DE3112739A1 - Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases - Google Patents

Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases

Info

Publication number
DE3112739A1
DE3112739A1 DE19813112739 DE3112739A DE3112739A1 DE 3112739 A1 DE3112739 A1 DE 3112739A1 DE 19813112739 DE19813112739 DE 19813112739 DE 3112739 A DE3112739 A DE 3112739A DE 3112739 A1 DE3112739 A1 DE 3112739A1
Authority
DE
Germany
Prior art keywords
electrode
solid
platinum
oxygen content
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19813112739
Other languages
German (de)
Other versions
DE3112739C2 (en
Inventor
Friedrich Josef Dipl Phy Esper
Karl-Hermann Dipl Phys Friese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE19813112739 priority Critical patent/DE3112739A1/en
Priority to JP57050265A priority patent/JPS57175251A/en
Publication of DE3112739A1 publication Critical patent/DE3112739A1/en
Application granted granted Critical
Publication of DE3112739C2 publication Critical patent/DE3112739C2/de
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A highly loadable electrode of stable structure for solid-state electrolytes for electrochemical applications is proposed which contains a metallic component which catalyses the establishment of a thermodynamic gas equilibrium. Instead of the conventional platinum, the electrode contains at least predominantly rare metals having a melting point of less than 1600 DEG C, and a temperature-resistant, electronically conductive non-metallic solid. The rare metals which can be used are preferably silver and/or palladium, while especially an oxide of the Perovskite type is used as the electronically conductive non-metallic solid. The electrode has proved suitable especially in an electrochemical sensor for the determination of the oxygen content in gases, according to the attached drawing, where it can be used above all as an internal electrode exposed to a comparison gas, even though the measuring electrode can also be designed in this way. It is thus possible to replace the otherwise conventionally used expensive platinum in such electrodes by less expensive rare metals without functional detriment. <IMAGE>

Description

Strukturstabile Elektrode für Festelektrolyte fürStructurally stable electrode for solid electrolytes for

elektrochemische Anwendungen sowie Verwendung einer solchen Elektrode in elektrochemischen Meßfühlern zur Bestimmung des Sauerstoffgehaltes in Gasen Stand der Technik Die Erfindung geht aus von einer Elektrode nach der Gattung des Hauptanspruchs Elektroden, beispielsweise von elektro chemischen Meßfühlern für die Bestimmung des Saverstoffgehalt es in Gasen, werden im allgemeinen durch Aufbringen einer Schicht aus Platin oder aus einer Legierung aus Platin mit einem zweiten Platinmetall, gegebenenfalls unter Zufügen eines Pulvers eines keramischen Materials, auf den Festelektrolyten hergestellt Derartige Elektroden mit den hochschmelzenden Edelmetallen wie Platin, Rhodium oder Legierungen mit diesen Metallen sind noch bei relativ hohen 0 Anwendungstemperaturen von etwa 1000 C stabil. Diese hochschmelzenden Edelmetalle sind jedoch teuer, so daß man danach strebt, diese Edelmetalle ganz oder zumindest zum größeren Teil durch preiswertere Edelmetalle wie Silber oder Paladium oder Edelmetallegierungen, in denen die beiden genannten Metalle den Hauptbestandteil neben Platin und Rhodium bilden, zu ersetzen. Es zeigt sich jedoch, daß diese genannten Edelmetalle, die einen niedrigeren Schmelzpunkt aufweisen, bei hohen Temperaturen zum Koagulieren oder zum Versintern neigen, wodurch die Elektrodenpolarisation ansteigt. Derartige Elektroden sind dann nicht mehr ausreichend hoch mit elektrischem Strom belastbar, was vor allem für das Anspringverhalten bei Temperaturen um 0 300 C von Meßfühlern mit derartigen Elektroden eine wichtige Rolle spielt. Durch Koagulieren bilden sich gröbere Edelmetall-Körner in der Elektrodenschicht, was zu einer Verkürzung der Dreiphasengrenze und damit zu einer verringerten Belastbarkeit führt. Im fortgeschrittenen Stadium können sich schließlich auf dem Festelektrolyten Inseln bilden, so daß keine zusammenhängende Metallschicht auf dem Festelektrolyten mehr vorhanden und die Elektrode nicht mehr belastbar ist.electrochemical applications and the use of such an electrode in electrochemical sensors for determining the oxygen content in gases the technology The invention is based on an electrode according to the preamble of the main claim Electrodes, for example from electrochemical sensors for the determination the content of savers in gases is generally determined by the application of a layer of platinum or of an alloy of platinum with a second platinum metal, if necessary with adding a powder of a ceramic material on the solid electrolyte Manufactured such electrodes with the refractory precious metals such as platinum, Rhodium or alloys with these metals are still at relatively high application temperatures stable from about 1000 C. However, these refractory precious metals are expensive, so that one strives to completely or at least to a greater extent these precious metals cheaper precious metals such as silver or palladium or precious metal alloys, in which the two metals mentioned are the main constituent next to platinum and rhodium form, replace. It turns out, however, that these precious metals mentioned, the have a lower melting point at high temperatures for coagulating or to Tend to sinter, as a result of which the electrode polarization increases. Such electrodes are then no longer sufficiently high with electrical current resilient, which is mainly for the starting behavior at temperatures around 0 300 C of Sensors with such electrodes plays an important role. By coagulating coarser precious metal grains form in the electrode layer, which leads to a shortening the three-phase boundary and thus leads to a reduced load capacity. In the advanced Stage, islands can eventually form on the solid electrolyte, so that none coherent metal layer on the solid electrolyte and the electrode is no longer resilient.

