DE19861088A1 - Verfahren zur Reparatur von integrierten Schaltkreisen - Google Patents

Verfahren zur Reparatur von integrierten Schaltkreisen

Info

Publication number
DE19861088A1
DE19861088A1 DE19861088A DE19861088A DE19861088A1 DE 19861088 A1 DE19861088 A1 DE 19861088A1 DE 19861088 A DE19861088 A DE 19861088A DE 19861088 A DE19861088 A DE 19861088A DE 19861088 A1 DE19861088 A1 DE 19861088A1
Authority
DE
Germany
Prior art keywords
test
defective
data
pae
multiplexers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19861088A
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PACT XPP Technologies AG
Original Assignee
Pact Informationstechnologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7852968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19861088(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pact Informationstechnologie GmbH filed Critical Pact Informationstechnologie GmbH
Priority to DE19861088A priority Critical patent/DE19861088A1/de
Publication of DE19861088A1 publication Critical patent/DE19861088A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31908Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • G06F11/2038Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant with a single idle spare processing component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/006Identification

Description

1. Hintergrund der Erfindung 1.1 Stand der Technik 1.1.1 Mehrdimensionale Arrays aus Rechenwerken
Aus DE 196 51 075.9-53 sind Prozessoren mit einer Mehrzahl von 2- oder mehrdimensional angeordneten Rechenwerken/Zellen bekannt. Die Rechenleistung derartige Prozessoren steigt mit der Zahl der vorhandenen Rechenwerken an. Daher wird versucht möglichst viele Rechenwerke auf einen Chip zu integrieren, wodurch die benötigte Fläche ansteigt. Mit steigender Fläche, wächst gleichzeitig die Wahrscheinlichkeit, daß der Chip bereits bei der Herstellung Fehler aufweist und unbrauchbar ist. Demselben Problem unterliegen alle in Matrix-Form angeordnete Rechenwerke, z. B. auch andere bekannte bekannten Typen wie DPGAs, Kress-Arrays, Systolische Prozessoren und RAW-Machines; genauso wie einige Digitalen Signalprozessoren (DSPs), die mehr als ein Rechenwerk besitzen.
Gleichzeitig sind allen genannten Typen sehr testintensiv, d. h. um die Fehlerhaftigkeit nachzuweisen müssen besonders viele Testfälle in bezug auf die Funktion der Zellen und Vernetzung generiert und getestet werden. Herkömmliche bekannte Methoden wie BIST, Boundary Scan, etc. sind aufgrund der erheblichen Menge an Testvektoren schlecht zu integrieren und zu zeit- und platzintensiv.
1.1.2 Standardprozessoren
Standardprozessoren wie beispielsweise die bekannte x86-Reihe, MIPS oder ALPHA besitzen mehrere Rechenwerke, die zeitversetzt oder durch einen VLIW-Befehl gleichzeitig angesteuert werden. In Zukunft wird die Zahl der integrierten Recheneinheiten (Integer-Units) und Fließkomma-Rechenwerke (Floating-Point-Unis) weiter ansteigen. Jedes der Rechenwerke muß ausreichend getestet werden und weitestgehend fehlerfrei sein.
1.2 Probleme 1.2.1 Mehrdimensionale Arrays aus Rechenwerken
Durch die steigende Fehlerwahrscheinlichkeit bei großen Chips können entweder nur sehr wenige Zellen integriert werden, oder die Produktionskosten werden bedingt durch den entstehenden Ausschuß erheblich. Bei sehr großen Chips wird eine maximale Fläche erreicht, über der hinaus kein funktionsfähiger Chip mehr hergestellt werden kann.
Durch den Zeitaufwand beim Testen nach herkömmlichen Verfahren steigen die Testkosten stark an. Eingebaute BIST-Funktionen (Build In Self Test) verschwenden durch hohen Zusatzaufwand sehr viel Fläche, die die Kosten nach oben treibt und die Herstellbarkeit verringert. Zudem steigt die Wahrscheinlichkeit stark an, daß ein Fehler nicht innerhalb der eigentlichen Funktionseinheiten sonderen innerhalb der Teststrukturen liegt.
1.2.2 Standardprozessoren
Durch die steigende Zahl der Rechenwerke steigt die Fehlerwahrscheinlichkeit an. Dadurch bedingt wird der Ausschuß höher, wodurch die Herstellungskosten steigen. Mit wachsender Fläche und der damit verbundenen Steigerung der Transistormenge wächst die Ausfallwahrscheinlichkeit bei der Benutzung.
Bezüglich des Testaufwandes und der BIST-Implementierung gilt das bereits für "Mehrdimensionale Arrays aus Rechenwerken" Gesagte.
1.3 Verbesserung durch die Erfindung, Aufgabe
Gemäß der vorliegenden Erfindung ist es möglich defekte Zellen durch Funktionsfähige zu ersetzen und damit den Ausschuß zu verringern. Dabei kann eine Ersetzung entweder mittels Testsystemen bei der Herstellung der Chips erfolgen oder sogar beim Anwender im komplett aufgebauten System.
Es ist möglich Testvektoren gemäß dem BIST-Prinzip innerhalb des Chips, als auch gemäß einem neuen Verfahren außerhalb des Bausteins zu generieren, um Fläche und Kosten zu sparen.
Weiterhin wird eine Möglichkeit beschrieben, wie Chips automatisch Defekte reparieren können, ohne daß ein externes zusätzliches Werkzeug dafür notwendig ist.
Sämtliche Tests und Reparaturen können zur Laufzeit der Chips durchgeführt werden.
2. Beschreibung der Erfindung 2.1 Detailbeschreibung der Erfindung 2.1.1 Ersetzen defekter Zellen
Einer Gruppe von Zellen, die im Weiteren in Anlehnung an DE 19 651 075.9-53 mit PAEs bezeichnet werden, wird eine zusätzliche, im normalen Betrieb nicht benutzte PAE zugeordnet (die im Folgenden PAER genannt wird). Die Zellen können Rechenwerke jeder Art, konfigurierbare (programmierbare) Logikzellen oder andere Cores beliebiger Funktion sein. Bei der Gruppierung der PAEs und der Zuordnung der PAER ist eine spalten- oder zeilenweise Gruppierung der PAEs vorzuziehen, da hierdurch die Vernetzung vereinfacht wird. In Hinblick auf zukünftige Chiptechnologien, wird auf eine mögliche Gruppierung der PAEs innerhalb einer 3. Dimension hingewiesen. Vor die Eingänge der PAEs werden derart Multiplexer geschaltet, daß der Eingang ersten PAE in der Zeile/Spalte auch auf den Eingang der zweiten PAE in der Zeile/Spalte geschaltet werden kann, wobei dann auch der Eingang der zweiten PAE auf den Eingang der dritten PAE geschaltet wird und so weiter. Der Eingang der letzten PAE wird auf den Eingang der PAER geschaltet. Das bedeutet, daß bei einem Defekt der ersten PAE deren Funktion durch die Zweite, die Funktion der Zweiten durch die Dritte und so weiter ersetzt wird, bis die Funktion der letzten PAE durch die PAER ersetzt wird. Ist eine PAE innerhalb der Spalte/Zeile defekt, werden die vor ihr liegenden PAEs normal beschaltet und ab der Stelle der defekten PAE alle Funktionen um eine PAE verschoben. Ist beispielsweise die PAE 4 defekt, so führen die PAEs 1..3 ihre jeweilige Funktion aus, während der Eingangsmultiplexer der PAE 5 so geschaltet ist, daß er die Daten der PAE 4 erhält, der Eingangsmultiplexer der PAE 6 erhält die Daten der PAE 5 und so weiter, bis der Eingang der PAER die Daten der letzten PAE erhält.
Um die Ergebnisse wieder in der richtigen Reihenfolge der Vernetzung zuzuführen werden an den Ausgängen der PAEs ebenfalls Multiplexer angebracht, wobei der Ausgangsmultiplexer der PAE 1 entweder die PAE 1 auf den Bus schaltet - sofern diese nicht defekt ist - oder bei einem Defekt den Ausgang der PAE 2 auf den Bus schaltet, an Stelle der PAE 2 wird dann die PAE 3 auf den Bus geschaltet, bis hin zur letzten PAE, an deren Stelle die PAER aufgeschaltet wird. Befindet sich die defekte PAE in der Mitte der Zelle/Spalte, so erfolgt eine Verschiebung der Ausgänge in genau der Art, wie sie für die Eingänge bereits beschrieben wurde. Speziell bei konfigurierbarer Logik und konfigurierbaren Rechenwerken, treten zusätzliche Bussysteme auf, um die Konfigurationsdaten zu übermitteln und die Konfiguration zu steuern. Diese Bussysteme werden entsprechend der in diesem Abschnitt genannten Busse ebenfalls über Multiplexer verschaltet. Gleiches gilt für die Bussysteme, über die bei einer matrixartigen Anordnung von Rechenwerken (z. B. Systolische Prozessoren, SIMD, etc), die Befehle in die jeweiligen Rechenwerke geschrieben werden. Grundsätzlich kann jeder Bus oder jedes Signal über Multiplexer geleitet werden. Je nach Anforderung an die Ausfallsicherheit kann beispielsweise das Taktsignal über Multiplexer geführt werden, um einem eventuellen Kurzschluß vorzubeugen; oder das Taktsignal wird direkt an die Zelle geführt, weil ein derartiger Ausfall nicht abgefangen werden soll. Die Stufe der Ausfallsicherheit kann konstruktiv entsprechend den Anforderungen für jedes Signal oder jeden Bus einzeln festgelegt werden.
2.1.2 Ersetzen defekter Busse
Das vorgestellte Konzept zur Fehlerkorrektur innerhalb von Gatterstrukturen ist in gleicher Weise auf Bussysteme anwendbar. Dabei wird einer Anzahl von Bussen (Bus 1... Bus n) ein zusätzlicher Bus (BUS R) zugeordnet. Ist einer der Busse defekt (BUS d), wird seine Funktion von einem seiner Nachbarbusse übernommen (BUS (d + 1)). Die Funktion des Nachbarbusses (BUS (d + 1)) wird von dessen Nachbarbus (BUS (d + 2)) übernommen, usw., wobei die Richtung des übernehmenden Busse immer die gleiche bleibt. So lange, bis BUS n durch BUS R übernommen wird. Bei der Anwendung der Multiplexer-Strukturen auf Bussysteme werden entsprechend der vorliegenden Verbindungsstruktur und der Richtung der Daten gewöhnliche Multiplexer, Dekoder und Gates, Tristate- Gatter, oder Bidirektionale Multiplexer eingesetzt.
2.1.3 Dekoder
Es ist offensichtlich, daß immer zwei Gruppen von aufeinanderfolgenden Multiplexern denselben Zustand annehmen müssen, d. h. MUX 1 = MUX 2 = MUX 3 = ... = MUX n = Zustand A und MUX (n + 1) = MUX (n + 2) = MUX (n + 3) = ... = MUX m = Zustand B. Ist keine PAE defekt gilt MUX 1 = MUX 2 = ... = MUX m = Zustand A. Ist die erste PAE defekt gilt MUX 1 = MUX 2 = ... = MUX m = Zustand B.
Ist beispielsweise PAE 3 defekt gilt MUX 1 = MUX 2 = Zustand A, MUX 3 = MUX 4 = ... = MUX m = Zustand B, wobei in diesem Beispiel PAER der PAE m zugeordnet ist, d. h. PAER befindet sich direkt neben PAE m.
Die Ansteuerung der Multiplexer sieht daher beispielsweise wie folgt aus
Ist die PAER der PAE 1 zugeordnet, so ist die Reihenfolge m...1 vertauscht (Defekte PAE 1 entspricht 0000...001, bzw. defekte PAE m entspricht 1111...111).
Es ist daher ausreichend die Nummer der defekten PAE zu speichern und diese einem Dekoder zuzuführen, der anhand der oben abgebildeten Tabelle die Zustände der Multiplexer ansteuert.
2.1.4 Durchführung des Selbsttests
Grundsätzlich können beliebige Teststrategien auf das Verfahren angewendet werden, wobei das folgende erfindungsgemäße Verfahren als besonders geeignet angesehen wird:
Das Array aus PAEs wird mit einem oder mehreren Testalgorithmen geladen, die ein oder mehrere Testvektoren berechnen. An einer Kante des Arrays werden die PAEs als Vergleicher geschaltet, so daß die anhand der Testvektoren berechneten Werte mit den Sollergebnissen verglichen werden. Entspricht das berechnete Ergebnis nicht den Sollergebnissen liegt ein Fehler vor. Die Testdaten, also die Testalgorithmen, die Testvektoren und die Sollergebnisse liegen dabei in einem internen oder externen Speicher vor oder werden von einer übergeordneten Einheit geladen. Es ist bei dieser Teststrategie notwendig, daß ein jeder Testalgorithmus mindestens zweimal berechnet wird, wobei beim zweiten Mal die als Vergleicher ausgestalteten PAEs an einer anderen Kante liegen (vorzugsweise der gegenüberliegenden), um eine Ausführung des Testalgorithmusses auf allen PAEs zu gewährleisten.
Ebenfalls ist es denkbar, daß die Vergleicher im Inneren des PAE- Arrays angeordnet sind und von links und rechts (oben und unten) jeweils ein Testalgorithmus A und B je ein Ergebnis A und B berechnet, wobei die Ergebnisse den Vergleichen zugeführt werden und übereinstimmen müssen.
Abhängig von der Art des Testalgorithmusses kann die fehlerhaft PAE anhand des Fehlers zurückverfolgt werden oder nicht. Unterstützt der Algorithmus eine Zurückverfolgung, so werden die entsprechenden Multiplexer-Zustände der Zeile/Spalte in der sich die defekte PAE befindet geändert und den Multiplexern zugeführt. Der Testalgorithmus, bei dem der Test fehlschlug wird erneut ausgeführt um eine Fehlerfreiheit, die nun gegeben sein sollte zu überprüfen. Ist der Baustein weiterhin fehlerhaft, muß überprüft werden, ob eventuell weitere oder andere PAEs defekt sind. Dabei ist die Ausführung des Testalgorithmusses und die Generierung der dem Fehler angepaßten Multiplexerzustände iterativ.
Üblicherweise ist es nicht ausreichend nur einen Testalgorithmus zu implementieren, vielmehr müssen mehrere unterschiedliche Testalgorithmen implementiert sein, die jeweils mit mehreren Testvektoren geprüft werden. Nur so ist eine maximale Fehlererkennungsrate zu erreichen. Gleichzeitig muß die Busvernetzung von Testalgorithmus zu Testalgorithmus geändert werden, damit auch die Bussysteme ausreichend geprüft werden. Auf die verschiedenen Ausführungen der Testalgorithmen wird in nicht näher eingegangen, da dies für das erfindungsgemäße Grundverfahren nicht relevant ist.
2.1.5 Interne Steuerung des Selbsttests
Bausteinen wie DE 196 51 075.9-53, DPGAs, Kress-Arrays, Systolische Prozessoren und RAW-Machines gemeinsam ist ein integrierter Speicher, der einem oder mehreren PAEs zugeordnet ist und die Funktion des/der Rechenwerke bestimmt.
Entsprechend des BIST Grundprinzips wird der Speicher um einen Bereich (TestMEM) erweitert, der die Testalgorithmen und -vektoren enthält. Dabei kann dieser Speicher fest in Form eines ROMs oder wiederbeschreibbar mittels (E)EPROM, Flash-ROM, NV-RAM oder ähnlichem ausgestaltet sein.
Um einen Selbsttest durchzuführen wird an eine Speicherstelle innerhalb des TestMEM gesprungen und die dort abgelegte Testroutine ausgeführt (Internal Driven Self Test = IDST). Dabei sind außer der Erweiterung des Speichers (um den TestMEM) und einer Auswerteeinheit für die bereits beschriebenen Vergleicher (ErrorCHK) keine weiteren BIST-typischen Zusatzbaugruppen auf dem Chip notwendig.
2.1.6 Externe Steuerung des Selbsttests
Durch die Verringerung der Baugruppen auf eine Speichererweiterung (TestMEM) und einer Auswerteeinheit der Vergleicher (ErrorCHK) wird eine weitere noch kostengünstigere und platzsparendere Variante ermöglicht. Dabei wird kein interner TestMEM implementiert, vielmehr wird der gewöhnliche interne Speicher von außen mit dem Testalgorithmus und den Testvektoren geladen (External Driven Self Test = EDST); das bedeutet, die BIST-Testdaten werden nach außen verlagert und wie ein normales Programm betrachtet. Danach wird der Testalgorithmus ausgeführt. Alternativ kann der Testalgorithmus auch während der Ausführung sucessive aus einem externen Speicher geladen und dekodiert werden. Lediglich die ErrorCHK-Einheit muß noch auf dem Chip integriert sein. Um den Testalgorithmus und die Testvektoren von außen in den/die chipinternen Speicher zu laden gibt es mehrere Möglichkeiten. Prinzipiell kann der Vorgang durch eine funktionell übergeordnete CPU oder Recheneinheit (HOST) erfolgen, in dem diese die Testdaten (Testalgorithmus und Testvektoren) auf den Chip lädt (Download) oder der Chip lädt die Testdaten selbständig aus einem externen (Dualported-)RAM oder Festspeicher wie ROM, (E)EPROM, Flash-ROM, NV-RAM, o. ä.
2.1.7 Überpüfung der Funktion zur Laufzeit
BIST-Verfahren nach dem Stand der Technik führen den Selbsttest für gewöhnlich nur während der RESET-Phase, also kurz nach dem Anlegen der Spannung (dem Einschalten), des Chips durch. Im Gegensatz dazu ist es möglich bzw. sinnvoll die in dieser Schrift beschriebenen Verfahren während der Laufzeit der Programme auf den Chips durchzuführen. Beispielsweise kann ein kompletter Test des Chips während der RESET-Phase durchgeführt werden und jeweils ein Teil der vorhandenen Testdaten während der Ausführung des Anwenderprogrammes bzw. während sogenannter IDLE-Zyklen, das sind Zeiträume, in denen kein Programm auf den Chips läuft, bzw. der Chip im Wartezustand ist. Dies ist ohne weiteres möglich, in dem während den IDLE-Zyklen einer der Testalgorithmen im internen Speicher angesprungen wird, bzw. vom externen Speicher oder HOST in den Baustein geladen wird. Dabei ist es verständlicherweise möglich, aus der Mehrzahl der vorhandenen Testalgorithmen und Testdaten partiell einen oder mehrere auszuwählen, wobei die Anzahl der ausgewählten Testdaten anhand der Länge des IDLE-Zyklusses festgelegt werden kann. Es können so lange neue Testdaten geladen werden, bis der IDLE-Zyklus durch das Eintreffen neuer zu verarbeitender Daten oder eines neu abzuarbeitenden Programmes oder einer anderen Anforderung beendet wird.
Eine weitere Möglichkeit ist das feste Integrieren von Teststrategien in die Anwenderprogramme, um während der Verarbeitung des Anwenderprogrammes Tests durchzuführen.
In beiden Fällen werden die relevanten Daten, die sich im Array befinden, vor dem Aufruf der Testalgorithmen gesichert. Es bietet sich an, daß die Daten entweder in interne Speicherbereiche (vgl. PACT04) oder die extern angeschlossenen Speicher gesichert werden. Nach Ausführung der Testalgorithmen werden die Daten vor der normalen Programmverarbeitung zurückgelesen.
Eine Alternative zur Steigerung der Ausführungsgeschwindigkeit besteht darin, neben jedem Register (Reg-n, n ∈ N) ein zusätzliches, nur für die Testalgorithmen verwendetes, Register (TestReg-n, n ∈ N) zu implementieren. Vor Ausführung der Testalgorithmen, werden über Multiplexer/Demultiplexer (Tore) die TestReg-n zugeschaltet und für den Test verwendet. Die Reg-n bleiben unverändert. Nach Ausführung der Testalgorithmen werden wieder die Reg-n zugeschaltet.
Sieht die Teststrategie vor, daß nur Zellen getestet werden, deren Daten im Folgenden nicht mehr relevant sind, kann auf das Sichern und Laden der Daten auch verzichtet werden.
2.1.8 Speicherung der Nummer der defekten PAE
Wird eine PAE (oder ein Bus) als defekt erkannt, muß deren (dessen) Nummer, also der Zustandvektor (Defektkennung) der zugeordneten Multiplexer gespeichert werden, zum einen um die Multiplexer anzusteuern, zum anderen um bei einem Neustart (RESET) des Chips sofort zur Verfügung zu stehen.
Hierzu kann die Defektkennung
  • 1. Chip-intern in einem programmierbaren Festspeicher ((E)EPROM, Flash-ROM, NV-RAM o. ä.) gespeichert werden
  • 2. extern in einem programmierbaren Festspeichern ((E)EPROM, Flash- ROM, NV-RAM o. ä.) gespeichert werden
  • 3. extern im HOST, innerhalb des auszuführenden Programmes, in dessen programmierbaren Festspeichern ((E)EPROM, Flash-ROM, NV- RAM o. ä. oder auf anderen Speichermedien (magnetische, optische, etc.) gespeichert werden.
2.1.9 Automatische Generierung der Multiplexer-Zustände
Üblicherweise wird nach der Erkennung eines Defektes die defekte Zelle anhand des erkannten Fehlverhaltens zurückverfolgt. Das ist bei entsprechenden Testalgorithmen möglich, sofern ein zusätzlicher Algorithmus zur Zurückverfolgung des Fehlers existiert. Bei Kontrolle des Tests durch einen HOST kann die Zurückverfolgung auf dem HOST durchgeführt werden. Existiert jedoch kein HOST kann oftmals die Zurückverfolgung nicht innerhalb des defekten Chips integriert werden oder ist zu aufwendig.
Zur Lösung wird vorgeschlagen einen ladbaren Zähler vor jedem Dekoder zu integrieren. Im Normalfall wird in den Zähler die Nummer der defekten PAE geladen, wonach der Dekoder die Zustände der Multiplexer wie bereits beschrieben ansteuert. Ist unbekannt, welche PAE defekt ist, kann der Zähler bei PAE 0 oder PAE m beginnend jede mögliche potentiell fehlerhafte PAE ansprechen, indem nach jedem erfolglosen Test der Zählerzustand so lange (je nach Implementierung) um eine PAE verringert (von PAE m aus zählend) oder erhöht (von PAE 0 aus zählend) wird, bis die defekte PAE erreicht wird und der Test ordentlich abläuft. Der nun erreichte Zählerzustand wird als Zustandsvektor für die Ansteuerung der Multiplexer gespeichert und representiert die defekte PAE. Wird kein funktionsfähiger Zählerzustand festgestellt, liegt entweder ein anderer Fehler vor (evtl. in einer andere m Reihe/Spalte oder ein Busfehler) oder es ist mehr als eine PAE defekt.
Ein Nachteil beim Einsatz von Zählern ist, daß sämtliche Möglichkeiten permutiert werden müssen, bis die fehlerhafte PAE gefunden wurde.
Eine weitere Möglichkeit, die allerdings mehr Implemetierungsaufwand erfordert, ist daher der Einsatz von LookUp-Tabellen, die anhand des gerade ausgeführten Testalgorithmusses und des entstandenen Fehlerzustandes in ErrorCHK die entsprechende defekte PAE auswählen. Dazu ist es jedoch notwendig, daß die Testalgorithmen und Lookup-Tabellen aufeinander abgestimmt sind. Auf die Abstimmung soll jedoch nicht weiter eingegangen werden, da diese sehr chipspezifisch und unabhängig vom Grundprinzip ist.
2.1.10 Besondere Ausgestaltung für Standard-Prozessoren (Pentium, MIPS, ALPHA, etc.)
Aktuelle und zukünftige Prozessoren enthalten eine Mehrzahl an Integer- und Fließkommaeinheiten. Daher ist das beschriebene Verfahren direkt auf diese Bausteine anwendbar, in dem jeweils eine zusätzliche Einheit implementiert wird und zur Verfügung steht. Der Test der Prozessoren kann beim Hersteller, während des Startvorganges der Computer oder ebenfalls während der Laufzeit stattfinden. Besonders sinnvoll ist dabei ein Test während des Boot-Vorganges, also dem Starten des Rechners nach einem Reset, der bei PCs vom sogenannten BIOS (Basic Input Output System), durchgeführt wird. Dabei können die entsprechenden Zustandsvektoren der Multiplexer entweder auf dem Prozessor oder in externen Speichern, beispielsweise der PC-internen batteriegepufferten Echtzeituhr (RTC) abgelegt werden.
3. Zusammenfassung
Das vorliegende Verfahren ermöglicht den Austausch defekter Einheiten, die in dieser Schrift als Rechenwerke ausgestaltet sind, jedoch generell jede beliebige Einheit eines Chips darstellen können, durch funktionstüchtige. Gleichzeitig wird ein Verfahren aufgezeigt, mit dessen Hilfe Selbsttests einfacher, kostengünstiger und vor oder während des Ablaufs des Anwenderprogrammes durchgeführt werden können. Dadurch wird die Ausfallsicherheit auch im Betrieb erheblich vergrößert, was insbesondere für ausfallkritische Anwendungen wie Kraftwerksbetriebe, Luft- und Raumfahrt oder Militär von besonderer Bedeutung ist.
  • 1. Kurzbeschreibung der Diagramme
Die folgende Diagramme zeigen zur Verdeutlichung Ausführungsbeispiele des erfindungsgemäßen Verfahrens:
Fig. 1 Grundschaltung
Fig. 2 keine PAE defekt
Fig. 3 PAE1 defekt
Fig. 4 PAEm defekt
Fig. 5 PAE3 defektFig. 6 Array aus PAEs mit PAERs
Fig. 7 Fehlertolerantes Bussystem
Fig. 7a Prinzip eines Selbsttests erster Teil
Fig. 7b Prinzip eines Selbsttests zweiter Teil
Fig. 8a EDST in einem externen ROM integriert
Fig. 8b EDST in einen externen RAM-Bereich integriert
Fig. 8c EDST direkt vom HOST gesteuert
Fig. 9 Beispiel eines chipinternen Speichers mit BIST-Funktion integriert in eine interne Steuereinheit nach DE 196 54 846.2
Fig. 10 Beispiel eines fehlertoleranten Standard-Prozessors
Fig. 11 Ablaufdiagramm eines Selbsttests
Fig. 12 Ablaufdiagramm der Generierung neuer Multiplexer Zustandsvektoren
Fig. 13 Ablaufdiagramm eines Selbsttest während des IDLE- Zyklusses
Fig. 14 Ablaufdiagramm eines in das Anwendungsprogramm integrierten Selbsttests
Fig. 15 Lookup Table zur Fehlerkorrektur
Fig. 16 Beispiel eines fehlertoleranten Bussystems
Fig. 17 Sichern von Registern Reg-n in chipinterne Speicher vor dem Ausführen der Testalgorithmen
Fig. 18 Sichern von Registern Reg-n in externe Speicher vor dem Ausführen der Testalgorithmen
Fig. 19 Abschalten der Reg-n und Zuschalten der TestReg-n vor dem Ausführen der Testalgorithmen
4.1 Detailbeschreibung der Diagramme
Fig. 1 zeigt das Grundprinzip der fehlertoleranten Verschaltung. Alle PAEs (0101) sind in einer Reihe angeordnet, der letzten PAE ist die zusätzliche PAER (0102) zugeordnet. Vor der ersten PAE in der Reihe ist ein Tor (0103) geschaltet, das die Daten zu der PAE sperrt, sofern diese PAE defekt ist. Ebenfalls ist, vor die PAER (0102) ein Tor (0105) geschaltet, das die Daten zur PAER sperrt, wenn diese nicht benötigt wird (oder defekt ist). Die beiden Tore (0103 und 0105) sind optional und nicht zwingend erforderlich. Die Eingangsbusse (0111), die aus einer Mehrzahl von Einzelssignalen zusammengesetzt sind, werden über Multiplexer (0104) und die Tore (0103 und 0105) an die PAEs geleitet. Dabei können die Daten ab einem Defekt um jeweils eine PAE nach rechts verschoben werden, bis zur PAER. Den Ausgangsbussen (0112), die aus einer Mehrzahl von Einzelssignalen zusammengesetzt sind, vorgeschaltet befinden sich ebenfalls Multiplexer (0106) die die Ergebnisse im Falle eines Fehlers wieder um eine Position nach links schieben, so daß der Fehler für das Ergebnisbussystem (Menge aller 0112) nicht erkennbar ist. Die einzelnen Ansteuersignale (0117) für die jeweiligen Multiplexer und Tore sind zu einem Bus (0110) zusammengefaßt und werden von einem Dekoder (0107) generiert. Der Dekoder erhält die Nummer der defekten PAE von der Einheit 0108, die entweder als Register oder als ladbarer Zähler ausgestaltet ist. Beim Einsatz einer Lookup-Tabelle zum Feststellten der defekten PAE aus dem von ErrorCHK generierten Fehler ist 0108 als Register implementiert, in das die Nummer der defekten PAE geladen wird. Wird die fehlerhafte PAE über eine Permutation gesucht, stellt 0108 einen ladbaren Zähler dar, der ausgehend von 0 alle möglichen PAEs durchzählt, bis die Fehlerhafte gefunden wurde. Ist die Fehlerhafte bekannt, wird sie beim nächsten RESET-Vorgang direkt in den ladbaren Zähler geladen. Zum Laden des Zählers oder Registers (0108) steht das Lade-Signal LOAD (0115) zur Verfügung. Um den Zähler hochzuzählen wird das Signal COUNT (0116) zum Zähler geführt. Über die Signale 0114 wird das Ergebnis des Zählers zur Speicherung zurückgeführt. Die Ansteuerung des Zählers/Registers und die Steuerung des zeitlichen Ablaufs wird von einer nicht gezeichneten Statemachine, einem externen HOST oder einer Vorrichtung gemäß DE 196 54 846.2 übernommen.
In Fig. 2 sind die Zustände der Multiplexer (0104 und 0106), sowie der Tore (0103 und 0105) angezeigt, wobei keine PAE defekt ist und die PAER (0102) nicht verwendet wird.
In Fig. 3 sind die Zustände der Multiplexer (0104 und 0106), sowie der Tore (0103 und 0105) angezeigt, wobei die PAE 1 (0301) defekt ist und die PAER (0102) verwendet wird.
In Fig. 4 sind die Zustände der Multiplexer (0104 und 0106), sowie der Tore (0103 und 0105) angezeigt, wobei die PAE m (0401) defekt ist und die PAER (0102) verwendet wird.
In Fig. 5 sind die Zustände der Multiplexer (0104 und 0106), sowie der Tore (0103 und 0105) angezeigt, wobei die PAE 3 (0501) defekt ist und die PAER (0102) verwendet wird.
Fig. 6 zeigt ein Array aus PAEs (0601), wobei je einer PAE-Zeile eine PAER (0602) zugeordnet ist und jede Zeile eine separate Ansteuerung (0109, vgl. Fig. 1) besitzt. Dabei können eine Mehrzahl von Ansteuerungen auch zu einer einzigen den Zeilen übergeordneten Ansteuerung zusammengefaßt sein.
Fig. 7a zeigt einen möglichen ersten Test eines Algorithmusses. Dabei sind eine Mehrzahl von PAEs als Rechenelemente (0701) konfiguriert, die jeweils ihre Operation über einen Testvektor durchführen. Dabei sind die PAEs über Bussysteme (0708) beliebiger Ausgestaltung miteinander verbunden. Eine Reihe der PAEs (0702) ist als Vergleicher konfiguriert. Die in den Rechenelementen berechneten Werte werden in den Vergleichern mit einem vorgegebenen Wert verglichen. Stimmen beide Werte nicht überein, liegt ein Fehler vor. Die Ergebnisse der Vergleiche werden über ein Bussystem (0705) an einen Multiplexer (0703) geführt, der so geschaltet ist, daß er die Ergebnisse der Vergleiche aus (0702) an eine beliebig ausgestaltete Einheit (ErrorCHK 0706) zum Feststellen eines Fehlers und eventuell dessen Auswertung weitergereicht wird. Die Fehlerauswertung (0706) gibt ihr Ergebnis über den Bus (0707) an den HOST oder die steuernde Statemachine weiter (vgl. Fig. 1).
Fig. 7b zeigt einen zweiten Test der über die selbe Matrix aus PAEs durchgeführt wird wie Fig. 7b. Der auszuführende Algorithmus ist derselbe, ebenso wie die zu berechnenden Werte. Dabei sind jedoch die PAEs der Zeile 0702 als normale Rechenelemente ausgestaltet, wobei jedoch die erste Zeile der vorher (Fig. 7a) als Rechenwerke geschalteten PAEs (0701) nun als Vergleicher (0711) ausgestaltet sind. Die Datenflußrichtung auf den Bussystemen ist um 180° gedreht. Der Multiplexer (0703) ist so geschaltet daß die Ergebnisse der (gespiegelten) Vergleicher (0711) an die Fehlerauswertung (0706) weitergeleitet wird. Durch die Spiegelung der Vergleicher (0702-0711) wird erreicht, daß jede PAE tatsächlich in ihrer Funktion getestet wird. Würde die Spiegelung nicht durchgeführt werden, wird in einer PAE-Reihe (0702 oder 0711) nur die Funktion des Vergleiches, nicht jedoch jede beliebige Funktion getestet.
Die Implementierung eines weiteren Verfahrens als das den Fig. 7a und 7b zugrundeliegende kann unter Umständen sinnvoll sein. Dabei wird die Matrix in drei Gruppen unterteilt, einer Oberen, einer Mittleren und einer Unteren. In der oberen und unteren Gruppe werden Ergebnisse berechnet, wobei der Datenfluß der oberen Gruppe nach unten, der der unteren Gruppe nach oben gerichtet ist. Die mittlere Gruppe ist als Vergleicher konfiguriert und vergleicht die berechneten Werte der oberen Gruppe mit denen der unteren Gruppe. Für gewöhnlich führen die obere und untere Gruppe dieselben Berechnungen durch. Sind die Ergebnisse an den Vergleichern unterschiedlich liegt ein Fehler vor. Auch bei diesem Verfahren ist darauf zu achten, daß die PAEs die als Vergleicher geschaltet sind in einer nächsten Konfiguration ausreichend auf ihre Fehlerfreiheit geprüft werden.
Die Fig. 8 zeigen mögliche Beschaltungen zum Test eines Chips (0801). Die Testdaten sind dabei extern gespeichert (EDST).
In Fig. 8a befinden sich die Testdaten in einem externen Festspeicher ((E)PROM, ROM, Flash-ROM, etc.) (0802). Die Daten liegen in einem RAM (0808) über den sie mit dem HOST (0805) ausgetauscht werden. Zur Speicherung der defekten PAEs, also der Zustandsvektoren der Multiplexer dient ein nicht flüchtiger Schreib-/Lese-Speicher (NV-RAM, EEPROM, Flash-ROM, usw.) (0807). In Fig. 8b werden die Testdaten von einem HOST (0805)in einen Teil des RAM-Speichers (0803) geladen und von dort aus ausgeführt. Die Daten liegen in einem RAM (0808) über den sie mit dem HOST (0805) ausgetauscht werden. Ebenfalls möglich ist, daß der Chip selbst die Daten in den Speicherbereich (0803, 0808) lädt (ohne den Einsatz eines HOSTs), z.b. direkt von einem Massenspeicher. Zur Speicherung der defekten PAEs, also der Zustandsvektoren der Multiplexer dient ein nicht flüchtiger Schreib-/Lese-Speicher (NV-RAM, EEPROM, Flash- ROM, usw.) (0807).
Die in Fig. 8a/8b vom Chip generierten Fehler werden aus dem Baustein herausgeführt und sind extern verfügbar (0804).
In Fig. 8c werden die Testdaten schrittweise von einem HOST (0805) unter Verwendung einer geeigneten Schnittstelle (0806) zum Chip (0801) übertragen. Der Chip zeigt einen eventuellen Fehlerzustand (0804) durch die Schnittstelle (0806) dem HOST an. Die Daten liegen in einem RAM (0808) über den sie mit dem HOST (0805) ausgetauscht werden.
In Fig. 9 ist eine Erweiterung eines chipinternen Programm- bzw. Konfigurationsspeichers gemäß DE 196 54 846.2 um eine BIST-Funktion gemäß dem beschriebenen Verfahren dargestellt. Dabei ist der gewöhnliche Speicherbereich (0901) nach dem Stand der Technik durch einen Festspeicherbereich (0902), der für gewöhnlich als ROM implementiert ist - wobei auch eine Ausgestaltung als (E)EPROM, FLASH-ROM, NV-RAM usw. möglich wäre, erweitert, in dem die Testdaten, d. h. die Testalgorithmen und Testvektoren gespeichert sind. Am Ende des Speichers ist ein weiterer Speicherbereich (0903) hinzugefügt. Dieser ist wenige Einträge groß und beinhaltet die Adressen defekter PAEs und/oder defekter Busse, die in die Zähler/Register (0108) geladen werden. Dieser Speicherbereich ist als nicht flüchtiger Schreib-/Lesespeicher ausgestaltet (Flash-ROM, EEPROM, NV-RAM, usw.). Dadurch können die Daten beim RESET ausgelesen werden und nach dem Ablauf eines Testalgorithmusses, bei dem ein reparierbarer Fehler festgestellt wurde, mit den aktuellen Daten überschrieben werden. Diese Daten werden entweder je nach Implementierung von den Zählern (0108, Bus 0114) oder von den Lookup-Tabellen geliefert.
Fig. 10 zeigt das Beispiel eines Standard-Prozessors mit implementierter Fehlerbehebung. Über das Businterface (1001) ist der Prozessor gemäß dem Stand der Technik an seine Peripherie angebunden. Dem Businterface zugeordnet sind zwei Multiplexer (1002 und 1003), wobei 1002 zwei alternative Code-Caches (1004, 1005) und 1003 zwei alternative Daten-Caches (1006, 1007) so ansteuert, daß jeweils nur einer der Caches verwendet wird. Damit steht jeweils ein Cache zum Ausgleich von Defekten zur Verfügung und kann über die Multiplexer angesprochen werden. Der Code-Cache führt über einen Multiplexer (1008) zu der Kontrolleinheit (1009) des Prozessors, die in diesem Beispiel nur einmal existiert. Von der Kontrolleinheit werden die Integer-Rechenwerke (1010, 1011, 1012) und die Floating-Point-Rechenwerke (1013, 1014, 1015) gesteuert. Dabei werden jeweils zwei Rechenwerke im Betrieb verwendet, ein jeweils Drittes steht zur Verfügung, wenn jeweils eines der Rechenwerke ausfällt. Über die bidirektionalen Multiplexer (1016, 1017) werden jeweils 2 Integer-Rechenwerke dem Datenbus (1018) zugeschaltet, über die bidirektionalen Multiplexer (1019, 1020) werden jeweils 2 Floating-Point-Rechenwerke dem Datenbus (1018) zugeschaltet. Der Datenbus wird über einen bidirektionalen Multiplexer (1021) mit dem Datencache verbunden. Der Multiplexer 1003 ist ebenfalls bidirektional ausgestaltet. Die Ansteuerung der Multiplexer geschieht dabei nach dem bereits beschriebenen Verfahren. Dabei bilden die Multiplexer 1002, 1008, die Multiplexer 1003, 1021, die Multiplexer 1016, 1017, sowie die Multiplexer 1019, 1020 jeweils eine abhängige Gruppe.
Im Fehlerfall kann innerhalb des Beispielprozessors somit gemäß dem beschriebenen Verfahren der Daten- und Code-Cache, sowie jeweils ein Floating-Point- und Integer-Rechenwerk ersetzt werden.
Der Ablauf eines Selbsttests ist in Fig. 11 dargestellt. Dabei ist die Variable n, n ∈ (1, 2, ...), der Index aller Algorithmen und definiert den momentan verwendeten Algorithmus. Jeder Algorithmus liegt dabei in einer ersten Positionierung (1101), die Fig. 7a entspricht, und einer zweiten gespiegelten Postitionierung (1102), die Fig. 7b entspricht, vor. Die Variable m, m ∈ (1, 2, ...), ist der Index der zu berechnenden und zu vergleichenden Testvektoren. Innerhalb jedes Algorithmus wird die Menge der Testvektoren komplett durchgetestet und danach der Algorithmus gewechselt, entweder von 1101 nach 1102 oder von 1102 auf einen neuen Algorithmus (n = n + 1). Erreicht n den Wert nach dem letzten gültigen Algorithmus, wird der Test abgebrochen. Wird während der Berechnung (1103, 1104) der Testvektoren ein Fehler festgestellt, wird eine Fehlerbehandlung durchgeführt, die in Fig. 12a, b genauer erläutert wird. Nach erfolgreicher Fehlerbehandlung werden alle Algorithmen erneut getestet, um sicherzustellen, daß kein neuer Fehler durch die Korrektur entstand, wobei prinzipiell auch an der Stelle des momentan aktiven Algorithmus weitergetestet werden könnte.
Zur Fehlerbehandlung werden zwei Verfahren vorgeschlagen:
Fig. 12a zeigt die Generierung neuer Multiplexer-Zustände über einen Zähler. Dabei ist die Variable v, v ∈ (0, 1, ... (Anzahl d. PAEs)), die Nummer der defekten PAE. Ist keine PAE defekt, gilt v = 0. Zunächst wird v so erhöht, daß die nächste PAE, vom PAE 1 beginnend, als defekt markiert wird. Danach wird der fehlgeschlagene Test nochmals ausgeführt. Läuft der Test korrekt ab, ist sichergestellt, daß die PAE v defekt ist und v wird in einen nicht flüchtigen Schreib-Lese-Speicher (z. B. 0903) geschrieben. Schlägt der Test erneut fehl, wird v so lange erhöht, bis entweder der Test korrekt abläuft oder v die Position hinter der letzten PAE erreicht und damit erwiesen ist, daß die fehlerhafte Gruppe von PAEs nicht korrigiert werden kann, entweder weil der Fehler an anderer Stelle liegt (z. B. Bussystem), oder zwei oder mehrere PAEs defekt sind.
Fig. 12b zeigt eine weniger zeitaufwendige Möglichkeit. Dabei ist die bereits beschriebene Lookup-Tabelle integriert. Sie erhält als Eingangswert die Indizes m und n, sowie die Nummer des Vergleichers der den Fehler festgestellt hat. Diese Nummer wird von ErrorCHK (0706) über den Bus 0707 geliefert. Die Lookup-Tabelle liefert die Nummer v der defekten PAE zurück. Danach wird der fehlgeschlagene Test nochmals ausgeführt. Läuft der Test korrekt ab, ist sichergestellt, daß die PAE v defekt ist und v wird in einen nicht flüchtigen Schreib-Lese-Speicher (z. B. 0903) geschrieben. Schlägt der Test erneut fehl wird davon ausgegangen, daß ein irreparabler Fehler vorliegt.
Bei den meisten Testalgorithmen ist es möglich die Spalte der defekten PAE, jedoch nicht deren Zeile zu erkennen. Damit kann die Spalte der defekten PAE v ohne weiteres bestimmt werden, jedoch ist unbekannt, in welcher der Mehrzahl von Zeilen die defekte PAE liegt. Daher ist es in solchen Fällen notwendig die Fehlerbehandlung der Fig. 12a,b über alle Zeilen durchzuführen, die an der Berechnung des Testalgorithmusses beteiligt waren, so lange, bis der Fehler festgestellt wurde oder sämtliche Zeilen untersucht wurden und der Fehler unkorregierbar ist.
Fig. 13 zeigt eine Möglichkeit einen Chip-Test während IDLE-Zyklen, das sind Zyklen, während denen keine Programmausführung stattfindet, weil auf eine Aktion (beispielsweise eine Tastatureingabe) gewartet wird, durchzuführen. Für gewöhnlich werden derartige Zyklen durch Warteschleifen im Programmcode ausgedrückt. Es ist ohne weiteres möglich, bei Vorliegen einer solchen Wartebedingung eine Testroutine aufzurufen, die während der Wartezeit einen Test des Chips durchführt, wobei allerdings eine Echtzeitfähigkeit bei der Reaktion auf die zu wartende Aktion nicht mehr möglich ist. Die aus Fig. 11 bekannten Indizes m und n werden in Fig. 13 mit gleicher Bedeutung übernommen. Jedoch werden die Indizes im Datenspeicher abgelegt. Sämtliche relevanten Daten in dem Array werden vor dem Aufruf der Testroutine gesichert und nach der Ausführung der Testroutine wieder restauriert. Beim Aufruf der Testroutine werden die Indizes zunächst aus dem Datenspeicher geladen. Danach wird der entsprechende Algorithmus mit den entsprechenden Testvektoren ausgeführt. Ist das Ergebnis fehlerhaft findet eine Fehlerbehandlung gem. Fig. 12a, b statt. Ansonsten werden die Indizes neu berechnet und in den Datenspeicher zurückgeschrieben. Abschließend wird getestet, ob weiterhin ein IDLE-Zustand vorliegt, d. h. auf eine Aktion gewartet wird. Liegt weiterhin ein IDLE-Zustand vor, wird die Testroutine erneut angesprungen, wobei diesesmal eine andere Berechnung - gemäß der bereits durchgeführten Neuberechnung der Indizes - durchgeführt wird. Liegt kein IDLE-Zustand mehr vor, wird die Programmausführung normal weitergeführt.
In Fig. 14 wird eine mögliche Abwandlung aus Fig. 13 dargestellt, in der die Testroutine direkt vom Anwenderprogramm aufgerufen wird (call TEST_CHIP (m, n)). Die Testroutine wird an bestimmten geeigneten Punkten im Algorithmus aufgerufen. Sämtliche relevanten Daten in dem Array werden vorher gesichert und nach der Ausführung der Testroutine wieder restauriert. Die Indizes m, n werden direkt beim Aufruf mitübergeben. Innerhalb der Routine TEST_CHIP wird Algorithmus n mit den Daten m ausgeführt. Der Fehlertest findet gemäß Fig. 11 und Fig. 13 statt. Am Ende von TEST_CHIP werden die Indizes im Gegensatz zu Fig. 11 und Fig. 13 nicht neu berechnet. Der Rücksprung aus der Routine TEST_CHIP führt auf die Position direkt hinter dem Aufruf "call TEST_CHIP", vergleichbar mit dem BASIC-Standard GOSUB ... RETURN.
Eine mögliche Ansteuerung einer Lookup-Tabelle ist in Fig. 15 dargestellt. Die Lookup-Tabelle (1501) ist als ROM implementiert. Die Indizes m, n; also die Kennung des momentan durchgeführten Testalgorithmus, die Kennung der aktuellen Testdaten, sowie das Ergebnis (0707) der ErrorCHK-Einheit (0706) werden dem ROM als Adressen (1502) zugeführt. Die daraus resultierenden Daten (1503) geben die Nummer der defekten PAE an. Diese Nummer wird in die Register (0108) übertragen.
In Fig. 16 ist ein fehlertolerantes Bussystem dargestellt. Dabei ist einer Menge von gleichen Bussen (1601) ein zusätzlicher Bus (1602) zugeordnet. Das Bussystem besitzt Anschlüsse in allen vier Himmelsrichtungen. Über Multiplexer (1603) werden die Anschlüsse an die Busse so geschaltet, daß bei einem Ausfall eines Busses dessen Funktion durch den benachbarten (Darunterliegenden in der Horizontalen, bzw. Rechtsliegenden in der Vertikalen) Bus übernommen wird. Dabei werden alle Multiplexer die an einen bestimmten Bus geschaltet sind von derselben Steuerleitung angesprochen, beispielsweise werden die Multiplexer 1603a, die an den Bus 1601a angeschlossen sind von der Steuerleitung 1604a gesteuert. Die Steuerleitungen 1604 werden von einer Einheit entsprechend 0109 aus Fig. 1 angesteuert. Die weitere Ansteuerung und Fehlerbehandlung ist prinzipiell dieselbe, wie in den vorausgehenden Figuren beschrieben.
Fig. 17 zeigt die Zuordnung eines chipinternen RAMs oder RAM- Bereiches (1701) zu einer Gruppe von Zellen (1702). Vor dem Ausführen der Testalgorithmen werden die internen Register der Zellen (1702) in den RAM oder RAM-Bereich (1701) gespeichert. Nach dem Ausführen der Testalgorithmen werden die Daten in die internen Register der Zellen zurückgeschrieben. Das Schreiben und Lesen der Daten geschieht dabei über die Multiplexer/Tore (0103, 0104 und 0105). Dadurch werden die Daten, die aus einer defekten Zelle stammen, gemäß der Stellung der Multiplexer an die zum Ersatz zugeschaltete Zelle geschrieben. Der Ablauf des Anwenderalgorithmusses wird durch das Testverfahren nicht beeinträchtigt.
Fig. 18 zeigt das in Fig. 17 beschriebene System, jedoch werden die Daten der Zellen in dem Chip (1801) in einen externen Speicher (1802) geschrieben, bzw. aus dem externen Speicher gelesen.
In Fig. 19 ist die Verwendung von expliziten Testregistern TestReg- n dargestellt. Jedem internen Register Reg-n einer Zelle (1902) ist ein für die Testalgorithmen verwendetes Register TestReg-n (1903) zugeordnet. über die Demultiplexer (das Tor) (1901) wird selektiert, in welches Register geschrieben wird; über den Multiplexer (1904) wird selektiert, aus welchem Register gelesen wird. Dabei ist die Ansteuerung der (De-) Multiplexer (1901, 1904) derart, daß im normalen Betrieb, d. h. während des Ablaufes der Anwenderalgorithmen, das Reg-n (1902) selektiert wird und bei der Ausführung des Testalgorithmus das TestReg-n (1903) verwendet wird. Die Schaltung gemäß Fig. 19 ist für jedes relevante Register innerhalb einer Zelle implementiert.
Nachteil der Schaltung ist, daß die Daten einer defekten Zelle nicht der als Ersatz zugeschalteten zur Verfügung stehen. Zur Lösung des Nachteils wird vorgeschlagen mittels der (De-) Multiplexer (1901, 1904) eine zusätzliche Verschaltung entsprechend des erfindungsgemäßen Grundprinzipes (0103, 0104 und 0105) zu realisieren. Damit können sämtliche Daten der Ersatzzelle zur Verfügung gestellt werden.
Begriffsdefinition
Anwenderalgorithmus Anwenderspezifisches Programm, das auf dem Chip abläuft.
Ausgangsmultiplexer Schaltung vergleichbar mit einem Relais, das zwischen mehreren möglichen Bussen an den Ausgängen von PAEs auswählt.
BIST Build In Self Test. In einen integrierten Schaltkreis implementierten Selbsttest, d. h. der TestMEM und alle Testfunktionen sind in den Schaltkreis eingeschlossen.
Booten (Boot-Vorgang) Das Laden eines Grundprogrammes und Einstellung der Grundfunktionen nach einem Reset.
Bus Bündelung aus mehreren Einzelsignalen/Einzelleitungen, die zusammen eine bestimmte Übertragungsfunktion erfüllen (Datenbus, Adressbus ...)
EDST External Driven Self Test. In einen integrierten Schaltkreis implementierten Selbsttest, bei dem der TestMEM außerhalb des integrierten Schaltkreises angeschlossen ist und auch Teile der Steuerung außerhalb des Schaltkreises untergebracht sein können.
Eingangsmultiplexer Schaltung vergleichbar mit einem Relais, das zwischen mehreren möglichen Bussen an den Eingängen von PAEs auswählt.
ErrorCHK In einen integrierten Baustein implementierte Schaltung, die einen Fehler während BIST oder EDST erkennt und lokalisiert.
HOST Einem integrierten Schaltkreis übergeordnete Baugruppe oder Computer.
IDLE Zustand in dem ein Prozessor oder ähnlicher Schaltkreis auf eine Aktion wartet und keine Verarbeitung durchführt.
Lookup-Tabelle Speicher, der anhand einer Adresse ein fest definiertes Datenwort beliebiger Breite zurückliefert, zumeist als ROM oder ROM-ähnlichen Speicher implementiert.
Nachbarbus Bus, der direkt neben einem anderen Bus liegt und denselben Aufbau besitzt.
PAE Processing Array Element gemäß DE 196 51 075.9-53. Obwohl eine PAE in der Patentanmeldung DE 196 51 075.9-53 ein Rechenwerk darstellt, wird der Begriff in dieser Patentschrift allgemeiner für jede beliebige Zelle, also beispielsweise Rechenwerke, Statemachines, Speicher, gebraucht.
PAER Zelle, die zusätzlich auf dem integrierten Schaltkreis implementiert ist und ersatzweise für eine defekte Zelle gleicher Bauart verwendet werden kann.
RESET Das Setzen oder Rücksetzen eines integrierten Schaltkreises in einen definierten Grundzustand. Findet generell nach dem Anlegen von Spannung (Einschalten) statt.
Selbsttest Automatisches Testverfahren, das in einen integrierten Baustein implementiert ist.
Sollergebnisse Die Ergebnisse die von den Testalgorithmen geliefert werden müssen um die Korrektheit des integrierten Schaltkreises nachzuweisen. Stimmen die Sollergebnisse nicht mit den Berechnungen überein, liegt ein Fehler vor.
Testalgorithmen Programm, das den integrierten Baustein testet; es enthält alle mathematischen Funktionen und Verschaltungen die überprüft werden sollen.
Statemachine Zustandsmaschine zur Ablaufsteuerung von komplexen Operationen, auch Sequenzer.
Testalgorithmus Programm zum Testen des Chips oder der Zellen einer Struktur.
Testdaten Die Menge aller Testalgorithmen, Testvektoren und Sollergebnissen.
TestMEM Speicher in dem die Testdaten abgelegt sind.
Testroutine Einzelner Programmabschnitt innerhalb der Testalgorithmen.
Testvektoren Daten, mit denen die Testalgorithmen ausgeführt werden.
Tore (Gates) Schalter die Daten weiterleiten oder sperren.
Zelle In sich abgeschlossene Baugruppe innerhalb eines integrierten Schaltkreises, beispielsweise Rechenwerke, Statemachines, Speicher.

Claims (24)

1. Verfahren zur Reparatur von integrierten Schaltkreisen, dadurch gekennzeichnet,
daß 1. einer einzelnen oder einer Mehrzahl von Baugruppen eine weitere gleiche Zusatzbaugruppe zugeordnet ist,
daß 2. den Eingängen der Baugruppen ein Multiplexer vorgeschaltet ist, der den Eingangsbus einer Baugruppe auf die jeweils nachfolgende Baugruppe schalten kann,
daß 3. den Ausgängen der Baugruppen ein Multiplexer nachgeschaltet ist, der den Ausgangsbus einer Baugruppe von der jeweils nachfolgenden Baugruppe erhalten kann,
daß 4. im Fall eines Defektes in einer der Baugruppen die Multiplexer so geschaltet werden, daß die defekte Baugruppe durch ihre Nachfolgende ersetzt wird, wobei die nachfolgende Baugruppe durch deren Nachfolgende ersetzt wird, so lange, bis die letzte Baugruppe durch die Zusatzbaugruppe ersetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ansteuerung der Multiplexer durch einen Dekoder erfolgt, der einen Binärwert so auskodiert, daß entweder alle Multiplexer gleich geschaltet sind oder zwei Gruppen von aufeinanderfolgenden Multiplexern entstehen, wobei die Multiplexer innerhalb einer Gruppe gleich geschaltet, die beiden Gruppen jedoch unterschiedlich geschaltet sind, so daß eine defekte Baugruppe von den Multiplexern ausgeschlossen wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Binärwert von einem Zähler generiert wird.
4. Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, daß der Zähler im Fehlerfall so lange inkrementiert oder dekrementiert wird, bis die defekte Baugruppe erreicht ist, oder ein Endwert erreicht wird.
5. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Binärwert durch eine Lookup-Tabelle generiert wird.
6. Verfahren nach Anspruch 1, 2 und 5, dadurch gekennzeichnet, daß die Lookup-Tabelle anhand des durchgeführten Test und des erkannter Fehlers den Binärwert der defekten Baugruppe liefert.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Binärwerte der defekten Baugruppen in einem chipinternen Speicher abgespeichert werden um bei einem erneuten Start des Systems sofort zur Verfügung zu stehen.
8. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Binärwerte der defekten Baugruppen in einem chipexternen Speicher abgespeichert werden um bei einem erneuten Start des Systems sofort zur Verfügung zu stehen.
9. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Binärwerte der defekten Baugruppen von einer übergeordneten Einheit verwaltet werden.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die Baugruppen Bussysteme darstellen.
11. Verfahren zum Test von integrierten Schaltkreisen, dadurch gekennzeichnet, daß die Funktion des integrierten Schaltkreises getestet wird, indem ein Testprogramm ausgeführt wird, wobei Testvektoren berechnet werden und ein Fehler vorliegt, wenn der Vergleich der Ergebnisse mit einem vorgegebenen Soll-Ergebnis falsch ist.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der Testalgorithmus aus einer Menge von Berechnungen und einem Vergleich der Berechnungen besteht.
13. Verfahren nach Anspruch 11 und 12, dadurch gekennzeichnet, daß in zwei- oder mehrdimensionalen Arrays aus mehreren Rechenwerken der Testalgorithmus mindestens einmal innerhalb des Arrays getauscht/gespiegelt.
14. Verfahren nach Anspruch 11 bis 13 dadurch gekennzeichnet, daß die Testdaten sich in einem bausteininternen Speicher befinden.
15. Verfahren nach Anspruch 11 bis 13 dadurch gekennzeichnet, daß die Testdaten sich in einem bausteinexternen Speicher befinden.
16. Verfahren nach Anspruch 11 bis 13 dadurch gekennzeichnet, daß die Testdaten von einer übergeordneten Einheit geladen werden.
17. Verfahren nach Anspruch 11 bis 16 dadurch gekennzeichnet, daß die Steuerung des Selbsttests bausteinintern erfolgt.
18. Verfahren nach Anspruch 11 bis 16 dadurch gekennzeichnet, daß die Steuerung des Selbsttests durch eine übergeordnete Einheit erfolgt.
19. Verfahren nach Anspruch 11 bis 18 dadurch gekennzeichnet, daß der der Selbsttest beim Start des Systems durchgeführt wird.
20. Verfahren nach Anspruch 11 bis 19 dadurch gekennzeichnet, daß der Selbsttest während der Wartezyklen des ablaufenden Anwendungsprogrammes (IDLE-Zyklen) durchgeführt wird.
21. Verfahren nach Anspruch 11 bis 19, dadurch gekennzeichnet, daß der Selbsttest vom Anwendungsprogramm aus aufgerufen wird oder in das Anwendungsprogramm integriert ist.
22. Verfahren nach Anspruch 11 bis 21 dadurch gekennzeichnet, daß die sich in den Rechenwerken befindlichen Daten vor Ablauf des Testalgorithmusses in einen chipinternen Speicher gesichert werden, nach Ablauf des Tests werden die Daten wieder aus dem Speicher geladen.
23. Verfahren nach Anspruch 11 bis 21 dadurch gekennzeichnet, daß die sich in den Rechenwerken befindlichen Daten vor Ablauf des Testalgorithmusses in einen externen Speicher gesichert werden, nach Ablauf des Tests werden die Daten wieder aus dem Speicher geladen.
24. Verfahren nach Anspruch 11 bis 21 dadurch gekennzeichnet, daß die sich die in den Rechenwerken befindlichen Register vor Ablauf des Testalgorithmusses abgeschaltet werden und für den Test Testregister verwendet werden, nach Ablauf des Tests werden die Register wieder zugeschaltet.
DE19861088A 1997-12-22 1998-11-30 Verfahren zur Reparatur von integrierten Schaltkreisen Withdrawn DE19861088A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19861088A DE19861088A1 (de) 1997-12-22 1998-11-30 Verfahren zur Reparatur von integrierten Schaltkreisen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19757200 1997-12-22
DE19861088A DE19861088A1 (de) 1997-12-22 1998-11-30 Verfahren zur Reparatur von integrierten Schaltkreisen

Publications (1)

Publication Number Publication Date
DE19861088A1 true DE19861088A1 (de) 2000-02-10

Family

ID=7852968

Family Applications (4)

Application Number Title Priority Date Filing Date
DE19861088A Withdrawn DE19861088A1 (de) 1997-12-22 1998-11-30 Verfahren zur Reparatur von integrierten Schaltkreisen
DE59804464T Expired - Lifetime DE59804464D1 (de) 1997-12-22 1998-12-15 Verfahren zur reparatur von integrierten schaltkreisen
DE19881975T Expired - Lifetime DE19881975D2 (de) 1997-12-22 1998-12-15 Verfahren zur Reparatur von integrierten Schaltkreisen
DE59811877T Expired - Lifetime DE59811877D1 (de) 1997-12-22 1998-12-15 Verfahren und Vorrichtung zur Prüfung von integrierten Schaltkreisen

Family Applications After (3)

Application Number Title Priority Date Filing Date
DE59804464T Expired - Lifetime DE59804464D1 (de) 1997-12-22 1998-12-15 Verfahren zur reparatur von integrierten schaltkreisen
DE19881975T Expired - Lifetime DE19881975D2 (de) 1997-12-22 1998-12-15 Verfahren zur Reparatur von integrierten Schaltkreisen
DE59811877T Expired - Lifetime DE59811877D1 (de) 1997-12-22 1998-12-15 Verfahren und Vorrichtung zur Prüfung von integrierten Schaltkreisen

Country Status (8)

Country Link
US (4) US6697979B1 (de)
EP (2) EP1040420B1 (de)
JP (1) JP4215393B2 (de)
AT (2) ATE219263T1 (de)
AU (1) AU2409599A (de)
CA (1) CA2316314A1 (de)
DE (4) DE19861088A1 (de)
WO (1) WO1999032975A1 (de)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071196A2 (de) 2001-03-05 2002-09-12 Pact Informationstechnologie Gmbh Verfahren und vorrichtung zu datenbe- und/oder verarbeitung
WO2003025781A2 (de) 2001-09-19 2003-03-27 Pact Xpp Technologies Ag Verfahren zur konfiguration der verbindung zwischen datenverarbeitungszellen
WO2006082091A2 (en) 2005-02-07 2006-08-10 Pact Xpp Technologies Ag Low latency massive parallel data processing device
EP1845623A2 (de) 2000-10-06 2007-10-17 PACT XPP Technologies AG Verfahren und Vorrichtung
US7650448B2 (en) 1996-12-20 2010-01-19 Pact Xpp Technologies Ag I/O and memory bus system for DFPS and units with two- or multi-dimensional programmable cell architectures
US7657861B2 (en) 2002-08-07 2010-02-02 Pact Xpp Technologies Ag Method and device for processing data
US7657877B2 (en) 2001-06-20 2010-02-02 Pact Xpp Technologies Ag Method for processing data
US7782087B2 (en) 2002-09-06 2010-08-24 Martin Vorbach Reconfigurable sequencer structure
US7822968B2 (en) 1996-12-09 2010-10-26 Martin Vorbach Circuit having a multidimensional structure of configurable cells that include multi-bit-wide inputs and outputs
US7822881B2 (en) 1996-12-27 2010-10-26 Martin Vorbach Process for automatic dynamic reloading of data flow processors (DFPs) and units with two- or three-dimensional programmable cell architectures (FPGAs, DPGAs, and the like)
US7840842B2 (en) 2001-09-03 2010-11-23 Martin Vorbach Method for debugging reconfigurable architectures
US7844796B2 (en) 2001-03-05 2010-11-30 Martin Vorbach Data processing device and method
US7996827B2 (en) 2001-08-16 2011-08-09 Martin Vorbach Method for the translation of programs for reconfigurable architectures
US8058899B2 (en) 2000-10-06 2011-11-15 Martin Vorbach Logic cell array and bus system
US8099618B2 (en) 2001-03-05 2012-01-17 Martin Vorbach Methods and devices for treating and processing data
US8127061B2 (en) 2002-02-18 2012-02-28 Martin Vorbach Bus systems and reconfiguration methods
US8156284B2 (en) 2002-08-07 2012-04-10 Martin Vorbach Data processing method and device
US8209653B2 (en) 2001-09-03 2012-06-26 Martin Vorbach Router
US8230411B1 (en) 1999-06-10 2012-07-24 Martin Vorbach Method for interleaving a program over a plurality of cells
US8250503B2 (en) 2006-01-18 2012-08-21 Martin Vorbach Hardware definition method including determining whether to implement a function as hardware or software
US8281108B2 (en) 2002-01-19 2012-10-02 Martin Vorbach Reconfigurable general purpose processor having time restricted configurations
US8301872B2 (en) 2000-06-13 2012-10-30 Martin Vorbach Pipeline configuration protocol and configuration unit communication
USRE44365E1 (en) 1997-02-08 2013-07-09 Martin Vorbach Method of self-synchronization of configurable elements of a programmable module
US8686549B2 (en) 2001-09-03 2014-04-01 Martin Vorbach Reconfigurable elements
US8686475B2 (en) 2001-09-19 2014-04-01 Pact Xpp Technologies Ag Reconfigurable elements
US8812820B2 (en) 2003-08-28 2014-08-19 Pact Xpp Technologies Ag Data processing device and method
US8819505B2 (en) 1997-12-22 2014-08-26 Pact Xpp Technologies Ag Data processor having disabled cores
US8914590B2 (en) 2002-08-07 2014-12-16 Pact Xpp Technologies Ag Data processing method and device
US9037807B2 (en) 2001-03-05 2015-05-19 Pact Xpp Technologies Ag Processor arrangement on a chip including data processing, memory, and interface elements

