DE4004430A1 - Aus polyaldehyden aufgebaute kontrastmittel - Google Patents

Aus polyaldehyden aufgebaute kontrastmittel

Info

Publication number
DE4004430A1
DE4004430A1 DE4004430A DE4004430A DE4004430A1 DE 4004430 A1 DE4004430 A1 DE 4004430A1 DE 4004430 A DE4004430 A DE 4004430A DE 4004430 A DE4004430 A DE 4004430A DE 4004430 A1 DE4004430 A1 DE 4004430A1
Authority
DE
Germany
Prior art keywords
acid
microparticles
optionally
microparticles according
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4004430A
Other languages
English (en)
Inventor
Georg Dr Roessling
Celal Dr Albayrak
Matthias Dr Rothe
Joachim Dr Siegert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to DE4004430A priority Critical patent/DE4004430A1/de
Priority to JP03521891A priority patent/JP3363912B2/ja
Priority to PT96691A priority patent/PT96691B/pt
Priority to FI910596A priority patent/FI910596A/fi
Priority to ZA91961A priority patent/ZA91961B/xx
Priority to HU91427A priority patent/HUT61490A/hu
Priority to NO910510A priority patent/NO300916B1/no
Priority to ES91250038T priority patent/ES2094192T3/es
Priority to DE59108153T priority patent/DE59108153D1/de
Priority to AU70982/91A priority patent/AU649996B2/en
Priority to EP91250038A priority patent/EP0441468B1/de
Priority to IE43491A priority patent/IE76315B1/en
Priority to AT91250038T priority patent/ATE142507T1/de
Priority to DK91250038.6T priority patent/DK0441468T3/da
Priority to CA002036107A priority patent/CA2036107A1/en
Priority to NZ237060A priority patent/NZ237060A/en
Publication of DE4004430A1 publication Critical patent/DE4004430A1/de
Priority to US08/373,467 priority patent/US5501863A/en
Priority to GR960402562T priority patent/GR3021206T3/el
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G6/00Condensation polymers of aldehydes or ketones only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, das heißt neue Mikropartikel, diese enthaltende pharmazeutische Mittel, deren Verwendung in der Ultraschalldiagnostik sowie Verfahren zur Herstellung dieser Mikropartikel und pharmazeutischen Mittel.
Es ist bekannt, daß durch periphere Injektion von Lösungen, die feine Gasblasen enthalten, cardiale Echokontraste erzielt werden können (Roelandt J., Ultrasound Med. Biol. 8: 471-492, 1982). Diese Gasblasen werden in physiologisch verträglichen Lösungen z. B. durch Schütteln, andere Agitation oder durch Zusatz von Kohlendioxid erhalten. Sie sind jedoch hinsichtlich Anzahl und Größe nicht einheitlich und können nur unzulänglich reproduziert werden. Auch sind sie in der Regel nicht stabilisiert, so daß ihre Lebensdauer gering ist. Ihre mittleren Durchmesser liegen meist über Erythrocytengröße, so daß keine Lungenkapillarpassage mit nachfolgender Kontrastierung von Organen wie linkes Herz, Leber Niere oder Milz möglich ist. Darüber hinaus eignen sie sich nicht für Quantifizierungen, da sich das von ihnen erzeugte Ultraschallecho aus mehreren, nicht voneinander zu trennenden Prozessen wie Blasenentstehung, Koaleszenz und Auflösung zusammensetzt. So ist es z. B. nicht möglich, mit Hilfe dieser Ultraschall-Kontrastmittel über die Messung des Kontrastverlaufs im Myokard Aussagen über die Transitzeiten zu gewinnen.
In der EP 01 31 540 ist die Stabilisierung der Gasblasen durch Zucker beschrieben. Damit wird zwar die Reproduzierbarkeit und Homogenität des Kontrasteffektes verbessert, eine Lungenpassage überstehen diese Blasen jedoch nicht.
In den EP 01 22 624 und 01 23 235 wird beschrieben, daß der gasblasenstabilisierende Effekt von Zuckern, Zuckeralkoholen und Salzen durch Zusatz von Tensiden verbessert wird. Eine Lungenkapillargängigkeit und die Möglichkeit zur Darstellung des arteriellen Gefäßschenkels und verschiedener Organe wie Leber oder Milz ist bei diesen Ultraschallkontrastmitteln gegeben. Der Kontrasteffekt ist hierbei jedoch auf das Gefäßvolumen beschränkt, da die Bläschen nicht von den Gewebezellen aufgenommen werden.
Keines der bisher bekannten Ultraschall-Kontrastmittel verbleibt längere Zeit unverändert im Körper. Eine Organdarstellung mit ausreichender Signalintensität durch selektive Anreicherung nach i. v. Gabe oder Quantifizierungen sind daher nicht möglich.
Eine Verkapselung von Gasen, wie beispielsweise Luft als Ultraschall-Kontrastmittel, wird in der DE-OS 38 03 972 beschrieben. Das hierbei verwendete Wandmaterial besteht aus bioabbaubarem synthetischem Material, wie vor allem Cyanacrylat und Polylactid.
Diese Mikropartikel sind jedoch - insbesondere in größerem Maßstab sowie im Hinblick auf ihre Aufarbeitung - schwierig herstellbar. So ist vor allem die breite Größenverteilung der Partikel von Nachteil.
Es bestand daher die Aufgabe, Ultraschall-Kontrastmittel zu schaffen, die diese Nachteile nicht aufweisen. Diese Aufgabe wird durch die vorliegende Erfindung, d. h. durch die Bereitstellung der erfindungsgemäßen Mikropartikel gelöst.
Diese Mikropartikel bestehen aus bioabbaubaren Polymeren, dadurch gekennzeichnet, daß sie aufgebaut sind aus polymerisierbaren Aldehyden, die gewünschtenfalls zur Copolymerisation fähige Zusätze und/oder Crosslinker enthalten, gegebenenfalls Tensiden oder Tensidgemischen, Gasen und/oder leichtflüchtigen Flüssigkeiten in freier oder gebundener Form, Kopplungsagentien, gegebenenfalls über diese Kopplungsagenzien gebundenen Bio- oder Makromolekülen sowie gegebenenfalls diagnostisch oder therapeutisch wirksamen Bestandteilen.