Vorteile der Erfindung Die erfindungsgemäße Elektrode mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber folgende Vorteile: 1. Die zugesetzten nichtmetallischen elektronenleitenden Feststoffe stabilisieren die Struktur der Edelmetall-Elektrodenschicht derart, daß sie auch bei Temperaturen im Bereich von 10000C praktisch keine Veränderung erleiden, die zu einem Anstieg der Elektrodenpolarisation führt.Advantages of the invention The electrode according to the invention with the characterizing Features of the main claim has the following advantages: 1. The added non-metallic electron-conducting solids stabilize the structure of the Noble metal electrode layer in such a way that it can also be used at temperatures in the range of 10000C undergo practically no change leading to an increase in electrode polarization leads.

2. Da diese Zusätze elektronenleitend sind, verhalten sie sich ähnlich wie die Edelmetalle in der Elektrodenschicht, d. h., sie bilden selbst einen Teil der Dreiphasengrenze Festelektrolyt/ElektronenleiterlGas und tragen somit zur Elektrodenfunktion bei.2. Since these additives conduct electrons, they behave similarly like the noble metals in the electrode layer, d. i.e., they form a part themselves the three-phase boundary solid electrolyte / electron conductor / gas and thus contribute to the electrode function at.

3. In ähnlicher Weise übernehmen die Zusätze teilweise die Leiterbahn-Funktion in der Elektrodenschicht.3. In a similar way, the additions partially take over the conductor track function in the electrode layer.

4. Darüber hinaus läßt sich die .erfindungsgemäße Elektrode bei relativ niedrigen Sintertemperaturen von etwa 8000C eins intern.4. In addition, the electrode according to the invention can be relatively low sintering temperatures of about 8000C one internally.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Elektrode möglich. Besonders vorteilhaft ist es, wenn die Elektrode als Edelmetall Silber und als elektronenleitenden nichtmetallischen Feststoff ein Oxid vom Perowskittyp wie z.B. Sr0,1 La0,9Co03 enthält.The measures listed in the subclaims are advantageous Further developments and improvements of the electrode specified in the main claim are possible. It is particularly advantageous if the electrode is silver as a noble metal and as an electron-conducting metal non-metallic solid contains a perovskite-type oxide such as Sr0.1 La0.9 Co03.

Besonders bewährt hat sich diese Elektrode, die 60 Vol.% Silber und 40 Vol. Oxid enthält, beim Einsatz als Innenelektrode bei elektrochemischen Meßfühlern für di#e Bestimmung des Sauerstoffgehaltes in Gasen.This electrode, which contains 60% by volume of silver and has proven itself particularly well Contains 40 vol. Oxide when used as an inner electrode in electrochemical sensors for the determination of the oxygen content in gases.

