DE19634893A1 - Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications - Google Patents

Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications

Info

Publication number
DE19634893A1
DE19634893A1 DE19634893A DE19634893A DE19634893A1 DE 19634893 A1 DE19634893 A1 DE 19634893A1 DE 19634893 A DE19634893 A DE 19634893A DE 19634893 A DE19634893 A DE 19634893A DE 19634893 A1 DE19634893 A1 DE 19634893A1
Authority
DE
Germany
Prior art keywords
photon crystal
filter
structured
tuning
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19634893A
Other languages
German (de)
Inventor
Hans W P Dr Koops
Wolfgang Prof Dr Dultz
Manfred Dr Eich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Priority to DE19634893A priority Critical patent/DE19634893A1/en
Publication of DE19634893A1 publication Critical patent/DE19634893A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Abstract

The method involves filling the hollow spaces in the filter, e.g. which is structured as a photon crystal, with optically transparent material of adjustable refractive index. The filled filter is subjected to an electrical field of variable field strength. The optical characteristics, e.g. the refractive index for transmitted and reflected light in the crystal's hollow chamber, fine tuning of the transmitter amplitude and fine tuning of the light phase shift are adjusted by varying the field strength of the electric field.

Description

Abstimmbare Filter für die optische Nachrichtentechnik und Telekommunikation werden z. Z. in Form von langen optischen Fasern, die ihre Filterwirkung durch mit UV-Licht in spezielle Fasern eingeschriebene Bragg-Beugungsgitter erhalten, realisiert. Siehe
R. Kashyap, "Photosensitive Optical Fibers: Devices and Applications", Opt. Fibres Techn. 1, 17-34, (1994).
Tunable filters for optical communications and telecommunications are e.g. Z. realized in the form of long optical fibers, which get their filtering effect through Bragg diffraction gratings inscribed with UV light in special fibers. Please refer
R. Kashyap, "Photosensitive Optical Fibers: Devices and Applications", Opt. Fibers Techn. 1, 17-34, (1994).

Dabei stellt es eine beträchtliche technologische Anforderung dar, diese Beugungsgitter mit hoher Genauigkeit über große Längen von einigen mm bis cm herzustellen. Spezielle die Elektronenstrahl-Lithographie in ihrem "Stitching" verbessernde Verfahren werden angewandt, um diesen Fehler zu verringern. Siehe
H. W. P. Koops, J. Kretz, M. Weber, "Combined Lithograpies for the reduction of stitching errors in Lithography", Proc. EIPB 94, J. Vac. Sci Technol B 12 (6) (1994) 3265- 3269, und
V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. A. Haus und H. I. Smith, "Distributed Bragg greating integreted-optical Filters: Synthesis and fabrication" J. Vac. Sci. technol. B 13 (6) Nov/Dez. 1995 S. 2859-2864.
It is a considerable technological requirement to produce these diffraction gratings with great accuracy over great lengths from a few mm to cm. Special techniques improving electron beam lithography in its "stitching" are used to reduce this error. Please refer
HWP Koops, J. Kretz, M. Weber, "Combined Lithograpies for the reduction of stitching errors in Lithography", Proc. EIPB 94, J. Vac. Sci Technol B 12 (6) (1994) 3265-3269, and
VV Wong, J. Ferrera, JN Damask, TE Murphy, HA Haus and HI Smith, "Distributed Bragg greating integrated-optical Filters: Synthesis and fabrication" J. Vac. Sci. technol. B 13 (6) Nov / Dec 1995 pp. 2859-2864.

Faserfilter müssen immer mittels Steck- oder Spleißverbindungen in einer Hybridtechnik in eine makroskopische optische Anordnung eingefügt werden. Eine Miniaturisierung der Baugruppen ist damit nicht zu erreichen.Fiber filters must always be plug-in or Splice connections in a hybrid technique in one Macroscopic optical arrangement can be inserted. A  Miniaturization of the assemblies is therefore not allowed to reach.

Mit dem Verfahren der Additiven Lithographie durch rechnergeführte elektronenstrahl-induzierte Deposition werden Photonen-Kristalle als 2- und 3-dimensionale Anordnungen von langen miniaturisierten Nadeln aus dielektrischen Materialien mit Nanometer-Präzision miniaturisiert aufgebaut. Siehe
H. W. P. Koops, R. Weiel, D. P. Kern, T. H. Baum, "High Resolution Electron Beam Induced Deposition", Proc. 31. Int. Symp. on Electron, Ion, and Photon Beams, J. Vac. Sci. Technol. B 6 (1) (1988) 477.
Using the process of additive lithography by computer-guided electron beam-induced deposition, photon crystals are miniaturized as 2- and 3-dimensional arrangements of long miniaturized needles made of dielectric materials with nanometer precision. Please refer
HWP Koops, R. Weiel, DP Kern, TH Baum, "High Resolution Electron Beam Induced Deposition", Proc. 31. Int. Symp. On Electron, Ion, and Photon Beams, J. Vac. Sci. Technol. B 6 (1) (1988) 477.

Diese können direkt in den optischen Weg eingebaut werden. Durch die bei dem Verfahren übliche hochpräzise Rechnersteuerung des Elektronenstrahles in Ort, Zeit und Bewegungsrichtung ist es möglich, nahezu alle geforderten Geometrien der Kristalle und ihre für den gewünschten optischen Zweck gezielte Deformation zu erzeugen. Dadurch kann ein maßgeschneidertes optisches Verhalten der Struktur erzeugt werden.These can be built directly into the optical path. Due to the high-precision that is customary in the process Computer control of the electron beam in place, time and Direction of movement it is possible to almost all required Geometries of the crystals and their for the desired one optical purpose to produce targeted deformation. Thereby can create a customized optical behavior of the structure be generated.

Bei M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C. Bjorklund, "Second harmonic generation in poled organic monomeric glasses", J. Opt. Soc. Am. B, 6, 8 (1989) und M. Eich, A. Sen, H. Looser, G. C. Björklund, J. D. Swalen, R. Twieg, D. Y. Yoon, "Corona Poling and Real Time Second Harmonic Generation Study of a Novel Oovalently Functionalized Amorphous Nonlinear Optical Polymer", J. Appl. Phys., 66, 6 (1989) wird der Einsatz von nichtlinear optischem Material beschrieben. Durch Anlegen eines starken elektrischen Feldes an das nichtlinear optische Material kann der optische Weg im Kristall und damit dessen Eigenschaften elektrisch eingestellt werden. Die gleiche Wirkung wird bei Anlegen eines elektrischen Feldes an eine Flüssigkristallstruktur erzielt. Siehe
M. Stalder, P. Ehbets, "Electrically switchable diffractive optical element for image processing", Optics Letters 19, 1 (1994). Durch die Variation des elektrischen Feldes kann damit sowohl bei nichtlinear optischem Material als auch bei Flüssigkristallen die optische Durchlaßcharakteristik in feinen Stufen verschoben werden. Desweiteren ist eine Variation der optischen Spiegelwirkung, der Reflexions­ richtung und eventuell der Stärke möglich.
With M. Eich, H. Looser, DY Yoon, R. Twieg, GC Bjorklund, "Second harmonic generation in poled organic monomeric glasses", J. Opt. Soc. At the. B, 6, 8 (1989) and M. Eich, A. Sen, H. Looser, GC Björklund, JD Swalen, R. Twieg, DY Yoon, "Corona Poling and Real Time Second Harmonic Generation Study of a Novel Oovalently Functionalized Amorphous Nonlinear Optical Polymer ", J. Appl. Phys., 66, 6 (1989) describes the use of nonlinear optical material. By applying a strong electric field to the nonlinear optical material, the optical path in the crystal and thus its properties can be adjusted electrically. The same effect is achieved when an electric field is applied to a liquid crystal structure. Please refer
M. Stalder, P. Ehbets, "Electrically switchable diffractive optical element for image processing", Optics Letters 19, 1 (1994). By varying the electric field, the optical transmission characteristic can be shifted in fine steps both in the case of nonlinear optical material and in the case of liquid crystals. Furthermore, a variation of the optical mirror effect, the direction of reflection and possibly the strength is possible.

Desweiteren ist eine Lösung für die Herstellung von Photonen-Kristallen mit Hilfe von Vielstrahl-Schreibgeräten bekannt. Bei dieser Lösung werden die Photonen-Kristalle mittels Korpuskularstrahlen und mit Hilfe der Additiven Lithographie in sehr wirtschaftlicher Weise hergestellt. Siehe
H. Koops, 1974, Patentanmeldung P 2446 789.8-33 "Korpus kularstrahl-Optisches Gerät zur Korpuskelbestrahlung eines Präparates", USA Patent No. 4021674,
H. Koops, 1974, Patentanmeldung DE-PS 24 60 716.7 "Korpuskularstrahl-Optisches Gerät zur Korpuskelbestrahlung eines Präparates",
H. Koops, 1974, Patentanmeldung DE-PS P 2460 715.6 "Korpuskularstrahl-Optisches Gerät zur Korpuskelbestrahlung eines Präparates in Form eines Flächenmusters mit mehreren untereinander gleichen Flächenelementen",
H. Koops, 1975, Patentanmeldung DE-PS P 2515 550.4 "Korpuskularstrahl-Optisches Gerät zur Abbildung einer Maske auf ein zu bestrahlendes Präparat",
M. Rüb, H. W. P. Koops, T. Tschudi "Electron beam induced deposition in a reducing image projector", Microelectronic Engineering 9 (1989) 251-254 und
H. Elsner, H.-J. Döring, H. Schacke, G. Dahm, H. W. P. Koops, "Advanced Multiple Beam-shaping Diaphragm for Efficient Exposure", Microelectronic Engineering 23 (1994) 85-88.
Furthermore, a solution for the production of photon crystals using multibeam writing instruments is known. With this solution, the photon crystals are produced in a very economical manner by means of corpuscular rays and with the aid of additive lithography. Please refer
H. Koops, 1974, patent application P 2446 789.8-33 "Corpus Kularstrahl-Optical device for the corpuscle irradiation of a preparation", USA Patent No. 4021674,
H. Koops, 1974, patent application DE-PS 24 60 716.7 "corpuscular beam optical device for corpuscle irradiation of a preparation",
H. Koops, 1974, patent application DE-PS P 2460 715.6 "corpuscular beam optical device for corpuscle irradiation of a preparation in the form of a surface pattern with several surface elements that are identical to one another",
H. Koops, 1975, patent application DE-PS P 2515 550.4 "corpuscular beam optical device for imaging a mask onto a preparation to be irradiated",
M. Rüb, HWP Koops, T. Tschudi "Electron beam induced deposition in a reducing image projector", Microelectronic Engineering 9 (1989) 251-254 and
H. Elsner, H.-J. Döring, H. Schacke, G. Dahm, HWP Koops, "Advanced Multiple Beam-shaping Diaphragm for Efficient Exposure", Microelectronic Engineering 23 (1994) 85-88.

Photonen-Kristalle mit Bandlücken sind 2- und 3- dimensionale dielektrische Strukturen, in denen die Ausbreitung elektromagnetischer Wellen, abhängig oder unabhängig von ihrer Ausbreitungsrichtung, verboten ist. Rechnungen und Mikrowellen-Messungen zeigten, daß eine kubisch flächenzentrierte oder auch eine 2-dimensional kubische Anordnung von Löchern in einer dielektrischen Matrix oder von dielektrischen Stangen solch photonische Bandlücken aufzeigen. Dabei reichen bereits 6 Ebenen aus, um eine hohe Güte der Elemente zu erzielen. Derartige 2- und 3-dimensionale Strukturen werden häufig "Photonische Kristalle" genannt.Band gap photon crystals are 2- and 3- dimensional dielectric structures in which the  Propagation of electromagnetic waves, depending on or regardless of their direction of propagation. Calculations and microwave measurements showed that a face centered cubic or also a 2-dimensional cubic arrangement of holes in a dielectric Matrix or of dielectric rods such photonic Show band gaps. 6 levels are sufficient to achieve a high quality of the elements. Such 2- and 3-dimensional structures are often "photonic Called crystals ".

Die erfindungsgemäße Lösung soll es ermöglichen, ein abstimmbares Filter auf der Basis von Photonen-Kristallen herzustellen.The solution according to the invention should make it possible tunable filter based on photon crystals to manufacture.

Das abstimmbare Filter soll mechanisch stabil sein. Gleichzeitig soll eine hohe Variabilität der Eigenschaften des Filters erzielt werden.The tunable filter should be mechanically stable. At the same time, a high variability in properties of the filter can be achieved.

Der Grundbaustein des erfindungsgemäßen Filters wird mit dem bekannten Verfahren der Additiven Lithographie durch rechnergestützte elektronenstrahl-induzierte Deposition als 2 und 3-dimensionale Anordnung von langen miniaturi­ sierten Nadeln aus dielektrischen Materialien hergestellt. Aufgrund der nadelförmigen Kristallstruktur ist der so erzeugte Grundbaustein des erfindungsgemäßen Filters mechanisch wenig belastbar.The basic building block of the filter according to the invention is with the known method of additive lithography Computer-aided electron beam-induced deposition as a 2 and 3-dimensional arrangement of long miniaturi based needles made of dielectric materials. This is because of the needle-shaped crystal structure generated basic building block of the filter according to the invention mechanically less resilient.

Erfindungsgemäß werden die Zwischenräume der nadelförmigen Kristallstruktur mit optisch transparentem Material mit einstellbarem Brechungsindex gefüllt, so daß ein abstimmbares Filter entsteht. Für die Füllung, die die gewünschte mechanische Stabilität des Bauelements bewirkt, eignen sich insbesondere nichtlinear optische Materialien bzw. Flüssig-Kristalle. Die Abstimmung des Filters wird mittels Einwirkung eines elektrischen Feldes auf das Filter und insbesondere auf das transparente Material der Füllung erzielt. Das elektrische Feld wird vorzugsweise durch Feldplatten, die in der Umgebung des Filters angeordnet sind, erzeugt. Das elektrische Feld bewirkt durch den linear optischen Materialkoeffizienten eine Veränderung des Brechungsindex im gefüllten Kristall-Hohlraum. Durch die Veränderung des Brechungsindex verändern sich die Eigenschaften und damit die Filterwirkung des Filters. Durch Veränderung der Feldstärke können folgende Effekte erzielt werden:According to the invention, the spaces between the needle-shaped Crystal structure with optically transparent material with adjustable refractive index filled so that a tunable filter is created. For the filling that the desired mechanical stability of the component causes nonlinear optical materials are particularly suitable or liquid crystals. The tuning of the filter will by the action of an electric field on the filter and especially on the transparent material of the filling achieved. The electric field is preferably through  Field plates arranged around the filter are generated. The electric field is caused by the linear optical material coefficients a change in Refractive index in the filled crystal cavity. Through the Changes in the refractive index change the Properties and thus the filter effect of the filter. Changing the field strength can have the following effects be achieved:

  • - Feinabstimmung des Wellenlängenbereichs der Transmission des Filters,- Fine-tuning the wavelength range of the transmission the filter,
  • - Feinabstimmung der Phasenverschiebung des Lichtes,- fine-tuning the phase shift of the light,
  • - Feinabstimmung der transmittierenden Amplitude des Lichtes,- fine-tuning the transmitting amplitude of the light,
  • - Änderung des Brechungsindex und damit Änderung der Reflexionsrichtung für das durchgehende und das reflektierte Licht.- Changing the refractive index and thus changing the Direction of reflection for the continuous and the reflected light.

Bei der Herstellung des Grundelements des Filters mittels der bekannten Verfahren der Additiven Lithographie durch rechnergestützte elektronenstrahl-induzierte Deposition läßt sich ebenfalls schon gezielt Einfluß auf die gewünschte Filterstruktur nehmen.In the manufacture of the basic element of the filter by means of the known methods of additive lithography Computer-aided electron beam-induced deposition can also have a targeted influence on the Take the desired filter structure.

Durch programmierte Modulation, die beim Aufbau der Kristallzellen überlagert wird, lassen sich optische Eigenschaften wie Fokussierung oder Vorablenkung gezielt beeinflussen.By programmed modulation, which when building the Crystal cells are superimposed, can be optical Properties such as focusing or pre-distraction are targeted influence.

Werden sequentiell mehrere eventuell auch verschieden abstimmbare Photonen-Kristalle an speziell in Wellenleiter- Mustern angebrachten Vertiefungen aufgebaut, so kann eine hohe Miniaturisierung von Filtern und optischen Resonatoren für Laseranwendungen erreicht werden. Dadurch wird eine hohe Packungsdichte möglich.If several are sequentially also possibly different tunable photon crystals on specially in waveguide Patterned recesses built, so one high miniaturization of filters and optical resonators for laser applications. This will make one high packing density possible.

Mit dem erfindungsgemäßen Verfahren lassen sich feinabstimmbare und in weitem Bereich abstimmbare schmalbandige Filterelemente geringer Abmessungen herstellen und in hoher Packungsdichte integriert realisieren. Eine Vielzahl von Bauelementen und Schaltungen der integrierten Optik können so verbessert und neuartig miniaturisiert erzeugt werden. Das betrifft beispielsweise abstimmbare elektromagnetische Mikro-Resonatoren für einmodige, Licht emittierende Dioden, wobei diese Strukturen die spontane Emission in einem nun einstellbaren weiten Wellenlängenbereich unterdrücken und so die Leistungsanforderungen verringern und die Zuverlässigkeit von Lichtemittern, besonders von optischen Arrays, erhöhen. Desweiteren wird eine verstärkte spontane Emission von feinabstimmbaren Lichtemittern möglich. Dadurch wird eine schnellere Modulationsgeschwindigkeit für optische Verbindungen und Schalter möglich. Es können optische Spiegel hoher Güte mit maßgeschneidertem fein einstellbarem Reflektions- und Transmissions-Vermögen mit geometrisch voreingestellten Wellenlängen und Durchlaß-Bandbreiten miniaturisiert und in hoher Packungsdichte aufgebaut werden. Es lassen sich ebenso kompakte elektrisch abstimmbare Schmalbandfilter (0,5-1 nm), Polarisatoren und die Polarisation selektierende abstimmbare Bandpaß- Filter herstellen. Ein gezieltes Pumpen von optoelektronischen Elementen in einstellbarem Wellenlängenbereich ist möglich. Fein eingestellte gerichtete Auskopplung von Licht in vorgegebene und variierbare Richtung ist erreichbar. Es können Wellenleiter und Y-Koppler mit fast jeder einstellbaren Form und ultra kleinen einstellbaren Krümmungsradien, sowie auch sehr wirkungsvolle feinabstimmbare Mikrowellen-Antennen hergestellt werden.With the method according to the invention finely tunable and widely tunable narrow-band filter elements of small dimensions manufacture and integrated in high packing density realize. A variety of components and circuits  The integrated optics can be improved and new miniaturized. That applies, for example tunable electromagnetic micro-resonators for single-mode, light-emitting diodes, these Structures the spontaneous emission in a now adjustable suppress broad wavelength range and so the Reduce performance requirements and reliability of light emitters, especially optical arrays. Furthermore, an increased spontaneous emission of fine-tunable light emitters possible. This will make one faster modulation speed for optical Connections and switches possible. It can be optical High quality mirror with tailor-made finely adjustable Reflective and transmittance with geometric preset wavelengths and pass bandwidths miniaturized and built up in high packing density will. It can also be compact electrically tunable narrowband filters (0.5-1 nm), polarizers and the polarization-selecting tunable bandpass Make filters. A targeted pumping of optoelectronic elements in adjustable Wavelength range is possible. Fine-tuned directed coupling of light into predetermined and variable direction can be reached. There can be waveguides and Y-couplers with almost every adjustable shape and ultra small adjustable radii of curvature, as well as very effective fine tunable microwave antennas getting produced.

Claims (4)

1. Verfahren zur mechanischen Stabilisierung und zur Abstimmung eines als Photonen-Kristall strukturierten Filters, welches mit dem Verfahren der Additiven Lithographie durch rechnergeführte elektronenstrahl­ induzierte Deposition hergestellt wurde, dadurch gekennzeichnet, daß die Hohlräume des als Photonen-Kristall strukturierten Filters mit optisch transparentem Material mit einstellbarem Brechungsindex gefüllt werden, daß das gefüllte, als Photonen-Kristall strukturierte Filter einem in seiner Feldstärke variierbaren elektrischen Feld ausgesetzt wird, und daß durch gezielte Veränderung der Feldstärke des elektrischen Feldes optische Eigenschaften, wie Brechungsindex für das durchgehende und das reflektierte Licht im Kristall-Hohlraum, Feinabstimmung der transmittierten Amplitude des Lichtes und Feinabstimmung der Phasenschiebung des Lichtes, eingestellt werden.1. A method for mechanical stabilization and tuning a filter structured as a photon crystal, which was produced with the method of additive lithography by computer-guided electron beam induced deposition, characterized in that the cavities of the filter structured as a photon crystal with optically transparent material adjustable refractive index, that the filled filter, structured as a photon crystal, is exposed to an electric field which can be varied in its field strength, and that by specifically changing the field strength of the electric field, optical properties such as refractive index for the continuous and the reflected light in the crystal Cavity, fine-tuning the transmitted amplitude of the light and fine-tuning the phase shift of the light. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Hohlräume des als Photonen-Kristall strukturierten Filters mit nichtlinear optischem Material gefüllt werden.2. The method according to claim 1, characterized in that the cavities of the structured as a photon crystal Filters filled with nonlinear optical material will. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Hohlräume des als Photonen-Kristalls strukturierten Filters mit Flüssigkristallen gefüllt werden. 3. The method according to claim 1, characterized in that the cavities of the structured as a photon crystal Filters are filled with liquid crystals.   4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einstellung und Variierbarkeit der Feldstärke des als Photonen-Kristall strukturierten Filters in Abhängigkeit von den gewünschten optischen Eigenschaften auf rechentechnischem Weg ermittelt und programmiert wird.4. The method according to claim 1, characterized in that the setting and variability of the field strength of the structured as a photon crystal filter Dependence on the desired optical Properties determined by calculation and is programmed.
DE19634893A 1995-11-10 1996-08-29 Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications Ceased DE19634893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19634893A DE19634893A1 (en) 1995-11-10 1996-08-29 Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19542058 1995-11-10
DE19634893A DE19634893A1 (en) 1995-11-10 1996-08-29 Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications

Publications (1)

Publication Number Publication Date
DE19634893A1 true DE19634893A1 (en) 1997-05-15

Family

ID=7777200

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19634893A Ceased DE19634893A1 (en) 1995-11-10 1996-08-29 Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications

Country Status (1)

Country Link
DE (1) DE19634893A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720784A1 (en) * 1997-05-17 1998-11-26 Deutsche Telekom Ag Integrated optical circuit
WO1998057207A1 (en) * 1997-06-09 1998-12-17 Massachusetts Institute Of Technology High efficiency channel drop filter with absorption induced on/off switching and modulation
WO1999019754A1 (en) * 1997-10-14 1999-04-22 Deutsche Telekom Ag Process and device for the wavelength-selective mixture and/or distribution of polychromatic light
WO1999041626A1 (en) * 1998-02-10 1999-08-19 Infineon Technologies Ag Optical structure and process for manufacturing the same
DE19915139A1 (en) * 1999-03-26 2000-09-28 Deutsche Telekom Ag Method for dispersion compensation of commonly transmitted optical signals with different wavelengths
US6130969A (en) * 1997-06-09 2000-10-10 Massachusetts Institute Of Technology High efficiency channel drop filter
WO2001042831A2 (en) * 1999-12-10 2001-06-14 Blazephotonics Limited Photonic-crystal fibre with specific mode confinement
EP1308773A1 (en) * 2001-11-01 2003-05-07 Agilent Technologies, Inc. (a Delaware corporation) Wavelength tuneable optical device
WO2003062909A2 (en) * 2002-01-19 2003-07-31 Bookham Technology Plc Polarisation converter
DE10341030A1 (en) * 2003-09-03 2005-04-07 Christian-Albrechts-Universität Zu Kiel III-V semiconductor for semiconductor devices comprises a waveguide consisting of a structure with a porous core with a region of crystallographic pores likewise having a porous sleeve produced by a region of current line pores
US6990282B2 (en) 1999-12-10 2006-01-24 Crystal Fibre A/S Photonic crystal fibers
US7489841B2 (en) 2000-12-22 2009-02-10 Schleifring Und Apparatebau Gmbh Device for transferring optical signals by means of planar optical conductors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816512A1 (en) * 1988-05-14 1989-11-23 Univ Koeln Universally infinitely tunable photon filter
US5091979A (en) * 1991-03-22 1992-02-25 At&T Bell Laboratories Sub-micron imaging
WO1994015389A1 (en) * 1992-12-22 1994-07-07 Iowa State University Research Foundation, Inc. Periodic dielectric structure for production of photonic band gap and devices incorporating the same
US5365541A (en) * 1992-01-29 1994-11-15 Trw Inc. Mirror with photonic band structure
US5452127A (en) * 1994-09-16 1995-09-19 Martin Marietta Corporation Etalon with optically polarizing field electrodes
JPH0854643A (en) * 1994-08-12 1996-02-27 Dainippon Printing Co Ltd Optical sensor, information recorder and information recording and reproducing method
DE19628355A1 (en) * 1995-09-08 1997-03-13 Deutsche Telekom Ag Process for the production of 3-dimensional photon crystals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816512A1 (en) * 1988-05-14 1989-11-23 Univ Koeln Universally infinitely tunable photon filter
US5091979A (en) * 1991-03-22 1992-02-25 At&T Bell Laboratories Sub-micron imaging
US5365541A (en) * 1992-01-29 1994-11-15 Trw Inc. Mirror with photonic band structure
WO1994015389A1 (en) * 1992-12-22 1994-07-07 Iowa State University Research Foundation, Inc. Periodic dielectric structure for production of photonic band gap and devices incorporating the same
JPH0854643A (en) * 1994-08-12 1996-02-27 Dainippon Printing Co Ltd Optical sensor, information recorder and information recording and reproducing method
US5452127A (en) * 1994-09-16 1995-09-19 Martin Marietta Corporation Etalon with optically polarizing field electrodes
DE19628355A1 (en) * 1995-09-08 1997-03-13 Deutsche Telekom Ag Process for the production of 3-dimensional photon crystals

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3-36527 A.,P-1197,April 30,1991,Vol.15,No.172 *
5-61017 A.,P-1573,July 13,1993,Vol.17,No.372 *
AUSTON,D.H., et.al.: Research on nonlinear optical materials: an asessment. In: Applied Optics, 15. Jan. 1987, Vol.26, No.2, S.211-234 *
JP Patents Abstracts of Japan: 6-82814 A.,P-1760,June 27,1994,Vol.18,No.339 *
KOOPS,H.W.P., et.al.: High-resolution electron- beam induced deposition. In: J. Vac. Sci. Technol. B6 (1), Jan./Feb. 1988, S.477-481 *
NODA,Susumu, et.al.: New Realization Method for Three-Dimensional Photonic Crystal in Optical Wavelength Region. In: Jpn. J. Appl. Phys., Vol.35, 1996, S. L909 - L912 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720784A1 (en) * 1997-05-17 1998-11-26 Deutsche Telekom Ag Integrated optical circuit
WO1998057207A1 (en) * 1997-06-09 1998-12-17 Massachusetts Institute Of Technology High efficiency channel drop filter with absorption induced on/off switching and modulation
US6101300A (en) * 1997-06-09 2000-08-08 Massachusetts Institute Of Technology High efficiency channel drop filter with absorption induced on/off switching and modulation
US6130969A (en) * 1997-06-09 2000-10-10 Massachusetts Institute Of Technology High efficiency channel drop filter
US6512866B1 (en) 1997-06-09 2003-01-28 Massachusetts Institute Of Technology High efficiency channel drop filter with absorption induced on/off switching and modulation
WO1999019754A1 (en) * 1997-10-14 1999-04-22 Deutsche Telekom Ag Process and device for the wavelength-selective mixture and/or distribution of polychromatic light
US7075705B1 (en) 1997-10-14 2006-07-11 Deutsche Telekom Ag Method for wavelength-selective mixing and/or distribution of polychromatic light
US6614575B1 (en) 1998-02-10 2003-09-02 Infineon Technologies Ag Optical structure and method for producing the same
WO1999041626A1 (en) * 1998-02-10 1999-08-19 Infineon Technologies Ag Optical structure and process for manufacturing the same
DE19915139A1 (en) * 1999-03-26 2000-09-28 Deutsche Telekom Ag Method for dispersion compensation of commonly transmitted optical signals with different wavelengths
US6760513B1 (en) 1999-03-26 2004-07-06 Deutsche Telekom Ag Method using photonic crystals for the dispersion compensation of optical signals of different wavelengths which are transmitted together
US6853786B2 (en) 1999-12-10 2005-02-08 Crystal Fibre A/C Photonic-crystal fibers and photonic-crystal fiber devices
WO2001042831A3 (en) * 1999-12-10 2001-12-13 Blazephotonics Ltd Photonic-crystal fibre with specific mode confinement
US6990282B2 (en) 1999-12-10 2006-01-24 Crystal Fibre A/S Photonic crystal fibers
WO2001042831A2 (en) * 1999-12-10 2001-06-14 Blazephotonics Limited Photonic-crystal fibre with specific mode confinement
US7489841B2 (en) 2000-12-22 2009-02-10 Schleifring Und Apparatebau Gmbh Device for transferring optical signals by means of planar optical conductors
EP1308773A1 (en) * 2001-11-01 2003-05-07 Agilent Technologies, Inc. (a Delaware corporation) Wavelength tuneable optical device
US6882780B2 (en) 2001-11-01 2005-04-19 Agilent Technologies, Inc. Wavelength tuneable optical device
WO2003062909A2 (en) * 2002-01-19 2003-07-31 Bookham Technology Plc Polarisation converter
WO2003062909A3 (en) * 2002-01-19 2004-03-11 Bookham Technology Plc Polarisation converter
DE10341030A1 (en) * 2003-09-03 2005-04-07 Christian-Albrechts-Universität Zu Kiel III-V semiconductor for semiconductor devices comprises a waveguide consisting of a structure with a porous core with a region of crystallographic pores likewise having a porous sleeve produced by a region of current line pores

Similar Documents

Publication Publication Date Title
US5973823A (en) Method for the mechanical stabilization and for tuning a filter having a photonic crystal structure
EP0885402B1 (en) Optical multi-channel separating filter with electrically adjustable photon crystals
DE69838840T2 (en) Active optical waveguide with asymetric polarization, its method of preparation and its use.
DE19628355A1 (en) Process for the production of 3-dimensional photon crystals
DE69733670T2 (en) OPTICAL DEMULTIPLEXER WITH A BENDING GRID
DE60129847T2 (en) OPTICAL DEVICES FROM RADIATION NETWORKED FLUOR MIXTURES
DE19634893A1 (en) Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications
DE69736265T2 (en) Grating for mode coupling in the optical waveguide
DE10322350B4 (en) Optical device, and method for its production
EP0911658B1 (en) Fabrication method of wavegiude structures with optical components
DE2350634A1 (en) THIN FILM OPTICAL DEVICES AND LASERS
DE60019658T2 (en) Multi-wavelength optical multiplexing device, multi-wavelength light source with such a device and optical amplifier
DE19526734A1 (en) Optical structure and process for its manufacture
DE60110455T2 (en) OPTICAL FILTER
DE10353951A1 (en) Polarization control of vertical diode lasers by a monolithically integrated surface grid
WO1999054782A1 (en) Method and device for frequency conversion, especially for doubling the frequency of fixed-frequency lasers
US6374026B1 (en) Manufacture of planar waveguide and planar waveguide
EP0877965A1 (en) Process for producing optical components and optical component produced thereby
EP0995148B1 (en) Method for producing active or passive components on a polymer basis for integrated optical devices
EP0876631B1 (en) System for producing 3-dimensional photon crystals
DE19616324A1 (en) Polymer-based opto-electronic, e.g. active or passive, component manufacture
DE10105731A1 (en) Laser structure and method for setting a defined wavelength
DE4318752A1 (en) Resonator device
DE60222625T2 (en) Production of modulated light with an electron source
DE1924994A1 (en) Dielectric wave rider

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
8110 Request for examination paragraph 44
8131 Rejection