickness based on fluorophore additives

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708229A (en) 1970-01-07 1973-01-02 Thomson Csf System for measuring optical path length across layers of small thickness
US4254337A (en) 1978-09-04 1981-03-03 Asahi-Dow Limited Infrared interference type film thickness measuring method and instrument therefor
NL7809366A (en) * 1978-09-14 1980-03-18 Tno Assessment method for oil slick from aircraft - has laser system to measure layer thickness and oil composition using results of IR and ultra-violet irradiation
US4453828A (en) 1981-12-02 1984-06-12 Advanced Semiconductor Products, Inc. Apparatus and methods for measuring the optical thickness and index of refraction of thin, optical membranes
US4606641A (en) 1983-08-31 1986-08-19 Nippon Kokan Kabushiki Kaisha Apparatus for measuring film thickness
US4695162A (en) 1984-05-24 1987-09-22 Victor Company Of Japan, Ltd. Film thickness measuring apparatus
JPH0377003A (en) * 1989-08-21 1991-04-02 Kawasaki Steel Corp Method for measuring coating amount of oil on surface of steel sheet
JPH03264850A (en) 1990-03-15 1991-11-26 Kawasaki Steel Corp Method and apparatus for measuring amount of applied oil on steel plate surface
JPH0552527A (en) 1991-08-27 1993-03-02 Kawasaki Steel Corp Method and apparatus for measuring oil film weight
US5220405A (en) 1991-12-20 1993-06-15 International Business Machines Corporation Interferometer for in situ measurement of thin film thickness changes
WO1994012865A1 (en) 1992-11-27 1994-06-09 Thiokol Corporation Surface inspection and characterization system and process
JPH09113231A (en) 1995-10-13 1997-05-02 Kobe Steel Ltd Instrument for measuring quantity of oil applied to surface
US5999267A (en) 1999-03-08 1999-12-07 Zawaideh; Emad Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films
WO2001092820A1 (en) 2000-05-26 2001-12-06 Infralytic Gmbh Method and device for determining the thickness of transparent organic layers
US6962670B1 (en) * 2000-08-16 2005-11-08 Eastman Chemical Company Determination of layer thickness or non-uniformity of layer thickness based on fluorophore additives

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Dissertation Trockel (Bestimmung dünner Ölschichten auf Stahloberflächen mit Hilfe der Fluoreszenzspektroskopie – Dissertation zur Erlangung des akademischen Gerades „Dr. rer. nat." vorgelegt von Jessica Trockel an der Fakultät für Chemie der Universität Duisburg-Essen bei Prof. Dr. Karl Molt, September 2010)
Dr Carl E Brown, "The latest developments in remote sensing technology for oil spill detection", Interspill 2009; URL: www.interspill.org/previous-events/2009/14-May/pdf/1000_brown.pdf *
Eva Peccenini, A scanning device for wide band infrared reflectography, Doktorarbeit, Università degli Studi di Ferrara, 2011; S. 14-17 *
Produkt-Flyer Optimare: "IR/UV Line Scanner", vom 27.05.2015 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018132433A1 (en) * 2017-01-11 2018-07-19 Otis Elevator Company Elevator rail health monitoring method
US9988242B1 (en) 2017-01-11 2018-06-05 Otis Elevator Company Elevator rail healthy monitoring method
DE102018110931C5 (en) 2018-05-07 2023-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and system for detecting the surface coverage of a coating on a surface of a test piece in the form of a strip
EP3566791A1 (en) * 2018-05-07 2019-11-13 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and system for detecting the surface allocation of a coating on a surface of a sheet-shaped test specimen
DE102018126837A1 (en) 2018-10-26 2020-04-30 Emg Automation Gmbh Process for the automated control and regulation of a machine for applying lubricant and device for the automated control and regulation of a machine for applying lubricant
WO2020083540A1 (en) 2018-10-26 2020-04-30 Emg Automation Gmbh Method for the automated open-loop and closed-loop control of a machine for lubricant application and device for the automated open-loop and closed-loop control of a machine for lubricant application
WO2020187521A1 (en) * 2019-03-20 2020-09-24 Siempelkamp Maschinen- Und Anlagenbau Gmbh Apparatus for monitoring the lubricating state of a rotating belt, to which a lubricant has been applied, for transporting material to be pressed
EP4246132A3 (en) * 2019-03-20 2023-11-29 Siempelkamp Maschinen- und Anlagenbau GmbH Continuous press with a device for monitoring the lubricating state of a rotating belt fed with a lubricant
CN113597367A (en) * 2019-03-20 2021-11-02 辛北尔康普机器及成套设备有限责任公司 Device for monitoring the lubrication state of a circulating belt loaded with lubricant for transporting extruded material
WO2021148160A1 (en) 2020-01-23 2021-07-29 Emg Automation Gmbh Method for quantitatively detecting a surface covering of a substance covering a substrate and measuring device
DE102020101613A1 (en) 2020-01-23 2021-07-29 Emg Automation Gmbh Method for the quantitative detection of a surface covering of a substance covering a substrate and measuring device
CN113624782A (en) * 2020-05-08 2021-11-09 柯尼卡美能达株式会社 Cladding percentage detection device and method, image forming apparatus, and computer-readable recording medium storing cladding percentage detection program
CN113624782B (en) * 2020-05-08 2024-04-26 柯尼卡美能达株式会社 Coating rate detection device and method, image forming device, and computer-readable recording medium storing coating rate detection program