Zeichnung Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Figur zeigt einen Schnitt durch einen elektrochemischen Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, bei dem die Innenelektrode eine erfindungsgemäße Elektrode ist.Drawing An embodiment of the invention is shown in the drawing and explained in more detail in the following description. The figure shows a section through an electrochemical sensor for determining the oxygen content in gases, in which the inner electrode is an electrode according to the invention.

Beschreibung der Erfindung Der Meßfühler besteht aus einem Festelektrolyten in Form eines geschlossenen Rohres 10 aus stabilisiertem Zirkondioxid, das an seinem offenen Ende mit einem Bund 11 zum Einbau in eine nicht dargestellte Metallfassung versehen ist. Die äußere Oberfläche des Rohres 10 trägt eine ca.Description of the Invention The probe consists of a solid electrolyte in the form of a closed tube 10 made of stabilized zirconium dioxide, which is attached to his open end with a collar 11 for installation in a metal socket, not shown is provided. The outer surface of the tube 10 has an approx.

3 um dicke poröse Platinschicht 12. Die Platinschicht 12 reicht bis auf den Bund 11 des Rohres 10 und ermöglicht so die Abnahme des Potentials. Diese Platinschicht 12 ist mit einer porösen, beispielsweise aus Magnesium-Spinell bestehenden Schicht 14 mit einer Schichtdicke von 5 bis 500 /um bedeckt, wobei die Poren jeweils bis an die Platinschicht 12 durchgehen, um eine hinreichend kleine Ansprechzeit des Meßfühlers zu gewährleisten. Die Innenelektrode 13 besteht aus einem Gemisch aus 60 Vol.% Silber und 40 Vol.% eines Perowskits der Formel SrO 1LaO gCo03, Zur Herstellung des Meßfühlers geht man z. B. von dem fertiggesinterten Zirkondioxid-Körper aus und bringt durch ein an sich bekanntes Verfahren eine ca. 3 um dicke Platinschicht auf di-e äußere Oberfläche des Körpers auf, beispielsweise durch Aufdampfen. Auf diese Platinschicht wird nun eine poröse Deckschicht aufgebracht, indem Mg-Spinell-Pulver mit der Plasmaspritztechnik aufgetragen wird. Der Meßfühler mit der so aufgespritzten porösen Deckschicht wird zunächst getrocknet und anschließend bei etwa 11000 C eingebrannt.3 µm thick porous platinum layer 12. The platinum layer 12 extends to on the collar 11 of the tube 10 and thus enables the potential to be decreased. These Platinum layer 12 is with a porous one, for example made of magnesium spinel existing layer 14 covered with a layer thickness of 5 to 500 / µm, the Pores each go through to the platinum layer 12 to a sufficiently small one To ensure response time of the sensor. The inner electrode 13 consists of a mixture of 60% by volume of silver and 40% by volume of a perovskite of the formula SrO 1LaO gCo03, To manufacture the sensor, go e.g. B. from the fully sintered zirconium dioxide body and brings about a 3 .mu.m thick layer of platinum using a process known per se on the outer surface of the body, for example by vapor deposition. on This platinum layer is now applied a porous top layer by adding Mg spinel powder is applied with the plasma spray technique. The probe with the one sprayed on in this way The porous top layer is first dried and then baked at around 11,000 ° C.

Die Dicke der so erzeugten porösen Deckschicht beträgt ca.The thickness of the porous cover layer created in this way is approx.

200 /um.200 / um.

Zur Herstellung der aus Silber und Perowskit bestehenden Innenelektrode wird zunächst der obengenannte Perowskit hergestellt, in dem man La203, Sr CO3 und Co304 im entsprechenden Mengenverhältnis mischt, mahlt, zwei Stunden 0 bei 1350 C kalziniert und anschließend nochmals mahlt.For the production of the inner electrode made of silver and perovskite the above-mentioned perovskite is first produced by using La203, Sr CO3 and Mixes Co304 in the appropriate proportions, grinds, two hours 0 at 1350 C calcined and then grinds again.