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654846A1 (de) * 1996-12-27 1998-07-09 Pact Inf Tech Gmbh Verfahren zum selbständigen dynamischen Umladen von Datenflußprozessoren (DFPs) sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen (FPGAs, DPGAs, o. dgl.)
DE19704728A1 (de) * 1997-02-08 1998-08-13 Pact Inf Tech Gmbh Verfahren zur Selbstsynchronisation von konfigurierbaren Elementen eines programmierbaren Bausteines
DE19704742A1 (de) * 1997-02-11 1998-09-24 Pact Inf Tech Gmbh Internes Bussystem für DFPs, sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen, zur Bewältigung großer Datenmengen mit hohem Vernetzungsaufwand
US9092595B2 (en) 1997-10-08 2015-07-28 Pact Xpp Technologies Ag Multiprocessor having associated RAM units
US20040015899A1 (en) * 2000-10-06 2004-01-22 Frank May Method for processing data
US20090300262A1 (en) * 2001-03-05 2009-12-03 Martin Vorbach Methods and devices for treating and/or processing data
US7210129B2 (en) * 2001-08-16 2007-04-24 Pact Xpp Technologies Ag Method for translating programs for reconfigurable architectures
US20090210653A1 (en) * 2001-03-05 2009-08-20 Pact Xpp Technologies Ag Method and device for treating and processing data
US7624204B2 (en) * 2001-03-22 2009-11-24 Nvidia Corporation Input/output controller node in an adaptable computing environment
US7418642B2 (en) * 2001-07-30 2008-08-26 Marvell International Technology Ltd. Built-in-self-test using embedded memory and processor in an application specific integrated circuit
US7594229B2 (en) * 2001-10-09 2009-09-22 Nvidia Corp. Predictive resource allocation in computing systems
US7644279B2 (en) * 2001-12-05 2010-01-05 Nvidia Corporation Consumer product distribution in the embedded system market
US7577822B2 (en) * 2001-12-14 2009-08-18 Pact Xpp Technologies Ag Parallel task operation in processor and reconfigurable coprocessor configured based on information in link list including termination information for synchronization
AU2003214046A1 (en) * 2002-01-18 2003-09-09 Pact Xpp Technologies Ag Method and device for partitioning large computer programs
US7051242B2 (en) * 2002-02-08 2006-05-23 Hewlett-Packard Development Company, L.P. Method and apparatus for improving yield by decommissioning optional units on a CPU due to manufacturing defects
WO2003081454A2 (de) * 2002-03-21 2003-10-02 Pact Xpp Technologies Ag Verfahren und vorrichtung zur datenverarbeitung
US20030212934A1 (en) * 2002-05-07 2003-11-13 David Bovitz Debug port for on-die dram
US7093255B1 (en) * 2002-05-31 2006-08-15 Quicksilver Technology, Inc. Method for estimating cost when placing operations within a modulo scheduler when scheduling for processors with a large number of function units or reconfigurable data paths
US7620678B1 (en) 2002-06-12 2009-11-17 Nvidia Corporation Method and system for reducing the time-to-market concerns for embedded system design
US7802108B1 (en) 2002-07-18 2010-09-21 Nvidia Corporation Secure storage of program code for an embedded system
US20110238948A1 (en) * 2002-08-07 2011-09-29 Martin Vorbach Method and device for coupling a data processing unit and a data processing array
US7047352B1 (en) * 2002-08-28 2006-05-16 Xilinx, Inc. Fail-safe method of updating a multiple FPGA configuration data storage system
US7502915B2 (en) * 2002-09-30 2009-03-10 Nvidia Corporation System and method using embedded microprocessor as a node in an adaptable computing machine
US8949576B2 (en) * 2002-11-01 2015-02-03 Nvidia Corporation Arithmetic node including general digital signal processing functions for an adaptive computing machine
US7340644B2 (en) 2002-12-02 2008-03-04 Marvell World Trade Ltd. Self-reparable semiconductor and method thereof
US20060001669A1 (en) 2002-12-02 2006-01-05 Sehat Sutardja Self-reparable semiconductor and method thereof
US7185225B2 (en) 2002-12-02 2007-02-27 Marvell World Trade Ltd. Self-reparable semiconductor and method thereof
US7617100B1 (en) 2003-01-10 2009-11-10 Nvidia Corporation Method and system for providing an excitation-pattern based audio coding scheme
DE112004000026D2 (de) * 2003-04-04 2006-06-14 Pact Xpp Technologies Ag Verfahren und Vorrichtung für die Datenverarbeitung
US8296764B2 (en) * 2003-08-14 2012-10-23 Nvidia Corporation Internal synchronization control for adaptive integrated circuitry
US7266721B2 (en) * 2003-09-25 2007-09-04 International Business Machines Corporation Runtime repairable processor
DE10345981B4 (de) * 2003-10-02 2007-10-18 Qimonda Ag Schaltungsvorrichtung zur Datenverarbeitung und Verfahren zum Verbinden eines Schaltungskernmoduls mit einem externen Schaltungsmodul
US7278077B1 (en) * 2003-10-20 2007-10-02 Sun Microsystems, Inc. IBIST test for synchronous lines at multiple frequencies
US6879207B1 (en) 2003-12-18 2005-04-12 Nvidia Corporation Defect tolerant redundancy
US7272751B2 (en) * 2004-01-15 2007-09-18 International Business Machines Corporation Error detection during processor idle cycles
US8018463B2 (en) * 2004-05-10 2011-09-13 Nvidia Corporation Processor for video data
US8130825B2 (en) * 2004-05-10 2012-03-06 Nvidia Corporation Processor for video data encoding/decoding
US7831804B2 (en) * 2004-06-22 2010-11-09 St Microelectronics S.R.L. Multidimensional processor architecture
US7272813B2 (en) * 2004-09-15 2007-09-18 Omnivision Technologies, Inc. Transparent re-mapping of parallel computational units
TWI256013B (en) * 2004-10-12 2006-06-01 Uli Electronics Inc Sound-effect processing circuit
EP1724788A1 (de) * 2005-05-18 2006-11-22 STMicroelectronics S.r.l. Verbesserte eingebaute Selbsttestmethode und System
EP1902368B1 (de) * 2005-07-12 2015-10-14 International Business Machines Corporation Verfahren und system zum umkonfigurieren von funktionsfähigkeiten in einem datenverarbeitunssystem mit ruhenden betriebsmitteln
US7281942B2 (en) * 2005-11-18 2007-10-16 Ideal Industries, Inc. Releasable wire connector
US7999820B1 (en) 2006-10-23 2011-08-16 Nvidia Corporation Methods and systems for reusing memory addresses in a graphics system
US20080111923A1 (en) * 2006-11-09 2008-05-15 Scheuermann W James Processor for video data
US8169789B1 (en) 2007-04-10 2012-05-01 Nvidia Corporation Graphics processing unit stiffening frame
US7987065B1 (en) 2007-04-17 2011-07-26 Nvidia Corporation Automatic quality testing of multimedia rendering by software drivers
US8572598B1 (en) 2007-04-18 2013-10-29 Nvidia Corporation Method and system for upgrading software in a computing device
US8726283B1 (en) 2007-06-04 2014-05-13 Nvidia Corporation Deadlock avoidance skid buffer
US7948500B2 (en) * 2007-06-07 2011-05-24 Nvidia Corporation Extrapolation of nonresident mipmap data using resident mipmap data
US7944453B1 (en) 2007-06-07 2011-05-17 Nvidia Corporation Extrapolation texture filtering for nonresident mipmaps
US20090183035A1 (en) * 2008-01-10 2009-07-16 Butler Michael G Processor including hybrid redundancy for logic error protection
US7865770B2 (en) * 2008-01-10 2011-01-04 Advanced Micro Devices, Inc. Processor including efficient signature generation for logic error protection
US8195882B2 (en) 2008-05-30 2012-06-05 Advanced Micro Devices, Inc. Shader complex with distributed level one cache system and centralized level two cache
JP5536760B2 (ja) * 2008-05-30 2014-07-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド シェーダ列のための冗長方法及び装置
US8370537B2 (en) * 2008-09-07 2013-02-05 EADS North America, Inc. Trigger router and test system including the trigger router
US9152427B2 (en) 2008-10-15 2015-10-06 Hyperion Core, Inc. Instruction issue to array of arithmetic cells coupled to load/store cells with associated registers as extended register file
US20100138575A1 (en) 2008-12-01 2010-06-03 Micron Technology, Inc. Devices, systems, and methods to synchronize simultaneous dma parallel processing of a single data stream by multiple devices
US20100174887A1 (en) 2009-01-07 2010-07-08 Micron Technology Inc. Buses for Pattern-Recognition Processors
US9323994B2 (en) 2009-12-15 2016-04-26 Micron Technology, Inc. Multi-level hierarchical routing matrices for pattern-recognition processors
US8718079B1 (en) 2010-06-07 2014-05-06 Marvell International Ltd. Physical layer devices for network switches
JP5900061B2 (ja) * 2012-03-19 2016-04-06 富士通株式会社 試験方法、試験装置及びプログラム
US8933715B2 (en) * 2012-04-08 2015-01-13 Elm Technology Corporation Configurable vertical integration
US20130275709A1 (en) 2012-04-12 2013-10-17 Micron Technology, Inc. Methods for reading data from a storage buffer including delaying activation of a column select
US9524248B2 (en) 2012-07-18 2016-12-20 Micron Technology, Inc. Memory management for a hierarchical memory system
US9304968B2 (en) * 2012-07-18 2016-04-05 Micron Technology, Inc. Methods and devices for programming a state machine engine
JP5965076B2 (ja) * 2012-09-25 2016-08-03 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 訂正不能メモリエラー処理方法及びその可読媒体
US9703574B2 (en) 2013-03-15 2017-07-11 Micron Technology, Inc. Overflow detection and correction in state machine engines
US9448965B2 (en) 2013-03-15 2016-09-20 Micron Technology, Inc. Receiving data streams in parallel and providing a first portion of data to a first state machine engine and a second portion to a second state machine
US9046573B1 (en) * 2013-10-04 2015-06-02 Altera Corporation Addressable test arrays for characterizing integrated circuit device parameters
CN105740164B (zh) 2014-12-10 2020-03-17 阿里巴巴集团控股有限公司 支持缓存一致性的多核处理器、读写方法、装置及设备
US10430210B2 (en) 2014-12-30 2019-10-01 Micron Technology, Inc. Systems and devices for accessing a state machine
US11366675B2 (en) 2014-12-30 2022-06-21 Micron Technology, Inc. Systems and devices for accessing a state machine
US10769099B2 (en) 2014-12-30 2020-09-08 Micron Technology, Inc. Devices for time division multiplexing of state machine engine signals
US20160378628A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Hardware processors and methods to perform self-monitoring diagnostics to predict and detect failure
US10977309B2 (en) 2015-10-06 2021-04-13 Micron Technology, Inc. Methods and systems for creating networks
US10691964B2 (en) 2015-10-06 2020-06-23 Micron Technology, Inc. Methods and systems for event reporting
US10846103B2 (en) 2015-10-06 2020-11-24 Micron Technology, Inc. Methods and systems for representing processing resources
US10146555B2 (en) 2016-07-21 2018-12-04 Micron Technology, Inc. Adaptive routing to avoid non-repairable memory and logic defects on automata processor
US10019311B2 (en) 2016-09-29 2018-07-10 Micron Technology, Inc. Validation of a symbol response memory
US10268602B2 (en) 2016-09-29 2019-04-23 Micron Technology, Inc. System and method for individual addressing
US10929764B2 (en) 2016-10-20 2021-02-23 Micron Technology, Inc. Boolean satisfiability
US10592450B2 (en) 2016-10-20 2020-03-17 Micron Technology, Inc. Custom compute cores in integrated circuit devices
TWI629631B (zh) * 2016-12-30 2018-07-11 禾瑞亞科技股份有限公司 Multi-channel touch controller with channel switching circuit
US10628275B2 (en) * 2018-03-07 2020-04-21 Nxp B.V. Runtime software-based self-test with mutual inter-core checking
US11106466B2 (en) 2018-06-18 2021-08-31 International Business Machines Corporation Decoupling of conditional branches
KR20210006616A (ko) 2019-07-09 2021-01-19 삼성전자주식회사 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법
US11755884B2 (en) 2019-08-20 2023-09-12 Micron Technology, Inc. Distributed machine learning with privacy protection
US11392796B2 (en) * 2019-08-20 2022-07-19 Micron Technology, Inc. Feature dictionary for bandwidth enhancement
US11636334B2 (en) 2019-08-20 2023-04-25 Micron Technology, Inc. Machine learning with feature obfuscation
US11139883B1 (en) * 2020-09-11 2021-10-05 Bae Systems Information And Electronic Systems Integration Inc Combined spatial and time multiplexer

Family Cites Families (639)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067477A (en) * 1931-03-20 1937-01-12 Allis Chalmers Mfg Co Gearing
GB971191A (en) * 1962-05-28 1964-09-30 Wolf Electric Tools Ltd Improvements relating to electrically driven equipment
US3564506A (en) * 1968-01-17 1971-02-16 Ibm Instruction retry byte counter
GB1253309A (en) * 1969-11-21 1971-11-10 Marconi Co Ltd Improvements in or relating to data processing arrangements
US3753008A (en) 1970-06-20 1973-08-14 Honeywell Inf Systems Memory pre-driver circuit
US5459846A (en) * 1988-12-02 1995-10-17 Hyatt; Gilbert P. Computer architecture system having an imporved memory
US3754211A (en) 1971-12-30 1973-08-21 Ibm Fast error recovery communication controller
US3855577A (en) 1973-06-11 1974-12-17 Texas Instruments Inc Power saving circuit for calculator system
US3956589A (en) 1973-11-26 1976-05-11 Paradyne Corporation Data telecommunication system
US3970993A (en) * 1974-01-02 1976-07-20 Hughes Aircraft Company Cooperative-word linear array parallel processor
DE2407241A1 (de) * 1974-02-15 1975-08-21 Ibm Deutschland Verfahren und anordnung zur erhoehung der verfuegbarkeit eines digitalrechners
DE2713648A1 (de) 1976-03-26 1977-10-06 Tokyo Shibaura Electric Co Stromzufuhr-steuervorrichtung fuer speichervorrichtungen
US4233667A (en) 1978-10-23 1980-11-11 International Business Machines Corporation Demand powered programmable logic array
US4428048A (en) * 1981-01-28 1984-01-24 Grumman Aerospace Corporation Multiprocessor with staggered processing
US4414547A (en) 1981-08-05 1983-11-08 General Instrument Corporation Storage logic array having two conductor data column
US4498134A (en) * 1982-01-26 1985-02-05 Hughes Aircraft Company Segregator functional plane for use in a modular array processor
US4590583A (en) 1982-07-16 1986-05-20 At&T Bell Laboratories Coin telephone measurement circuitry
US4498172A (en) * 1982-07-26 1985-02-05 General Electric Company System for polynomial division self-testing of digital networks
US4667190A (en) 1982-07-30 1987-05-19 Honeywell Inc. Two axis fast access memory
JPS5936857A (ja) 1982-08-25 1984-02-29 Nec Corp プロセツサユニツト
US4663706A (en) 1982-10-28 1987-05-05 Tandem Computers Incorporated Multiprocessor multisystem communications network
US4594682A (en) 1982-12-22 1986-06-10 Ibm Corporation Vector processing
US4739474A (en) 1983-03-10 1988-04-19 Martin Marietta Corporation Geometric-arithmetic parallel processor
US4566102A (en) * 1983-04-18 1986-01-21 International Business Machines Corporation Parallel-shift error reconfiguration
US5123109A (en) 1983-05-31 1992-06-16 Thinking Machines Corporation Parallel processor including a processor array with plural data transfer arrangements including (1) a global router and (2) a proximate-neighbor transfer system
US4571736A (en) 1983-10-31 1986-02-18 University Of Southwestern Louisiana Digital communication system employing differential coding and sample robbing
US4646300A (en) * 1983-11-14 1987-02-24 Tandem Computers Incorporated Communications method
US4870302A (en) 1984-03-12 1989-09-26 Xilinx, Inc. Configurable electrical circuit having configurable logic elements and configurable interconnects
USRE34363E (en) 1984-03-12 1993-08-31 Xilinx, Inc. Configurable electrical circuit having configurable logic elements and configurable interconnects
JPS60198618A (ja) 1984-03-21 1985-10-08 Oki Electric Ind Co Ltd ダイナミツク論理回路
US4761755A (en) 1984-07-11 1988-08-02 Prime Computer, Inc. Data processing system and method having an improved arithmetic unit
US4682284A (en) 1984-12-06 1987-07-21 American Telephone & Telegraph Co., At&T Bell Lab. Queue administration method and apparatus
US4623997A (en) 1984-12-13 1986-11-18 United Technologies Corporation Coherent interface with wraparound receive and transmit memories
EP0190813B1 (de) 1985-01-29 1991-09-18 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Verarbeitungszelle für fehlertolerante Matrixanordnungen
US4720778A (en) 1985-01-31 1988-01-19 Hewlett Packard Company Software debugging analyzer
US5023775A (en) 1985-02-14 1991-06-11 Intel Corporation Software programmable logic array utilizing "and" and "or" gates
US5247689A (en) 1985-02-25 1993-09-21 Ewert Alfred P Parallel digital processor including lateral transfer buses with interrupt switches to form bus interconnection segments
US4706216A (en) 1985-02-27 1987-11-10 Xilinx, Inc. Configurable logic element
US5015884A (en) 1985-03-29 1991-05-14 Advanced Micro Devices, Inc. Multiple array high performance programmable logic device family
US5225719A (en) 1985-03-29 1993-07-06 Advanced Micro Devices, Inc. Family of multiple segmented programmable logic blocks interconnected by a high speed centralized switch matrix
US4972314A (en) 1985-05-20 1990-11-20 Hughes Aircraft Company Data flow signal processor method and apparatus
US4967340A (en) 1985-06-12 1990-10-30 E-Systems, Inc. Adaptive processing system having an array of individually configurable processing components
GB8517376D0 (en) 1985-07-09 1985-08-14 Jesshope C R Processor array
US4720780A (en) * 1985-09-17 1988-01-19 The Johns Hopkins University Memory-linked wavefront array processor
EP0221360B1 (de) 1985-11-04 1992-12-30 International Business Machines Corporation Digitale Nachrichtenübertragungsnetzwerke und Aufbau von Übertragungswegen in diesen Netzwerken
US4907148A (en) * 1985-11-13 1990-03-06 Alcatel U.S.A. Corp. Cellular array processor with individual cell-level data-dependent cell control and multiport input memory
US4733393A (en) * 1985-12-12 1988-03-22 Itt Corporation Test method and apparatus for cellular array processor chip
US4852048A (en) 1985-12-12 1989-07-25 Itt Corporation Single instruction multiple data (SIMD) cellular array processing apparatus employing a common bus where a first number of bits manifest a first bus portion and a second number of bits manifest a second bus portion
US5021947A (en) 1986-03-31 1991-06-04 Hughes Aircraft Company Data-flow multiprocessor architecture with three dimensional multistage interconnection network for efficient signal and data processing
US4882687A (en) 1986-03-31 1989-11-21 Schlumberger Technology Corporation Pixel processor
US5034914A (en) 1986-05-15 1991-07-23 Aquidneck Systems International, Inc. Optical disk data storage method and apparatus with buffered interface
GB8612396D0 (en) 1986-05-21 1986-06-25 Hewlett Packard Ltd Chain-configured interface bus system
US4760525A (en) 1986-06-10 1988-07-26 The United States Of America As Represented By The Secretary Of The Air Force Complex arithmetic vector processor for performing control function, scalar operation, and set-up of vector signal processing instruction
US4791603A (en) 1986-07-18 1988-12-13 Honeywell Inc. Dynamically reconfigurable array logic
US4860201A (en) 1986-09-02 1989-08-22 The Trustees Of Columbia University In The City Of New York Binary tree parallel processor
US4910665A (en) 1986-09-02 1990-03-20 General Electric Company Distributed processing system including reconfigurable elements
US5367208A (en) 1986-09-19 1994-11-22 Actel Corporation Reconfigurable programmable interconnect architecture
US4884231A (en) 1986-09-26 1989-11-28 Performance Semiconductor Corporation Microprocessor system with extended arithmetic logic unit
GB2211638A (en) * 1987-10-27 1989-07-05 Ibm Simd array processor
FR2606184B1 (fr) * 1986-10-31 1991-11-29 Thomson Csf Dispositif de calcul reconfigurable
US4918440A (en) 1986-11-07 1990-04-17 Furtek Frederick C Programmable logic cell and array
US4811214A (en) 1986-11-14 1989-03-07 Princeton University Multinode reconfigurable pipeline computer
US5226122A (en) 1987-08-21 1993-07-06 Compaq Computer Corp. Programmable logic system for filtering commands to a microprocessor
CA1299757C (en) 1987-08-28 1992-04-28 Brent Cameron Beardsley Device initiated partial system quiescing
US5119290A (en) 1987-10-02 1992-06-02 Sun Microsystems, Inc. Alias address support
CA1286421C (en) 1987-10-14 1991-07-16 Martin Claude Lefebvre Message fifo buffer controller
US5115510A (en) 1987-10-20 1992-05-19 Sharp Kabushiki Kaisha Multistage data flow processor with instruction packet, fetch, storage transmission and address generation controlled by destination information
US4918690A (en) 1987-11-10 1990-04-17 Echelon Systems Corp. Network and intelligent cell for providing sensing, bidirectional communications and control
US5031179A (en) 1987-11-10 1991-07-09 Canon Kabushiki Kaisha Data communication apparatus
US5113498A (en) 1987-11-10 1992-05-12 Echelon Corporation Input/output section for an intelligent cell which provides sensing, bidirectional communications and control
US4901655A (en) * 1987-12-11 1990-02-20 Lawn Doctor, Inc. Cultivator
NL8800053A (nl) 1988-01-11 1989-08-01 Philips Nv Videoprocessorsysteem, alsmede afbeeldingssysteem en beeldopslagsysteem, voorzien van een dergelijk videoprocessorsysteem.
NL8800071A (nl) 1988-01-13 1989-08-01 Philips Nv Dataprocessorsysteem en videoprocessorsysteem, voorzien van een dergelijk dataprocessorsysteem.
USRE34444E (en) 1988-01-13 1993-11-16 Xilinx, Inc. Programmable logic device
EP0325421B1 (de) 1988-01-20 1994-08-10 Advanced Micro Devices, Inc. Organisation eines integrierten Cachespeichers zur flexiblen Anwendung zur Unterstützung von Multiprozessor-Operationen
US5303172A (en) 1988-02-16 1994-04-12 Array Microsystems Pipelined combination and vector signal processor
US4959781A (en) 1988-05-16 1990-09-25 Stardent Computer, Inc. System for assigning interrupts to least busy processor that already loaded same class of interrupt routines
JPH06101043B2 (ja) 1988-06-30 1994-12-12 三菱電機株式会社 マイクロコンピュータ
US4939641A (en) 1988-06-30 1990-07-03 Wang Laboratories, Inc. Multi-processor system with cache memories
US5287511A (en) * 1988-07-11 1994-02-15 Star Semiconductor Corporation Architectures and methods for dividing processing tasks into tasks for a programmable real time signal processor and tasks for a decision making microprocessor interfacing therewith
JPH03500461A (ja) 1988-07-22 1991-01-31 アメリカ合衆国 データ駆動式計算用のデータ流れ装置
US5010401A (en) 1988-08-11 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Picture coding and decoding apparatus using vector quantization
US4901268A (en) 1988-08-19 1990-02-13 General Electric Company Multiple function data processor
US5204935A (en) 1988-08-19 1993-04-20 Fuji Xerox Co., Ltd. Programmable fuzzy logic circuits
US5353432A (en) 1988-09-09 1994-10-04 Compaq Computer Corporation Interactive method for configuration of computer system and circuit boards with user specification of system resources and computer resolution of resource conflicts
EP0363631B1 (de) 1988-09-22 1993-12-15 Siemens Aktiengesellschaft Schaltungsanordnung für Fernmeldevermittlungsanlagen, insbesondere PCM-Zeitmultiplex-Fernsprechvermittlungsanlagen mit Zentralkoppelfeld und angeschlossenen Teilkoppelfeldern
EP0437491B1 (de) 1988-10-05 1995-12-13 Quickturn Systems Inc Verfahren zur verwendung einer elektronisch wiederkonfigurierbaren gatterfeld-logik und dadurch hergestelltes gerät
WO1990004235A1 (en) 1988-10-07 1990-04-19 Martin Marietta Corporation Parallel data processor
US5014193A (en) 1988-10-14 1991-05-07 Compaq Computer Corporation Dynamically configurable portable computer system
US5136717A (en) 1988-11-23 1992-08-04 Flavors Technology Inc. Realtime systolic, multiple-instruction, single-data parallel computer system
US5041924A (en) 1988-11-30 1991-08-20 Quantum Corporation Removable and transportable hard disk subsystem
US5081375A (en) 1989-01-19 1992-01-14 National Semiconductor Corp. Method for operating a multiple page programmable logic device
US5245616A (en) 1989-02-24 1993-09-14 Rosemount Inc. Technique for acknowledging packets
GB8906145D0 (en) 1989-03-17 1989-05-04 Algotronix Ltd Configurable cellular array
US5203005A (en) 1989-05-02 1993-04-13 Horst Robert W Cell structure for linear array wafer scale integration architecture with capability to open boundary i/o bus without neighbor acknowledgement
US5237686A (en) 1989-05-10 1993-08-17 Mitsubishi Denki Kabushiki Kaisha Multiprocessor type time varying image encoding system and image processor with memory bus control table for arbitration priority
US5109503A (en) 1989-05-22 1992-04-28 Ge Fanuc Automation North America, Inc. Apparatus with reconfigurable counter includes memory for storing plurality of counter configuration files which respectively define plurality of predetermined counters
US5029166A (en) 1989-05-31 1991-07-02 At&T Bell Laboratories Method and apparatus for testing circuit boards
JP2584673B2 (ja) * 1989-06-09 1997-02-26 株式会社日立製作所 テストデータ変更回路を有する論理回路テスト装置
JPH0314033A (ja) * 1989-06-12 1991-01-22 Fujitsu Ltd マイクロプロセッサ比較チェック機能の検査方式
US5343406A (en) 1989-07-28 1994-08-30 Xilinx, Inc. Distributed memory architecture for a configurable logic array and method for using distributed memory
CA2021192A1 (en) * 1989-07-28 1991-01-29 Malcolm A. Mumme Simplified synchronous mesh processor
US5489857A (en) 1992-08-03 1996-02-06 Advanced Micro Devices, Inc. Flexible synchronous/asynchronous cell structure for a high density programmable logic device
US5212652A (en) 1989-08-15 1993-05-18 Advanced Micro Devices, Inc. Programmable gate array with improved interconnect structure
US5233539A (en) 1989-08-15 1993-08-03 Advanced Micro Devices, Inc. Programmable gate array with improved interconnect structure, input/output structure and configurable logic block
US5128559A (en) 1989-09-29 1992-07-07 Sgs-Thomson Microelectronics, Inc. Logic block for programmable logic devices
JP2968289B2 (ja) 1989-11-08 1999-10-25 株式会社リコー 中央演算処理装置
GB8925721D0 (en) 1989-11-14 1990-01-04 Amt Holdings Processor array system
GB8925723D0 (en) * 1989-11-14 1990-01-04 Amt Holdings Processor array system
US5212777A (en) 1989-11-17 1993-05-18 Texas Instruments Incorporated Multi-processor reconfigurable in single instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) modes and method of operation
US5522083A (en) 1989-11-17 1996-05-28 Texas Instruments Incorporated Reconfigurable multi-processor operating in SIMD mode with one processor fetching instructions for use by remaining processors
DE58908974D1 (de) 1989-11-21 1995-03-16 Itt Ind Gmbh Deutsche Datengesteuerter Arrayprozessor.
US5099447A (en) 1990-01-22 1992-03-24 Alliant Computer Systems Corporation Blocked matrix multiplication for computers with hierarchical memory
WO1991011765A1 (en) 1990-01-29 1991-08-08 Teraplex, Inc. Architecture for minimal instruction set computing system
US5125801A (en) 1990-02-02 1992-06-30 Isco, Inc. Pumping system
US5036493A (en) 1990-03-15 1991-07-30 Digital Equipment Corporation System and method for reducing power usage by multiple memory modules
US5142469A (en) 1990-03-29 1992-08-25 Ge Fanuc Automation North America, Inc. Method for converting a programmable logic controller hardware configuration and corresponding control program for use on a first programmable logic controller to use on a second programmable logic controller
US5555201A (en) 1990-04-06 1996-09-10 Lsi Logic Corporation Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including interactive system for hierarchical display of control and dataflow information
EP0463721A3 (en) 1990-04-30 1993-06-16 Gennum Corporation Digital signal processing device
WO1991017507A1 (en) 1990-05-07 1991-11-14 Mitsubishi Denki Kabushiki Kaisha Parallel data processing system
US5198705A (en) 1990-05-11 1993-03-30 Actel Corporation Logic module with configurable combinational and sequential blocks
US5483620A (en) 1990-05-22 1996-01-09 International Business Machines Corp. Learning machine synapse processor system apparatus
US5157785A (en) * 1990-05-29 1992-10-20 Wavetracer, Inc. Process cell for an n-dimensional processor array having a single input element with 2n data inputs, memory, and full function arithmetic logic unit
US5193202A (en) * 1990-05-29 1993-03-09 Wavetracer, Inc. Processor array with relocated operand physical address generator capable of data transfer to distant physical processor for each virtual processor while simulating dimensionally larger array processor
US5111079A (en) 1990-06-29 1992-05-05 Sgs-Thomson Microelectronics, Inc. Power reduction circuit for programmable logic device
CA2045773A1 (en) 1990-06-29 1991-12-30 Compaq Computer Corporation Byte-compare operation for high-performance processor
SE9002558D0 (sv) 1990-08-02 1990-08-02 Carlstedt Elektronik Ab Processor
DE4129614C2 (de) 1990-09-07 2002-03-21 Hitachi Ltd System und Verfahren zur Datenverarbeitung
US5274593A (en) * 1990-09-28 1993-12-28 Intergraph Corporation High speed redundant rows and columns for semiconductor memories
US5076482A (en) 1990-10-05 1991-12-31 The Fletcher Terry Company Pneumatic point driver
US5144166A (en) 1990-11-02 1992-09-01 Concurrent Logic, Inc. Programmable logic cell and array
US5734921A (en) 1990-11-13 1998-03-31 International Business Machines Corporation Advanced parallel array processor computer package
US5588152A (en) 1990-11-13 1996-12-24 International Business Machines Corporation Advanced parallel processor including advanced support hardware
US5617577A (en) 1990-11-13 1997-04-01 International Business Machines Corporation Advanced parallel array processor I/O connection
US5590345A (en) 1990-11-13 1996-12-31 International Business Machines Corporation Advanced parallel array processor(APAP)
US5713037A (en) 1990-11-13 1998-01-27 International Business Machines Corporation Slide bus communication functions for SIMD/MIMD array processor
US5794059A (en) 1990-11-13 1998-08-11 International Business Machines Corporation N-dimensional modified hypercube
US5625836A (en) 1990-11-13 1997-04-29 International Business Machines Corporation SIMD/MIMD processing memory element (PME)
US5765011A (en) 1990-11-13 1998-06-09 International Business Machines Corporation Parallel processing system having a synchronous SIMD processing with processing elements emulating SIMD operation using individual instruction streams
EP0485690B1 (de) 1990-11-13 1999-05-26 International Business Machines Corporation Paralleles Assoziativprozessor-System
CA2051222C (en) 1990-11-30 1998-05-05 Pradeep S. Sindhu Consistent packet switched memory bus for shared memory multiprocessors
US5613128A (en) 1990-12-21 1997-03-18 Intel Corporation Programmable multi-processor interrupt controller system with a processor integrated local interrupt controller
US5276836A (en) 1991-01-10 1994-01-04 Hitachi, Ltd. Data processing device with common memory connecting mechanism
US5301284A (en) 1991-01-16 1994-04-05 Walker-Estes Corporation Mixed-resolution, N-dimensional object space method and apparatus
US5301344A (en) 1991-01-29 1994-04-05 Analogic Corporation Multibus sequential processor to perform in parallel a plurality of reconfigurable logic operations on a plurality of data sets
JP2867717B2 (ja) 1991-02-01 1999-03-10 日本電気株式会社 マイクロコンピュータ
US5212716A (en) 1991-02-05 1993-05-18 International Business Machines Corporation Data edge phase sorting circuits
US5218302A (en) 1991-02-06 1993-06-08 Sun Electric Corporation Interface for coupling an analyzer to a distributorless ignition system
EP0499695B1 (de) 1991-02-22 1996-05-01 Siemens Aktiengesellschaft Speicherprogrammierbare Steuerung
JPH04290155A (ja) 1991-03-19 1992-10-14 Fujitsu Ltd 並列データ処理方式
JPH04293151A (ja) 1991-03-20 1992-10-16 Fujitsu Ltd 並列データ処理方式
US5214652A (en) * 1991-03-26 1993-05-25 International Business Machines Corporation Alternate processor continuation of task of failed processor
US5617547A (en) 1991-03-29 1997-04-01 International Business Machines Corporation Switch network extension of bus architecture
WO1992018935A1 (en) 1991-04-09 1992-10-29 Fujitsu Limited Data processor and data processing method
JPH04328657A (ja) * 1991-04-30 1992-11-17 Toshiba Corp キャッシュメモリ
US5551033A (en) * 1991-05-17 1996-08-27 Zenith Data Systems Corporation Apparatus for maintaining one interrupt mask register in conformity with another in a manner invisible to an executing program
JPH06507990A (ja) 1991-05-24 1994-09-08 ブリティッシュ・テクノロジー・グループ・ユーエスエイ・インコーポレーテッド コンピュータのための最適化コンパイラ
US5659797A (en) 1991-06-24 1997-08-19 U.S. Philips Corporation Sparc RISC based computer system including a single chip processor with memory management and DMA units coupled to a DRAM interface
JP3259969B2 (ja) 1991-07-09 2002-02-25 株式会社東芝 キャッシュメモリ制御装置
US5347639A (en) 1991-07-15 1994-09-13 International Business Machines Corporation Self-parallelizing computer system and method
US5317209A (en) 1991-08-29 1994-05-31 National Semiconductor Corporation Dynamic three-state bussing capability in a configurable logic array
US5581731A (en) 1991-08-30 1996-12-03 King; Edward C. Method and apparatus for managing video data for faster access by selectively caching video data
US5550782A (en) 1991-09-03 1996-08-27 Altera Corporation Programmable logic array integrated circuits
US5633830A (en) 1995-11-08 1997-05-27 Altera Corporation Random access memory block circuitry for programmable logic array integrated circuit devices
US5260610A (en) 1991-09-03 1993-11-09 Altera Corporation Programmable logic element interconnections for programmable logic array integrated circuits
FR2681791B1 (fr) * 1991-09-27 1994-05-06 Salomon Sa Dispositif d'amortissement des vibrations pour club de golf.
CA2073516A1 (en) 1991-11-27 1993-05-28 Peter Michael Kogge Dynamic multi-mode parallel processor array architecture computer system
WO1993011503A1 (en) 1991-12-06 1993-06-10 Norman Richard S Massively-parallel direct output processor array
US5208491A (en) 1992-01-07 1993-05-04 Washington Research Foundation Field programmable gate array
FR2686175B1 (fr) 1992-01-14 1996-12-20 Andre Thepaut Systeme de traitement de donnees multiprocesseur.
EP0554820B1 (de) * 1992-02-03 1998-07-08 Lanxide Technology Company, Lp Verfahren zur Herstellung von keramischen Blättern
US5412795A (en) 1992-02-25 1995-05-02 Micral, Inc. State machine having a variable timing mechanism for varying the duration of logical output states of the state machine based on variation in the clock frequency
JP2791243B2 (ja) 1992-03-13 1998-08-27 株式会社東芝 階層間同期化システムおよびこれを用いた大規模集積回路
US5452401A (en) 1992-03-31 1995-09-19 Seiko Epson Corporation Selective power-down for high performance CPU/system
JP2647327B2 (ja) 1992-04-06 1997-08-27 インターナショナル・ビジネス・マシーンズ・コーポレイション 大規模並列コンピューティング・システム装置
US5493663A (en) 1992-04-22 1996-02-20 International Business Machines Corporation Method and apparatus for predetermining pages for swapping from physical memory in accordance with the number of accesses
JP2572522B2 (ja) 1992-05-12 1997-01-16 インターナショナル・ビジネス・マシーンズ・コーポレイション コンピューティング装置
US5611049A (en) * 1992-06-03 1997-03-11 Pitts; William M. System for accessing distributed data cache channel at each network node to pass requests and data
WO1993024895A2 (en) 1992-06-04 1993-12-09 Xilinx, Inc. Timing driven method for laying out a user's circuit onto a programmable integrated circuit device
DE4221278C2 (de) 1992-06-29 1996-02-29 Martin Vorbach Busgekoppeltes Mehrrechnersystem
US5475803A (en) 1992-07-10 1995-12-12 Lsi Logic Corporation Method for 2-D affine transformation of images
JP3032382B2 (ja) 1992-07-13 2000-04-17 シャープ株式会社 デジタル信号のサンプリング周波数変換装置
US5365125A (en) 1992-07-23 1994-11-15 Xilinx, Inc. Logic cell for field programmable gate array having optional internal feedback and optional cascade
US5386154A (en) * 1992-07-23 1995-01-31 Xilinx, Inc. Compact logic cell for field programmable gate array chip
US5590348A (en) 1992-07-28 1996-12-31 International Business Machines Corporation Status predictor for combined shifter-rotate/merge unit
US5802290A (en) 1992-07-29 1998-09-01 Virtual Computer Corporation Computer network of distributed virtual computers which are EAC reconfigurable in response to instruction to be executed
US5581778A (en) * 1992-08-05 1996-12-03 David Sarnoff Researach Center Advanced massively parallel computer using a field of the instruction to selectively enable the profiling counter to increase its value in response to the system clock
ATE194247T1 (de) 1992-09-03 2000-07-15 Sony Corp Datenaufzeichnungsgerät und -verfahren
US5572710A (en) 1992-09-11 1996-11-05 Kabushiki Kaisha Toshiba High speed logic simulation system using time division emulation suitable for large scale logic circuits
US5425036A (en) 1992-09-18 1995-06-13 Quickturn Design Systems, Inc. Method and apparatus for debugging reconfigurable emulation systems
JPH06180653A (ja) * 1992-10-02 1994-06-28 Hudson Soft Co Ltd 割り込み処理方法および装置
US5497498A (en) 1992-11-05 1996-03-05 Giga Operations Corporation Video processing module using a second programmable logic device which reconfigures a first programmable logic device for data transformation
US5857109A (en) * 1992-11-05 1999-01-05 Giga Operations Corporation Programmable logic device for real time video processing
GB9223226D0 (en) 1992-11-05 1992-12-16 Algotronix Ltd Improved configurable cellular array (cal ii)
US5392437A (en) 1992-11-06 1995-02-21 Intel Corporation Method and apparatus for independently stopping and restarting functional units
US5361373A (en) 1992-12-11 1994-11-01 Gilson Kent L Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor
US5311079A (en) 1992-12-17 1994-05-10 Ditlow Gary S Low power, high performance PLA
US6002268A (en) * 1993-01-08 1999-12-14 Dynachip Corporation FPGA with conductors segmented by active repeaters
US5428526A (en) 1993-02-03 1995-06-27 Flood; Mark A. Programmable controller with time periodic communication
US5386518A (en) * 1993-02-12 1995-01-31 Hughes Aircraft Company Reconfigurable computer interface and method
GB9303084D0 (en) 1993-02-16 1993-03-31 Inmos Ltd Programmable logic circuit
JPH06276086A (ja) 1993-03-18 1994-09-30 Fuji Xerox Co Ltd フィールドプログラマブルゲートアレイ
US5548773A (en) 1993-03-30 1996-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Digital parallel processor array for optimum path planning
US5596742A (en) 1993-04-02 1997-01-21 Massachusetts Institute Of Technology Virtual interconnections for reconfigurable logic systems
US5418953A (en) 1993-04-12 1995-05-23 Loral/Rohm Mil-Spec Corp. Method for automated deployment of a software program onto a multi-processor architecture
US5473266A (en) 1993-04-19 1995-12-05 Altera Corporation Programmable logic device having fast programmable logic array blocks and a central global interconnect array
AU6774894A (en) 1993-04-26 1994-11-21 Comdisco Systems, Inc. Method for scheduling synchronous data flow graphs
DE4416881C2 (de) 1993-05-13 1998-03-19 Pact Inf Tech Gmbh Verfahren zum Betrieb einer Datenverarbeitungseinrichtung
US5435000A (en) 1993-05-19 1995-07-18 Bull Hn Information Systems Inc. Central processing unit using dual basic processing units and combined result bus
US5349193A (en) 1993-05-20 1994-09-20 Princeton Gamma Tech, Inc. Highly sensitive nuclear spectrometer apparatus and method
IT1260848B (it) 1993-06-11 1996-04-23 Finmeccanica Spa Sistema a multiprocessore
US5444394A (en) 1993-07-08 1995-08-22 Altera Corporation PLD with selective inputs from local and global conductors
JPH0736858A (ja) 1993-07-21 1995-02-07 Hitachi Ltd 信号処理プロセッサ
US5581734A (en) 1993-08-02 1996-12-03 International Business Machines Corporation Multiprocessor system with shared cache and data input/output circuitry for transferring data amount greater than system bus capacity
CA2129882A1 (en) 1993-08-12 1995-02-13 Soheil Shams Dynamically reconfigurable interprocessor communication network for simd multiprocessors and apparatus implementing same
US5457644A (en) 1993-08-20 1995-10-10 Actel Corporation Field programmable digital signal processing array integrated circuit
GB2282244B (en) 1993-09-23 1998-01-14 Advanced Risc Mach Ltd Integrated circuit
US5440538A (en) * 1993-09-23 1995-08-08 Massachusetts Institute Of Technology Communication system with redundant links and data bit time multiplexing
US5502838A (en) 1994-04-28 1996-03-26 Consilium Overseas Limited Temperature management for integrated circuits
US6219688B1 (en) 1993-11-30 2001-04-17 Texas Instruments Incorporated Method, apparatus and system for sum of plural absolute differences
US5455525A (en) 1993-12-06 1995-10-03 Intelligent Logic Systems, Inc. Hierarchically-structured programmable logic array and system for interconnecting logic elements in the logic array
US6064819A (en) 1993-12-08 2000-05-16 Imec Control flow and memory management optimization
US5535406A (en) 1993-12-29 1996-07-09 Kolchinsky; Alexander Virtual processor module including a reconfigurable programmable matrix
US5400538A (en) * 1994-01-21 1995-03-28 Shannon; Bradley N. Firearm trigger lock
US5680583A (en) 1994-02-16 1997-10-21 Arkos Design, Inc. Method and apparatus for a trace buffer in an emulation system
US6408402B1 (en) * 1994-03-22 2002-06-18 Hyperchip Inc. Efficient direct replacement cell fault tolerant architecture
AU700629B2 (en) 1994-03-22 1999-01-07 Hyperchip Inc. Efficient direct cell replacement fault tolerant architecture supporting completely integrated systems with means for direct communication with system operator
US5561738A (en) 1994-03-25 1996-10-01 Motorola, Inc. Data processor for executing a fuzzy logic operation and method therefor
US5574927A (en) 1994-03-25 1996-11-12 International Meta Systems, Inc. RISC architecture computer configured for emulation of the instruction set of a target computer
US5761484A (en) 1994-04-01 1998-06-02 Massachusetts Institute Of Technology Virtual interconnections for reconfigurable logic systems
US5430687A (en) 1994-04-01 1995-07-04 Xilinx, Inc. Programmable logic device including a parallel input device for loading memory cells
US5504439A (en) 1994-04-01 1996-04-02 Xilinx, Inc. I/O interface cell for use with optional pad
US5781756A (en) 1994-04-01 1998-07-14 Xilinx, Inc. Programmable logic device with partially configurable memory cells and a method for configuration
US5896551A (en) * 1994-04-15 1999-04-20 Micron Technology, Inc. Initializing and reprogramming circuitry for state independent memory array burst operations control
US5426378A (en) 1994-04-20 1995-06-20 Xilinx, Inc. Programmable logic device which stores more than one configuration and means for switching configurations
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
JP2671804B2 (ja) 1994-05-27 1997-11-05 日本電気株式会社 階層型資源管理方法
US5532693A (en) 1994-06-13 1996-07-02 Advanced Hardware Architectures Adaptive data compression system with systolic string matching logic
EP0690378A1 (de) 1994-06-30 1996-01-03 Tandem Computers Incorporated Werkzeug und Verfahren zur Fehlerdiagnose und -korrektur in einem Rechnerprogramm
JP3308770B2 (ja) 1994-07-22 2002-07-29 三菱電機株式会社 情報処理装置および情報処理装置における計算方法
US5600845A (en) * 1994-07-27 1997-02-04 Metalithic Systems Incorporated Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor
US6217234B1 (en) 1994-07-29 2001-04-17 Discovision Associates Apparatus and method for processing data with an arithmetic unit
JP3365581B2 (ja) * 1994-07-29 2003-01-14 富士通株式会社 自己修復機能付き情報処理装置
US5574930A (en) 1994-08-12 1996-11-12 University Of Hawaii Computer system and method using functional memory
US5513366A (en) 1994-09-28 1996-04-30 International Business Machines Corporation Method and system for dynamically reconfiguring a register file in a vector processor
US5619720A (en) 1994-10-04 1997-04-08 Analog Devices, Inc. Digital signal processor having link ports for point-to-point communication
US5450022A (en) 1994-10-07 1995-09-12 Xilinx Inc. Structure and method for configuration of a field programmable gate array
EP0707269A1 (de) 1994-10-11 1996-04-17 International Business Machines Corporation Cachespeicherkohärenznetzwerk für Multiprozessor-Datenverarbeitungssystem
US5530946A (en) * 1994-10-28 1996-06-25 Dell Usa, L.P. Processor failure detection and recovery circuit in a dual processor computer system and method of operation thereof
US5815726A (en) 1994-11-04 1998-09-29 Altera Corporation Coarse-grained look-up table architecture
JPH08137824A (ja) * 1994-11-15 1996-05-31 Mitsubishi Semiconductor Software Kk セルフテスト機能内蔵シングルチップマイコン
US6154826A (en) 1994-11-16 2000-11-28 University Of Virginia Patent Foundation Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order
US5584013A (en) 1994-12-09 1996-12-10 International Business Machines Corporation Hierarchical cache arrangement wherein the replacement of an LRU entry in a second level cache is prevented when the cache entry is the only inclusive entry in the first level cache
EP0721157A1 (de) * 1994-12-12 1996-07-10 Advanced Micro Devices, Inc. Mikroprozessor mit auswählbarer Taktfrequenz
US5537580A (en) 1994-12-21 1996-07-16 Vlsi Technology, Inc. Integrated circuit fabrication using state machine extraction from behavioral hardware description language
US5603005A (en) * 1994-12-27 1997-02-11 Unisys Corporation Cache coherency scheme for XBAR storage structure with delayed invalidates until associated write request is executed
JP3598139B2 (ja) 1994-12-28 2004-12-08 株式会社日立製作所 データ処理装置
US5682491A (en) 1994-12-29 1997-10-28 International Business Machines Corporation Selective processing and routing of results among processors controlled by decoding instructions using mask value derived from instruction tag and processor identifier
US6128720A (en) 1994-12-29 2000-10-03 International Business Machines Corporation Distributed processing array with component processors performing customized interpretation of instructions
US5778237A (en) 1995-01-10 1998-07-07 Hitachi, Ltd. Data processor and single-chip microcomputer with changing clock frequency and operating voltage
US5696791A (en) 1995-01-17 1997-12-09 Vtech Industries, Inc. Apparatus and method for decoding a sequence of digitally encoded data
US5493239A (en) 1995-01-31 1996-02-20 Motorola, Inc. Circuit and method of configuring a field programmable gate array
US5532957A (en) 1995-01-31 1996-07-02 Texas Instruments Incorporated Field reconfigurable logic/memory array
US5742180A (en) 1995-02-10 1998-04-21 Massachusetts Institute Of Technology Dynamically programmable gate array with multiple contexts
US6052773A (en) 1995-02-10 2000-04-18 Massachusetts Institute Of Technology DPGA-coupled microprocessors
US5659785A (en) 1995-02-10 1997-08-19 International Business Machines Corporation Array processor communication architecture with broadcast processor instructions
EP0809825A1 (de) 1995-02-14 1997-12-03 Vlsi Technology, Inc. Verfahren und vorrichtung zur reduzierung des leistungsverbrauches in digitalen elektronischen schaltungen
US5537057A (en) 1995-02-14 1996-07-16 Altera Corporation Programmable logic array device with grouped logic regions and three types of conductors
DE69632424T2 (de) 1995-02-17 2005-05-12 Kabushiki Kaisha Toshiba, Kawasaki Server für kontinuierliche Daten und Datentransferschema für mehrfache gleichzeitige Datenzugriffe
US5892961A (en) 1995-02-17 1999-04-06 Xilinx, Inc. Field programmable gate array having programming instructions in the configuration bitstream
US5675743A (en) 1995-02-22 1997-10-07 Callisto Media Systems Inc. Multi-media server
US5570040A (en) 1995-03-22 1996-10-29 Altera Corporation Programmable logic array integrated circuit incorporating a first-in first-out memory
US5757207A (en) 1995-03-22 1998-05-26 Altera Corporation Programmable logic array integrated circuit incorporating a first-in first-out memory
US5748979A (en) 1995-04-05 1998-05-05 Xilinx Inc Reprogrammable instruction set accelerator using a plurality of programmable execution units and an instruction page table
US5752035A (en) 1995-04-05 1998-05-12 Xilinx, Inc. Method for compiling and executing programs for reprogrammable instruction set accelerator
JP3313007B2 (ja) * 1995-04-14 2002-08-12 三菱電機株式会社 マイクロコンピュータ
US5794062A (en) 1995-04-17 1998-08-11 Ricoh Company Ltd. System and method for dynamically reconfigurable computing using a processing unit having changeable internal hardware organization
US5933642A (en) 1995-04-17 1999-08-03 Ricoh Corporation Compiling system and method for reconfigurable computing
US6077315A (en) 1995-04-17 2000-06-20 Ricoh Company Ltd. Compiling system and method for partially reconfigurable computing
WO1996034346A1 (en) 1995-04-28 1996-10-31 Xilinx, Inc. Microprocessor with distributed registers accessible by programmable logic device
GB9508931D0 (en) * 1995-05-02 1995-06-21 Xilinx Inc Programmable switch for FPGA input/output signals
US5701091A (en) 1995-05-02 1997-12-23 Xilinx, Inc. Routing resources for hierarchical FPGA
US5600597A (en) * 1995-05-02 1997-02-04 Xilinx, Inc. Register protection structure for FPGA
US5541530A (en) 1995-05-17 1996-07-30 Altera Corporation Programmable logic array integrated circuits with blocks of logic regions grouped into super-blocks
US5649179A (en) 1995-05-19 1997-07-15 Motorola, Inc. Dynamic instruction allocation for a SIMD processor
US5821774A (en) 1995-05-26 1998-10-13 Xilinx, Inc. Structure and method for arithmetic function implementation in an EPLD having high speed product term allocation structure
JPH08328941A (ja) * 1995-05-31 1996-12-13 Nec Corp メモリアクセス制御回路
JP3677315B2 (ja) * 1995-06-01 2005-07-27 シャープ株式会社 データ駆動型情報処理装置
US5652529A (en) 1995-06-02 1997-07-29 International Business Machines Corporation Programmable array clock/reset resource
US5671432A (en) 1995-06-02 1997-09-23 International Business Machines Corporation Programmable array I/O-routing resource
US5646544A (en) 1995-06-05 1997-07-08 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
US5815715A (en) 1995-06-05 1998-09-29 Motorola, Inc. Method for designing a product having hardware and software components and product therefor
ZA965340B (en) 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US5889982A (en) * 1995-07-01 1999-03-30 Intel Corporation Method and apparatus for generating event handler vectors based on both operating mode and event type
US5559450A (en) 1995-07-27 1996-09-24 Lucent Technologies Inc. Field programmable gate array with multi-port RAM
US5978583A (en) 1995-08-07 1999-11-02 International Business Machines Corp. Method for resource control in parallel environments using program organization and run-time support
US5649176A (en) 1995-08-10 1997-07-15 Virtual Machine Works, Inc. Transition analysis and circuit resynthesis method and device for digital circuit modeling
US5996083A (en) 1995-08-11 1999-11-30 Hewlett-Packard Company Microprocessor having software controllable power consumption
GB2304438A (en) 1995-08-17 1997-03-19 Kenneth Austin Re-configurable application specific device
US5646545A (en) 1995-08-18 1997-07-08 Xilinx, Inc. Time multiplexed programmable logic device
US5583450A (en) 1995-08-18 1996-12-10 Xilinx, Inc. Sequencer for a time multiplexed programmable logic device
US5784313A (en) 1995-08-18 1998-07-21 Xilinx, Inc. Programmable logic device including configuration data or user data memory slices
US5778439A (en) 1995-08-18 1998-07-07 Xilinx, Inc. Programmable logic device with hierarchical confiquration and state storage
US5737565A (en) 1995-08-24 1998-04-07 International Business Machines Corporation System and method for diallocating stream from a stream buffer
US5737516A (en) 1995-08-30 1998-04-07 Motorola, Inc. Data processing system for performing a debug function and method therefor
US5734869A (en) 1995-09-06 1998-03-31 Chen; Duan-Ping High speed logic circuit simulator
US5595907A (en) 1995-09-08 1997-01-21 Becton, Dickinson And Company Reusable vented flask cap cover
US6430309B1 (en) 1995-09-15 2002-08-06 Monogen, Inc. Specimen preview and inspection system
US5745734A (en) 1995-09-29 1998-04-28 International Business Machines Corporation Method and system for programming a gate array using a compressed configuration bit stream
US5652894A (en) 1995-09-29 1997-07-29 Intel Corporation Method and apparatus for providing power saving modes to a pipelined processor
US5754827A (en) 1995-10-13 1998-05-19 Mentor Graphics Corporation Method and apparatus for performing fully visible tracing of an emulation
US5815004A (en) 1995-10-16 1998-09-29 Xilinx, Inc. Multi-buffered configurable logic block output lines in a field programmable gate array
US5642058A (en) 1995-10-16 1997-06-24 Xilinx , Inc. Periphery input/output interconnect structure
US5608342A (en) 1995-10-23 1997-03-04 Xilinx, Inc. Hierarchical programming of electrically configurable integrated circuits
US5675262A (en) 1995-10-26 1997-10-07 Xilinx, Inc. Fast carry-out scheme in a field programmable gate array
US5656950A (en) 1995-10-26 1997-08-12 Xilinx, Inc. Interconnect lines including tri-directional buffer circuits
US5943242A (en) 1995-11-17 1999-08-24 Pact Gmbh Dynamically reconfigurable data processing system
US5732209A (en) * 1995-11-29 1998-03-24 Exponential Technology, Inc. Self-testing multi-processor die with internal compare points
US5773994A (en) 1995-12-15 1998-06-30 Cypress Semiconductor Corp. Method and apparatus for implementing an internal tri-state bus within a programmable logic circuit
JPH09231788A (ja) 1995-12-19 1997-09-05 Fujitsu Ltd シフトレジスタ及びプログラマブル論理回路並びにプログラマブル論理回路システム
US7266725B2 (en) * 2001-09-03 2007-09-04 Pact Xpp Technologies Ag Method for debugging reconfigurable architectures
CA2166369C (en) 1995-12-29 2004-10-19 Robert J. Blainey Method and system for determining inter-compilation unit alias information
US5804986A (en) 1995-12-29 1998-09-08 Cypress Semiconductor Corp. Memory in a programmable logic device
JP3247043B2 (ja) * 1996-01-12 2002-01-15 株式会社日立製作所 内部信号で障害検出を行う情報処理システムおよび論理lsi
JP2795244B2 (ja) 1996-01-17 1998-09-10 日本電気株式会社 プログラムデバッグシステム
US5760602A (en) 1996-01-17 1998-06-02 Hewlett-Packard Company Time multiplexing a plurality of configuration settings of a programmable switch element in a FPGA
US5854918A (en) 1996-01-24 1998-12-29 Ricoh Company Ltd. Apparatus and method for self-timed algorithmic execution
US5898602A (en) * 1996-01-25 1999-04-27 Xilinx, Inc. Carry chain circuit with flexible carry function for implementing arithmetic and logical functions
US5936424A (en) 1996-02-02 1999-08-10 Xilinx, Inc. High speed bus with tree structure for selecting bus driver
US5635851A (en) 1996-02-02 1997-06-03 Xilinx, Inc. Read and writable data bus particularly for programmable logic devices
US5727229A (en) 1996-02-05 1998-03-10 Motorola, Inc. Method and apparatus for moving data in a parallel processor
US5754459A (en) 1996-02-08 1998-05-19 Xilinx, Inc. Multiplier circuit design for a programmable logic device
KR0165515B1 (ko) 1996-02-17 1999-01-15 김광호 그래픽 데이터의 선입선출기 및 선입선출 방법
GB9604496D0 (en) 1996-03-01 1996-05-01 Xilinx Inc Embedded memory for field programmable gate array
US6020758A (en) * 1996-03-11 2000-02-01 Altera Corporation Partially reconfigurable programmable logic device
US5841973A (en) 1996-03-13 1998-11-24 Cray Research, Inc. Messaging in distributed memory multiprocessing system having shell circuitry for atomic control of message storage queue's tail pointer structure in local memory
US6279077B1 (en) 1996-03-22 2001-08-21 Texas Instruments Incorporated Bus interface buffer control in a microprocessor
US6311265B1 (en) 1996-03-25 2001-10-30 Torrent Systems, Inc. Apparatuses and methods for programming parallel computers
US6154049A (en) 1998-03-27 2000-11-28 Xilinx, Inc. Multiplier fabric for use in field programmable gate arrays
US5956518A (en) 1996-04-11 1999-09-21 Massachusetts Institute Of Technology Intermediate-grain reconfigurable processing device
US5687325A (en) 1996-04-19 1997-11-11 Chang; Web Application specific field programmable gate array
US6173434B1 (en) * 1996-04-22 2001-01-09 Brigham Young University Dynamically-configurable digital processor using method for relocating logic array modules
US5960200A (en) 1996-05-03 1999-09-28 I-Cube System to transition an enterprise to a distributed infrastructure
US5894565A (en) 1996-05-20 1999-04-13 Atmel Corporation Field programmable gate array with distributed RAM and increased cell utilization
US5784636A (en) 1996-05-28 1998-07-21 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
JP2000513523A (ja) * 1996-06-21 2000-10-10 オーガニック システムズ インコーポレイテッド プロセスの即時制御を行う動的に再構成可能なハードウェアシステム
US5892370A (en) * 1996-06-21 1999-04-06 Quicklogic Corporation Clock network for field programmable gate array
US6785826B1 (en) 1996-07-17 2004-08-31 International Business Machines Corporation Self power audit and control circuitry for microprocessor functional units
US6023742A (en) * 1996-07-18 2000-02-08 University Of Washington Reconfigurable computing architecture for providing pipelined data paths
US6023564A (en) 1996-07-19 2000-02-08 Xilinx, Inc. Data processing system using a flash reconfigurable logic device as a dynamic execution unit for a sequence of instructions
KR100280285B1 (ko) 1996-08-19 2001-02-01 윤종용 멀티미디어 신호에 적합한 멀티미디어 프로세서
US5838165A (en) 1996-08-21 1998-11-17 Chatter; Mukesh High performance self modifying on-the-fly alterable logic FPGA, architecture and method
US5933023A (en) 1996-09-03 1999-08-03 Xilinx, Inc. FPGA architecture having RAM blocks with programmable word length and width and dedicated address and data lines
US6624658B2 (en) 1999-02-04 2003-09-23 Advantage Logic, Inc. Method and apparatus for universal program controlled bus architecture
US5859544A (en) * 1996-09-05 1999-01-12 Altera Corporation Dynamic configurable elements for programmable logic devices
US6049866A (en) 1996-09-06 2000-04-11 Silicon Graphics, Inc. Method and system for an efficient user mode cache manipulation using a simulated instruction
JP3934710B2 (ja) 1996-09-13 2007-06-20 株式会社ルネサステクノロジ マイクロプロセッサ
US5828858A (en) 1996-09-16 1998-10-27 Virginia Tech Intellectual Properties, Inc. Worm-hole run-time reconfigurable processor field programmable gate array (FPGA)
US6178494B1 (en) * 1996-09-23 2001-01-23 Virtual Computer Corporation Modular, hybrid processor and method for producing a modular, hybrid processor
US5694602A (en) 1996-10-01 1997-12-02 The United States Of America As Represented By The Secretary Of The Air Force Weighted system and method for spatial allocation of a parallel load
US5832288A (en) 1996-10-18 1998-11-03 Samsung Electronics Co., Ltd. Element-select mechanism for a vector processor
US5901279A (en) * 1996-10-18 1999-05-04 Hughes Electronics Corporation Connection of spares between multiple programmable devices
US5892962A (en) 1996-11-12 1999-04-06 Lucent Technologies Inc. FPGA-based processor
US5895487A (en) 1996-11-13 1999-04-20 International Business Machines Corporation Integrated processing and L2 DRAM cache
US5844422A (en) 1996-11-13 1998-12-01 Xilinx, Inc. State saving and restoration in reprogrammable FPGAs
US5860119A (en) * 1996-11-25 1999-01-12 Vlsi Technology, Inc. Data-packet fifo buffer system with end-of-packet flags
US6005410A (en) 1996-12-05 1999-12-21 International Business Machines Corporation Interconnect structure between heterogeneous core regions in a programmable array
DE19651075A1 (de) * 1996-12-09 1998-06-10 Pact Inf Tech Gmbh Einheit zur Verarbeitung von numerischen und logischen Operationen, zum Einsatz in Prozessoren (CPU's), Mehrrechnersystemen, Datenflußprozessoren (DFP's), digitalen Signal Prozessoren (DSP's) oder dergleichen
US5913925A (en) 1996-12-16 1999-06-22 International Business Machines Corporation Method and system for constructing a program including out-of-order threads and processor and method for executing threads out-of-order
DE19654593A1 (de) 1996-12-20 1998-07-02 Pact Inf Tech Gmbh Umkonfigurierungs-Verfahren für programmierbare Bausteine zur Laufzeit
DE19654595A1 (de) * 1996-12-20 1998-07-02 Pact Inf Tech Gmbh I0- und Speicherbussystem für DFPs sowie Bausteinen mit zwei- oder mehrdimensionaler programmierbaren Zellstrukturen
US6338106B1 (en) 1996-12-20 2002-01-08 Pact Gmbh I/O and memory bus system for DFPS and units with two or multi-dimensional programmable cell architectures
DE19654846A1 (de) 1996-12-27 1998-07-09 Pact Inf Tech Gmbh Verfahren zum selbständigen dynamischen Umladen von Datenflußprozessoren (DFPs) sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen (FPGAs, DPGAs, o. dgl.)
EP1329816B1 (de) 1996-12-27 2011-06-22 Richter, Thomas Verfahren zum selbständigen dynamischen Umladen von Datenflussprozessoren (DFPs) sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen (FPGAs, DPGAs, o.dgl.)
US6427156B1 (en) 1997-01-21 2002-07-30 Xilinx, Inc. Configurable logic block with AND gate for efficient multiplication in FPGAS
EP0858167A1 (de) 1997-01-29 1998-08-12 Hewlett-Packard Company Feldprogrammierbarer Prozessor
EP0858168A1 (de) 1997-01-29 1998-08-12 Hewlett-Packard Company Feldprogrammierbarer Gatterprozessor
DE19704044A1 (de) * 1997-02-04 1998-08-13 Pact Inf Tech Gmbh Verfahren zur automatischen Adressgenerierung von Bausteinen innerhalb Clustern aus einer Vielzahl dieser Bausteine
US5865239A (en) * 1997-02-05 1999-02-02 Micropump, Inc. Method for making herringbone gears
US6055619A (en) 1997-02-07 2000-04-25 Cirrus Logic, Inc. Circuits, system, and methods for processing multiple data streams
DE19704728A1 (de) 1997-02-08 1998-08-13 Pact Inf Tech Gmbh Verfahren zur Selbstsynchronisation von konfigurierbaren Elementen eines programmierbaren Bausteines
US6542998B1 (en) * 1997-02-08 2003-04-01 Pact Gmbh Method of self-synchronization of configurable elements of a programmable module
DE19704742A1 (de) 1997-02-11 1998-09-24 Pact Inf Tech Gmbh Internes Bussystem für DFPs, sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstrukturen, zur Bewältigung großer Datenmengen mit hohem Vernetzungsaufwand
US6150837A (en) 1997-02-28 2000-11-21 Actel Corporation Enhanced field programmable gate array
WO1998038958A1 (en) 1997-03-05 1998-09-11 Massachusetts Institute Of Technology A reconfigurable footprint mechanism for omnidirectional vehicles
US5857097A (en) * 1997-03-10 1999-01-05 Digital Equipment Corporation Method for identifying reasons for dynamic stall cycles during the execution of a program
US5884075A (en) * 1997-03-10 1999-03-16 Compaq Computer Corporation Conflict resolution using self-contained virtual devices
US6125408A (en) 1997-03-10 2000-09-26 Compaq Computer Corporation Resource type prioritization in generating a device configuration
GB2323188B (en) 1997-03-14 2002-02-06 Nokia Mobile Phones Ltd Enabling and disabling clocking signals to elements
US6085317A (en) 1997-08-15 2000-07-04 Altera Corporation Reconfigurable computer architecture using programmable logic devices
US6507898B1 (en) * 1997-04-30 2003-01-14 Canon Kabushiki Kaisha Reconfigurable data cache controller
AUPO647997A0 (en) 1997-04-30 1997-05-22 Canon Information Systems Research Australia Pty Ltd Memory controller architecture
US6389379B1 (en) 1997-05-02 2002-05-14 Axis Systems, Inc. Converification system and method
US6321366B1 (en) 1997-05-02 2001-11-20 Axis Systems, Inc. Timing-insensitive glitch-free logic system and method
US6035371A (en) 1997-05-28 2000-03-07 3Com Corporation Method and apparatus for addressing a static random access memory device based on signals for addressing a dynamic memory access device
US6421817B1 (en) 1997-05-29 2002-07-16 Xilinx, Inc. System and method of computation in a programmable logic device using virtual instructions
US6047115A (en) * 1997-05-29 2000-04-04 Xilinx, Inc. Method for configuring FPGA memory planes for virtual hardware computation
US6339840B1 (en) 1997-06-02 2002-01-15 Iowa State University Research Foundation, Inc. Apparatus and method for parallelizing legacy computer code
US6011407A (en) * 1997-06-13 2000-01-04 Xilinx, Inc. Field programmable gate array with dedicated computer bus interface and method for configuring both
US5996048A (en) 1997-06-20 1999-11-30 Sun Microsystems, Inc. Inclusion vector architecture for a level two cache
US6058266A (en) 1997-06-24 2000-05-02 International Business Machines Corporation Method of, system for, and computer program product for performing weighted loop fusion by an optimizing compiler
US5838988A (en) 1997-06-25 1998-11-17 Sun Microsystems, Inc. Computer product for precise architectural update in an out-of-order processor
US6240502B1 (en) 1997-06-25 2001-05-29 Sun Microsystems, Inc. Apparatus for dynamically reconfiguring a processor
US5966534A (en) 1997-06-27 1999-10-12 Cooke; Laurence H. Method for compiling high level programming languages into an integrated processor with reconfigurable logic
US5970254A (en) 1997-06-27 1999-10-19 Cooke; Laurence H. Integrated processor and programmable data path chip for reconfigurable computing
US6072348A (en) 1997-07-09 2000-06-06 Xilinx, Inc. Programmable power reduction in a clock-distribution circuit
US6437441B1 (en) 1997-07-10 2002-08-20 Kawasaki Microelectronics, Inc. Wiring structure of a semiconductor integrated circuit and a method of forming the wiring structure
US6020760A (en) * 1997-07-16 2000-02-01 Altera Corporation I/O buffer circuit with pin multiplexing
US6282701B1 (en) 1997-07-31 2001-08-28 Mutek Solutions, Ltd. System and method for monitoring and analyzing the execution of computer programs
US6170051B1 (en) 1997-08-01 2001-01-02 Micron Technology, Inc. Apparatus and method for program level parallelism in a VLIW processor
US6026478A (en) * 1997-08-01 2000-02-15 Micron Technology, Inc. Split embedded DRAM processor
US6078736A (en) 1997-08-28 2000-06-20 Xilinx, Inc. Method of designing FPGAs for dynamically reconfigurable computing
US6038656A (en) * 1997-09-12 2000-03-14 California Institute Of Technology Pipelined completion for asynchronous communication
JP3612186B2 (ja) 1997-09-19 2005-01-19 株式会社ルネサステクノロジ データ処理装置
US6539415B1 (en) 1997-09-24 2003-03-25 Sony Corporation Method and apparatus for the allocation of audio/video tasks in a network system
US5966143A (en) 1997-10-14 1999-10-12 Motorola, Inc. Data allocation into multiple memories for concurrent access
SG82587A1 (en) * 1997-10-21 2001-08-21 Sony Corp Recording apparatus, recording method, playback apparatus, playback method, recording/playback apparatus, recording/playback method, presentation medium and recording medium
US6212544B1 (en) 1997-10-23 2001-04-03 International Business Machines Corporation Altering thread priorities in a multithreaded processor
JP4128251B2 (ja) 1997-10-23 2008-07-30 富士通株式会社 配線密度予測方法およびセル配置装置
US6076157A (en) 1997-10-23 2000-06-13 International Business Machines Corporation Method and apparatus to force a thread switch in a multithreaded processor
US6247147B1 (en) 1997-10-27 2001-06-12 Altera Corporation Enhanced embedded logic analyzer
US6122719A (en) 1997-10-31 2000-09-19 Silicon Spice Method and apparatus for retiming in a network of multiple context processing elements
US6108760A (en) 1997-10-31 2000-08-22 Silicon Spice Method and apparatus for position independent reconfiguration in a network of multiple context processing elements
US5915123A (en) 1997-10-31 1999-06-22 Silicon Spice Method and apparatus for controlling configuration memory contexts of processing elements in a network of multiple context processing elements
US6127908A (en) 1997-11-17 2000-10-03 Massachusetts Institute Of Technology Microelectro-mechanical system actuator device and reconfigurable circuits utilizing same
JPH11147335A (ja) * 1997-11-18 1999-06-02 Fuji Xerox Co Ltd 描画処理装置
JP4197755B2 (ja) 1997-11-19 2008-12-17 富士通株式会社 信号伝送システム、該信号伝送システムのレシーバ回路、および、該信号伝送システムが適用される半導体記憶装置
US6212650B1 (en) 1997-11-24 2001-04-03 Xilinx, Inc. Interactive dubug tool for programmable circuits
US6075935A (en) 1997-12-01 2000-06-13 Improv Systems, Inc. Method of generating application specific integrated circuits using a programmable hardware architecture
US6091263A (en) 1997-12-12 2000-07-18 Xilinx, Inc. Rapidly reconfigurable FPGA having a multiple region architecture with reconfiguration caches useable as data RAM
DE69827589T2 (de) 1997-12-17 2005-11-03 Elixent Ltd. Konfigurierbare Verarbeitungsanordnung und Verfahren zur Benutzung dieser Anordnung, um eine Zentraleinheit aufzubauen
EP0926594B1 (de) 1997-12-17 2007-05-23 Hewlett-Packard Company, A Delaware Corporation Erst- und Zweitprozessoren verwendendes Verfahren
DE69841256D1 (de) * 1997-12-17 2009-12-10 Panasonic Corp Befehlsmaskierung um Befehlsströme einem Prozessor zuzuleiten
JP2003526129A (ja) 1997-12-17 2003-09-02 エリクセントリミティド プログラマブル・アレイにおける乗算器の実現
DE19861088A1 (de) 1997-12-22 2000-02-10 Pact Inf Tech Gmbh Verfahren zur Reparatur von integrierten Schaltkreisen
US6260114B1 (en) 1997-12-30 2001-07-10 Mcmz Technology Innovations, Llc Computer cache memory windowing
US6049222A (en) * 1997-12-30 2000-04-11 Xilinx, Inc Configuring an FPGA using embedded memory
US6172520B1 (en) * 1997-12-30 2001-01-09 Xilinx, Inc. FPGA system with user-programmable configuration ports and method for reconfiguring the FPGA
US6105106A (en) 1997-12-31 2000-08-15 Micron Technology, Inc. Computer system, memory device and shift register including a balanced switching circuit with series connected transfer gates which are selectively clocked for fast switching times
US6301706B1 (en) 1997-12-31 2001-10-09 Elbrus International Limited Compiler method and apparatus for elimination of redundant speculative computations from innermost loops
US6216223B1 (en) 1998-01-12 2001-04-10 Billions Of Operations Per Second, Inc. Methods and apparatus to dynamically reconfigure the instruction pipeline of an indirect very long instruction word scalable processor
US6034538A (en) 1998-01-21 2000-03-07 Lucent Technologies Inc. Virtual logic system for reconfigurable hardware
US6230307B1 (en) 1998-01-26 2001-05-08 Xilinx, Inc. System and method for programming the hardware of field programmable gate arrays (FPGAs) and related reconfiguration resources as if they were software by creating hardware objects
AU2562899A (en) 1998-01-26 1999-08-09 Chameleon Systems, Inc. Reconfigurable logic for table lookup
DE19803593A1 (de) 1998-01-30 1999-08-12 Daimler Chrysler Ag Schaltvorrichtung für ein Zahnräderwechselgetriebe
EP0945788B1 (de) 1998-02-04 2004-08-04 Texas Instruments Inc. Datenverarbeitungssytem mit einem digitalen Signalprozessor und einem Koprozessor und Datenverarbeitungsverfahren
US6086628A (en) 1998-02-17 2000-07-11 Lucent Technologies Inc. Power-related hardware-software co-synthesis of heterogeneous distributed embedded systems
US7152027B2 (en) 1998-02-17 2006-12-19 National Instruments Corporation Reconfigurable test system
US6198304B1 (en) 1998-02-23 2001-03-06 Xilinx, Inc. Programmable logic device
US6096091A (en) 1998-02-24 2000-08-01 Advanced Micro Devices, Inc. Dynamically reconfigurable logic networks interconnected by fall-through FIFOs for flexible pipeline processing in a system-on-a-chip
DE19807872A1 (de) * 1998-02-25 1999-08-26 Pact Inf Tech Gmbh Verfahren zur Verwaltung von Konfigurationsdaten in Datenflußprozessoren sowie Bausteinen mit zwei- oder mehrdimensionalen programmierbaren Zellstruktur (FPGAs, DPGAs, o. dgl.
US6088800A (en) 1998-02-27 2000-07-11 Mosaid Technologies, Incorporated Encryption processor with shared memory interconnect
US6298043B1 (en) 1998-03-28 2001-10-02 Nortel Networks Limited Communication system architecture and a connection verification mechanism therefor
US6374286B1 (en) 1998-04-06 2002-04-16 Rockwell Collins, Inc. Real time processor capable of concurrently running multiple independent JAVA machines
US6456628B1 (en) 1998-04-17 2002-09-24 Intelect Communications, Inc. DSP intercommunication network
US6421808B1 (en) 1998-04-24 2002-07-16 Cadance Design Systems, Inc. Hardware design language for the design of integrated circuits
US6084429A (en) 1998-04-24 2000-07-04 Xilinx, Inc. PLD having a window pane architecture with segmented and staggered interconnect wiring between logic block arrays
US6052524A (en) 1998-05-14 2000-04-18 Software Development Systems, Inc. System and method for simulation of integrated hardware and software components
US6173419B1 (en) * 1998-05-14 2001-01-09 Advanced Technology Materials, Inc. Field programmable gate array (FPGA) emulator for debugging software
US6449283B1 (en) 1998-05-15 2002-09-10 Polytechnic University Methods and apparatus for providing a fast ring reservation arbitration
US5999990A (en) 1998-05-18 1999-12-07 Motorola, Inc. Communicator having reconfigurable resources
US6092174A (en) 1998-06-01 2000-07-18 Context, Inc. Dynamically reconfigurable distributed integrated circuit processor and method
US6298396B1 (en) 1998-06-01 2001-10-02 Advanced Micro Devices, Inc. System for loading a current buffer desciptor register with a value different from current value to cause a previously read buffer descriptor to be read again
JP3123977B2 (ja) 1998-06-04 2001-01-15 日本電気株式会社 プログラマブル機能ブロック
US6282627B1 (en) 1998-06-29 2001-08-28 Chameleon Systems, Inc. Integrated processor and programmable data path chip for reconfigurable computing
US6202182B1 (en) 1998-06-30 2001-03-13 Lucent Technologies Inc. Method and apparatus for testing field programmable gate arrays
EP0978944B1 (de) 1998-07-06 2002-01-02 Hewlett-Packard Company, A Delaware Corporation Verdrahtung von Zellen in logischen Feldern
WO2001006371A1 (en) 1998-07-21 2001-01-25 Seagate Technology Llc Improved memory system apparatus and method
EP0974898A3 (de) 1998-07-24 2008-12-24 Interuniversitair Microelektronica Centrum Vzw Verfahren zur Bestimmung einer speicherbandbreiteoptimierten Speicherorganisation von einer im wesentlichen digitalen Vorrichtung
US6137307A (en) 1998-08-04 2000-10-24 Xilinx, Inc. Structure and method for loading wide frames of data from a narrow input bus
US6289369B1 (en) 1998-08-25 2001-09-11 International Business Machines Corporation Affinity, locality, and load balancing in scheduling user program-level threads for execution by a computer system
US20020152060A1 (en) 1998-08-31 2002-10-17 Tseng Ping-Sheng Inter-chip communication system
JP2000076066A (ja) 1998-09-02 2000-03-14 Fujitsu Ltd 信号処理回路
US7100026B2 (en) 2001-05-30 2006-08-29 The Massachusetts Institute Of Technology System and method for performing efficient conditional vector operations for data parallel architectures involving both input and conditional vector values
US6205458B1 (en) 1998-09-21 2001-03-20 Rn2R, L.L.C. Adder and multiplier circuits employing logic gates having discrete, weighted inputs and methods of performing combinatorial operations therewith
JP3551353B2 (ja) * 1998-10-02 2004-08-04 株式会社日立製作所 データ再配置方法
US6215326B1 (en) 1998-11-18 2001-04-10 Altera Corporation Programmable logic device architecture with super-regions having logic regions and a memory region
EP1351154A2 (de) 1998-11-20 2003-10-08 Altera Corporation Rechnersystem mit rekonfigurierbarer programmierbarer Logik-Vorrichtung
US6977649B1 (en) 1998-11-23 2005-12-20 3Dlabs, Inc. Ltd 3D graphics rendering with selective read suspend
US6249756B1 (en) 1998-12-07 2001-06-19 Compaq Computer Corp. Hybrid flow control
US6826763B1 (en) 1998-12-11 2004-11-30 Microsoft Corporation Accelerating a distributed component architecture over a network using a direct marshaling
JP2000181566A (ja) 1998-12-14 2000-06-30 Mitsubishi Electric Corp マルチクロック並列処理装置
US6044030A (en) 1998-12-21 2000-03-28 Philips Electronics North America Corporation FIFO unit with single pointer
US6694434B1 (en) * 1998-12-23 2004-02-17 Entrust Technologies Limited Method and apparatus for controlling program execution and program distribution
US6434695B1 (en) 1998-12-23 2002-08-13 Apple Computer, Inc. Computer operating system using compressed ROM image in RAM
US6757847B1 (en) 1998-12-29 2004-06-29 International Business Machines Corporation Synchronization for system analysis
US6496902B1 (en) 1998-12-31 2002-12-17 Cray Inc. Vector and scalar data cache for a vector multiprocessor
JP3585800B2 (ja) 1999-01-13 2004-11-04 株式会社東芝 情報処理装置
US6539438B1 (en) 1999-01-15 2003-03-25 Quickflex Inc. Reconfigurable computing system and method and apparatus employing same
US6490695B1 (en) 1999-01-22 2002-12-03 Sun Microsystems, Inc. Platform independent memory image analysis architecture for debugging a computer program
US6321298B1 (en) 1999-01-25 2001-11-20 International Business Machines Corporation Full cache coherency across multiple raid controllers
DE10028397A1 (de) 2000-06-13 2001-12-20 Pact Inf Tech Gmbh Registrierverfahren
US6243808B1 (en) 1999-03-08 2001-06-05 Chameleon Systems, Inc. Digital data bit order conversion using universal switch matrix comprising rows of bit swapping selector groups
US6191614B1 (en) * 1999-04-05 2001-02-20 Xilinx, Inc. FPGA configuration circuit including bus-based CRC register
US6512804B1 (en) 1999-04-07 2003-01-28 Applied Micro Circuits Corporation Apparatus and method for multiple serial data synchronization using channel-lock FIFO buffers optimized for jitter
GB9909196D0 (en) 1999-04-21 1999-06-16 Texas Instruments Ltd Transfer controller with hub and ports architecture
US6286134B1 (en) 1999-04-23 2001-09-04 Sun Microsystems, Inc. Instruction selection in a multi-platform environment
JP2000311156A (ja) 1999-04-27 2000-11-07 Mitsubishi Electric Corp 再構成可能並列計算機
US6381624B1 (en) 1999-04-29 2002-04-30 Hewlett-Packard Company Faster multiply/accumulator
US6298472B1 (en) 1999-05-07 2001-10-02 Chameleon Systems, Inc. Behavioral silicon construct architecture and mapping
US6748440B1 (en) 1999-05-12 2004-06-08 Microsoft Corporation Flow of streaming data through multiple processing modules
US7007096B1 (en) * 1999-05-12 2006-02-28 Microsoft Corporation Efficient splitting and mixing of streaming-data frames for processing through multiple processing modules
US6211697B1 (en) 1999-05-25 2001-04-03 Actel Integrated circuit that includes a field-programmable gate array and a hard gate array having the same underlying structure
DE19926538A1 (de) 1999-06-10 2000-12-14 Pact Inf Tech Gmbh Hardware und Betriebsverfahren
EP1061439A1 (de) 1999-06-15 2000-12-20 Hewlett-Packard Company Speicher und Befehlen in Rechnerarchitektur mit Prozessor und Coprozessor
US6757892B1 (en) 1999-06-24 2004-06-29 Sarnoff Corporation Method for determining an optimal partitioning of data among several memories
JP3420121B2 (ja) 1999-06-30 2003-06-23 Necエレクトロニクス株式会社 不揮発性半導体記憶装置
US6347346B1 (en) * 1999-06-30 2002-02-12 Chameleon Systems, Inc. Local memory unit system with global access for use on reconfigurable chips
GB2352548B (en) * 1999-07-26 2001-06-06 Sun Microsystems Inc Method and apparatus for executing standard functions in a computer system
US6745317B1 (en) 1999-07-30 2004-06-01 Broadcom Corporation Three level direct communication connections between neighboring multiple context processing elements
US6370596B1 (en) * 1999-08-03 2002-04-09 Chameleon Systems, Inc. Logic flag registers for monitoring processing system events
US6341318B1 (en) * 1999-08-10 2002-01-22 Chameleon Systems, Inc. DMA data streaming
US6204687B1 (en) 1999-08-13 2001-03-20 Xilinx, Inc. Method and structure for configuring FPGAS
US6438747B1 (en) 1999-08-20 2002-08-20 Hewlett-Packard Company Programmatic iteration scheduling for parallel processors
US6507947B1 (en) * 1999-08-20 2003-01-14 Hewlett-Packard Company Programmatic synthesis of processor element arrays
US6606704B1 (en) 1999-08-31 2003-08-12 Intel Corporation Parallel multithreaded processor with plural microengines executing multiple threads each microengine having loadable microcode
US6311200B1 (en) 1999-09-23 2001-10-30 Chameleon Systems, Inc. Reconfigurable program sum of products generator
US6349346B1 (en) * 1999-09-23 2002-02-19 Chameleon Systems, Inc. Control fabric unit including associated configuration memory and PSOP state machine adapted to provide configuration address to reconfigurable functional unit
US6288566B1 (en) 1999-09-23 2001-09-11 Chameleon Systems, Inc. Configuration state memory for functional blocks on a reconfigurable chip
US6631487B1 (en) 1999-09-27 2003-10-07 Lattice Semiconductor Corp. On-line testing of field programmable gate array resources
DE19946752A1 (de) * 1999-09-29 2001-04-12 Infineon Technologies Ag Rekonfigurierbares Gate-Array
US6598128B1 (en) 1999-10-01 2003-07-22 Hitachi, Ltd. Microprocessor having improved memory management unit and cache memory
US6412043B1 (en) 1999-10-01 2002-06-25 Hitachi, Ltd. Microprocessor having improved memory management unit and cache memory
US6665758B1 (en) 1999-10-04 2003-12-16 Ncr Corporation Software sanity monitor
US6434642B1 (en) 1999-10-07 2002-08-13 Xilinx, Inc. FIFO memory system and method with improved determination of full and empty conditions and amount of data stored
JP2001167066A (ja) 1999-12-08 2001-06-22 Nec Corp プロセッサ間通信方法及びマルチプロセッサシステム
US6625654B1 (en) * 1999-12-28 2003-09-23 Intel Corporation Thread signaling in multi-threaded network processor
US6633181B1 (en) 1999-12-30 2003-10-14 Stretch, Inc. Multi-scale programmable array
DE60138145D1 (de) 2000-01-07 2009-05-07 Nippon Telegraph & Telephone Funktionsrekonfigurierbare Halbleitervorrichtung und integrierte Schaltung zum Konfigurieren der Halbleitervorrichtung
JP2001202236A (ja) 2000-01-20 2001-07-27 Fuji Xerox Co Ltd プログラマブル論理回路装置によるデータ処理方法、プログラマブル論理回路装置、情報処理システム、プログラマブル論理回路装置への回路再構成方法
US6701431B2 (en) 2000-01-28 2004-03-02 Infineon Technologies Ag Method of generating a configuration for a configurable spread spectrum communication device
US6496971B1 (en) 2000-02-07 2002-12-17 Xilinx, Inc. Supporting multiple FPGA configuration modes using dedicated on-chip processor
US6487709B1 (en) 2000-02-09 2002-11-26 Xilinx, Inc. Run-time routing for programmable logic devices
US6519674B1 (en) * 2000-02-18 2003-02-11 Chameleon Systems, Inc. Configuration bits layout
JP2001236221A (ja) 2000-02-21 2001-08-31 Keisuke Shindo マルチスレッドを利用するパイプライン並列プロセッサ
US6865663B2 (en) 2000-02-24 2005-03-08 Pts Corporation Control processor dynamically loading shadow instruction register associated with memory entry of coprocessor in flexible coupling mode
JP3674515B2 (ja) 2000-02-25 2005-07-20 日本電気株式会社 アレイ型プロセッサ
US6434672B1 (en) 2000-02-29 2002-08-13 Hewlett-Packard Company Methods and apparatus for improving system performance with a shared cache memory
US6539477B1 (en) * 2000-03-03 2003-03-25 Chameleon Systems, Inc. System and method for control synthesis using a reachable states look-up table
KR100841411B1 (ko) 2000-03-14 2008-06-25 소니 가부시끼 가이샤 전송장치, 수신장치, 전송방법, 수신방법과 기록매체
US6657457B1 (en) 2000-03-15 2003-12-02 Intel Corporation Data transfer on reconfigurable chip
US6871341B1 (en) 2000-03-24 2005-03-22 Intel Corporation Adaptive scheduling of function cells in dynamic reconfigurable logic
US6624819B1 (en) 2000-05-01 2003-09-23 Broadcom Corporation Method and system for providing a flexible and efficient processor for use in a graphics processing system
US6845445B2 (en) * 2000-05-12 2005-01-18 Pts Corporation Methods and apparatus for power control in a scalable array of processor elements
US6362650B1 (en) 2000-05-18 2002-03-26 Xilinx, Inc. Method and apparatus for incorporating a multiplier into an FPGA
US6373779B1 (en) 2000-05-19 2002-04-16 Xilinx, Inc. Block RAM having multiple configurable write modes for use in a field programmable gate array
US6725334B2 (en) 2000-06-09 2004-04-20 Hewlett-Packard Development Company, L.P. Method and system for exclusive two-level caching in a chip-multiprocessor
US7340596B1 (en) 2000-06-12 2008-03-04 Altera Corporation Embedded processor with watchdog timer for programmable logic
DE50115584D1 (de) * 2000-06-13 2010-09-16 Krass Maren Pipeline ct-protokolle und -kommunikation
US6285624B1 (en) 2000-07-08 2001-09-04 Han-Ping Chen Multilevel memory access method
DE10129237A1 (de) 2000-10-09 2002-04-18 Pact Inf Tech Gmbh Verfahren zur Bearbeitung von Daten
DE10036627A1 (de) 2000-07-24 2002-02-14 Pact Inf Tech Gmbh Integrierter Schaltkreis
JP2002041489A (ja) 2000-07-25 2002-02-08 Mitsubishi Electric Corp 同期信号生成回路、それを用いたプロセッサシステムおよび同期信号生成方法
US7164422B1 (en) * 2000-07-28 2007-01-16 Ab Initio Software Corporation Parameterized graphs with conditional components
US6538468B1 (en) * 2000-07-31 2003-03-25 Cypress Semiconductor Corporation Method and apparatus for multiple boot-up functionalities for a programmable logic device (PLD)
US6542844B1 (en) 2000-08-02 2003-04-01 International Business Machines Corporation Method and apparatus for tracing hardware states using dynamically reconfigurable test circuits
US6754805B1 (en) 2000-08-07 2004-06-22 Transwitch Corporation Method and apparatus for configurable multi-cell digital signal processing employing global parallel configuration
EP1356400A2 (de) 2000-08-07 2003-10-29 Altera Corporation Kommunikationsschnittstelle zwischen geräten
EP1182559B1 (de) 2000-08-21 2009-01-21 Texas Instruments Incorporated Mikroprozessor
US7249351B1 (en) 2000-08-30 2007-07-24 Broadcom Corporation System and method for preparing software for execution in a dynamically configurable hardware environment
US6829697B1 (en) 2000-09-06 2004-12-07 International Business Machines Corporation Multiple logical interfaces to a shared coprocessor resource
US6538470B1 (en) 2000-09-18 2003-03-25 Altera Corporation Devices and methods with programmable logic and digital signal processing regions
US7346644B1 (en) 2000-09-18 2008-03-18 Altera Corporation Devices and methods with programmable logic and digital signal processing regions
US6518787B1 (en) 2000-09-21 2003-02-11 Triscend Corporation Input/output architecture for efficient configuration of programmable input/output cells
US6525678B1 (en) 2000-10-06 2003-02-25 Altera Corporation Configuring a programmable logic device
US20040015899A1 (en) * 2000-10-06 2004-01-22 Frank May Method for processing data
ATE437476T1 (de) 2000-10-06 2009-08-15 Pact Xpp Technologies Ag Zellenanordnung mit segmentierter zwischenzellstruktur
US20020045952A1 (en) * 2000-10-12 2002-04-18 Blemel Kenneth G. High performance hybrid micro-computer
JP2002123563A (ja) 2000-10-13 2002-04-26 Nec Corp コンパイル方法および合成装置ならびに記録媒体
US6398383B1 (en) 2000-10-30 2002-06-04 Yu-Hwei Huang Flashlight carriable on one's person
JP3636986B2 (ja) 2000-12-06 2005-04-06 松下電器産業株式会社 半導体集積回路
GB2370380B (en) 2000-12-19 2003-12-31 Picochip Designs Ltd Processor architecture
KR20030007434A (ko) 2000-12-20 2003-01-23 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 구성가능한 기능 유닛을 구비한 데이터 프로세싱 디바이스
US6483343B1 (en) 2000-12-29 2002-11-19 Quicklogic Corporation Configurable computational unit embedded in a programmable device
US6426649B1 (en) 2000-12-29 2002-07-30 Quicklogic Corporation Architecture for field programmable gate array
US6392912B1 (en) 2001-01-10 2002-05-21 Chameleon Systems, Inc. Loading data plane on reconfigurable chip
US7020673B2 (en) 2001-01-19 2006-03-28 Sony Corporation Reconfigurable arithmetic device and arithmetic system including that arithmetic device and address generation device and interleave device applicable to arithmetic system
US20020099759A1 (en) 2001-01-24 2002-07-25 Gootherts Paul David Load balancer with starvation avoidance
US6847370B2 (en) * 2001-02-20 2005-01-25 3D Labs, Inc., Ltd. Planar byte memory organization with linear access
US7444531B2 (en) 2001-03-05 2008-10-28 Pact Xpp Technologies Ag Methods and devices for treating and processing data
US7210129B2 (en) * 2001-08-16 2007-04-24 Pact Xpp Technologies Ag Method for translating programs for reconfigurable architectures
US6836839B2 (en) 2001-03-22 2004-12-28 Quicksilver Technology, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US6792588B2 (en) 2001-04-02 2004-09-14 Intel Corporation Faster scalable floorplan which enables easier data control flow
US20020143505A1 (en) 2001-04-02 2002-10-03 Doron Drusinsky Implementing a finite state machine using concurrent finite state machines with delayed communications and no shared control signals
US6836849B2 (en) 2001-04-05 2004-12-28 International Business Machines Corporation Method and apparatus for controlling power and performance in a multiprocessing system according to customer level operational requirements
WO2002082267A1 (en) 2001-04-06 2002-10-17 Wind River Systems, Inc. Fpga coprocessing system
US6836842B1 (en) 2001-04-24 2004-12-28 Xilinx, Inc. Method of partial reconfiguration of a PLD in which only updated portions of configuration data are selected for reconfiguring the PLD
US6999984B2 (en) 2001-05-02 2006-02-14 Intel Corporation Modification to reconfigurable functional unit in a reconfigurable chip to perform linear feedback shift register function
US6802026B1 (en) 2001-05-15 2004-10-05 Xilinx, Inc. Parameterizable and reconfigurable debugger core generators
US6976239B1 (en) * 2001-06-12 2005-12-13 Altera Corporation Methods and apparatus for implementing parameterizable processors and peripherals
AU2002347560A1 (en) * 2001-06-20 2003-01-02 Pact Xpp Technologies Ag Data processing method
JP3580785B2 (ja) 2001-06-29 2004-10-27 株式会社半導体理工学研究センター ルックアップテーブル、ルックアップテーブルを備えるプログラマブル論理回路装置、および、ルックアップテーブルの構成方法
US7043416B1 (en) 2001-07-27 2006-05-09 Lsi Logic Corporation System and method for state restoration in a diagnostic module for a high-speed microprocessor
US7383421B2 (en) 2002-12-05 2008-06-03 Brightscale, Inc. Cellular engine for a data processing system
US7036114B2 (en) 2001-08-17 2006-04-25 Sun Microsystems, Inc. Method and apparatus for cycle-based computation
US7216204B2 (en) 2001-08-27 2007-05-08 Intel Corporation Mechanism for providing early coherency detection to enable high performance memory updates in a latency sensitive multithreaded environment
US6868476B2 (en) 2001-08-27 2005-03-15 Intel Corporation Software controlled content addressable memory in a general purpose execution datapath
US6874108B1 (en) * 2001-08-27 2005-03-29 Agere Systems Inc. Fault tolerant operation of reconfigurable devices utilizing an adjustable system clock
US20030056091A1 (en) * 2001-09-14 2003-03-20 Greenberg Craig B. Method of scheduling in a reconfigurable hardware architecture with multiple hardware configurations
US7472230B2 (en) 2001-09-14 2008-12-30 Hewlett-Packard Development Company, L.P. Preemptive write back controller
US20030055861A1 (en) * 2001-09-18 2003-03-20 Lai Gary N. Multipler unit in reconfigurable chip
US20030052711A1 (en) * 2001-09-19 2003-03-20 Taylor Bradley L. Despreader/correlator unit for use in reconfigurable chip
US6854073B2 (en) 2001-09-25 2005-02-08 International Business Machines Corporation Debugger program time monitor
US6625631B2 (en) 2001-09-28 2003-09-23 Intel Corporation Component reduction in montgomery multiplier processing element
US6798239B2 (en) 2001-09-28 2004-09-28 Xilinx, Inc. Programmable gate array having interconnecting logic to support embedded fixed logic circuitry
US7000161B1 (en) * 2001-10-15 2006-02-14 Altera Corporation Reconfigurable programmable logic system with configuration recovery mode
WO2003044962A2 (en) 2001-11-16 2003-05-30 Morpho Technologies Viterbi convolutional coding method and apparatus
US6886092B1 (en) 2001-11-19 2005-04-26 Xilinx, Inc. Custom code processing in PGA by providing instructions from fixed logic processor portion to programmable dedicated processor portion
US6668237B1 (en) 2002-01-17 2003-12-23 Xilinx, Inc. Run-time reconfigurable testing of programmable logic devices
US20030154349A1 (en) 2002-01-24 2003-08-14 Berg Stefan G. Program-directed cache prefetching for media processors
US6476634B1 (en) 2002-02-01 2002-11-05 Xilinx, Inc. ALU implementation in single PLD logic cell
DE10204044A1 (de) 2002-02-01 2003-08-14 Tridonicatco Gmbh & Co Kg Elektronisches Vorschaltgerät für Gasentladungslampe
US6732354B2 (en) 2002-04-23 2004-05-04 Quicksilver Technology, Inc. Method, system and software for programming reconfigurable hardware
US6961924B2 (en) 2002-05-21 2005-11-01 International Business Machines Corporation Displaying variable usage while debugging
US20030226056A1 (en) 2002-05-28 2003-12-04 Michael Yip Method and system for a process manager
WO2005010632A2 (en) 2003-06-17 2005-02-03 Pact Xpp Technologies Ag Data processing device and method
AU2003286131A1 (en) 2002-08-07 2004-03-19 Pact Xpp Technologies Ag Method and device for processing data
US6908227B2 (en) 2002-08-23 2005-06-21 Intel Corporation Apparatus for thermal management of multiple core microprocessors
US6976131B2 (en) 2002-08-23 2005-12-13 Intel Corporation Method and apparatus for shared cache coherency for a chip multiprocessor or multiprocessor system
US6931494B2 (en) 2002-09-09 2005-08-16 Broadcom Corporation System and method for directional prefetching
US6803787B1 (en) 2002-09-25 2004-10-12 Lattice Semiconductor Corp. State machine in a programmable logic device
US7155708B2 (en) 2002-10-31 2006-12-26 Src Computers, Inc. Debugging and performance profiling using control-dataflow graph representations with reconfigurable hardware emulation
US7299458B2 (en) 2002-10-31 2007-11-20 Src Computers, Inc. System and method for converting control flow graph representations to control-dataflow graph representations
US7873811B1 (en) 2003-03-10 2011-01-18 The United States Of America As Represented By The United States Department Of Energy Polymorphous computing fabric
US7412581B2 (en) 2003-10-28 2008-08-12 Renesas Technology America, Inc. Processor for virtual machines and method therefor
US7870182B2 (en) 2003-12-29 2011-01-11 Xilinx Inc. Digital signal processing circuit having an adder circuit with carry-outs
US7840627B2 (en) 2003-12-29 2010-11-23 Xilinx, Inc. Digital signal processing circuit having input register blocks
US7472155B2 (en) 2003-12-29 2008-12-30 Xilinx, Inc. Programmable logic device with cascading DSP slices
US8495122B2 (en) 2003-12-29 2013-07-23 Xilinx, Inc. Programmable device with dynamic DSP architecture
US7567997B2 (en) 2003-12-29 2009-07-28 Xilinx, Inc. Applications of cascading DSP slices
US7038952B1 (en) 2004-05-04 2006-05-02 Xilinx, Inc. Block RAM with embedded FIFO buffer
US7455450B2 (en) 2005-10-07 2008-11-25 Advanced Micro Devices, Inc. Method and apparatus for temperature sensing in integrated circuits
US7759968B1 (en) 2006-09-27 2010-07-20 Xilinx, Inc. Method of and system for verifying configuration data
DE102006054052B4 (de) 2006-11-16 2018-11-29 Siemens Aktiengesellschaft Drehübertrager
US7971051B2 (en) 2007-09-27 2011-06-28 Fujitsu Limited FPGA configuration protection and control using hardware watchdog timer
US20090193384A1 (en) 2008-01-25 2009-07-30 Mihai Sima Shift-enabled reconfigurable device
RU2470184C2 (ru) 2008-01-29 2012-12-20 Дафын Фынтай Флуид Машинери Технолоджи Ко., Лтд. Ротационный компрессор
JP2010277303A (ja) 2009-05-28 2010-12-09 Renesas Electronics Corp 半導体装置及び異常検出方法
JP5509184B2 (ja) 2011-12-05 2014-06-04 株式会社日立情報制御ソリューションズ 燃料タンクの燃料補充決定装置

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822968B2 (en) 1996-12-09 2010-10-26 Martin Vorbach Circuit having a multidimensional structure of configurable cells that include multi-bit-wide inputs and outputs
US8156312B2 (en) 1996-12-09 2012-04-10 Martin Vorbach Processor chip for reconfigurable data processing, for processing numeric and logic operations and including function and interconnection control units
US8195856B2 (en) 1996-12-20 2012-06-05 Martin Vorbach I/O and memory bus system for DFPS and units with two- or multi-dimensional programmable cell architectures
US7899962B2 (en) 1996-12-20 2011-03-01 Martin Vorbach I/O and memory bus system for DFPs and units with two- or multi-dimensional programmable cell architectures
US7650448B2 (en) 1996-12-20 2010-01-19 Pact Xpp Technologies Ag I/O and memory bus system for DFPS and units with two- or multi-dimensional programmable cell architectures
US7822881B2 (en) 1996-12-27 2010-10-26 Martin Vorbach Process for automatic dynamic reloading of data flow processors (DFPs) and units with two- or three-dimensional programmable cell architectures (FPGAs, DPGAs, and the like)
USRE44383E1 (en) 1997-02-08 2013-07-16 Martin Vorbach Method of self-synchronization of configurable elements of a programmable module
USRE45109E1 (en) 1997-02-08 2014-09-02 Pact Xpp Technologies Ag Method of self-synchronization of configurable elements of a programmable module
USRE44365E1 (en) 1997-02-08 2013-07-09 Martin Vorbach Method of self-synchronization of configurable elements of a programmable module
USRE45223E1 (en) 1997-02-08 2014-10-28 Pact Xpp Technologies Ag Method of self-synchronization of configurable elements of a programmable module
US8819505B2 (en) 1997-12-22 2014-08-26 Pact Xpp Technologies Ag Data processor having disabled cores
US8468329B2 (en) 1999-02-25 2013-06-18 Martin Vorbach Pipeline configuration protocol and configuration unit communication
US8312200B2 (en) 1999-06-10 2012-11-13 Martin Vorbach Processor chip including a plurality of cache elements connected to a plurality of processor cores
US8726250B2 (en) 1999-06-10 2014-05-13 Pact Xpp Technologies Ag Configurable logic integrated circuit having a multidimensional structure of configurable elements
US8230411B1 (en) 1999-06-10 2012-07-24 Martin Vorbach Method for interleaving a program over a plurality of cells
US8301872B2 (en) 2000-06-13 2012-10-30 Martin Vorbach Pipeline configuration protocol and configuration unit communication
EP1845623A2 (de) 2000-10-06 2007-10-17 PACT XPP Technologies AG Verfahren und Vorrichtung
US8058899B2 (en) 2000-10-06 2011-11-15 Martin Vorbach Logic cell array and bus system
US8471593B2 (en) 2000-10-06 2013-06-25 Martin Vorbach Logic cell array and bus system
US9047440B2 (en) 2000-10-06 2015-06-02 Pact Xpp Technologies Ag Logical cell array and bus system
US7844796B2 (en) 2001-03-05 2010-11-30 Martin Vorbach Data processing device and method
WO2002071196A2 (de) 2001-03-05 2002-09-12 Pact Informationstechnologie Gmbh Verfahren und vorrichtung zu datenbe- und/oder verarbeitung
US8145881B2 (en) 2001-03-05 2012-03-27 Martin Vorbach Data processing device and method
US9037807B2 (en) 2001-03-05 2015-05-19 Pact Xpp Technologies Ag Processor arrangement on a chip including data processing, memory, and interface elements
US8312301B2 (en) 2001-03-05 2012-11-13 Martin Vorbach Methods and devices for treating and processing data
US9075605B2 (en) 2001-03-05 2015-07-07 Pact Xpp Technologies Ag Methods and devices for treating and processing data
US8099618B2 (en) 2001-03-05 2012-01-17 Martin Vorbach Methods and devices for treating and processing data
US7657877B2 (en) 2001-06-20 2010-02-02 Pact Xpp Technologies Ag Method for processing data
US7996827B2 (en) 2001-08-16 2011-08-09 Martin Vorbach Method for the translation of programs for reconfigurable architectures
US8869121B2 (en) 2001-08-16 2014-10-21 Pact Xpp Technologies Ag Method for the translation of programs for reconfigurable architectures
US8069373B2 (en) 2001-09-03 2011-11-29 Martin Vorbach Method for debugging reconfigurable architectures
US8407525B2 (en) 2001-09-03 2013-03-26 Pact Xpp Technologies Ag Method for debugging reconfigurable architectures
US8429385B2 (en) 2001-09-03 2013-04-23 Martin Vorbach Device including a field having function cells and information providing cells controlled by the function cells
US8209653B2 (en) 2001-09-03 2012-06-26 Martin Vorbach Router
US7840842B2 (en) 2001-09-03 2010-11-23 Martin Vorbach Method for debugging reconfigurable architectures
US8686549B2 (en) 2001-09-03 2014-04-01 Martin Vorbach Reconfigurable elements
US8686475B2 (en) 2001-09-19 2014-04-01 Pact Xpp Technologies Ag Reconfigurable elements
WO2003025781A2 (de) 2001-09-19 2003-03-27 Pact Xpp Technologies Ag Verfahren zur konfiguration der verbindung zwischen datenverarbeitungszellen
US8281108B2 (en) 2002-01-19 2012-10-02 Martin Vorbach Reconfigurable general purpose processor having time restricted configurations
US8127061B2 (en) 2002-02-18 2012-02-28 Martin Vorbach Bus systems and reconfiguration methods
US7657861B2 (en) 2002-08-07 2010-02-02 Pact Xpp Technologies Ag Method and device for processing data
US8914590B2 (en) 2002-08-07 2014-12-16 Pact Xpp Technologies Ag Data processing method and device
US8156284B2 (en) 2002-08-07 2012-04-10 Martin Vorbach Data processing method and device
US8281265B2 (en) 2002-08-07 2012-10-02 Martin Vorbach Method and device for processing data
US7928763B2 (en) 2002-09-06 2011-04-19 Martin Vorbach Multi-core processing system
US8803552B2 (en) 2002-09-06 2014-08-12 Pact Xpp Technologies Ag Reconfigurable sequencer structure
US7782087B2 (en) 2002-09-06 2010-08-24 Martin Vorbach Reconfigurable sequencer structure
US8310274B2 (en) 2002-09-06 2012-11-13 Martin Vorbach Reconfigurable sequencer structure
US8812820B2 (en) 2003-08-28 2014-08-19 Pact Xpp Technologies Ag Data processing device and method
WO2006082091A2 (en) 2005-02-07 2006-08-10 Pact Xpp Technologies Ag Low latency massive parallel data processing device
US8250503B2 (en) 2006-01-18 2012-08-21 Martin Vorbach Hardware definition method including determining whether to implement a function as hardware or software

Also Published As

Publication number Publication date
ATE274745T1 (de) 2004-09-15
EP1040420A1 (de) 2000-10-04
JP2001527218A (ja) 2001-12-25
US20090300445A1 (en) 2009-12-03
EP1040420B1 (de) 2002-06-12
AU2409599A (en) 1999-07-12
WO1999032975A1 (de) 1999-07-01
DE59811877D1 (de) 2004-09-30
EP1199726A1 (de) 2002-04-24
US8914690B2 (en) 2014-12-16
DE19881975D2 (de) 2001-02-15
US20140304449A1 (en) 2014-10-09
US20040181726A1 (en) 2004-09-16
CA2316314A1 (en) 1999-07-01
ATE219263T1 (de) 2002-06-15
JP4215393B2 (ja) 2009-01-28
US7584390B2 (en) 2009-09-01
DE59804464D1 (de) 2002-07-18
EP1199726B1 (de) 2004-08-25
US8819505B2 (en) 2014-08-26
US6697979B1 (en) 2004-02-24

Similar Documents

Publication Publication Date Title
EP1040420B1 (de) Verfahren zur reparatur von integrierten schaltkreisen
EP0378538B1 (de) Anordnung und verfahren zur feststellung und lokalisierung von fehlerhaften schaltkreisen eines speicherbausteins
DE19833208C1 (de) Integrierte Schaltung mit einer Selbsttesteinrichtung zur Durchführung eines Selbsttests der integrierten Schaltung
DE2619159A1 (de) Fehlererkennungs- und korrektureinrichtung
DE4317729A1 (de) Programmierbare Steuereinheit
EP0046976A2 (de) Halbleiterspeicher aus Speicherbausteinen mit redundanten Speicherbereichen
EP1008993B1 (de) Schreib/Lesespeicher mit Selbsttestvorrichtung und zugehöriges Testverfahren
DE19930169B4 (de) Testeinrichtung und Verfahren zum Prüfen eines Speichers
DE2461592C3 (de) Anordnung zur Durchführung von Wartungsoperationen bei einem Datenverarbeitungssystem
DE19964003A1 (de) Schaltungsanordnung und Verfahren zur Erzeugung und zum Auslesen von Ersatzdaten
DE10244922B4 (de) Programmgesteuerte Einheit und Verfahren zum Debuggen von einer programmgesteuerten Einheit ausgeführten Programmen
DE10292320T5 (de) Verfahren und Vorrichtung zum Analysieren und Reparieren von Speicher
DE19922786B4 (de) Halbleiterspeicher mit Testeinrichtung
DE3138989A1 (de) Zusaetzliche funktionseinheit in einem mikroprozessor, mikroprozessorsystem und verfahren zu seinem betrieb
DE10256487A1 (de) Integrierter Speicher und Verfahren zum Testen eines integrierten Speichers
DE10302456A1 (de) Vorrichtung für sicherheitskritische Anwendungen und sichere Elektronik-Architektur
DE2823457C2 (de) Schaltungsanordnung zur Fehlerüberwachung eines Speichers einer digitalen Rechenanlage
DE10302617A1 (de) Verfahren und Vorrichtung zum Verbessern eines Ertages durch ein Dekommissionieren optionaler Einheiten auf einer CPU aufgrund von Herstellungsdefekten
DE10062404A1 (de) Vorrichtung und Verfahren zum Reduzieren der Anzahl von Adressen fehlerhafter Speicherzellen
DE60001450T2 (de) Vorrichtung zur funktionellen Widergabe einer spezifischen integrierten Halbleiterschaltung und deren Verwendung als Emulationsvorrichtung
DE102005018790A1 (de) Integrierter Schaltkreis und Verfahren zum Betreiben und parallelen Testen von integrierten Schaltkreisen
EP1283471A2 (de) Programmgesteuerte Einheit
DE19983595B3 (de) CPU-Einheit und Laufalternativ-Steuerverfahren eines programmierbaren Steuerers
DE10148032A1 (de) Verfahren zum Überprüfen eines Rechnerkerns eines Mikroprozessors oder eines Mikrocontrollers
DE102005015319B4 (de) Elektrisches System mit fehlerhaften Speicherbereichen und Verfahren zum Testen von Speicherbereichen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8181 Inventor (new situation)

Free format text: VORBACH, MARTIN, 76149 KARLSRUHE, DE MUENCH, ROBERT, 76185 KARLSRUHE, DE

8125 Change of the main classification

Ipc: G06F 11/20

8127 New person/name/address of the applicant

Owner name: PACT XPP TECHNOLOGIES AG, 80939 MUENCHEN, DE

8139 Disposal/non-payment of the annual fee