Similar Documents

Publication Publication Date Title
DE102015007054A1 (en) Method and device for determining the thickness of thin organic layers
US6184528B1 (en) Method of spectral nondestructive evaluation
Miliani et al. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments
Conti et al. Subsurface analysis of painted sculptures and plasters using micrometre‐scale spatially offset Raman spectroscopy (micro‐SORS)
Kogou et al. A holistic multimodal approach to the non-invasive analysis of watercolour paintings
Conti et al. Comparison of key modalities of micro-scale spatially offset Raman spectroscopy
Kaszewska et al. Depth-resolved multilayer pigment identification in paintings: combined use of laser-induced breakdown spectroscopy (LIBS) and optical coherence tomography (OCT)
Li et al. Multi-pathlength method to improve the spectrometric analysis accuracy based on “M+ N” theory
Conti et al. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy
Conti et al. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy
Conti et al. Contrasting confocal with defocusing microscale spatially offset Raman spectroscopy
EP1287310B1 (en) Method and device for determining the thickness of transparent organic layers
Trzcińska et al. Examination of car paint samples using visible microspectrometry for forensic purposes
WO2017125374A1 (en) Device for detecting and characterising organic molecules in a liquid sample volume
Šašić et al. Raman line mapping as a fast method for analyzing pharmaceutical bead formulations
DE102005003878B3 (en) Measuring device for measuring the photocatalytic activity of a photocatalytic layer
Gruber et al. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology
Breitman et al. Experimental problems in Raman spectroscopy applied to pigment identification in mixtures
Zou et al. Accurate determination of the layer thickness of a multilayer polymer film by non-invasive multivariate confocal Raman microscopy
Nieminen et al. Laser transillumination imaging for determining wood defects and grain angle
DE102013104846B3 (en) Method for determining humidity transmissivity of optical coating e.g. inorganic dielectric layer coating, on plastic lens, involves entering beam into substrate at front side of substrate, and reflecting beam at rear part of substrate
Crawford et al. Thickness Measurements of Clear Coatings on Silver Objects using Fiber Optic Reflectance Spectroscopy
DE102010023655A1 (en) Method for performing non-destructive examination on planar workpieces using pulse thermography for detecting corrosion damages, involves recording intensity images using thermography camera
Pospíšilová et al. Influence of laser wavelength and laser energy on depth profiling of easel painting samples
DE102015105418B4 (en) Method for determining the refractive index of a transparent layer by means of ellipsometry

Legal Events

Date Code Title Description
R163 Identified publications notified
R082 Change of representative

Representative=s name: BREUER FRIEDRICH EISENBERG PATENTANWAELTE UND , DE

Representative=s name: BREUER FRIEDRICH HAHNER PATENTANWAELTE PARTG M, DE

Representative=s name: SCHULZ JUNGHANS PATENTANWAELTE PARTGMBB, DE

R012 Request for examination validly filed
R082 Change of representative

Representative=s name: BREUER FRIEDRICH EISENBERG PATENTANWAELTE UND , DE

Representative=s name: BREUER FRIEDRICH HAHNER PATENTANWAELTE PARTG M, DE

R082 Change of representative

Representative=s name: BREUER FRIEDRICH EISENBERG PATENTANWAELTE UND , DE

R016 Response to examination communication
R082 Change of representative