Das so erhaltene Perowskit-Pulver wird in einer solchen Menge mit einer handelsüblichen Silberpulver-Suspension (50 Gew.-% Ag in einer für Dickschichtpräparate üblichen Mischung von Verdünnungsölen und Klebersubstanzen) gemischt, daß das Silberpulver im Sinterzustand 60 Vol.% ausmacht. Ein solcher Ansatz besteht beispielsweise aus 8,0 g Silberpulver-Suspension und 1,8 g des obenhergestellten Perowskitpulvers. Diese Mischung wird zunächst trocken und anschließend unter Zusatz eines handelüblichen Verdünners gemahlen, wobei soviel Verdünner zugesetzt wird, daß eine fließfähige Suspension entsteht. Diese Suspension wird dann in die Innenbohrung 15 des Meßfühlers eingebracht, beispielsweise durch Eintropfen und anschließendes Verblasen mit Luft. Diese Schicht wird anschließend an Luft bei 9000 C zur Bildung der Innenelektrode 13 eingesintert.The thus obtained perovskite powder is in such an amount with a commercially available silver powder suspension (50% by weight Ag in one for thick-film preparations usual mixture of diluent oils and adhesive substances) mixed that the silver powder makes up 60% by volume in the sintered state. Such an approach consists, for example, of 8.0 g of silver powder suspension and 1.8 g of the perovskite powder prepared above. This mixture is first dry and then with the addition of a commercially available one Ground thinner, so much thinner is added that one flowable Suspension arises. This suspension is then in the inner bore 15 of the sensor introduced, for example by dropping and then blowing with air. This layer is then exposed to air at 9000 C to form the internal electrode 13 sintered in.

Meßfühler mit der soeben beschriebenen Innenelektrode zeigen hohe Sondenspannungswerte, eine gute Strombelastbarkeit sowie ein gutes Alterungsverhalten, wobei diese Werte günstiger liegen als die der bisher benutzten Platinelektroden, dabei aber den Vorteil haben, daß sie vom Material her billiger sind und sich bei niedrigeren Temperaturen einsintern lassen.Sensors with the inner electrode just described show high Probe voltage values, good current carrying capacity and good aging behavior, whereby these values are more favorable than those of the platinum electrodes previously used, but have the advantage that they are cheaper in terms of material and with sinter it at lower temperatures.

Claims (5)

Ansprüche 1. Strukturstabile Elektrode für Festelektrolyte für elektrochemische Anwendungen, wobei die Elektrode eine metallische Komponente enthält, die die Einstellung eines thermodynamischen Gasgleichgewichtes katalysiert, dadurch gekennzeichnet, daß die Elektrode ein Edelmetall mit einem Schmelzpunkt < 16000 C sowie einen elektronenleitenden nichtmetallischen Feststoff ausreichender Temperaturfestigkeit enthält.Claims 1. Structurally stable electrode for solid electrolytes for electrochemical Applications where the electrode contains a metallic component that makes the setting catalyzed a thermodynamic gas equilibrium, characterized in that that the electrode is a noble metal with a melting point <16000 C and a electron-conducting non-metallic solid of sufficient temperature resistance contains. 2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß sie als Edelmetall Silber und/oder Palladium oder Edelmetalllegierungen, in denen Silber und/oder Palladium den Hauptbestandteil neben Platin oder Rhodium bilden, sowie als elektronenleitenden nichtmetallischen Fest stoff ein Oxid vorzugsweise vom Perowskittyp, Siliciumcarbid oder Molybdändisilicid enthält.2. Electrode according to claim 1, characterized in that it is used as Precious metal silver and / or palladium or precious metal alloys in which silver and / or palladium form the main component in addition to platinum or rhodium, as well as an oxide, preferably of the perovskite type, as the electron-conducting non-metallic solid, Contains silicon carbide or molybdenum disilicide. 3. Elektrode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Edelmetall und elektronenleitender nichtmetallischer Feststoff im Volumenverhältnis 50:50 bis 80:20 vorliegen.3. Electrode according to claim 1 or 2, characterized in that noble metal and electron-conducting non-metallic solid in a volume ratio of 50:50 to 80:20 are available. W. Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, mit einem Festelektrolyten aus stabilisiertem Zirkondioxid und einer ersten Elektrode auf der dem zu messenden Gas ausgesetzten Seite des Festelektrolyten und einer zweiten Elektrode auf der einem Vergleichsgas bekannten Sauerstoffgehaltes ausgesetzten. Seite des Festelektrolyten, dadurch gekennzeichnet, daß die erste Elektrode in an sich bekannter Weise aus Platin oder einer Platin-'#hodium-Legierung oder aus einem Gemisch aus Platin oder einer Platin-Rhodium-Legierung und stabilisiertem Zirkondioxid besteht und die zweite Elektrode eine solche nach einem der Ansprüche j bis 3 ist.W. Electrochemical measuring probe for the determination of the oxygen content in gases, with a solid electrolyte made of stabilized zirconium dioxide and a first Electrode on the side of the solid electrolyte exposed to the gas to be measured and a second electrode on the known oxygen content of a reference gas exposed. Side of the solid electrolyte, characterized in that the first Electrode in a manner known per se made of platinum or a platinum - '#hodium alloy or from a mixture of platinum or a platinum-rhodium alloy and stabilized There is zirconium dioxide and the second electrode is one according to one of the claims j is to 3. 5. Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, mit einem Festelektrolyten aus stabilisiertem Zirkondioxid und einer ersten Elektrode auf der dem zu messenden Gas ausgesetzten Seite des Festelektrolyten und einer zweiten Elektrode auf der einem Vergleichsgas bekannten Sauerstoffgehalts ausge setzten Seite des Festelektrolyten, dadurch gekennzeichnet, daß die erste und die zweite Elektrode solche nach einem der Ansprüche 1 bis 3 sind.5. Electrochemical sensor for determining the oxygen content in gases, with a solid electrolyte made of stabilized zirconium dioxide and a first Electrode on the side of the solid electrolyte exposed to the gas to be measured and a second electrode on the oxygen content known to a reference gas exposed side of the solid electrolyte, characterized in that that the first and second electrodes are those according to any one of claims 1 to 3.
DE19813112739 1981-03-31 1981-03-31 Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases Granted DE3112739A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19813112739 DE3112739A1 (en) 1981-03-31 1981-03-31 Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases
JP57050265A JPS57175251A (en) 1981-03-31 1982-03-30 Structurally stable electrode for solid electrolyte and electrochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813112739 DE3112739A1 (en) 1981-03-31 1981-03-31 Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases

Publications (2)

Publication Number Publication Date
DE3112739A1 true DE3112739A1 (en) 1982-10-07
DE3112739C2 DE3112739C2 (en) 1990-10-18

Family

ID=6128828

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19813112739 Granted DE3112739A1 (en) 1981-03-31 1981-03-31 Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases

Country Status (2)

Country Link
JP (1) JPS57175251A (en)
DE (1) DE3112739A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004108A2 (en) * 1986-11-26 1988-06-02 Sri International Solid compositions for fuel cells, sensors and catalysts
EP0281555A1 (en) * 1985-10-29 1988-09-14 Commonwealth Scientific And Industrial Research Organisation Composite electrodes for use in solid electrolyte devices
DE3910037A1 (en) * 1989-03-28 1991-04-25 Gyulai Maria Dobosne Electrochemical cell for use as oxygen sensor - uses an alkaline medium with opposite reactions to ensure cell-conditions remain constant
EP0424813A1 (en) * 1989-10-24 1991-05-02 Asea Brown Boveri Aktiengesellschaft Fuel cell assembly
DE4009747A1 (en) * 1989-03-28 1991-10-02 Gyulai Maria Dobosne Electrochemical oxygen sensor - comprising potentiostatic cell with oxygen pumping action
EP0466020A2 (en) * 1990-07-10 1992-01-15 ABBPATENT GmbH Sensor
US5134042A (en) * 1986-11-26 1992-07-28 Sri International Solid compositions for fuel cells, sensors and catalysts
DE4424539A1 (en) * 1993-07-12 1995-01-19 Unisia Jecs Corp Element for detecting an air/fuel ratio
EP0606456B2 (en) 1992-08-04 2000-10-18 Heraeus Electro-Nite International N.V. Arrangement for continuously monitoring the no concentration in gas mixtures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545050B2 (en) * 1995-05-26 1996-10-16 日本特殊陶業株式会社 Oxygen sensor element

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD87024A (en) *
DE1809622A1 (en) * 1967-11-23 1969-07-17 Kent Ltd G Composite electrode
DE1816820A1 (en) * 1967-12-27 1969-08-21 Ici Ltd Electrodes for electrochemical processes
DE2014746A1 (en) * 1969-03-28 1970-10-01 Ppg Industries, Inc., Pittsburgh, Pa. (V.St.A.) Anode for the electrolysis of aqueous salt solutions and process for their manufacture
DE2210065A1 (en) * 1970-11-02 1972-10-26 PPG Industries, Inc., Pittsburgh, Pa. (V.StA.) electrode
NL7204743A (en) * 1972-04-08 1973-06-25 Electrochemical electrode - consisting of electrochemically resistant double metal oxide
DE2415349A1 (en) * 1973-03-30 1974-10-03 Anvar OXYGEN TRAP AND THE USE OF SUCH OXYGEN TRAP, IN PARTICULAR FOR PURIFYING A PROTECTIVE GAS
DE2451092A1 (en) * 1973-10-26 1975-04-30 Ici Ltd ELECTRODES FOR ELECTROCHEMICAL PROCESSES
DE2554997A1 (en) * 1974-12-09 1976-06-16 Kent Ltd G PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE2554999A1 (en) * 1974-12-09 1976-06-16 Kent Ltd G PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE2623739A1 (en) * 1975-05-30 1976-12-02 Rhone Poulenc Ind ELECTRODE FOR ELECTROLYSIS
US4042483A (en) * 1973-07-20 1977-08-16 Rhone-Progil Electrolysis cell electrode and method of preparation
US4075070A (en) * 1976-06-09 1978-02-21 Ppg Industries, Inc. Electrode material
US4098669A (en) * 1976-03-31 1978-07-04 Diamond Shamrock Technologies S.A. Novel yttrium oxide electrodes and their uses
DD131568A5 (en) * 1976-05-17 1978-07-05 Diamond Shamrock Techn ELECTRODE
DE2747467B1 (en) * 1977-10-22 1979-02-22 Dornier System Gmbh, 7990 Friedrichshafen Cermet electrodes for solid electrolyte cells and processes for their manufacture
DE2437604B2 (en) * 1973-08-29 1979-10-31 Nissan Motor Co., Ltd., Yokohama, Kanagawa (Japan) Oxygen sensor
DE2918108A1 (en) * 1978-05-04 1979-11-22 Du Pont OXYGEN SENSOR
DE2837118A1 (en) * 1978-08-25 1980-03-06 Dornier System Gmbh OXIDE ELECTRODES FOR ELECTROCHEMICAL HIGH TEMPERATURE CELLS
DE2852638A1 (en) * 1978-12-06 1980-06-19 Bosch Gmbh Robert METHOD FOR PRODUCING CERMETE ELECTRODES FOR GAS SENSORS
DE2922131A1 (en) * 1979-05-31 1980-12-18 Bosch Gmbh Robert POLAROGRAPHIC PROBE FOR DETERMINING THE OXYGEN CONTENT IN GAS, ESPECIALLY IN EXHAUST GAS FROM COMBUSTION ENGINES
DE3048439A1 (en) * 1979-12-26 1981-09-17 Nissan Motor METHOD FOR PRODUCING A FIXED ELECTROLYTE OXYGEN MEASURING ELEMENT WITH LAYER STRUCTURE