Die am Aufbau der Mikropartikel hauptsächlich beteiligten polymerisierten Aldehyde werden aus folgenden polymerisierbaren Aldehyden ausgewählt:
  • I. α,β-ungesättigten Aldehyden, wie zum Beispiel
    Acrolein
    Crotonaldehyd
    Propionaldehyd
  • II. α-substituierten Acroleinderivaten, wie zum Beispiel
    α-Methylacrolein
    α-Chloracrolein
    α-Phenylacrolein
    α-Ethylacrolein
    α-Isopropylacrolein
    α-n-Butylacrolein
    α-n-Propylacrolein
  • III. Dialdehyden, wie zum Beispiel
    Glutaraldehyd, Succinaldehyd oder deren Derivate oder deren Mischungen mit zur Copolymerisation fähigen Zusätzen, wie zum Beispiel:
    α-substituierten Acroleinen
    β-substituierten Acroleinen
    Ethylcyanacrylaten
    Methylcyanacrylaten
    Butylcyanacrylaten
    Hexylcyanacrylaten
    Methylmetacrylaten
    Vinylalkoholen
    Acrylsäuren
    Methacrylsäuren
    Acrylsäurechloriden
    Methacrylsäurechloriden
    Acrylnitril
    Methacrylnitrilen
    Acrylamiden
    Substituierten Acrylamiden
    Hydroxymethylmethacrylaten
    Mesityloxid
    Dimethylaminoethylmethacrylaten-2-Vinylpyridinen
    N-vinyl-2-Pyrrolidinon
Bevorzugt sind dabei Acrolein und Glutaraldehyd.
Die gegebenenfalls am Aufbau der Mikropartikel beteiligten Tenside werden aus ionogenen oder nicht-ionogenen oberflächenaktiven Substanzen, wie z. B.
Polyethylenoxid
Polyoxyethylenpolyoxypropylenen wie
Pluronic®F 68, Pluronic®F 108, Pluronic®F 127, Polyethylenglykol, Poloxamin 908, Polaxamer 407
Carbonsäuresalzen, wie zum Beispiel: Natriumoleat
Polyoxyethylenfettsäureestern, wie zum Beispiel:
Polyoxyethylenstearat
Natriumdioctylsulfosuccinat
Polyglutaraldehydnatriumhydrogensulfit-Addukt
Polyvinylsulfonsäure
ausgewählt. Sie können allein oder in Form ihrer Gemische verwendet werden.
Bevorzugt sind hiervon: Polyglutaraldehydnatriumsulfit-Addukt, Pluronic®F 68, Pluronic®F 108 und Pluronic®F 127.
Besitzen die zum Aufbau der Mikropartikel benutzten polymerisierbaren Aldehyde oberflächenaktive Eigenschaften, so kann auf die Verwendung von Tensiden verzichtet werden. Als Beispiel derartiger Aldehyde sei der Glutaraldehyd genannt.
Als in den Mikropartikeln in freier oder gebundener Form enthaltene Gase bzw. leichtflüchtige Flüssigkeiten - bevorzugt sind hierbei Flüssigkeiten mit einem Siedepunkt unter 60°C - sind u. a. geeignet:
Ammoniak
Luft
Edelgase bzw. Edelgasverbindungen (Helium, Neon, Argon, Xenon, Krypton)
Schwefelhalogenide, wie zum Beispiel: Schwefelhexafluorid,
Stickstoff
Kohlenstoffoxide
Sauerstoff
Wasserstoff,
Kohlenwasserstoffe oder deren Gemische, wie zum Beispiel:
Methan
Ethan
Propan
Butan
Pentan
Neopentan
Isopentan
Cyclopentan
Ethylen
Propylen
Acetylen
3,3-Dimethyl-1-Butin
2,3-Pentadien
2-Methyl-2-Butan
2-Methyl-1,3-Butadien
2-Butin
2-Methyl-1-Buten
3-Methyl-1-Buten,
halogenierte Kohlenwasserstoffe oder Gemische, wie zum Beispiel:
Methylenchlorid
1,1-Dichlorethylen
Isopropylchlorid
Dibromdifluormethan
Brommethan,
Ether, wie zum Beispiel: Dimethylether, Diethylether oder fluorierte Ether,
oder Verbindungen wie zum Beispiel:
Dimethylaminoaceton
Propylenoxid
N-Ethylmethylamin
N-Ethyldimethylamin
Furan.
Bevorzugt sind hiervon: Luft, Argon, Xenon, Schwefelhexafluorid, Propan, Butan und Furan.
Als am Aufbau der Mikropartikel beteiligten Kopplungsagenzien sind vor allem geeignet:
  • I. Aminogruppenhaltige Verbindungen, wie zum Beispiel:
    Hydroxylamin
    Butylamin
    Allylamin
    Ethanolamin
    Trishydroxymethylaminomethan
    3-Amino-1-propansulfonsäure
    5-Aminovaleriansäure
    8-Aminooctansäure
    D-Glucosaminhydrochlorid
    Aminogalactose
    Aminosorbit
    Aminomannit
    Diethylaminoethylamin
    Aniline
    Sulfonilsäureamid
    Cholin
    N-Methylglucamin
    Piperazin
    1,6-Hexandiamin
    Harnstoff
    Hydrazin
    Glycin
    Alanin
    Lysin
    Serin
    Valin
    Leucin
    Peptide
    Proteine
    Albumin
    Polylysin
    Gelatine
    Polyglykolamine
    Aminopolyalkohole
    Dextransulfate mit Aminogruppen
    Antikörper
    Immunoglobuline
  • II. Säuregruppenhaltige Verbindungen, wie zum Beispiel:
    Carbonsäuren
    Essigsäure
    Propionsäure
    Buttersäure
    Valeriansäure
    Capronsäure
    Caprylsäure
    Caprinsäure
    Laurinsäure
    Myristinsäure
    Palmitinsäure
    Stearinsäure
    Ölsäure
    Linolsäure
    Linolensäure
    Cyclohexancarbonsäure
    Phenylessigsäure
    Benzoylessigsäure
    Chlorbenoesäure
    Brombenzoesäure
    Nitrobenzoesäure
    Ortho-Phthalsäure
    Meta-Phthalsäure
    Para-Phthalsäure
    Salicylsäure
    Hydroxybenzoesäure
    Aminobenzoesäure
    Methoxybenzoesäure
  • III. Hydroxygruppenhaltige Verbindungen, wie z. B.: Alkohole
    Methanol
    Ethanol
    Propanol
    Butanol
    Pentanol
    Hexanol
    Meptanol
    Octanol
    Decanol
    Dodecanol
    Tetradecanol
    Hexadecanol
    Octadecanol
    Isopropylalkohol
    Isobutylalkohol
    Isopentylalkohol
    Cyclopentanol
    Cyclohexanol
    Crotylalkohol
    Benzylalkohol
    Phenylalkohol
    Diphenylmethanol
    Triphenylmethanol
    Zimtalkohol
    Ethylenglykol
    1,3-Propandiol
    Glycerin
    Pentaerythrit
  • IV. Polymerisierfähige Substanzen, wie
    α,β-ungesättigte Aldehyde, wie z. B.:
    Acrolein
    Crotonaldehyd
    Propionaldehyd
    α-substituierte Acroleinderivate, wie z. B.:
    α-Methylacrolein
    α-Chloracrolein
    α-Phenylacrolein
    α-Ethylacrolein
    α-Isoproylacrolein
    α-n-Butylacrolein
    α-n-Propylacrolein
    Dialdehyde, wie z. B.:
    Glutaraldehyd, Succinaldehyd oder deren Derivate oder deren Mischungen mit zur Copolymerisation fähigen Zusätzen, wie z. B.:
    α-substituierten Acroleinen
    β-substituierten Acroleinen
    Ethylcyanacrylaten
    Methylcyanacrylaten
    Butylacrylaten
    Hexylcyanacrylaten
    Methylmetacrylaten
    Vinylalkoholen
    Acrylsäuren
    Methacrylsäuren
    Acrylsäurechloriden
    Acrylnitril
    Methacrylnitrilen
    Acrylamiden
    Substituierten Acrylamiden
    Hydroxymethylmethacrylaten
    Mesityloxid
    Dimethylaminoethylmethacrylaten-2-Vinylpyridinen
    N-vinyl-2-Pyrrolidinon
Bevorzugt sind hiervon: Hydroxylamin, Trishydroxymethylaminomethan, 3-Amino-1-propansulfonsäure, D-Glucosaminhydrochlorid, Aminomannit, Harnstoff, Hydrazin, Proteine, Polyglykolamine und Aminopolyalkohole.
Die unter I. genannten Kopplungsagenzien sind über ihre Aminogruppe an die sich auf der Oberfläche der aus polymerisierten Aldehyden und gegebenenfalls Tensiden aufgebauten Mikropartikel befindlichen Formylgruppen kondensiert.
Ebenfalls über die Formylgruppen gebunden sind die unter IV. aufgeführten Monomere, die mit weiteren Monomeren polymerisiert sind.
Die unter II. und III. genannten Säuren und Alkohole sind dagegen erst nach vorheriger Umwandlung der Aldehydfunktion an die Mikropartikel angekoppelt.
Durch die Wahl geeigneter, über diese Kopplungsagenzien gebundenen Bio- oder Makromoleküle, wie z. B. Enzyme, Dextrane, Immunoglobuline, monoklonale Antikörper (s. weiter unten) erhält man erfindungsgemäße Mikropartikel, die eine überraschend hohe Gewebe- und Organspezifität aufweisen.
Die erfindungsgemäßen Mikropartikel enthalten gegebenenfalls diagnostisch oder therapeutisch wirksame Bestandteile zur Diagnose und Therapie von Tumoren, wie zum Beispiel
Doxorubicin
Actinomycin
Magnetit
Mitomycin C
Triamcinolon.
Die erfindungsgemäßen Mikropartikel weisen die eingangs geschilderten gewünschten Eigenschaften auf. Sie sind einfach und mit hoher Ausbeute herstellbar. Eine Maßstabsvergrößerung der Herstellung (up-scaling) ist ebenso wie die Reinigung der Mikropartikel problemlos.
Die Partikel weisen eine schmale Größenverteilung (monodispers) auf; es ist dabei möglich, die Größe der Partikel je nach eingesetzter Konzentration der Ausgangsstoffe über einen großen Bereich zu variieren (s. weiter unten). Durch Steuerung der Herstellungsbedingungen (z. B. pH-Wert) ist es möglich, auch das Molekulargewicht in großen Bereichen zu variieren.
Ein weiterer Vorteil besteht darin, daß die Reaktion zur Synthese der Mikropartikel durch viele Möglichkeiten ausgelöst werden kann, beispielsweise Anionische Polymerisation durch pH-Änderung, kationische Polymerisation mit z. B. Eisensalzen, radikalische Polyermisation mit UV-Licht und durch ionisierende Strahlung.
Der für die Herstellung der Mikropartikel mögliche weite Temperaturbereich (-5 bis +80°C) gestattet eine einfache Versuchssteuerung mit optimalen Ausbeuten bei sehr unterschiedlichen Gasen bzw. leichtsiedenden Flüssigkeiten.
Die Partikel enthalten freie Aldehydgruppen, die durch chemische Reaktionen mit anderen Molekülen kovalent verknüpft werden können. Diese Möglichkeit gestattet es, die Eigenschaften der Partikeloberfläche gezielt zu verändern, ohne die echogenen Eigenschaften zu beeinflussen. Durch Auswahl geeigneter Moleküle läßt sich die kolloidale Stabilität beeinflussen. Insbesondere wird dadurch das für kolloidale Systeme häufig auftretende Phänomen der Agglomeration verhindert. Dies wiederum ist von großem Vorteil für die Entwicklung einer stabilen Formulierung.
Neben der Beeinflussung der Stabilität bieten sich Möglichkeiten, die Oberfläche der Partikel so zu verändern, daß ein drug-targeting möglich ist. Dies geschieht durch Ankopplung geeigneter Bio- oder Makromoleküle (z. B. monoklonaler Antikörper), die eine hohe Gewebe- und Organspezifität bewirken (G. Gregoriadis, G. Poste "Targeting of Drugs", Plenum Press 1988, New York) oder durch Beeinflussung der Oberflächeneigenschaften der Partikel durch Adsorption von Molekülen (z. B. Tensiden).
In Abhängigkeit von der Wahl dieser Moleküle und von der Größe der Mikropartikel läßt sich eine Partikelanreicherung in/an Tumoren bzw. z. B. in der Lunge, Leber, Milz und im Knochenmark erreichen. Die Anreicherung im Knochenmark wird insbesondere dadurch erreicht, daß kleine Partikel (<100 nm) mit z. B. Poloxamer 407 gecoatet werden. Sind die Partikel z. B. mit Poloxamin 908 gecoated, wird das RES-System von diesen Partikeln überwunden, und sie bleiben im Blutkreislauf (blood pool agent).
Durch mit Antikörpern gekoppelte Teilchen läßt sich eine Anreicherung der Partikel in/an Tumoren erreichen.
Ein aktives targeting läßt sich auch mit Magnetit-enthaltenden Mikropartikeln durchführen. Durch ein von außen angelegtes Magnetfeld werden die Partikel in den gewünschten Stellen im intravasalen System angereichert. Es ergibt sich hierdurch die Möglichkeit, Strömungsverhältnisse z. B. in Blutgefäßen zu untersuchen.
Mit Hilfe der mit Magnetit beladenen Partikel ist es auch möglich, durch ein von außen eingestrahltes magnetisches Wechselfeld lokal hohe Temperaturen zu erzeugen. Dies läßt sich therapeutisch ausnutzen, z. B. zur Zerstörung von Tumoren (Hyperthermie-Therapie). Außer der Verwendung eines magnetischen Wechselfeldes läßt sich ein Ultraschallfeld verwenden. Auch hierbei kommt es zu starken lokalen Temperaturerhöhungen.
Die Herstellung der erfindungsgemäßen Mikropartikel erfolgt dadurch, daß man eine 0 bis 40%, vorzugsweise 0,01 bis 10% w/v Tensid(e) und 0 bis 10% w/v diagnostisch oder therapeutisch wirksame Bestandteile und Gase oder leichtflüchtige Flüssigkeiten enthaltende wäßrige Lösung unter Rühren, bei einer Temperatur von -5% bis +80°C, vorzugsweise 0° bis 40°C, einem pH-Wert von 7 bis 14, vorzugsweise 9 bis 13, innerhalb von 1 Minute bis 10 Stunden, vorzugsweise 10 Minuten bis 2 Stunden, und gegebenenfalls unter Einleiten von Gas mit copolymerisierbarem/n Aldehyd(en) bis zu einer Konzentration bezogen auf die Reaktionsmischung von 0,1 bis 50%, vorzugsweise 3 bis 20% w/v, sowie mit copolymerisierbaren Zusätzen einer Konzentration bezogen auf die Reaktionslösung von 0 bis 20%, vorzugsweise 1 bis 5% w/v, mit Crosslinker(n) einer Konzentration bezogen auf die Reaktionsmischung von 0-5%, vorzugsweise 0,1 bis 1% w/v, umsetzt, anschließend - gegebenenfalls nach Reinigung - die so erhaltenen Mikropartikel mit einer wäßrigen Lösung, die - bezogen auf die Aldehydmenge - bis zu äquimolare Mengen an Kopplungsagenz sowie 0 bis 20%, vorzugsweise 0,01 bis 10% w/v Tensid(e) bezogen auf das Gesamtvolumen enthält, unter Rühren bis zu 3 Tagen, vorzugsweise bis zu 2 Tagen, bei Temperaturen von 0° bis 60°C, vorzugsweise 5° bis 30°C, bei einem pH-Wert von 3 bis 9, vorzugsweise 5 bis 8, umsetzt und - gewünschtenfalls nach Reinigung - diese gegebenenfalls an Bio- oder Makromoleküle bindet.
Die nach der ersten Reaktionsstufe erhaltenen Polymeraldehyd-Partikel haben auf der Oberfläche Aldehydgruppen. Mit diesen Aldehydgruppen lassen sich die für Aldehyde typischen Reaktionen durchführen (R. C. Schulz, Kolloidzeitschrift und Zeitschrift für Polymere, 182 (1-2), 99 (1961); Lehrbuch der organischen Chemie "Organikum", VEB Verlag der Wissenschaften, Berlin, 1984). Dadurch ist man in der Lage, aufder Partikeloberfläche Moleküle anzukoppeln, die die Oberflächeneigenschaften ändern.
Beispiele für mögliche Reaktionen der Aldehydgruppen:
  • - Reduktion zu Alkohol
  • - Oxidation zu Säuren
  • - Oximierung
  • - Iminbildung, gegebenenfalls gefolgt von Hydrierung
  • - Hydrazonbildung, gegebenenfalls gefolgt von Hydrierung
  • - Mercaptalisierung
  • - Acetalisierung
  • - Disproportionierung durch NaOH (Cannizzaro-Reaktion)
  • - Aldolkondensation
Die Kopplung von aminogruppenhaltigen Molekülen an die in der ersten Reaktionsstufe gebildeten Partikel erfolgt durch Umsetzung mit den Aldehydgruppen. Hierbei wählt man beispielsweise folgende experimentelle Bedingungen:
1000 mg Polyacrolein- Partikel werden in 50 ml destilliertem Wasser suspendiert. Zu dieser Partikelsuspension werden 5000 mg der umzusetzenden Substanz zugegeben und bei Raumtemperatur gerührt. Entsprechend der Reaktionsgeschwindigkeit der Umsetzung muß gerührt werden; bei langsamen Reaktionsgeschwindigkeiten bis 48 Stunden. Die Partikelsuspension wird anschließend dialysiert (Cut off 10000 d).
Enthalten die durch z. B. die oben angegebenen Reaktionen eingeführten Substituenten (gegebenenfalls intermediär geschützte) funktionelle Gruppen, so können diese nach dem Fachmann bekannten Verfahren in für die Kopplung an Bio- oder Makromoleküle geeignete reaktive Gruppen umgewandelt werden. Bevorzugte derartige Gruppen sind beispielsweise die Maleimidobenzoyl-, 3-Sulfomaleimido-benzoyl-, 4-(Maleimidomethyl)-cyclohexylcarbonyl-, 4-[3-Sulfo-(maleimido-methyl)-cyclohexyl-carbonyl-, 4-(p-Maleimidophenyl)-butyryl-, 3-(2-Pyridyl-dithio)propionyl-, Methacryloyl-(pentamethylen)-amido-, Bromacetyl-, Jodacetyl-, 3-Jodpropyl-, 2-Bromethyl-, 3-Mercaptopropyl-, 2-Mercaptoethyl-, Phenylenisothiocyanat, 3-Aminopropyl-, Benzyl­ ester-, Ethylester-, t-Butylester, Amino-, C₁-C₆-Alkylamino-, Aminocarbonyl-, Hydrazino-, Hydrazinocarbonyl-, Maleimido-, Methacrylamido-, Methacryloylhydrazinocarbonyl-, Maleimidamidocarbonyl-, Halogeno-, Mercapto-, Hydrazinotrimethylenhydrazinocarbonyl-, Aminodimethylenamidocarbonyl-, Bromcarbonyl-, Phenylendiazonium-, Isothiocyanat-, Semicarbazid-, Thiosemicarbazid-, Isocyanat-Gruppe.
Eine Aminogruppe kann beispielsweise nach literaturbekannten Methoden (z. B. mit Thiophosgen in einem Zweiphasensystem, S. Scharma, Synthesis 1978, 803, D. K. Johnson, J. Med. Chem. 1989, Vol. 32, 236) in eine Isothiocyanatgruppe umgewandelt werden.
Durch Umsetzung einer Aminofunktion mit einem Halogenessigsäurehalogenid kann eine α-Halogenacetamidgruppe generiert werden (JACS 1969, Vol. 90, 4508; Chem. Pharm. Bull. 29 (1), 128, 1981), die ebenso wie z. B. die Isothiocyanatgruppe zur Kopplung an Bio- und Makromoleküle geeignet ist.
Als Substituenten, der in eine für eine Bindung an ein Makro- oder Biomolekül geeignete funktionelle Gruppe überführt werden kann, sind unter anderem Hydroxy- und Nitrobenzyl-, Hydroxy- und Carboxyalkyl- sowie Thioalkylreste mit bis zu 20 Kohlenstoffatomen geeignet. Sie werden nach dem Fachmann bekannten Literaturverfahren [Chem. Pharm. Bull. 33, 674 (1985). Compendium of Org. Synthesis Vol. 1-5, Wiley and Sons, Inc., Houben-Weyl, Methoden der organischen Chemie, Band VIII, Georg Thieme Verlag, Stuttgart, J. Biochem. 92, 1413, (1982)] in die gewünschten Substituenten (zum Beispiel mit der Amino-, Hydrazino-, Hydrazinocarbonyl-, Epoxid-, Anhydrid-, Methacryloylhydrazinocarbonyl-, Maleimidamidocarbonyl-, Halogeno-, Halogenocarbonyl-, Mercapto-, Isothiocyanatgruppe als funktioneller Gruppe) umgewandelt, wobei im Fall des Nitrobenzylrestes zunächst eine katalytische Hydrierung (zum Beispiel nach P. N. Rylander, Catalytic Hydrogenation over Platinum Metals, Academic Press 1967) zum Aminobenzylderivat vorgenommen werden muß.
Beispiele für die Umwandlung von an aromatische oder aliphatische Reste gebundenen Hydroxy- oder Aminogruppen sind die in geeigneten Lösungsmitteln wie Tetrahydrofuran, Dimethoxyethan oder Dimethylsulfoxid, zweiphasigen wäßrigen Systemen, wie z. B. Wasser/Dichlormethan, in Gegenwart eines Säurefängers wie zum Beispiel Natriumhydroxid, Natriumhydrid oder Alkali oder Erdalkalicarbonaten wie zum Beispiel Natrium-, Magnesium-, Kalium-, Calciumcarbonat oder Poly-(t-vinylpyridin) Reillex® bei Temperaturen zwischen 0°C und dem Siedepunkt des jeweiligen Lösungsmittels, vorzugsweise jedoch zwischen 20°C und 60°C, durchgeführten Umsetzungen mit einem Substrat der allgemeinen Formel I
Nf-L-Fu (I)
worin Nf für ein Nucleofug wie z. B. Cl, Br, J, CH₃C₆H₄SO₃ oder CF₃SO₃, L für einen aliphatischen, aromatischen, arylaliphatischen, verzweigten, geradkettigen oder cyclischen Kohlenwasserstoffrest mit bis zu 20 Kohlenstoffatomen und Fu für die gewünschte funktionelle Gruppe, gegebenenfalls in geschützter Form, stehen (DE-OS 34 17 413).
Als Beispiele für Verbindungen der allgemeinen Formel I seien genannt
Umwandlungen von Carboxy-Gruppen können zum Beispiel nach der Carbodiimid-Methode (Fieser, Reagents for Organic Synthese 10, 142), über ein gemischtes Anhydrid [Org. Prep. Proc. Int. 7, 215 (1975)] oder über einen aktivierten Ester (Adv. Org. Chem. Part B, 472) durchgeführt werden.
Die so erhaltenen kopplungsagenz-tragenden Mikropartikel können auch an Bio- oder Makromoleküle geknüpft sein, von denen bekannt ist, daß sie sich in dem zu untersuchenden Organ oder Organteil besonders anreichern. Solche Moleküle sind beispielsweise Enzyme, Hormone, Polysaccharide wie Dectrane oder Stärken, Porphyrine, Bleomycine, Insulin, Prostaglandine, Steroidhormone, Aminozucker, Aminosäuren, Peptide wie Polylysin, Proteine (wie zum Beispiel Immunoglobuline, monoklonale Antikörper, Lektine), Lipide (auch in Form von Liposomen) und Nukleotide vom DNA- oder RNA-Typ. Besonders hervorzuheben sind Konjugate mit Albuminen, wie Humanserumalbumin, Antikörpern, wie zum Beispiel monoklonale, für tumorassoziierte Antigene spezifische Antikörper oder Antimyosin. Anstelle von biologischen Makromolekülen können auch geeignete synsthetische Polymere wie Polyethylenimine, Polyamide, Polyharnstoffe, Polyether wie Polyethylenglykole und Polythioharnstoffe angeknüpft werden. Die hieraus gebildeten pharmazeutischen Mittel eignen sich beispielsweise zur Anwendung in der Tumor- und Infarkt-Diagnostik sowie Tumortherapie. Monoklonale Antikörper (zum Beispiel Nature 256, 495, 1975) haben gegenüber polyklonalen Antikörpern die Vorzüge, daß sie spezifisch für eine antigene Determinate sind, eine definierte Bindungsaffinität besitzen, homogen sind (damit wird ihre Reindarstellung wesentlich einfacher) und in Zellkulturen in großen Mengen herstellbar sind. Als solche sind zum Beispiel für die Tumordarstellung monoklonale Antikörper bzw. deren Fragmente Fab und F(ab′)₂ geeignet, die zum Beispiel spezifisch sind für humane Tumore des Gastrointestinaltraktes, der Brust, der Leber, der Blase, der Keimdrüsen und von Melanomen [Cancer Treatment Repts. 68, 317, (1984), Bio Sci 34, 150, (1984)] oder gegen Carcinomembryonales Antigen (CEA), Humanes Choriogonadotropin (β-HCG) oder andere tumorständige Antigene, wie Glycoproteine, gerichtet sind [New Engl. J. Med. 298, 1384, (1973), US-P 43 31 647]. Geeignet sind unter anderem auch Anti-Myosin, Anti-Insulin- und Anti-Fibrin-Antikörper (US-P 40 36 945).
Coloncarcinome lassen sich mit Hilfe von Mikropartikel-Konjugation mit dem Antikörper 17-1A (Centocor, USA) diagnostisch nachweisen.
Im Falle der Antikörper-Konjugate darf die Bindung des Antikörpers an die Mikropartikel nicht zum Verlust oder zur Verminderung der Bindungsaffinität und Bindungsspezifität des Antikörpers zum Antigen führen. Dies kann entweder durch Bindung an den Kohlenhydrat-Anteil im Fc-Teil des Glycoproteins bzw. in den Fab oder F(ab′)₂-Fragmenten oder durch Bindung an Schwefelatome des Antikörpers bzw. der Antikörper-Fragmente erfolgen.
Im ersten Fall muß zunächst eine oxidative Spaltung von Zuckereinheiten zur Generation kopplungsfähiger Formylgruppen durchgeführt werden. Diese Oxidation kann auf chemischem Wege mit Oxidationsmitteln wie z. B. Perjodsäure, Natriummetaperjodat oder Kaliummetaperjodat nach literaturbekannten Methoden (zum Beispiel J. Histochem and Cytochem. 22, 1084, 1974) in wäßriger Lösung in Konzentrationen von 1 bis 100, vorzugsweise 1 bis 20 mg/ml, und einer Konzentration des Oxidationsmittels zwischen 0,001 bis 10 mMol, vorzugsweise 1 bis 10 mMol, in einem pH-Bereich von ca. 4 bis 8 bei einer Temperatur zwischen 0 bis 37°C und einer Reaktionsdauer zwischen 15 Minuten und 24 Stunden vorgenommen werden. Auch auf enzymatischem Wege kann die Oxydation, beispielsweise mit Hilfe von Galaktoseoxidase, in einer Enzymkonzentration von 10-100 Einheiten/ml, einer Substratkonzentration von 1 bis 20 mg/ml, bei einem pH-Wert von 5 bis 8, einer Reaktionsdauer von 1 bis 8 Stunden und einer Temperatur zwischen 20 und 40°C, durchgeführt werden (zum Beispiel J. Biol. Chem. 234, 445, 1959).
An die durch Oxidation generierten Aldehyde werden Mikropartikel mit geeigneten funktionellen Gruppen, wie zum Beispiel Hydrazin, Hydrazid, Hydroxylamin, Phenylhydrazin, Semicarbazid und Thiosemicarbazid, durch Reaktion zwischen 0-37°C, bei einer Reaktionsdauer von 1 bis 65 Stunden, einem pH-Wert zwischen ca. 5,5 und 8, einer Antikörperkonzentration von 0,5 bis 20 mg/ml und einem molaren Verhältnis des Komplexbildners zum Antikörperaldehyden von 1 : 1 bis 1000 : 1 gebunden. die anschließende Stabilisierung des Konjugats erfolgt durch Reduktion der Doppelbindung, z. B. mit Natriumborhydrid oder Natriumcyanoborhydrid; das Reduktionsmittel wird dabei in einem 10- bis 100fachen Überschuß verwendet (zum Beispiel J. Biol. Chem. 254, 4359, 1979).
Die zweite Möglichkeit der Bildung von Antikörper-Konjugaten geht aus von einer schonenden Reduktion der Disulfid-Brücken des Immunoglobulin-Moleküls; hierbei werden die empfindlichen Disulfid-Brücken zwischen den H-Ketten des Antikörper-Moleküls gespalten, während die S-S-Bindungen der Antigenbindenden Region intakt bleiben, so daß praktisch keine Verminderung der Bindungsaffinität und -spezifität des Antikörpers eintritt (Biochem. 18, 2226, 1979, Handbook of Experimental Immunology, Vol. 1, Second Edition, Blackwell Scientific Publications, London 1973, Chapter 10). Diese freien Sulfhydryl-Gruppen der interH-Ketten Regionen werden dann mit geeigneten funktionellen Gruppen der Mikropartikel bie 0 bis 37°C, einem pH-Wert von ca. 4 bis 7, und einer Reaktionsdauer von 3 bis 72 Stunden unter Ausbildung einer kovalenten Bindung, die die Antigen-Bindungsregion des Antikörpers nicht beeinflußt, umgesetzt. Als geeignete reaktive Gruppen seien beispielsweise genannt: Halogenalkyl-, Halogenacetyl-, p-Mercuribenzoat-, Isothiocyanat-, Thiol-, Epoxidgruppen sowie Gruppen, die einer Michael-Additions-Reaktion, wie zum Beispiel Maleinimide, Methacrylogruppen (zum Beispiel J. Amer. Chem. Soc. 101, 3097, 1979), zu unterwerfen sind.
Zur Verknüpfung der Antikörperfragmente mit den Mikropartikeln gibt es zusätzlich eine Reihe geeigneter, oft auch kommerziell erhältlicher bifunktioneller "Linker" (siehe zum Beispiel Pierce, Handbook and General Catalogue 1986), die sowohl gegenüber den SH-Gruppen der Fragmente als auch gegenüber den Amino- bzw. Hydrazinogruppen der Mikropartikel reaktiv sind.
Als Beispiele seien genannt:
m-Maleimidobenzoyl-N-hydroxysuccinimidester (MBS),
M-Maleimidobenzoyl-N-sulfosuccinimidester (Sulfo-MBS),
N-Succinimidyl-[4-(Iodacetyl)-amino]benzoesäureester (SIAB),
Succinimidyl-4(N-maleimidomethyl)-cyclohexan-1-carbonsäureester (SMCC),
Succinimidyl-4(p-maleimidophenyl)-buttersäureester (SMPB),
N-Succinimidyl-3-(2-pyridyldithio)-propionsäureester (SDPD),
4-[3-(2,5-Dioxo-3-pyrrolinyl)-propionyloxy]-3-oxo-2,5-diphenyl-2,3-d-ihydrothiophen-1,1-dioxid,
Acetylalanylleucylalanylaminopbenzyl,
Acetamido-p-thioureidobenzyl.
Es können auch Bindungen nicht-kovalenter Art zur Kopplung an das Bio- oder Makromolekül genutzt werden, wobei sowohl ionische als auch von der Waals- und Wasserstoffbrücken-Bindungen in wechselnden Anteilen und Stärke (Schlüssel-Schloß-Prinzip) zur Bindung beitragen können (zum Beispiel Avidin-Biotin, Antikörper-Antigen). Auch Einschlußverbindungen (host-guest) kleinerer Komplexe in größere Cavitäten beim Makromolekül sind möglich.
Das Kopplungsprinzip besteht darin, zunächst ein bifunktionelles Makromolekül herzustellen, indem man entweder ein gegen ein Tumorantigen gerichtetes Antikörper-Hybridom mit einem gegen die erfindungsgemäßen Mikropartikel gerichteten zweiten Antikörper-Hybridom fusioniert oder die beiden Antikörper chemisch über einen Linker (beispielsweise in der im J. Amer. Chem. Soc. 101, 3097 (1979) angegebenen Weise) miteinander verknüpft oder den gegen das Tumorantigen gerichteten Antikörper, gegebenenfalls über einen Linker, an Avidin (bzw. Biotin) bindet [D. J. Hnatowich et al., J. Nucl. Med. 28, 1294 (1987)]. Anstelle der Antikörper können auch ihre entsprechenden F(ab)- bzw. F(ab′)₂-Fragmente verwendet werden. Für die pharmazeutische Anwendung injiziert man zunächst das bifunktionelle Makromolekül, das sich am Zielort anreichert, und dann im zeitlichen Abstand die erfindungsgemäßen Mikropartikel [gegebenenfalls an Biotin (bzw. Avidin) gebunden], di in-vivo am Zielort angekoppelt werden und dort ihre diagnostische oder therapeutische Wirkung entfallen können. Darüberhinaus können auch andere Kopplungsmethoden wie beispielsweise das in Protein Tailoring Food Med. Uses [Am. Chem. Soc. Symp.] (1985), 349, beschriebene "Reversible Radiolabeling" zur Anwendung kommen.
Mit der sogenannten Festphasen-Kopplung steht eine besonders einfache Methode zur Herstellung von Antikörper-Konjugaten bzw. Antikörperfragment-Konjugaten zur Verfügung: Der Antikörper wird an eine stationäre Phase (z. B. einen Ionenaustauscher), der sich zum Beispiel in einer Glassäule befindet, gekoppelt. Durch sukzessives Spülen der Säule mit einer zur Generierung von Aldehyd-Gruppen geeigneten Lösung, Waschen, Spülen mit einer Lösung der funktionalisierten Mikropartikel, Waschen und schließlich Eluieren des Konjugats werden sehr hohe Konjugat-Ausbeuten erhalten.
Dieses Verfahren erlaubt die automatische und kontinuierliche Produktion beliebiger Mengen an Konjugaten.
Auch andere Kopplungsschritte können auf diese Art und Weise durchgeführt werden.
So können zum Beispiel durch die Sequenz Papain-Reduktion/bifunktioneller Linker/funktionalisierte Mikropartikel Fragment-Konjugate hergestellt werden.
Die so gebildeten Verbindungen werden anschließend vorzugsweise chromatographisch gereinigt.
Es lassen sich Partikel in der Größe von 0,04-100 µm, vorzugsweise 0,1-40 µm, herstellen. Die Größe der Partikel läßt sich im wesentlichen beeinflussen durch Variation der Ausgangskonzentration von Monomer, Tensid und pH-Wert.
Beispiele für die Herstellung von Partikeln bestimmter Größe
1. Acroleinkonzentration:
10% (W/V)
Tensidkonzentration: 1,5% (W/V)
pH-Wert: 10,0
Temperatur: 4°C
Werden diese Bedingungen gewählt, so erhält man Partikel mit einem mittleren Durchmesser von 750 nm.
2. Acroleinkonzentration:
20% (W/V)
Tensidkonzentration: 0,2% (W/V)
pH-Wert: 10,0
Temperatur: 2°C
Unter diesen Bedingungen erhält man Partikel mit einem mittleren Durchmesser von 40 µm.
3. Bei gleichen Bedingungen wie unter 2.) aufgeführt, jedoch bei einer Acroleinkonzentration von 10% (W/V) erhält man Partikel mit einem mittleren Durchmesser von 8 µm.
4.) Acroleinkonzentration:
10% (W/V)
Tensidkonzentration: 0,5% (W/V)
pH-Wert: 11,0
Mittlerer Partikeldurchmesser: 560 nm
5.) Unter gleichen Bedingungen wie unter 4.), nur bei einem pH-Wert von 9 ergibt sich eine mittlere Partikelgröße von 3,2 µm.
Als Tensid wird Polyglutaraldehydnatriumhydrogensulfit-Addukt (PGL) verwendet.
Synthese von PGL
Eine 25% wäßrige Lösung von Glutaraldehyd wird über Aktivkohle gereinigt. Anschließend wird durch die Einleitung von N₂ in die wäßrige Lösung die Lösung von O₂ befreit. Ferner wird eine Pufferlösung (Phosphatpuffer, 1 molar) auf pH=11 eingestellt. Die Pufferlösung wird auch von O₂ durch Einleitung von N₂ befreit. Die Pufferlösung und Glutaraldehydlösung werden zusammengebracht und unter N₂-Atmosphäre 72 Stunden lang polymerisiert. Danach wird das Polymerisat filtriert und mit Aceton und Wasser gewaschen. Das gewaschene Polymerisat wird im Vakuumtrockenschrank bei 45°C getrocknet. In 30 ml H₂O, das 12,5 g NaHSO₃ enthält, werden 5 g Polyglutaraldehyd gelöst. Die Lösung wird mit destilliertem H₂O dialysiert. Anschließend wird die Lösung lyophilisiert.
Die erfindungsgemäßen Partikel lassen sich in wäßrigen Lösungen suspendieren, ohne daß es zu Aggregation der Teilchen kommt. Zur Herstellung einer galenischen Formulierung, die parenteral applizierbar ist, lassen sich wäßrige Lösungen verwenden, die isotonisierende Zusätze wie Natriumchlorid, Zuckeralkohole (Mannit, Sorbit, Xylit etc.) oder Zucker (Glucose, Fructose) enthalten. Zur Einstellung des pH-Wertes können Puffer wie Trometamol/HCl, Citronensäure/NaOH etc. gewählt werden.
Beispiele
1.) In 100 ml einer Formulierung sind enthalten:
Partikel:|100 mg
Trometamol: 2,4 mg
+HCL für pH 7,4
Mannit: 5500 mg
Wasser: ad 100 ml
2.) In 100 ml einer Formulierung sind enthalten:
Partikel:|50 mg
Natriumchlorid: 860 mg
Wasser ad 100 ml
Ein Aufschwimmen der Partikel kann dadurch verhindert werden, daß die mittlere Dichte des Partikels an die des umgebenden Vehikels angeglichen wird. Dazu sind folgende Maßnahmen geeignet:
  • a) Die Partikel können so hergestellt werden, daß sie aufschwimmen, sedimentieren oder statistisch verteilt in der wäßrigen Lösung schweben.
  • b) Eine weitere Möglichkeit, die Dichte der Partikel der Dichte des Vehikels anzupassen, besteht darin, daß man die mittlere Dichte durch Zusätze von Substanzen höherer Dichte (Röntgenkontrastmittel, Magnetite) beeinflußt. Diese Möglichkeit bietet sich an bei Partikeln mit geringem Polyaldehydgehalt.
Die erfindungsgemäßen pharmazeutischen Mittel enthalten 0,1 µg-100 mg Mikropartikel/ml, vorzugsweise 10 µg-1 mg Mikropartikel/ml galenischer Formulierung und werden in der Regel in Dosen von 0,01 ml-10 ml/kg, vorzugsweise 0,1-1 ml/kg Körpergewicht, dosiert. Sie sind zur enteralen und parenteralen Applikation bestimmt.
Zur Verwendung in der Hyperthemie-Therapie werden die erfindungsgemäßen pharmazeutischen Mittel in der Regel in Mengen von 0,001-10 mg, vorzugsweise 0,01-1 mg pro g Tumor eingesetzt.
Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie auf diese zu beschränken.
Methoden zur Herstellung des Kontrastmittels 1. Reaktionsstufe
A) Eine tensidhaltige (0,01-5% w/v wäßrige Lösung wird unter Rührung auf 0°C abgekühlt. Dabei wird ein Gas in die Lösung eingeleitet. Der pH-Wert der Lösung wird mit NaOH auf den gewünschten pH-Wert (vorzugsweise 9-13) eingestellt. Zu dieser Lösung wird das Monomer bzw. Monomergemisch gegeben. Nach 30 Minuten wird die Rührgeschwindigkeit reduziert. Nach 1 Stunde wird das Reaktionsgemisch mit der oben angegebenen tensidhaltigen wäßrigen Lösung verdünnt. Die Rührgeschwindigkeit wird noch weiter gesenkt. Nach 4 Stunden werden die ausgefallenen nicht-gasenthaltenden Mikropartikel von der übrigen Suspension dekantiert und verworfen. Die dekantierte Suspension wird dialysiert, um das Kontrastmittel von Restmonomeren zu reinigen. Ausbeute: 80-90%.
B) Eine wäßrige Lösung, welche die gewünschte Tensid- und Monomermenge enthält, wird auf 0°C abgekühlt. Dabei wird das gewünschte Gas unter Rühren durch die Lösung eingeleitet. Anschließend wird mit NaOH der pH-Wert der Lösung auf vorzugsweise 9-13 eingestellt. Nach 1 Stunde wird das Reaktionsgemisch verdünnt. Nach 3-4 Stunden wird die Mikropartikel enthaltende Suspension von dem ausgefallenen Polymerisat, das verworfen wird, getrennt. Die Suspension wird durch Dialyse gereinigt. Ausbeute: 80-90%.
Beispiel 1
Es werden 91 ml 0,5%ige wäßrige Tensidlösung in einen Kolben gegeben. Der pH-Wert der Lösung wird mit 0,2 N NaOH-Lösung auf 11 eingestellt. Durch die Lösung wird N₂ eingeleitet. Zu der auf 0°C abgekühlten 0,5%igen Tensidlösung wird 9,5 ml frisch destilliertes Acrolein getropft. Nach 1 Stunde werden zum Reaktionsgemisch weitere 100 ml 0,5%ige Tensidlösung gegeben. Nach 3 Stunden wird die Mikropartikel enthaltende Suspension von den ausgefallenen Polymeren dekantiert und durch Dialyse gereinigt.
Beispiel 2
Es werden 82 ml 0,08%ige wäßrige Tensidlösung in einen Kolben gegeben. Die Lösung wird auf 0°C abgekühlt. Zu der abgekühlten Lösung werden 18 ml frisch destilliertes Acrolein zugegeben. In die Lösung wird unter Rühren Argon eingeleitet. Nach 1 Stunde wird der pH-Wert der Lösung mit einer 0,2 N NaOH-Lösung auf 12 eingestellt. Nach 2 Stunden werden 100 ml 0,08%ige Tensidlösung zugegeben. Nach 3 Stunden wird die Suspension dekantiert und dialysiert.
Beispiel 3
Es werden 70 ml 0,08%ige wäßrige Tensidlösung, die 10% Dimethylformamid enthält, in einen Kolben gegeben. Der pH-Wert der Lösung wird mit 0,2 N NaOH-Lösung auf 11,5 eingestellt. Die Lösung wird auf 0°C abgekühlt. Dabei wird N₂ in die Lösung eingeleitet. In diese Lösung werden 30 ml frisch destilliertes Acrolein getropft. Nach 1 Stunde wird der Lösung 100 ml 0,08%ige Tensidlösung zugegeben. Nach 4 Stunden wird die Suspension von den ausgefallenen Polymeren getrennt und gereinigt.
Beispiel 4
Es werden 91 ml 0,5%ige wäßrige Tensidlösung, die 5% Magnetit enthält, in einem Kolben auf 0°C abgekühlt. Der pH-Wert der Lösung wird mit 0,2 N NaOH auf 12 eingestellt. Durch die Lösung wird N₂ eingeleitet. Zu der auf 0°C abgekühlten Lösung werden 9 ml frisch destilliertes Acrolein zugetropft. Nach 1 Stunde werden dem Reaktionsgemisch 100 ml der 0,5%igen Tensidlösung zugegeben. Die Mikropartikel enthaltende Suspension wird durch Dekantieren von ausgefallenen Polymeren getrennt und dialysiert.
Beispiel 5
Es werden 91 ml 0,5%ige Tensidlösung in einen Kolben gegeben. Der pH-Wert der Lösung wird durch Zugabe von 0,2 N NaOH-Lösung auf 12 eingestellt. Die Lösung wird auf 0°C abgekühlt. Durch die Lösung wird Argon eingeleitet. Zu dieser Lösung werden 9 ml frisch destilliertes Acrolein, welches 5% Butylcyanoacrylat enthält, zugetropft. Nach 1 Stunde werden weitere 100 ml der 0,5%igen Tensidlösung zugegeben. Die Suspension wird vom Bodensatz getrennt und gereinigt.
Beispiel 6
Es werden 91 ml 0,08%ige wäßrige Tensidlösung in einen Kolben gegeben. Der pH-Wert der Lösung wird durch Zugabe von 0,2 N NaOH-Lösung auf 10,5 eingestellt. Die Lösung wird auf 0°C abgekühlt. Durch die Lösung wird N₂ eingeleitet. Zu dieser Lösung werden 9 ml frisch destilliertes Acrolein, welches 20% α-Methylacrolein enthält, zugetropft. Nach 1 Stunde werden weitere 100 ml der 0,08%igen Tensidlösung zugegeben. Nach 2 Stunden wird die Mikrosphären- Suspension vom Bodensatz getrennt und gereinigt.
Beispiel 7
Es werden 91 ml 0,08%ige wäßrige Tensidlösung, welche 25% Isopentan enthält, in einen Kolben gegeben. Die Lösung wird auf 0°C abgekühlt. Zu dieser Lösung werden 9 ml frisch destilliertes Acrolein unter Rühren zugegeben. Nach 2 Stunden wird das Reaktionsgemisch filtriert. Die Mikropartikel werden durch Waschen mit Wasser gereinigt. Die Mikrosphären werden in Wasser resuspendiert.
Tensidlösung: Polyglutaraldehydnatriumhydrogensulfit-Addukt.
2. Reaktionsstufe Beispiel 8
1000 mg Polyacrolein-Mikropartikel aus Beispiel 1 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg 3-Aminopropansulfon zugegeben und 48 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 9
1000 mg Polyacrolein-Mikropartikel aus Beispiel 2 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg 3-Aminopropanphosphat zugegeben und 48 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 10
1000 mg Polyacrolein-Mikropartikel aus Beispiel 3 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg 8-Aminooctansäure zugegeben und 24 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 11
1000 mg Polyacrolein-Mikropartikel aus Beispiel 4 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg 5-Aminovaleriansäure zugegeben und 36 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 12
1000 mg Polyacrolein-Mikropartikel aus Beispiel 5 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg D-Glucoseaminhydrochlorid zugegeben und 30 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 13
1000 mg Polyacrolein-Mikropartikel aus Beispiel 6 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg Hexamethylendiamin zugegeben und 24 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
Beispiel 14
1000 mg Polyacrolein-Mikropartikel aus Beispiel 7 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg Polylysin (MG=32 600 Dalton) zugegeben und 30 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension mit Wasser gewaschen.
Beispiel 15
1000 mg Polyacrolein-Mikropartikel aus Beispiel 5 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg