DE19931676A1 - Calibration method for robot measuring station e.g. for automobile production line, calibrates operating point of optical measuring device, robot axes of multi-axis measuring robot and alignment of robot with workpiece - Google Patents

Calibration method for robot measuring station e.g. for automobile production line, calibrates operating point of optical measuring device, robot axes of multi-axis measuring robot and alignment of robot with workpiece

Info

Publication number
DE19931676A1
DE19931676A1 DE1999131676 DE19931676A DE19931676A1 DE 19931676 A1 DE19931676 A1 DE 19931676A1 DE 1999131676 DE1999131676 DE 1999131676 DE 19931676 A DE19931676 A DE 19931676A DE 19931676 A1 DE19931676 A1 DE 19931676A1
Authority
DE
Germany
Prior art keywords
measuring
robot
workpiece
calibration
calibration marks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1999131676
Other languages
German (de)
Other versions
DE19931676C2 (en
Inventor
Eberhard Roos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUKA Deutschland GmbH
Original Assignee
KUKA Schweissanlagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUKA Schweissanlagen GmbH filed Critical KUKA Schweissanlagen GmbH
Priority to DE1999131676 priority Critical patent/DE19931676C2/en
Priority to ES00940320T priority patent/ES2193087T3/en
Priority to PCT/EP2000/005175 priority patent/WO2001000370A1/en
Priority to EP00940320A priority patent/EP1189732B1/en
Priority to DE50002092T priority patent/DE50002092D1/en
Priority to US10/019,345 priority patent/US6615112B1/en
Publication of DE19931676A1 publication Critical patent/DE19931676A1/en
Application granted granted Critical
Publication of DE19931676C2 publication Critical patent/DE19931676C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37068Setting reference coordinate frame
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50026Go to reference plane, cube

Abstract

The calibration method uses successive calibration steps for calibration of the operating point of the optical measuring device (10), e.g. a 3D sensor, associated with the multi-axis measuring robot (6), for calibration of the robot axes and for calibration of the alignment of the robot with the workpiece (2) at the measuring station (1). An Independent claim for a calibration device for a robot measuring station is also included.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Vermessen von Werkstücken, insbesondere Fahrzeugkarosserien und deren Teilen mit den Merkmalen im Oberbegriff des Verfahrens- und Vorrichtungshauptanspruchs.The invention relates to a method and a device for measuring workpieces, in particular Vehicle bodies and their parts with the features in General term of the process and Device main claim.

In der Praxis sind Bearbeitungsstationen, insbesondere Vermessungsstationen, bekannt, in denen ein mehrachsiger Manipulator, insbesondere ein Industrieroboter, ein optisches Meßwerkzeug führt und damit eine Fahrzeugkarosserie an ein oder mehreren Meßpunkten vermißt. Vor dem Meßbetrieb wird der Roboter einmalig kalibriert, wobei seine Achsenfehler ermittelt und in den Maschinendaten beziehungsweise der Steuerung kompensiert werden. Darüber hinaus erfolgt eine einmalige Ausrichtung in Bezug auf das Bauteil durch Vermessung mit einem übergeordneten Meßsystem. Bei der Vermessung geht man davon aus, daß der einmalige Einrichtvorgang genügt und der Meßroboter dann eine hinreichende Meßgenauigkeit in seinem gesamten Arbeitsraum hat. Die erzielbare Meßpräzision und absolute Genauigkeit ist in der Praxis trotzdem beschränkt und unterliegt Fehlereinflüssen, die sich während des Betriebs über längere Zeiträume einstellen und z. B. auf wärmeabhängige Veränderungen der Robotergeometrie oder Verschleiß zurückzuführen sind. Die erzielbare Meßpräzision kann durch eine einmalige Justierung nicht gewährleistet werden. Es ist vielmehr eine fortlaufende Kalibrierung zum Ausgleich der Positionierfehler der einzelnen Systemkomponenten (Roboter, Zusatzachsen, Transportsystem etc.) erforderlich. In practice, processing stations, in particular Surveying stations, known in which a multi-axis Manipulator, especially an industrial robot leads optical measuring tool and thus a Vehicle body at one or more measuring points missing. The robot is unique before the measuring operation calibrated, its axis errors determined and in the Machine data or the controller compensated become. In addition, there is a one-time alignment in relation to the component by measuring with a superordinate measuring system. When measuring, you go assume that the one-time setup process is sufficient and the measuring robot then has a sufficient measuring accuracy in has its entire work space. The achievable Measuring precision and absolute accuracy is in practice nevertheless limited and subject to error influences that themselves during operation for extended periods adjust and z. B. on heat-dependent changes in Robot geometry or wear. The achievable measurement precision can be achieved with a one-time Adjustment cannot be guaranteed. It is much more a continuous calibration to compensate for the Positioning errors of the individual system components (Robots, additional axes, transport system etc.) required.  

Es ist Aufgabe der vorliegenden Erfindung, ein besseres Verfahren nebst Vorrichtung zur Vermessung von Werkstücken, insbesondere von Fahrzeugkarosserien und deren Teilen, z. B. Baugruppen und Anbauteilen, aufzuzeigen.It is an object of the present invention to provide a better one Method and device for measuring Workpieces, in particular of vehicle bodies and their parts, e.g. B. assemblies and attachments, to show.

Die Erfindung löst diese Aufgabe mit den Merkmalen im Verfahrens- und Vorrichtungshauptanspruch.The invention solves this problem with the features in Process and device main claim.

Das Anmessen von Kalibriermarken in der Nähe, vorzugsweise im unmittelbaren Umfeld der Meßpunkte oder Meßräume am Werkstück hat den Vorteil, daß die Meßgenauigkeit des Roboters wesentlich erhöht wird. Der Roboter kann sich an den Kalibriermarken und deren bekannter absoluter Postion "einnullen" und somit ohne Berücksichtigung der Fehlerursachen eine Über-alles-Kalibrierung durchführen.Measuring calibration marks nearby, preferably in the immediate vicinity of the measuring points or measuring rooms on Workpiece has the advantage that the measuring accuracy of the Robot is significantly increased. The robot can turn on the calibration marks and their known absolute position "zeroing in" and thus without considering the Cause of error carry out an over-all calibration.

Positionierfehler des Roboters während des Arbeits- und Meßbetriebs können erkannt und insbesondere lokal besser kompensiert werden. Ferner kann über eine solche Kalibrierung auch eine Qualitätsüberwachung und -sicherung der Vermessung erreicht werden.Positioning errors of the robot during work and Measuring operation can be recognized and in particular locally better be compensated. Furthermore, such Calibration also includes quality monitoring and assurance the measurement can be achieved.

Durch die Kalibriermarken ist es möglich, den Arbeitsraum des Roboters bzw. den von ihm erreichbaren Meßraum am Werkstück in kleinere Teilarbeitsräume und sogenannte Unterräume zu unterteilen, in denen eine höhere Meßgenauigkeit möglich ist. Hierbei ist es ferner günstig, an den zugehörigen Meßmarken ein eigenes Meßkoordinatensystem aufzuspannen, das in einer bekannten Relation zum Fahrzeugkoordinatensystem steht und somit eine direkte Transferierung der Meßdaten in das Fahrzeugkoordinatensystem ermöglicht. Dabei ist außerdem eine 6-D-Anpassung des Meßkoordinatensystems (über drei lineare und drei rotatorische Achsen) zum Fahrzeugkoordinatensystem möglich. The calibration marks make it possible to enter the work area of the robot or the measuring room accessible by it on Workpiece in smaller part work rooms and so-called Subdivide subspaces in which a higher one Measuring accuracy is possible. It is also advantageous here a separate one at the associated measuring marks Measuring coordinate system to span that in a known Relation to the vehicle coordinate system is and thus a direct transfer of the measurement data into the Vehicle coordinate system enables. It also includes a 6-D adjustment of the measuring coordinate system (over three linear and three rotary axes) for Vehicle coordinate system possible.  

Die Anordnung der Kalibriermarken in der Nähe der werkstückseitigen Meßpunkte hat den Vorteil, daß durch den Roboter, wie auch durch Zusatzachsen hervorgerufene Positionier- und Meßfehler minimiert werden. Die im Arbeits- und Bewegungsbereich des Manipulators im Teilarbeitsraum (Unterraum) der Kalibriermarken auftretenden Positionierfehler werden durch die Kalibriermarken kompensiert. Es besteht dann nur noch eine Einflußmöglichkeit durch Positionierfehler, die in dem kleinen Bewegungsbereich zwischen den Kalibriermarken und den naheliegenden Meßpunkten theoretisch entstehen könnten. Dieser Fehlereinfluß ist jedoch sehr gering.The location of the calibration marks near the workpiece-side measuring points has the advantage that the Robots, as well as those caused by additional axes Positioning and measuring errors can be minimized. The in Working and movement area of the manipulator in the Part workspace (subspace) of the calibration marks Positioning errors that occur are indicated by the Calibration marks compensated. Then there is only one Possibility of influence by positioning errors, which in the small range of motion between the calibration marks and the nearby measuring points arise theoretically could. However, this influence of errors is very small.

Insgesamt ist das Meßverfahren und die Meßstation nach der Erfindung wesentlich genauer als beim Stand der Technik.Overall, the measuring method and the measuring station after the Invention much more accurate than in the prior art.

Die Kalibriermarken, insbesondere die stationären Kalibriermarken, haben eine genau bekannte Position.The calibration marks, especially the stationary ones Calibration marks have a precisely known position.

Hierbei ist sowohl die Zuordnung zum World-Koordinatensystem der Vermessungsstation beziehungsweise zum Basis-Koordinatensystem des Meßroboters bekannt, wie auch die Zuordnung zum Fahrzeug-Koordinatensystem der zu vermessenden Karosserie.Here, both the assignment to World coordinate system of the surveying station or to the base coordinate system of the Measuring robot known, as well as the assignment to Vehicle coordinate system of the body to be measured.

Die stationären Kalibriermarken ermöglichen es, den Arbeitsbereich des Meßroboters durch ein oder mehrere zusätzliche Fahrachsen zu vergrößern. Nach Beendigung der Fahrbewegung kann sich der Meßroboter an den Kalibriermarken einmessen und justieren. Er hat dann für die folgenden Vermessungstätigkeiten am Werkstück sofort wieder die erforderliche Genauigkeit.The stationary calibration marks make it possible to Working area of the measuring robot by one or more to enlarge additional driving axles. After completing the The robot can move to the Measure and adjust calibration marks. Then he has for the following measurement activities on the workpiece immediately again the required accuracy.

Ein oder mehrere Meßmarken können auch am Werkstück und/oder an einem Werkstückträger, z. B. einer Grundplatte, in bekannter Lage angebracht sein. Dies ermöglicht es, den Arbeitsraum und den Meßbereich des Meßroboters durch eine Fahrbewegung des Werkstücks zu vergrößern. Hierbei kann der fehlerbehaftete Fahrweg über eine Kalibrierung an diesen Kalibriermarken festgestellt und kompensiert werden. Die am Werkstückträger befindlichen Meßmarken können auch zur Kalibrierung des vorerwähnten Roboters mit ein oder mehreren zusätzlichen Fahrachsen eingesetzt werden.One or more measuring marks can also be on the workpiece and / or on a workpiece carrier, e.g. B. a base plate, be installed in a known location. This enables the Working area and the measuring range of the measuring robot by a To increase the movement of the workpiece. This can the faulty route via calibration determined and compensated for these calibration marks  become. The measuring marks on the workpiece carrier can also use to calibrate the aforementioned robot one or more additional driving axles used become.

Zudem braucht die Positionierung des zu vermessenden Werkstücks nicht hochgenau zu sein. Das Werkstück, insbesondere eine Fahrzeugkarosserie muß dabei auch nicht gespannt sein, wodurch Verzüge besser bemerkt werden. Die Vermessung kann ferner an Karosserieteilen vor der Montage bzw. vor dem Fügen stattfinden.In addition, the positioning of the item to be measured needs Workpiece not to be highly accurate. The workpiece, in particular, a vehicle body does not have to be excited, so that delays are better noticed. The Measurement can also be carried out on body parts before assembly or before joining.

Die genannte Kalibrierung kann zu beliebigen Zeitpunkten vor und während des Meßbetriebs ein- oder mehrmals durchgeführt werden. Bei Relativbewegungen zwischen Werkstück und Meßroboter während des Meßbetriebs wird eine Kalibrierung jedesmal unmittelbar nach der Fahrbewegung durchgeführt. Auf diese Weise können auch Fehlereinflüsse bemerkt und kompensiert werden, die sich während des Meßbetriebs durch Erwärmung des Meßroboters oder durch andere Einflüsse einstellen. Insbesondere wird mit den Meßmarken die absolute Positionier- und Meßgenauigkeit des Manipulators beziehungsweise Meßroboters ermittelt und verbessert.The calibration mentioned can be done at any time one or more times before and during the measuring operation be performed. With relative movements between Workpiece and measuring robot during the measuring operation becomes a Calibration every time immediately after the movement carried out. In this way, errors can also be influenced noticed and compensated for, which during the Measuring operation by heating the measuring robot or by set other influences. In particular, with the Measuring marks the absolute positioning and measuring accuracy of the Manipulator or measuring robot determined and improved.

Die Kalibriermarken ermöglichen darüber hinaus auch unterschiedliche Vermessungsverfahren. In dem üblichen und vom Zeitaufwand her schnellsten Vermessungsverfahren wird der Meßroboter mit seinem Meßwerkzeug direkt zum Werkstück und dessen Meßpunkten bewegt. Die Messung findet dann im World-Koordinatensystem beziehungsweise im Basis-Koordinatensystem des Roboters statt. Über die bekannte Lage des Werkstücks beziehungsweise des Werkstückträgers, die sich ebenfalls mit den trägerseitigen Kalibriermarken oder zeitsparend über eine separate externe Vermessung feststellen läßt, kann dann eine Transformation der Meßpunkt-Koordinaten in das Fahrzeug-Koordinatensystem durchgeführt werden. Über die Kalibriermarken ist es andererseits aber auch möglich, über die bekannte und genau festgelegte Position der Kalibriermarken eine Relativmessung durchzuführen, indem der Meßroboter von den Kalibriermarken und einem dort aufgespannten Koordinatensystem aus die Meßpunkte am Werkstück vermißt. Die Fehlereinflüsse sind hierbei wegen der minimierten Meßwege besonders klein. Auch bei diesem Verfahren kann eine Transformation der Meßpunkt-Koordinaten in das Fahrzeug-Koordinatensystem erfolgen.The calibration marks also allow different measurement methods. In the usual and is the fastest measurement method in terms of time the measuring robot with its measuring tool directly to the workpiece and moved its measuring points. The measurement then takes place in the World coordinate system or in Basic coordinate system of the robot instead. About the known position of the workpiece or Workpiece carrier, which also deals with the carrier-side calibration marks or time-saving via a separate external measurement can then determine a transformation of the measuring point coordinates into that  Vehicle coordinate system can be performed. About the On the other hand, calibration marks are also possible about the known and precisely defined position of the Calibration marks to perform a relative measurement by the measuring robot from the calibration marks and one there spanned coordinate system from the measuring points on Missing workpiece. The error influences are here the minimized measuring paths are particularly small. This one too The process can transform the Measuring point coordinates in the vehicle coordinate system respectively.

Das Meßverfahren und die zugehörige Vorrichtung eignen sich besonders für optische Vermessungen mit einem vom Roboter geführten Kamerasystem und einem sogenannten 3-D-Sensor. Die Kalibriermarken haben hierfür vorzugsweise eine kreisrunde, ebene Kontur und sind als Öffnungen, Farbmarken oder Plättchen an ihren Trägern angeordnet.The measuring method and the associated device are suitable is particularly suitable for optical measurements with a Robot-guided camera system and a so-called 3-D sensor. The calibration marks preferably have for this a circular, flat contour and are openings, Color marks or plates arranged on their carriers.

In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung angegeben. In the subclaims are further advantageous Embodiments of the invention specified.  

Die Erfindung ist in der Zeichnung beispielsweise und schematisch dargestellt. Sie zeigt inThe invention is in the drawing for example and shown schematically. It shows in

Fig. 1 eine Draufsicht auf eine Bearbeitungs­ beziehungsweise Vermessungsstation mit einem Meßroboter, einer Fahrzeugkarosserie und mehreren Kalibriermarken. Fig. 1 is a plan view of a processing or measuring station with a measuring robot, a vehicle body and several calibration marks.

Die Bearbeitungs- oder Meßstation (1) dient zur Vermessung von beliebigen Werkstücken (2). Vorzugsweise handelt es sich hierbei um die in der Zeichnung dargestellten Fahrzeugkarosserien und deren Bauteile, die beispielsweise entlang einer Transferlinie (4) in die Meßstation (1) gebracht und wieder abtransportiert werden.The processing or measuring station ( 1 ) is used to measure any workpieces ( 2 ). These are preferably the vehicle bodies and their components shown in the drawing, which are brought, for example, along a transfer line ( 4 ) into the measuring station ( 1 ) and transported away again.

Die Vermessung erfolgt über einen mehrachsigen Manipulator, vorzugsweise einen sechsachsigen Meßroboter (6), der zusätzlich mindestens eine weitere Fahrachse (9) haben kann. Im gezeigten Ausführungsbeispiel ist der Meßroboter (6) auf einer Lineareinheit (8) montiert und kann mit dieser translatorisch entlang der Achse (9) gegenüber dem Werkstück (2) vor- und zurückbewegt werden. Die Fahrachse (9) beziehungsweise Lineareinheit (8) sind dabei vorzugsweise parallel zur Transferlinie (4) ausgerichtet. Über die ein oder mehreren Fahrachsen (9) wird der Arbeitsbereich des Meßroboters (6) vergrößert.The measurement is carried out using a multi-axis manipulator, preferably a six-axis measuring robot ( 6 ), which can additionally have at least one further driving axis ( 9 ). In the embodiment shown, the measuring robot ( 6 ) is mounted on a linear unit ( 8 ) and can be moved back and forth along the axis ( 9 ) with respect to the workpiece ( 2 ). The driving axis ( 9 ) or linear unit ( 8 ) are preferably aligned parallel to the transfer line ( 4 ). The working range of the measuring robot ( 6 ) is enlarged via the one or more driving axes ( 9 ).

In Fig. 1 ist der Übersichtlichkeit wegen nur ein Meßroboter (6) dargestellt. Ein zweiter Meßroboter (6) in gleicher oder in ähnlicher Ausbildung kann auf der gegenüberliegenden Seite angeordnet sein. Zudem können noch weitere Meßroboter oder Manipulatoren (6) vorhanden sein. In Fig. 1 only one measuring robot ( 6 ) is shown for the sake of clarity. A second measuring robot ( 6 ) of the same or similar design can be arranged on the opposite side. In addition, further measuring robots or manipulators ( 6 ) can also be present.

Der einzelne Meßroboter (6) zeigt an seiner Roboterhand (7) ein geeignetes Meßwerkzeug (10). Hierbei handelt es sich vorzugsweise um ein optisches Erfassungssystem, z. B. einen sogenannten 3-D-Sensor, mit dem eine dreidimensionale Vermessung möglich ist.The individual measuring robot ( 6 ) shows a suitable measuring tool ( 10 ) on its robot hand ( 7 ). This is preferably an optical detection system, e.g. B. a so-called 3-D sensor with which a three-dimensional measurement is possible.

Das Werkstück (2) ist auf einem Werkstückträger (5), z. B. einem sogenannten Skid für Fahrzeugkarosserien, angeordnet und wird mit diesem entlang der Transferlinie (4) bewegt.The workpiece ( 2 ) is on a workpiece carrier ( 5 ), for. B. a so-called skid for vehicle bodies, and is moved with it along the transfer line ( 4 ).

Am Werkstück (2) befinden sich ein oder mehrere definierte Meßpunkte (11), die für die Werkstückgeometrie relevant sind und die eine bestimmte räumliche Position haben müssen. Bei der gezeigten Fahrzeugkarosserie (2) sind dies z. B. Bohrungen oder Kanten an bestimmten Stellen der Karosserie. Hierbei kann es sich auch um Karosseriebezugspunkte handeln, die in einer definierten Beziehung zu einem Fahrzeug-Koordinantensystem (3) stehen.There are one or more defined measuring points ( 11 ) on the workpiece ( 2 ) which are relevant to the workpiece geometry and which must have a certain spatial position. In the vehicle body ( 2 ) shown, these are e.g. B. holes or edges in certain parts of the body. These can also be body reference points that have a defined relationship to a vehicle coordinate system ( 3 ).

Der Meßroboter (6) führt die Vermessungen unter Bezug auf sein Basis-Koordinantensystem oder auf ein World-Koordinantensystem (16) der Meßstation (1) durch.The measuring robot ( 6 ) carries out the measurements with reference to its basic coordinate system or to a world coordinate system ( 16 ) of the measuring station ( 1 ).

Die hierauf bezogenen Koordinaten der Meßpunkte (11) werden dann in Koordinaten des Fahrzeug-Koordinatensystemes (3) umgerechnet und transformiert. In der Praxis werden häufig das World-Koordinantensystem (16) und das Fahrzeug-Koordinatensystem (3) zusammengelegt.The coordinates of the measuring points ( 11 ) related to this are then converted into coordinates of the vehicle coordinate system ( 3 ) and transformed. In practice, the world coordinate system ( 16 ) and the vehicle coordinate system ( 3 ) are often combined.

In der Meßstation (1) sind in der Nähe der Meßpunkte (11) oder der Meßräume am Werkstück (2) mehrere Kalibriermarken (13) angeordnet. Sie befinden sich seitlich neben oder unter dem Werkstück (2). Sie sind Bestandteil einer Kalibriereinrichtung (12), die z. B. aus mehreren in genau bekannten Positionen stationär angeordneten Markenträgern (14) mit jeweils drei Kalibriermarken (13) besteht. Die Markenträger (14) haben beispielsweise eine Winkelform, wobei die Kalibriermarken (13) im Eckbereich und an den Schenkelenden angeordnet sind. Alternativ können die Markenträger (14) auch eine T-Form mit drei Kalibriermarken (13) an den Schenkelenden oder eine einfache Balkenform mit zwei Kalibriermarken (13) aufweisen. Die Kalibriermarken (13) können in gleicher oder in unterschiedlicher Höhe an den Markenträgern (14) angeordnet sein.Several calibration marks ( 13 ) are arranged in the measuring station ( 1 ) in the vicinity of the measuring points ( 11 ) or the measuring spaces on the workpiece ( 2 ). They are located to the side of or below the workpiece ( 2 ). They are part of a calibration device ( 12 ) which, for. B. consists of several stationary in precisely known positions brand carriers ( 14 ) each with three calibration marks ( 13 ). The mark carriers ( 14 ) have, for example, an angular shape, the calibration marks ( 13 ) being arranged in the corner region and at the leg ends. Alternatively, the mark carriers ( 14 ) can also have a T-shape with three calibration marks ( 13 ) at the ends of the legs or a simple bar shape with two calibration marks ( 13 ). The calibration marks ( 13 ) can be arranged at the same or different heights on the mark carriers ( 14 ).

Außerdem können ein oder mehrere Kalibriermarken (13) am Werkstückträger (5) oder der Werkzeuggrundplatte angeordnet sein. Wie Fig. 1 verdeutlicht, ist z. B. eine Kalibriermarke (13) an einer Querstrebe des Skids befestigt. Auch diese Kalibriermarke (13) befindet sich in räumlicher Nähe zu ein oder mehreren Meßpunkten (11) an der Fahrzeugkarosserie (2). Als Kalibriermarken (13) können unter Umständen auch Bezugsmarken, z. B. Bezugsbohrungen am Werkstück (2) dienen.In addition, one or more calibration marks ( 13 ) can be arranged on the workpiece carrier ( 5 ) or the tool base plate. As illustrated in Fig. 1, z. B. a calibration mark ( 13 ) attached to a cross strut of the skid. This calibration mark ( 13 ) is also in spatial proximity to one or more measuring points ( 11 ) on the vehicle body ( 2 ). As calibration marks ( 13 ), reference marks, e.g. B. serve reference holes on the workpiece ( 2 ).

Die Kalibriermarken (13) haben vorzugsweise eine kreisrunde Form oder Kontur. Sie bestehen aus Öffnungen in den Markenträgern (14) beziehungsweise dem Werkstückträger (5) oder aus aufgebrachten kreisrunden Blättchen.The calibration marks ( 13 ) preferably have a circular shape or contour. They consist of openings in the brand carriers ( 14 ) or the workpiece carrier ( 5 ) or from applied circular leaflets.

Alternativ kann es sich auch um Farbmarken oder dergleichen handeln. Die Kalibriermarken (13) sind optisch erfaßbare Marken. Als kreisrunde ebene Marken haben sie den Vorteil, daß sie vom Meßwerkzeug (10) aus jeder Orientierung heraus als Kreise oder Ellipsen erkannt werden, wobei der Mittelpunkt ohne größeren Aufwand erfaßt und berechnet werden kann.Alternatively, it can also be color marks or the like. The calibration marks ( 13 ) are optically detectable marks. As circular, flat marks, they have the advantage that they can be recognized by the measuring tool ( 10 ) as circles or ellipses from any orientation, and the center point can be detected and calculated without great effort.

Alternativ können die Kalibriermarken (13) je nach Art des Meßwerkzeugs (10) auch in beliebig anderer Weise ausgebildet sein. In Fig. 1 sind sie außerdem nur zum Teil dargestellt. Auf der anderen Karosserieseite (= +y-Richtung) sowie in +z-Richtung verschoben können sich ähnliche Kalibriermarken (13) befinden. Alternatively, depending on the type of measuring tool ( 10 ), the calibration marks ( 13 ) can also be designed in any other way. In Fig. 1 they are also only partially shown. Similar calibration marks ( 13 ) can be located on the other side of the body (= + y direction) and shifted in the + z direction.

Dem Meßroboter (6) kann außerdem ein Kalibrierkörper (15) mit mehreren eigenen Marken im Arbeitsbereich zugeordnet sein. Dieser Meßkörper erlaubt ein einmaliges Einrichten des Meßroboters (6) vor dem Meßbetrieb und während des Meßbetriebs eine Kompensation der relativen Achsenfehler (Denavit-Hartenberg Parameter).The measuring robot ( 6 ) can also be assigned a calibration body ( 15 ) with several of its own brands in the work area. This measuring body allows the measuring robot ( 6 ) to be set up once before the measuring operation and during the measuring operation a compensation of the relative axis errors (Denavit-Hartenberg parameter).

Der Meßroboter (6) führt eine absolute Vermessung an den Meßpunkten (11) durch. Mit den Kalibriermarken (13) kann durch eine Verkleinerung des Arbeitsraumes auf kleinere Teilarbeitsräume (18) die absolute Positionier- und Meßgenauigkeit des Meßroboters verbessert, kontrolliert und gesichert werden. Durch ihre bekannte Position und ihre Nähe zu den Meßpunkten (11) des Werkstücks (2) können die beim Meßroboter (6) im Bewegungs- und Auslegerbereich bis zu den Kalibriermarken (13) eventuell auftretenden Positionierfehler erkannt und kompensiert werden. In dem verbleibenden kleinen Restweg von den Kalibriermarken (13) bis zu den Meßpunkten (11) ist ein eventuell auftretender Fehler minimal.The measuring robot ( 6 ) carries out an absolute measurement at the measuring points ( 11 ). With the calibration marks ( 13 ), the absolute positioning and measuring accuracy of the measuring robot can be improved, controlled and secured by reducing the working space to smaller partial working spaces ( 18 ). Due to their known position and their proximity to the measuring points ( 11 ) of the workpiece ( 2 ), any positioning errors that may occur in the measuring robot ( 6 ) in the range of movement and extension up to the calibration marks ( 13 ) can be recognized and compensated for. In the remaining small remaining path from the calibration marks ( 13 ) to the measuring points ( 11 ), any error that may occur is minimal.

An den Kalibriermarken wird außerdem ein vorzugsweise kartesisches Meßkoordinatensystem (17) aufgespannt, in dem die Messungen innerhalb des zugehörigen Teilarbeitsraums (18) durchgeführt werden. Durch die bekannte absolute Lage der Kalibriermarken (13) und des Meßkoordinatensystems (17) ist eine einfache Koordinatentransformation der gemessenen Meßpunkt-Koordinaten in das Fahrzeugkoordinatensystem (3) oder ein anderes gewünschtes Koordinatensystem möglich.A preferably Cartesian measuring coordinate system ( 17 ) is also spanned on the calibration marks, in which the measurements are carried out within the associated sub-work space ( 18 ). Due to the known absolute position of the calibration marks ( 13 ) and the measurement coordinate system ( 17 ), a simple coordinate transformation of the measured measurement point coordinates into the vehicle coordinate system ( 3 ) or another desired coordinate system is possible.

Der Meßroboter (6) fährt zunächst einmal zu Beginn des Serienmeßbetriebs die Kalibriermarken am Kalibrierkörper (15) an, vermißt diese, berechnet daraus eventuelle Positionierfehler, und kompensiert diese in den Maschinendaten über geeignete Rechen- und Steuerprogramme in der Robotersteuerung (globale Kompensation der Positionierfehler des Roboters).The measuring robot ( 6 ) first approaches the calibration marks on the calibration body ( 15 ) at the start of series measurement operation, measures them, calculates any positioning errors from them, and compensates them in the machine data using suitable computing and control programs in the robot controller (global compensation of the positioning errors of the Robot).

Bei der lokalen Kompensation, die der zusätzlichen Verbesserung der absoluten Positioniergenauigkeit dient, fährt der Meßroboter (6) mit seinem Meßwerkzeug (10) einen oder mehrere, vorzugsweise alle Markenträger (14) des Teilarbeitsraumes an und vermißt mindestens drei dort befindliche Kalibriermarken (13). Der Meßroboter (6) wird dabei kalibriert und "eingenullt". Bei der Kalibrierung werden seine in der Robotersteuerung für die Kalibriermarken (13) ermittelten Sollkoordinaten mit den aus der Vermessung bekannten Ortskoordinaten der Kalibriermarken (13) überschrieben.In the case of local compensation, which serves to further improve the absolute positioning accuracy, the measuring robot ( 6 ) moves one or more, preferably all, brand carriers ( 14 ) of the partial working area with its measuring tool ( 10 ) and measures at least three calibration marks ( 13 ) located there. The measuring robot ( 6 ) is calibrated and "zeroed". When calibrating its calculated in the robot controller for the calibration marks (13) target coordinates are overwritten with the well-known from the measurement position coordinates of the calibration marks (13).

Je drei Kalibriermarken (13) spannen das lokale Meßkoordinatensystem (17) auf. Der Kalibriervorgang kann auch während des Serien-Meßbetriebs ein- oder mehrmals wiederholt werden. Dabei werden während des Betriebs eventuell auftretende Einflüsse absoluter Fehler entdeckt und kompensiert, z. B. durch Verschleiß hervorgerufene Änderungen der Roboterbauteile.Each three calibration marks ( 13 ) span the local measurement coordinate system ( 17 ). The calibration process can also be repeated one or more times during series measurement. Any influences that may occur during operation are detected and compensated for. B. changes in the robot components caused by wear.

Der Arbeits- und Meßbereich des oder der Meßroboter (6) kann einerseits über die Fahrachse(n) (9) und andererseits über eine Verschiebebewegung des Werkstückträgers (5) mit dem Werkstück (2) vergrößert werden. Wenn eine solche Relativbewegung zwischen Meßroboter (6) und Werkstück (2) stattfindet, wird nach Ende der Bewegung und vor Aufnahme der Vermessungsarbeiten eine Kalibrierung durchgeführt. Wenn der Meßroboter (6) sich entlang seiner Fahrachse(n) (9) bewegt, kalibriert er sich an ein oder mehreren stationären Markenträgern (14) und deren Kalibriermarken (13). Wenn das Werkstück (2) sich bewegt, findet die Kalibrierung über ein oder mehrere Kalibriermarken (13) am Werkstückträger (5) statt. Trotz Vergrößerung des Arbeitsraumes durch eine Fahrachse (9) liegt infolge der lokalen Kalibrierung in unmittelbarer Bauteilnähe keine schlechtere Meßgenauigkeit vor. Über diese Kalibriermarken (13) am Werkstückträger (5) kann zudem die Position des Werkstücks (2) beziehungsweise des Werkstückträgers (5) aufgenommen und für die Vermessung der Meßpunkte (11) herangezogen werden. Auf diese Weise erfolgt eine exakte Bestimmung der aktuellen Bauteillage in Bezug auf das World- bzw. Roboterbasis-Koordinatensystem.The working and measuring range of the measuring robot (s) ( 6 ) can be increased on the one hand via the driving axis (s) ( 9 ) and on the other hand by moving the workpiece carrier ( 5 ) with the workpiece ( 2 ). If such a relative movement takes place between the measuring robot ( 6 ) and the workpiece ( 2 ), a calibration is carried out after the end of the movement and before the measurement work is started. When the measuring robot ( 6 ) moves along its travel axis (s) ( 9 ), it calibrates itself on one or more stationary brand carriers ( 14 ) and their calibration marks ( 13 ). When the workpiece ( 2 ) moves, the calibration takes place via one or more calibration marks ( 13 ) on the workpiece carrier ( 5 ). Despite the enlargement of the working space by a travel axis ( 9 ), there is no poorer measuring accuracy due to the local calibration in the immediate vicinity of the component. This calibration marks (13) on the workpiece carrier (5), the position can also be taken of the workpiece (2) or the workpiece carrier (5) and used for the measurement of the measurement points (11). In this way, an exact determination of the current component position in relation to the world or robot base coordinate system takes place.

Abwandlungen der gezeigten Ausführungsform sind in verschiedener Weise möglich. Zum einen können die Ausbildung und Zahl der Werkstücke (2) und deren Transport variieren. Veränderlich sind zudem Zahl und Ausbildung der Manipulatoren (6) beziehungsweise Industrieroboter (6) sowie der Meßwerkzeuge (10). Je nach Art der Meßpunkte (11) am Werkstück (2) kann zudem die Zahl und Anordnung der Kalibriermarken (13) beziehungsweise der Markenträger (14) variieren. Veränderlich ist auch die Form der Markenträger (14) und der Kalibriermarken (13). Modifications of the embodiment shown are possible in various ways. On the one hand, the design and number of workpieces ( 2 ) and their transport can vary. The number and design of the manipulators ( 6 ) or industrial robots ( 6 ) and the measuring tools ( 10 ) are also variable. Depending on the type of measuring points ( 11 ) on the workpiece ( 2 ), the number and arrangement of the calibration marks ( 13 ) or the mark carriers ( 14 ) can also vary. The shape of the mark carriers ( 14 ) and the calibration marks ( 13 ) can also be changed.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11

Bearbeitungsstation
Processing station

22nd

Werkstück, Fahrzeugkarosserie
Workpiece, vehicle body

33rd

Fahrzeug-Koordinatensystem
Vehicle coordinate system

44th

Transferlinie, Längsachse
Transfer line, longitudinal axis

55

Werkstückträger, Skid
Workpiece carrier, skid

66

Manipulator, Meßroboter
Manipulator, measuring robot

77

Roboterhand
Robotic hand

88th

Lineareinheit
Linear unit

99

Fahrachse
Travel axis

1010th

Meßwerkzeug, 3D-Sensor
Measuring tool, 3D sensor

1111

Meßpunkt
Measuring point

1212th

Kalibriereinrichtung
Calibration device

1313

Kalibriermarke
Calibration mark

1414

Markenträger
Brand bearer

1515

Kalibrierkörper
Calibration body

1616

World-Koordinatensystem
World coordinate system

1717th

Meßkoordinatensystem
Measuring coordinate system

1818th

Teilarbeitsraum
Partial work space

Claims (13)

1. Verfahren zum Vermessen von Werkstücken, insbesondere Fahrzeugkarosserien und deren Teilen, in einer Bearbeitungsstation mit mindestens einem Meßwerkzeug, das von mindestens einem mehrachsigen Manipulator, insbesondere einem Meßroboter, geführt und an ein oder mehrere Meßpunkte am Werkstück bewegt wird, dadurch gekennzeichnet, daß der Manipulator (6) vor oder während der Vermessungen durch Anmessen von mehreren in der Nähe der Meßpunkte (11) oder Meßräume angeordneten Kalibriermarken (13) kalibriert wird.1. A method for measuring workpieces, in particular vehicle bodies and their parts, in a processing station with at least one measuring tool, which is guided by at least one multi-axis manipulator, in particular a measuring robot, and moved to one or more measuring points on the workpiece, characterized in that the Manipulator ( 6 ) is calibrated before or during the measurements by measuring a plurality of calibration marks ( 13 ) arranged in the vicinity of the measuring points ( 11 ) or measuring rooms. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß an den Kalibriermarken (13) ein Meßkoordinatensystem (17) aufgespannt wird, in dem die Messungen erfolgen.2. The method according to claim 1, characterized in that a measuring coordinate system ( 17 ) is spanned on the calibration marks ( 13 ) in which the measurements are carried out. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei der Kalibrierung im Bereich der Meßpunkte (11) und Kalibriermarken (13) Teilarbeitsräume (18) generiert werden.3. The method according to claim 1 or 2, characterized in that during the calibration in the area of the measuring points ( 11 ) and calibration marks ( 13 ) partial work spaces ( 18 ) are generated. 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Manipulator (6) und/oder das Werkstück (2) bei der Vermessung relativ zueinander bewegt werden, wobei nach der Bewegung vor der nächsten Vermessung eine Kalibrierung des Manipulators (6) an den Kalibriermarken (13) durchgeführt wird.4. The method according to claim 1, 2 or 3, characterized in that the manipulator ( 6 ) and / or the workpiece ( 2 ) are moved relative to each other during the measurement, wherein after the movement before the next measurement, a calibration of the manipulator ( 6 ) on the calibration marks ( 13 ). 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Vermessung und die Kalibrierung mit dem gleichen Meßwerkzeug (10) durchgeführt werden. 5. The method according to any one of claims 1 to 4, characterized in that the measurement and calibration are carried out with the same measuring tool ( 10 ). 6. Bearbeitungsstation, insbesondere Vermessungsstation, zum Vermessen von Werkstücken, insbesondere Fahrzeugkarosserien und deren Teilen, mit mindestens einem Meßwerkzeug, das von mindestens einem mehrachsigen Manipulator, insbesondere einem Meßroboter, geführt und an ein oder mehrere Meßpunkte am Werkstück bewegt wird, dadurch gekennzeichnet, daß in der Nähe der Meßpunkte (11) mehrere Kalibriermarken (13) für den Manipulator (6) angeordnet sind.6. Processing station, in particular measuring station, for measuring workpieces, in particular vehicle bodies and their parts, with at least one measuring tool which is guided by at least one multi-axis manipulator, in particular a measuring robot, and moved to one or more measuring points on the workpiece, characterized in that Several calibration marks ( 13 ) for the manipulator ( 6 ) are arranged in the vicinity of the measuring points ( 11 ). 7. Bearbeitungsstation nach Anspruch 6, dadurch gekennzeichnet, daß die Kalibriermarken (13) an ein oder mehreren ortsfesten Markenträgern (14) und/oder an einem Werkstückträger (5) und/oder am Werkstück (2) angeordnet sind.7. Processing station according to claim 6, characterized in that the calibration marks ( 13 ) are arranged on one or more stationary mark carriers ( 14 ) and / or on a workpiece carrier ( 5 ) and / or on the workpiece ( 2 ). 8. Bearbeitungsstation nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß mehrere Kalibriermarken (13) in einer Gruppe mit definierter räumlicher Distanz zueinander angeordnet sind.8. Processing station according to claim 6 or 7, characterized in that a plurality of calibration marks ( 13 ) are arranged in a group with a defined spatial distance from one another. 9. Bearbeitungsstation nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die ortsfesten Kalibriermarken (13) eine bekannte Position im Fahrzeug-Koordinatensystem (3) und im World-Koordinatensystem (16) der Bearbeitungsstation (1) oder im Basis-Koordinatensystem des Manipulators (6) einnehmen.9. Processing station according to one of claims 6 to 8, characterized in that the fixed calibration marks ( 13 ) a known position in the vehicle coordinate system ( 3 ) and in the world coordinate system ( 16 ) of the processing station ( 1 ) or in the base coordinate system of Take the manipulator ( 6 ). 10. Bearbeitungsstation nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß das Meßwerkzeug (10) als optisches Vermessungssystem, insbesondere als optischer 3D-Sensor, ausgebildet ist. 10. Processing station according to one of claims 6 to 9, characterized in that the measuring tool ( 10 ) is designed as an optical measurement system, in particular as an optical 3D sensor. 11. Bearbeitungsstation nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Kalibriermarken (13) eine ebene kreisrunde Kontur aufweisen und als Öffnungen, Blättchen oder Farbmarken ausgebildet sind.11. Processing station according to one of claims 6 to 10, characterized in that the calibration marks ( 13 ) have a flat circular contour and are designed as openings, leaflets or color marks. 12. Bearbeitungsstation nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß der Manipulator (6) und/oder das Werkstück (2) mit mindestens einer zusätzlichen Fahrachse (9) beweglich angeordnet sind.12. Processing station according to one of claims 6 to 11, characterized in that the manipulator ( 6 ) and / or the workpiece ( 2 ) with at least one additional travel axis ( 9 ) are movably arranged. 13. Bearbeitungsstation nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß der Manipulator (6) und/oder das Werkstück (2) auf mindestens einer Lineareinheit (8) angeordnet sind.13. Processing station according to one of claims 6 to 12, characterized in that the manipulator ( 6 ) and / or the workpiece ( 2 ) are arranged on at least one linear unit ( 8 ).
DE1999131676 1999-06-26 1999-07-08 Method for measuring workpieces and processing station Expired - Lifetime DE19931676C2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE1999131676 DE19931676C2 (en) 1999-07-08 1999-07-08 Method for measuring workpieces and processing station
ES00940320T ES2193087T3 (en) 1999-06-26 2000-06-06 PROCEDURE AND DEVICE FOR CALIBRATING MEASURING STATIONS WITH ROBOTS, HANDLERS AND OPTICAL ASSOCIATED MEASUREMENT DEVICES.
PCT/EP2000/005175 WO2001000370A1 (en) 1999-06-26 2000-06-06 Method and device for calibrating robot measuring stations, manipulators and associated optical measuring devices
EP00940320A EP1189732B1 (en) 1999-06-26 2000-06-06 Method and device for calibrating robot measuring stations, manipulators and associated optical measuring devices
DE50002092T DE50002092D1 (en) 1999-06-26 2000-06-06 METHOD AND DEVICE FOR CALIBRATING ROBOT MEASURING STATIONS, MANIPULATORS AND OPTICAL MEASURING DEVICES
US10/019,345 US6615112B1 (en) 1999-06-26 2000-06-06 Method and device for calibrating robot measuring stations, manipulators and associated optical measuring devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999131676 DE19931676C2 (en) 1999-07-08 1999-07-08 Method for measuring workpieces and processing station

Publications (2)

Publication Number Publication Date
DE19931676A1 true DE19931676A1 (en) 2001-01-18
DE19931676C2 DE19931676C2 (en) 2002-07-11

Family

ID=7913981

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999131676 Expired - Lifetime DE19931676C2 (en) 1999-06-26 1999-07-08 Method for measuring workpieces and processing station

Country Status (1)

Country Link
DE (1) DE19931676C2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341042A1 (en) * 2003-09-03 2005-03-31 Claas Fertigungstechnik Gmbh Device and method for measuring components
DE10345743A1 (en) * 2003-10-01 2005-05-04 Kuka Roboter Gmbh Method and device for determining the position and orientation of an image receiving device
WO2005115700A1 (en) * 2004-05-17 2005-12-08 Kuka Roboter Gmbh Method for robot-assisted measurement of measurable objects
DE102006006246A1 (en) * 2006-02-10 2007-08-16 Battenberg, Günther Method and device for fully automatic final inspection of components and / or their functional units
DE102006016677A1 (en) * 2006-04-08 2007-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Object`s e.g. solid object, geometrical characteristics e.g. surface forms of component range, measuring method, involves converting relative measuring data under consideration of detected spatial position of one of reference objects
US7324217B2 (en) 2004-05-06 2008-01-29 Claas Fertigungstechnik Gmbh Device and method for measuring components
WO2011060769A1 (en) 2009-11-20 2011-05-26 Micro-Epsilon Messtechnik Gmbh & Co. Kg Robot for automatic 3-d measurement and method
US8082052B2 (en) 2006-04-28 2011-12-20 Airbus Deutschland Gmbh Method and apparatus for ensuring the dimensional constancy of multisegment physical structures during assembly
EP2210715A3 (en) * 2009-01-21 2011-12-21 KUKA Roboter GmbH Manipulator system and method for compensating a cinematic deviation of a manipulator system
DE102006005990B4 (en) * 2006-02-08 2013-02-21 Vision Tools Hard- Und Software Entwicklungs Gmbh Workpiece measurement for 3-D position detection in several multi-robot stations
DE102013224358A1 (en) * 2013-11-28 2015-05-28 Airbus Operations Gmbh Method for measuring large components
EP2037215B1 (en) 2000-07-27 2016-09-28 Dürr Systems AG Method and control system to control the coating quality of workpieces
DE102016013891A1 (en) * 2016-11-21 2018-05-24 Kuka Roboter Gmbh Measuring a movement axis of a robot
WO2018153579A1 (en) * 2017-02-27 2018-08-30 Bayerische Motoren Werke Aktiengesellschaft Test device and measurement method
DE102008025800B4 (en) * 2008-05-29 2021-02-04 Bayerische Motoren Werke Aktiengesellschaft Method and device for the automated assembly of windows in a window frame of a body of a motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20216636U1 (en) * 2002-10-28 2004-03-11 Kuka Schweissanlagen Gmbh processing plant
DE102013227146A1 (en) * 2013-12-23 2015-06-25 Daimler Ag Method for automated assembly at an assembly workstation, and associated automated assembly workstation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470257A1 (en) * 1990-02-28 1992-02-12 Fanuc Ltd. Calibration system for robot
EP0522411A1 (en) * 1991-07-12 1993-01-13 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
DE19821873A1 (en) * 1998-05-15 1999-11-25 Inst Werkzeugmaschinen Und Bet Method for minimizing effects of temperature variations on industrial robots by computer correction of predetermined criteria

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470257A1 (en) * 1990-02-28 1992-02-12 Fanuc Ltd. Calibration system for robot
EP0522411A1 (en) * 1991-07-12 1993-01-13 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
DE19821873A1 (en) * 1998-05-15 1999-11-25 Inst Werkzeugmaschinen Und Bet Method for minimizing effects of temperature variations on industrial robots by computer correction of predetermined criteria

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037215B1 (en) 2000-07-27 2016-09-28 Dürr Systems AG Method and control system to control the coating quality of workpieces
EP2037215B2 (en) 2000-07-27 2019-10-16 Dürr Systems AG Method and control system to control the coating quality of workpieces
DE10341042A1 (en) * 2003-09-03 2005-03-31 Claas Fertigungstechnik Gmbh Device and method for measuring components
DE10345743A1 (en) * 2003-10-01 2005-05-04 Kuka Roboter Gmbh Method and device for determining the position and orientation of an image receiving device
US7818091B2 (en) 2003-10-01 2010-10-19 Kuka Roboter Gmbh Process and device for determining the position and the orientation of an image reception means
US7324217B2 (en) 2004-05-06 2008-01-29 Claas Fertigungstechnik Gmbh Device and method for measuring components
WO2005115700A1 (en) * 2004-05-17 2005-12-08 Kuka Roboter Gmbh Method for robot-assisted measurement of measurable objects
US9833904B2 (en) 2004-05-17 2017-12-05 Kuka Roboter Gmbh Method for robot-assisted measurement of measurable objects
DE102006005990B4 (en) * 2006-02-08 2013-02-21 Vision Tools Hard- Und Software Entwicklungs Gmbh Workpiece measurement for 3-D position detection in several multi-robot stations
DE102006006246A1 (en) * 2006-02-10 2007-08-16 Battenberg, Günther Method and device for fully automatic final inspection of components and / or their functional units
DE102006016677A1 (en) * 2006-04-08 2007-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Object`s e.g. solid object, geometrical characteristics e.g. surface forms of component range, measuring method, involves converting relative measuring data under consideration of detected spatial position of one of reference objects
US8082052B2 (en) 2006-04-28 2011-12-20 Airbus Deutschland Gmbh Method and apparatus for ensuring the dimensional constancy of multisegment physical structures during assembly
DE102006019917B4 (en) * 2006-04-28 2013-10-10 Airbus Operations Gmbh Method and device for ensuring the dimensional accuracy of multi-segment structural structures during assembly
DE102008025800B4 (en) * 2008-05-29 2021-02-04 Bayerische Motoren Werke Aktiengesellschaft Method and device for the automated assembly of windows in a window frame of a body of a motor vehicle
EP2210715A3 (en) * 2009-01-21 2011-12-21 KUKA Roboter GmbH Manipulator system and method for compensating a cinematic deviation of a manipulator system
EP2356400B1 (en) * 2009-11-20 2014-07-16 Micro-Epsilon Messtechnik GmbH & Co. KG Robot for automatic 3-d measurement and method
DE102009053874A1 (en) 2009-11-20 2011-05-26 Micro-Epsilon Messtechnik Gmbh & Co. Kg Robot for automatic 3D measurement and procedure
WO2011060769A1 (en) 2009-11-20 2011-05-26 Micro-Epsilon Messtechnik Gmbh & Co. Kg Robot for automatic 3-d measurement and method
US9426425B2 (en) 2013-11-28 2016-08-23 Airbus Operations Gmbh Method for measuring large components
DE102013224358A1 (en) * 2013-11-28 2015-05-28 Airbus Operations Gmbh Method for measuring large components
DE102016013891A1 (en) * 2016-11-21 2018-05-24 Kuka Roboter Gmbh Measuring a movement axis of a robot
WO2018153579A1 (en) * 2017-02-27 2018-08-30 Bayerische Motoren Werke Aktiengesellschaft Test device and measurement method
US11193849B2 (en) 2017-02-27 2021-12-07 Bayerische Motoren Werke Aktiengesellschaft Test device and measurement method

Also Published As

Publication number Publication date
DE19931676C2 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
EP1189732B1 (en) Method and device for calibrating robot measuring stations, manipulators and associated optical measuring devices
DE19931676C2 (en) Method for measuring workpieces and processing station
DE19626459C2 (en) Method and device for teaching a program-controlled robot
EP2435217B1 (en) Method and system for extremely precise positioning of at least one object in the end position in space
DE10242710A1 (en) Method for producing a connection area on a workpiece
EP1696289A1 (en) Method for gauging a machine tool
DE102017209178B4 (en) Method for determining the spatial position of a moving coordinate system, a measuring point of its sensor or an operating point of a tool in a robot
WO2003095125A2 (en) Production device, especially a bending press, and method for operating said production device
EP2199036A2 (en) Method and device for compensating a kinematic deviation
DE19818635A1 (en) Procedure for calibrating a parallel manipulator
EP3221094B1 (en) Method and system for correcting a processing path of a robot-guided tool
EP0763406B1 (en) Method of determination of the spatial position of an object
DE60209513T2 (en) METHOD FOR THE AUTOMATIC CORRECTION OF SYSTEMATIC ERRORS OF MEASURING AND MACHINING MACHINES AND DEVICE THEREFOR
DE19752290A1 (en) Method and device for measuring the position and / or orientation of interacting machine units
DE19921325A1 (en) Calibration device for parallel kinematic manipulator has sampler that can be fitted into manipulator and then moved relative to test piece having measurement points whose position and orientation are known
EP3441200A1 (en) Referencing method and device for industrial robots
DE102005051533B4 (en) Method for improving the positioning accuracy of a manipulator with respect to a serial workpiece
EP1120204A2 (en) Method for calibrating an industrial robot
DE102012016106A1 (en) Arrangement for model-based calibration of mechanism, particularly a robot in working space, has two different effect groups used to calibrate mechanism and components of different effect groups are rigidly connected to one another
DE19616276C2 (en) Method and device for measuring and calibrating a multi-axis manipulator
EP2553536B1 (en) Method for operating a processing enclosure comprising at least one robot
EP0615110B1 (en) Mobile coordinate measuring machine and calibrating method
DE3902854A1 (en) Production apparatus with change pallets
DE4015644C2 (en) Method for determining relevant points of a tool on the hand flange of a controlled multi-axis manipulator
DE102005020844B3 (en) Robot arrangement, has cameras arranged with different orientations in patterns so that patterns are engaged with each camera, where patterns are used as continuous pattern by overlapping patterns with another pattern to form moire pattern

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: KUKA ROBOTER GMBH, 86165 AUGSBURG, DE

R081 Change of applicant/patentee

Owner name: KUKA DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: KUKA ROBOTER GMBH, 86165 AUGSBURG, DE

R082 Change of representative

Representative=s name: ERNICKE PATENT- UND RECHTSANWAELTE, DE

R071 Expiry of right