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD87024A (en) *
DE1809622A1 (en) * 1967-11-23 1969-07-17 Kent Ltd G Composite electrode
DE1816820A1 (en) * 1967-12-27 1969-08-21 Ici Ltd Electrodes for electrochemical processes
DE2014746A1 (en) * 1969-03-28 1970-10-01 Ppg Industries, Inc., Pittsburgh, Pa. (V.St.A.) Anode for the electrolysis of aqueous salt solutions and process for their manufacture
DE2210065A1 (en) * 1970-11-02 1972-10-26 PPG Industries, Inc., Pittsburgh, Pa. (V.StA.) electrode
NL7204743A (en) * 1972-04-08 1973-06-25 Electrochemical electrode - consisting of electrochemically resistant double metal oxide
DE2415349A1 (en) * 1973-03-30 1974-10-03 Anvar OXYGEN TRAP AND THE USE OF SUCH OXYGEN TRAP, IN PARTICULAR FOR PURIFYING A PROTECTIVE GAS
US4042483A (en) * 1973-07-20 1977-08-16 Rhone-Progil Electrolysis cell electrode and method of preparation
DE2437604B2 (en) * 1973-08-29 1979-10-31 Nissan Motor Co., Ltd., Yokohama, Kanagawa (Japan) Oxygen sensor
DE2451092A1 (en) * 1973-10-26 1975-04-30 Ici Ltd ELECTRODES FOR ELECTROCHEMICAL PROCESSES
DE2554997A1 (en) * 1974-12-09 1976-06-16 Kent Ltd G PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE2554999A1 (en) * 1974-12-09 1976-06-16 Kent Ltd G PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE2623739A1 (en) * 1975-05-30 1976-12-02 Rhone Poulenc Ind ELECTRODE FOR ELECTROLYSIS
US4098669A (en) * 1976-03-31 1978-07-04 Diamond Shamrock Technologies S.A. Novel yttrium oxide electrodes and their uses
DD131568A5 (en) * 1976-05-17 1978-07-05 Diamond Shamrock Techn ELECTRODE
US4075070A (en) * 1976-06-09 1978-02-21 Ppg Industries, Inc. Electrode material
DE2747467B1 (en) * 1977-10-22 1979-02-22 Dornier System Gmbh, 7990 Friedrichshafen Cermet electrodes for solid electrolyte cells and processes for their manufacture
DE2918108A1 (en) * 1978-05-04 1979-11-22 Du Pont OXYGEN SENSOR
DE2837118A1 (en) * 1978-08-25 1980-03-06 Dornier System Gmbh OXIDE ELECTRODES FOR ELECTROCHEMICAL HIGH TEMPERATURE CELLS
DE2852638A1 (en) * 1978-12-06 1980-06-19 Bosch Gmbh Robert METHOD FOR PRODUCING CERMETE ELECTRODES FOR GAS SENSORS
DE2922131A1 (en) * 1979-05-31 1980-12-18 Bosch Gmbh Robert POLAROGRAPHIC PROBE FOR DETERMINING THE OXYGEN CONTENT IN GAS, ESPECIALLY IN EXHAUST GAS FROM COMBUSTION ENGINES
DE3048439A1 (en) * 1979-12-26 1981-09-17 Nissan Motor METHOD FOR PRODUCING A FIXED ELECTROLYTE OXYGEN MEASURING ELEMENT WITH LAYER STRUCTURE

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281555A1 (en) * 1985-10-29 1988-09-14 Commonwealth Scientific And Industrial Research Organisation Composite electrodes for use in solid electrolyte devices
EP0281555A4 (en) * 1985-10-29 1989-09-04 Commw Scient Ind Res Org Composite electrodes for use in solid electrolyte devices.
US5134042A (en) * 1986-11-26 1992-07-28 Sri International Solid compositions for fuel cells, sensors and catalysts
WO1988004108A2 (en) * 1986-11-26 1988-06-02 Sri International Solid compositions for fuel cells, sensors and catalysts
US4851303A (en) * 1986-11-26 1989-07-25 Sri-International Solid compositions for fuel cells, sensors and catalysts
WO1988004108A3 (en) * 1986-11-26 1988-08-25 Stanford Res Inst Int Solid compositions for fuel cells, sensors and catalysts
GB2208750B (en) * 1986-11-26 1991-03-27 Stanford Res Inst Int Solid electrolyte fuel cells
GB2208750A (en) * 1986-11-26 1989-04-12 Stanford Res Inst Int Solid compositions for fuel cells, sensors and catalysts
DE4009747A1 (en) * 1989-03-28 1991-10-02 Gyulai Maria Dobosne Electrochemical oxygen sensor - comprising potentiostatic cell with oxygen pumping action
DE3910037A1 (en) * 1989-03-28 1991-04-25 Gyulai Maria Dobosne Electrochemical cell for use as oxygen sensor - uses an alkaline medium with opposite reactions to ensure cell-conditions remain constant
EP0424813A1 (en) * 1989-10-24 1991-05-02 Asea Brown Boveri Aktiengesellschaft Fuel cell assembly
EP0466020A2 (en) * 1990-07-10 1992-01-15 ABBPATENT GmbH Sensor
EP0466020A3 (en) * 1990-07-10 1992-05-27 Abb Patent Gmbh Sensor
EP0606456B2 (en) 1992-08-04 2000-10-18 Heraeus Electro-Nite International N.V. Arrangement for continuously monitoring the no concentration in gas mixtures
DE4424539A1 (en) * 1993-07-12 1995-01-19 Unisia Jecs Corp Element for detecting an air/fuel ratio
DE4424539C2 (en) * 1993-07-12 1998-04-30 Unisia Jecs Corp Element for detecting an air-fuel ratio

Also Published As

Publication number Publication date
JPS57175251A (en) 1982-10-28
DE3112739C2 (en) 1990-10-18
JPH0237540B2 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
DE2852647C2 (en) Process for the production of a layer system on solid electrolytes for electrochemical applications
DE2852638C2 (en) Gas sensor with cermet electrodes
DE2737080C2 (en) Process for the manufacture of monolithic ceramic capacitors
EP0008430B1 (en) Mixed oxides for the electrodes of electrochemical high temperature cells with solid electrolyte, and process for their manufacture
DE2904069A1 (en) FIXED ELECTROLYTE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD FOR PRODUCING THE SAME
DE2735934A1 (en) CONNECTING MATERIAL FOR THE ELECTRIC SERIES CONNECTION OF ELECTROCHEMICAL CELLS
DE10124373A1 (en) Temperature sensor, has heat sensitive element and ceramic housing with hollow chamber enclosing heat sensitive element on heat sensing surface side of ceramic housing in air-tight manner
DE4226948C2 (en) Carbon dioxide gas detector element
DE2911042C2 (en) Electrochemical probe for the determination of oxygen concentration and process for its manufacture
DE3112739A1 (en) Electrode of stable structure for solid-state electrolytes for electrochemical applications, and use of such an electrode in electrochemical sensors for determining the oxygen content in gases
DE3913596C2 (en)
WO2015193084A1 (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber
DE2822921A1 (en) ELECTROCHEMICAL OXYGEN MEASURING DEVICE WITH INTERNAL REFERENCE SYSTEM AND SOLID ELECTROLYTE
DE19626342A1 (en) Procedure for making solid electrolyte as thin layer on porous electrode for fuel-cell
DE2742279A1 (en) OXYGEN SENSOR
DE2824870C2 (en)
EP1145255B1 (en) Heat conductor, especially for a sensor, and method for producing such a heat conductor
DE2631721A1 (en) Probes for measuring oxygen concn. in exhaust gases - with sintered electrode layers of noble metal-solid electrolyte mixt.
DE4100105C2 (en)
EP1303753B1 (en) Cermet electrodes containing platinum for the electrochemical reduction of oxygen
DE3238824A1 (en) OXYGEN MEASUREMENT ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
DE19545590C2 (en) Co-sintered cermet layer on a ceramic body and a process for its production
DE3206502C2 (en)
EP0755512B1 (en) Ceramic layer system, especially for gas sensors
DE3922989A1 (en) DRAIN SENSOR AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee