DE3508469A1 - Process for patterning layer sequences applied to a transparent substrate - Google Patents

Process for patterning layer sequences applied to a transparent substrate

Info

Publication number
DE3508469A1
DE3508469A1 DE19853508469 DE3508469A DE3508469A1 DE 3508469 A1 DE3508469 A1 DE 3508469A1 DE 19853508469 DE19853508469 DE 19853508469 DE 3508469 A DE3508469 A DE 3508469A DE 3508469 A1 DE3508469 A1 DE 3508469A1
Authority
DE
Germany
Prior art keywords
layer
laser light
irradiation
oxide
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19853508469
Other languages
German (de)
Other versions
DE3508469C2 (en
Inventor
Günther Dr. 8150 Holzkirchen Mück
Klaus Dipl.-Ing. 8000 München Thalheimer
Gerhard Prof. Dipl.-Phys. Dr. 7031 Magstadt Winterling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19853508469 priority Critical patent/DE3508469A1/en
Publication of DE3508469A1 publication Critical patent/DE3508469A1/en
Application granted granted Critical
Publication of DE3508469C2 publication Critical patent/DE3508469C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The invention relates to a process for patterning layer sequences applied to a transparent substrate, for example for solar cells. In the process there is first applied onto the substrate 1 a first continuous layer 2 comprising a transparent, electrically conductive oxide which is then removed again in predefined regions by irradiation with laser light. Onto the oxide layer thus patterned, a second continuous layer 3 comprising an amorphous semiconducting material, for example silicon, is applied, which likewise is removed in predefined areas by irradiation with laser light. In order to be able to prepare the desired layer structure as cleanly as possible and without impairing the electrooptical properties aimed for, it is provided that the laser light irradiation is carried out from the side of the transparent substrate 1 and that for the irradiation of the oxide layer 2 laser light having a wavelength from the absorption range of the oxide layer, and for the irradiation of the amorphous semiconductor layer 3, laser light having a wavelength from the absorption range of the amorphous semiconductor layer is chosen. <IMAGE>

Description

Verfahren zum Strukturieren von auf einemMethod for structuring on a

transparenten Substrat aufgebrachten Schicht folgen Die Erfindung betrifft ein Verfahren zum Strukturieren von auf einem transparenten Substrat aufgebrachten Schichtfolgen, nach dem Oberbegriff des Patentanspruchs 1.transparent substrate applied layer follow the invention relates to a method for structuring of applied to a transparent substrate Layer sequences, according to the preamble of claim 1.

Ein derartiges Verfahren ist aus S. Nakano et al. New Manufacturing Processes for a-Si Solar Cell Modules", 5th E.C. Photovoltaic Solar Energy Conference, Kavouri (Athen), Oktober 1983, Seiten 712 - 716, bekannt. Dort wird zur Herstellung einer Solarzelle auf einem Glassubstrat zunächst eine geschlossene Schicht aus einem transparenten, elektrisch leitenden Oxid (TCO) niedergeschlagen, welche als Frontseitenelektrode dienen soll.Such a method is from S. Nakano et al. New Manufacturing Processes for a-Si Solar Cell Modules ", 5th E.C. Photovoltaic Solar Energy Conference, Kavouri (Athens), October 1983, pages 712-716. There is used to manufacture a solar cell on a glass substrate first a closed layer of a transparent, electrically conductive oxide (TCO) deposited, which acts as a front side electrode should serve.

Anschließend wird diese Schicht dadurch strukturiert, daß in regelmäßigen Abständen parallele Bahnen durch Bestrahlung mit Laserlicht wieder entfernt werden. Auf die so strukturierte Oxidschicht wird eine geschlossene Siliziumschicht aufgebracht, die dann anschließend ebenfalls mit Laserlicht so bestrahlt wird, daß streifenförmige Bereiche der amorphen Siliziumschicht entfernt werden. In beiden Fällen wird das Laserlicht von der dem Glassubstrat abgewandten Seite her eingestrahlt. Als Laser wird, jedenfalls zur Bestrahlung der amorphen Siliziumschicht, ein YAG-Laser der Wellenlänge \= 1,06 Am verwendet. Dabei muß die Leistung des Laserstrahles genau auf die Dicke der amorphen Siliziumschicht abgestellt sein. Nach der geschilderten Bestrahlung der amorphen Siliziumschicht liegt eine Struktur vor, bei der auf dem Glassubstrat mit Abstand zueinander parallele Oxidstreifen angeordnet sind, auf denen wiederum parallele Schichtstreifen aus amorphem Silizium liegen, die quer zur Streifenrichtung so weit verschoben sind, daß das Glas in den Lücken zwischen den Oxidstreifen teilweise und ebenso die Oxidstreifen selbst teilweise freiliegen. Anschließend wird auf diese Struktur noch eine Metallschicht aufgebracht, die dann ebenfalls durch Laserbestrahlung strukturiert wird, um als Rückseitenelektrode dienen zu können.Subsequently, this layer is structured that in regular Distance parallel tracks can be removed again by irradiation with laser light. A closed silicon layer is applied to the oxide layer structured in this way, which is then also subsequently irradiated with laser light in such a way that it is strip-shaped Areas of the amorphous silicon layer are removed. In both cases it will Laser light is irradiated from the side facing away from the glass substrate. As a laser is, at least for irradiating the amorphous silicon layer, a YAG laser Wavelength = 1.06 Am used. The power of the laser beam must be accurate be adjusted to the thickness of the amorphous silicon layer. According to the described Irradiation of the amorphous silicon layer is a structure in which on the Glass substrate are arranged at a distance from one another parallel oxide strips which in turn have parallel stripes of amorphous layer Silicon lying, which are shifted so far transversely to the direction of the strip that the glass in the gaps between the oxide strips partially and also partially the oxide strips themselves exposed. A metal layer is then applied to this structure, which is then also structured by laser irradiation to act as a back electrode to be able to serve.

Bei der Bestrahlung der Oxid- sowie der amorphen Siliziumschicht mit Laserlicht von der dem Glassubstrat abgewandten Seite her ergibt sich nun der Nachteil, daß das durch die Bestrahlung verdampfende Oxid bzw.When irradiating the oxide and amorphous silicon layers with Laser light from the side facing away from the glass substrate now has the disadvantage that the oxide or oxide evaporated by the irradiation

Silizium gerade in eine Richtung entweichen will, die der Einstrahlungsrichtung des intensiven Laserlichtes entgegengerichtet ist. Dies führt dazu, daß Teile des verdampfenden Materials sich in der näheren Umgebung ganz unkontrolliert wieder niederschlagen können, wodurch die elektrischen Eigenschaften der so hergestellten Solarzelle beeinträchtigt werden können. So kann in den Randbereichen der amorphen Siliziumschicht, die im allgemeinen eine pin-Struktur aufweisen wird, das gewünschte Dotierungsprofil verwischt werden. Auch können unerwünschte Kurzschlüsse in den fertigen Solarzellen die Folge eines derartigen Herstellungsverfahrens sein.Silicon wants to escape in a direction that corresponds to the direction of irradiation of the intense laser light is opposite. This leads to parts of the evaporating material reappears in the immediate vicinity in an uncontrolled manner can precipitate, thereby reducing the electrical properties of the manufactured Solar cell can be affected. So can in the edge areas of the amorphous Silicon layer, which will generally have a pin structure, the desired Doping profile are blurred. Unwanted short circuits can also occur in the finished solar cells may be the result of such a manufacturing process.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren der eingangs genannten Art bereitzustellen, mit dem die gewünschte Schichtstruktur möglichst sauber und möglichst ohne Beeinträchtigung der angestrebten elektrooptischen Eigenschaften hergestellt werden kann.The object of the present invention is therefore to provide a method of to provide the type mentioned at the beginning with which the desired layer structure as possible clean and, if possible, without impairing the desired electro-optical properties can be produced.

Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß mit dem Laserlicht von der Seite des transparenten Substrats her bestrahlt, zur Bestrahlung der Oxid- schicht Laserlicht einer Wellenlänge aus dem Absorptionsbereich der Oxidschicht und zur Bestrahlung der amorphen Halbleiterschicht Laserlicht einer Wellenlänge aus dem Absorptionsbereich der amorphen Halbleiterschicht gewählt wird.This object is achieved according to the invention in that with the Laser light irradiated from the side of the transparent substrate for irradiation the oxide layer laser light of a wavelength from the absorption range the oxide layer and laser light for irradiating the amorphous semiconductor layer Wavelength is selected from the absorption range of the amorphous semiconductor layer.

Der oben im Zusammenhang mit dem Stand der Technik geschilderte Nachteil wird demnach dadurch vermieden, daß das Laserlicht durch das transparente Substrat, welches Glas oder auch eine transparente Kunststoffschicht sein kann, hindurch eingestrahlt wird. Die Wellenlängen sind so zu wählen, daß in dem zu entfernenden Material jeweils möglichst optimal absorbiert wird, während bei der Entfernung der amorphen Halbleiterbereiche die eventuell darunterliegende Oxidschicht für die gewählte Wellenlänge transparent sein muß. Die gebräuchlichen Oxidschichten (TCO), wie beispielsweise Indiumoxid, Zinnoxid oder Mischungen hieraus (ITO) oder auch Zermetschichten, absorbieren vorwiegend im infraroten Spektralbereich, wo amorphes Silizium transparent ist, dessen Absorptionsbereich im sichtbaren, bei Wellenlängen unterhalb von ca. 6000 A liegt. Somit ist für die Bestrahlung einer Oxidschicht ein Infrarot-Laser und für die Bestrahlung einer amorphen Siliziumschicht ein Laser zu wählen, dessen Grundwelle in dem angegebenen sichtbaren Wellenlängenbereich liegt.The disadvantage described above in connection with the prior art is therefore avoided in that the laser light through the transparent substrate, which can be glass or a transparent plastic layer, irradiated through will. The wavelengths are to be chosen so that in each case in the material to be removed is absorbed as optimally as possible, while removing the amorphous semiconductor areas the possibly underlying oxide layer is transparent for the selected wavelength have to be. The common oxide layers (TCO), such as indium oxide, Tin oxide or mixtures thereof (ITO) or also Zermetschichten, mainly absorb in the infrared spectral range, where amorphous silicon is transparent, its absorption range in the visible, at wavelengths below approx. 6000 A. Thus, for the Irradiation of an oxide layer an infrared laser and for the irradiation of an amorphous one Silicon layer to choose a laser whose fundamental wave is visible in the specified Wavelength range.

Durch die Bestrahlung von der Seite des transparenten Substrats her wird erreicht, daß das Material in den bestrahlten Bereichen sehr sauber entfernt wird. Bei intensiver Einstrahlung können die zuerst getroffenen und erhitzten Schichtbereiche sogar verdampfen und das darüberliegende Material regelrecht abspringen, und dies auf eine geometrisch sehr saubere Weise. Bei Bestrahlung der amorphen Siliziumschicht kann insbesondere etwa eingebauter Wasserstoff schnell in die Dampfphase übergehen, wodurch das Abtrennen des zu entfernenden Materials beschleunigt wird.By irradiating from the side of the transparent substrate it is achieved that the material is removed very cleanly in the irradiated areas will. In the case of intense radiation, the areas of the layer that are hit and heated first can be even evaporate and the overlying material literally pop off, and this in a geometrically very neat way. When the amorphous silicon layer is irradiated can in particular, for example, built-in hydrogen quickly turns into the vapor phase pass over, whereby the separation of the material to be removed is accelerated.

Die Wahl der besonderen Wellenlängenbereiche hängt natürlich unmittelbar damit zusammen, daß die Einstrahlung nunmehr von der Seite des transparenten Substrats her vorgenommen wird. Beim Bestrahlen der auf die strukturierte Oxidschicht aufgebrachten amorphen Halbleiterschicht, bei der es sich auch um eine im wesentlichen Germanium enthaltende Schicht handeln kann, muß nämlich teilweise durch noch stehengebliebene Oxidbereiche hindurchgestrahlt werden, ohne daß diese hierdurch beschädigt werden dürfen. Deswegen muß nun ein Wellenlängenbereich ausgewählt werden, für den die Oxidschicht transparent ist.The choice of the particular wavelength ranges depends, of course, directly together with the fact that the radiation is now from the side of the transparent substrate is made ago. When irradiating the applied to the structured oxide layer amorphous semiconductor layer, which is also essentially a germanium containing layer can act, namely must partly through still standing Oxide areas are radiated through without damaging them to be allowed to. Therefore, a wavelength range must now be selected for which the Oxide layer is transparent.

Als besonders vorteilhaft erweist es sich, einen YAG-Laser zu verwenden, wie auch schon bei dem bekannten Verfahren. Während jedoch dort die Grundwelle mit einer Wellenlänge von h 1,06#m zur Bestrahlung der amorphen Siliziumschicht verwendet wird und offen bleibt, mit welcher Art Laserlicht die Oxidschicht strukturiert wird, soll nunmehr für die Strukturierung beider Schichten derselbe YAG-Laser verwendet werden, wobei die Oxidschicht nun aber mit der Grundwelle ( XTCO = 1,06 Wm) und die amorphe Siliziumschicht mit deren 1. Harmonischer (\ a Si = 053 wem) zu bestrahlen ist. Die 1. Harmonische wird hierbei durch Zwischenschaltung eines gebräuchlichen Frequenzverdopplerkristalls gewonnen. Es braucht für beide Bestrahlungsvorgänge demnach nur ein einziger Laser verwendet zu werden, bzw. zwei Laser derselben Sorte oder ein Laser mit Strahlteiler.It proves to be particularly advantageous to use a YAG laser, as with the known method. However, while there the fundamental wave with a wavelength of h 1.06 # m is used to irradiate the amorphous silicon layer and it remains open with which type of laser light the oxide layer is structured, The same YAG laser is now to be used for structuring both layers but the oxide layer is now with the fundamental wave (XTCO = 1.06 Wm) and to irradiate the amorphous silicon layer with its 1st harmonic (\ a Si = 053 whom) is. The 1st harmonic is used by interposing a Frequency doubler crystal won. It takes irradiation processes for both therefore only a single laser to be used, or two lasers of the same type or a laser with a beam splitter.

Im folgenden wird die Erfindung anhand der Abbildungen näher erläutert. Es zeigen in schematischer Weise: Fig.1 im Querschnitt ein Glassubstrat mit einer TCO-Schicht, Fig.2 im Querschnitt die Struktur der Fig.1 nach der ersten Laserbestrahlung, Fig.3 die Struktur der Fig.2 nach Aufbringen einer amorphen Siliziumschicht, Fig.4 die Struktur der Fig.3 nach der zweiten Laserbestrahlung, Fig.5 die Struktur der Fig.4 nach Aufbringen einer metallischen Elektrodenschicht, Fig.6 die Struktur der Fig.5 nach Strukturierung der Metallschicht.The invention is explained in more detail below with reference to the figures. They show in a schematic manner: FIG. 1, in cross section, a glass substrate with a TCO layer, FIG. 2 in cross section the structure of FIG. 1 after the first laser irradiation, 3 shows the structure of FIG. 2 after application of an amorphous silicon layer, FIG. 4 the structure of FIG. 3 after the second laser irradiation, FIG. 5 the structure of FIG. 4 after application of a metallic electrode layer, FIG. 6 the structure of the 5 after structuring the metal layer.

Fig.1 zeigt ein sowohl für sichtbares als auch infrarotes Licht transparentes Glassubstrat 1 mit einer darauf aufgebrachten transparenten Oxidschicht 2 (TCO), beispielsweise aus Indium-Zinn-Oxid (ITO) bestehend.1 shows a light that is transparent to both visible and infrared light Glass substrate 1 with a transparent oxide layer 2 (TCO) applied thereon, for example consisting of indium tin oxide (ITO).

Nach Bestrahlung mit einem intensiven Infrarot-Laserstrahl sind streifenförmige Bereiche 4 aus der das infrarote Licht absorbierenden, jedoch für sichtbares Licht transparenten Oxidschicht 2 entfernt, siehe Fig.2 Nach anschließendem Aufbringen einer amorphen Siliziumschicht, beispielsweise durch Abscheiden aus einer Silanatmosphäre mittels Glimmentladung, entsteht die in Fig.3 wiedergegebene Struktur, bei der über der strukturierten Oxidschicht 2 eine geschlossene amorphe Siliziumschicht 3 liegt. Durch nochmaliges Bestrahlen ebenfalls durch das Glassubstrat 1 hindurch, mit einem intensiven Laserstrahl einer unterhalb von 6000 Å liegenden Wellenlänge ist die in Fig.4 gezeigte Struktur erzeugbar, bei der nunmehr die amorphe Siliziumschicht 3 in streifenförmigen, sich senkrecht zur Zeichenebene erstreckenden Bereichen entfernt ist. Hierbei wurde in Bereichen 5 durch das für sichtbares Licht transparente Oxid hindurchgestrahlt, dort das amorphe Silizium entfernt, ohne die durchstrahlte Oxidschicht zu beschädigen.After exposure to an intense infrared laser beam, they are strip-shaped Areas 4 from which the infrared light absorbs, but for visible light transparent oxide layer 2 removed, see Fig. 2 After subsequent application an amorphous silicon layer, for example by deposition from a silane atmosphere by means of a glow discharge, the structure shown in FIG the structured oxide layer 2 is a closed amorphous silicon layer 3. By irradiating again also through the glass substrate 1 through it, with an intense laser beam below 6000 Å Wavelength, the structure shown in Figure 4 can be generated, in which now the amorphous Silicon layer 3 in strip-shaped, extending perpendicular to the plane of the drawing Areas away. This was done in areas 5 by the for visible light transparent oxide radiated through, the amorphous silicon removed there without the to damage irradiated oxide layer.

Selbstverständlich kann die gemäß Fig.3 aufgebrachte amorphe Siliziumschicht das gewünschte Dotierungsprofil, beispielsweise im Sinne einer pin- oder einer nip-Struktur, aufweisen.Of course, the amorphous silicon layer applied according to FIG the desired doping profile, for example in the sense of a pin or a nip structure, exhibit.

Im Anschluß an die Strukturierung der amorphen Siliziumschicht gemäß Fig.4 kann auf übliche Weise eine später als rückwärtige Elektrodenschicht dienende Metallschicht 6 aufgebracht werden, siehe Fig.5, welche dann beispielsweise ebenfalls durch Laserbestrahlung so strukturiert werden kann, aaß die in Fig.6 wiedergegebene Reihenschaltung streifenförmiger Solarzellen entsteht.Following the structuring of the amorphous silicon layer according to FIG FIG. 4 can be used in the usual way to later serve as a rear electrode layer Metal layer 6 are applied, see Figure 5, which then also, for example can be structured by laser irradiation in such a way that the one shown in FIG Series connection of strip-shaped solar cells is created.

Das erfindungsgemäße Verfahren kann nicht nur zur Herstellung von Solarzellen verwendet werden, sondern beispielsweise auch zur Herstellung von optischen Bildsensoren auf der Basis von amorphen Halbleitern, beispielsweise Silizium.The inventive method can not only for the production of Solar cells are used, but also, for example, for the production of optical Image sensors based on amorphous semiconductors, for example silicon.

Claims (3)

Verfahren zum Strukturieren von auf einem transparenten Substrat aufgebrachten Schichtfolgen Patentansprüche 1. Verfahren zum Strukturieren von auf einem transparenten Substrat aufgebrachten Schicht folgen, wobei auf dem Substrat eine erste geschlossene Schicht aus einem transparenten, elektrisch leitenden Oxid (TCO) aufgebracht, diese durch Bestrahlen mit Laserlicht in vorbestimmten Bereichen wieder entfernt, auf der so strukturierten Oxidschicht eine zweite geschlossene Schicht aus einem amorphen halbleitenden Material aufgebracht und diese ebenfalls in vorbestimmten Bereichen durch Bestrahlen mit Laserlicht entfernt wird, dadurch g e k e n n z e i c h n e t , daß mit dem Laserlicht von der Seite des transparenten Substrats (1) her bestrahlt, zur Bestrahlung der Oxidschicht (2) Laserlicht einer Wellenlänge aus dem Absorptionsbereich der Oxidschicht und zur Bestrahlung der amorphen Halbleiterschicht (3) Laserlicht einer Wellenlänge aus dem Absorptionsbereich der amorphen Halbleiterschicht gewählt wird.Method for structuring applied to a transparent substrate Layer sequences Patent claims 1. Method for structuring on a transparent Substrate applied layer follow, with a first closed on the substrate Layer of a transparent, electrically conductive oxide (TCO) applied to this removed again in predetermined areas by irradiation with laser light the so structured oxide layer a second closed layer made of an amorphous semiconducting material applied and this also in predetermined areas is removed by irradiation with laser light, thereby not being marked t that irradiated with the laser light from the side of the transparent substrate (1), for irradiating the oxide layer (2) laser light of a wavelength from the absorption range the oxide layer and for irradiating the amorphous semiconductor layer (3) laser light a wavelength selected from the absorption range of the amorphous semiconductor layer will. 2. Verfahren nach Anspruch 1 unter Verwendung von Silizium für die amorphe Halbleiterschicht, dadurch g e k e n n z e i c h n e t , daß zur Bestrahlung der Oxidschicht (2) Laserlicht aus dem Infrarotbereich und zur Bestrahlung der amorphen Siliziumschicht (3) Laserlicht aus dem sichtbaren Bereich unterhalb von ca. 6000 Å verwendet wird. 2. The method according to claim 1 using silicon for the amorphous semiconductor layer, characterized in that it is used for irradiation the oxide layer (2) laser light from the infrared range and for irradiating the amorphous Silicon layer (3) Laser light from the visible range below approx. 6000 Å is used. 3. Verfahren nach Anspruch 2, wobei ein YAG-Laser verwendet wird, dadurch g e k e n n z e i c h n e t daß zum Bestrahlen der Oxidschicht (2) die Grundwelle des YAG-Lasers (#TCO = 1,Q6#m) und zur Bestrahlung der amorphen Siliziumschicht die 1. Harmonische der Grundwelle des YAG-Lasers (#a-si = 0,53 µm) verwendet wird. 3. The method according to claim 2, wherein a YAG laser is used, as a result, the fundamental wave is used to irradiate the oxide layer (2) of the YAG laser (#TCO = 1, Q6 # m) and for irradiating the amorphous silicon layer the 1st harmonic of the fundamental wave of the YAG laser (# a-si = 0.53 µm) is used.
DE19853508469 1985-03-09 1985-03-09 Process for patterning layer sequences applied to a transparent substrate Granted DE3508469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19853508469 DE3508469A1 (en) 1985-03-09 1985-03-09 Process for patterning layer sequences applied to a transparent substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853508469 DE3508469A1 (en) 1985-03-09 1985-03-09 Process for patterning layer sequences applied to a transparent substrate

Publications (2)

Publication Number Publication Date
DE3508469A1 true DE3508469A1 (en) 1986-09-11
DE3508469C2 DE3508469C2 (en) 1987-08-13

Family

ID=6264730

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19853508469 Granted DE3508469A1 (en) 1985-03-09 1985-03-09 Process for patterning layer sequences applied to a transparent substrate

Country Status (1)

Country Link
DE (1) DE3508469A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816660C1 (en) * 1988-05-17 1989-09-07 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Sensor, especially photodetector arrangement
US5173446A (en) * 1988-06-28 1992-12-22 Ricoh Company, Ltd. Semiconductor substrate manufacturing by recrystallization using a cooling medium
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
WO1997027727A1 (en) * 1996-01-26 1997-07-31 Emi-Tec Elektronische Materialien Gmbh Process for producing a conductor structure
WO1998014986A1 (en) * 1996-10-01 1998-04-09 Siemens Aktiengesellschaft Method for separating two material layers and electronic components produced therewith
WO2005093470A1 (en) * 2004-03-27 2005-10-06 Laser-Laboratorium Göttingen e.V. Method for the production of an optical component by means of surface-structuring laser machining
US7202141B2 (en) 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7691659B2 (en) 2000-04-26 2010-04-06 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
GB2472613A (en) * 2009-08-11 2011-02-16 M Solv Ltd Capacitive touch panels
US7939844B2 (en) 2000-05-26 2011-05-10 Osram Gmbh Light-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727825A1 (en) * 1987-08-20 1989-03-02 Siemens Ag Series-connected thin-film solar module made from crystalline silicon
DE3727826A1 (en) * 1987-08-20 1989-03-02 Siemens Ag SERIES-CONNECTED THIN-LAYER SOLAR MODULE MADE OF CRYSTAL SILICON
DE3921038C2 (en) * 1988-06-28 1998-12-10 Ricoh Kk Method for producing a semiconductor substrate or solid structure
DE4022745A1 (en) * 1990-07-18 1992-01-23 Hans Lang Gmbh & Co Kg Ing Mirror patterning - uses laser beam directed through glass pane to evaporate the reflection layer partially
DE4324318C1 (en) * 1993-07-20 1995-01-12 Siemens Ag Method for series connection of an integrated thin-film solar cell arrangement
DE19619317C2 (en) * 1996-05-14 2000-10-05 Voith Hydro Gmbh Impeller for an open jet tube
DE10051465A1 (en) 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Method for producing a GaN-based semiconductor component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKANO, S. et al.: New Manufacturing Processes for a-Sisolar Cell Modules, In: 5. E.C. Photovoltaic Solar Energy Conference, Kavouri (Athen), Oktober 1983, S. 712-716 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816660C1 (en) * 1988-05-17 1989-09-07 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Sensor, especially photodetector arrangement
US5173446A (en) * 1988-06-28 1992-12-22 Ricoh Company, Ltd. Semiconductor substrate manufacturing by recrystallization using a cooling medium
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5565697A (en) * 1988-06-28 1996-10-15 Ricoh Company, Ltd. Semiconductor structure having island forming grooves
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
WO1997027727A1 (en) * 1996-01-26 1997-07-31 Emi-Tec Elektronische Materialien Gmbh Process for producing a conductor structure
US6974758B2 (en) 1996-10-01 2005-12-13 Siemens Aktiengesellschaft Method of producing a light-emitting diode
US7341925B2 (en) 1996-10-01 2008-03-11 Osram Gmbh Method for transferring a semiconductor body from a growth substrate to a support material
US6740604B2 (en) 1996-10-01 2004-05-25 Siemens Aktiengesellschaft Method of separating two layers of material from one another
US7713840B2 (en) 1996-10-01 2010-05-11 Osram Gmbh Electronic components produced by a method of separating two layers of material from one another
WO1998014986A1 (en) * 1996-10-01 1998-04-09 Siemens Aktiengesellschaft Method for separating two material layers and electronic components produced therewith
US6559075B1 (en) 1996-10-01 2003-05-06 Siemens Aktiengesellschaft Method of separating two layers of material from one another and electronic components produced using this process
US7691659B2 (en) 2000-04-26 2010-04-06 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
US7939844B2 (en) 2000-05-26 2011-05-10 Osram Gmbh Light-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same
EP2003474A3 (en) * 2004-03-27 2008-12-24 Laser-Laboratorium Göttingen E.V. Method for structuring the surface of an optical component using laser machining
WO2005093470A1 (en) * 2004-03-27 2005-10-06 Laser-Laboratorium Göttingen e.V. Method for the production of an optical component by means of surface-structuring laser machining
US7241667B2 (en) 2004-03-29 2007-07-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7202141B2 (en) 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
GB2472613A (en) * 2009-08-11 2011-02-16 M Solv Ltd Capacitive touch panels
GB2472613B (en) * 2009-08-11 2015-06-03 M Solv Ltd Capacitive touch panels

Also Published As

Publication number Publication date
DE3508469C2 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
DE3508469C2 (en)
EP3041804B1 (en) Method for producing a disc with an electrically conductive coating having electrically insulated defects
DE69828936T2 (en) Photoelectric converter and its manufacturing method
EP1166358B1 (en) Method for removing thin layers on a support material
EP0200089B1 (en) Process for producing narrow metal-free strips in the metallized coating of a plastic foil
DE4229399C2 (en) Method and device for producing a functional structure of a semiconductor component
DE69826161T2 (en) Photovoltaic device, photoelectric converter and method of making the same
DE4315959C2 (en) Method for producing a structured layer of a semiconductor material and a doping structure in a semiconductor material under the action of laser radiation
EP2507834B1 (en) Method for removing at least sections of a layer of a layer stack
DE202010013161U1 (en) Laser processing with several beams and suitable laser optics head
EP0536431A1 (en) Method for working a thin film device by laser
DE102009033417A1 (en) Method and system for producing a coated article with tempering
DE3532811C2 (en) Optical thin film element
DE3440390C2 (en)
DE3712589C2 (en)
EP2083445A1 (en) Method of production of a photovoltaic modul
DE19933703A1 (en) Device and method for removing layers on a workpiece
DE3119682A1 (en) &#34;METHOD FOR PRODUCING A MASK FOR PATTERN PRODUCTION IN LACQUER LAYERS BY MEANS OF RADIATION LITHOGRAPHY&#34;
DE3015362C2 (en)
DE2303078C3 (en) Light modulating element
DE2411517A1 (en) METHOD FOR PRODUCING A LIGHT SENSITIVE HETEROGENIC DIODE
DE2922473C2 (en) Electrochromic display device
DE2538300B2 (en) METHOD FOR PRODUCING A SOLAR ABSORBING LAYER
DE3714920C1 (en) Method for producing a thin-layer solar cell arrangement
DE112010004503T5 (en) METHOD AND DEVICE FOR REMOVING THIN FINISHES FROM ONE SUBSTRATE

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee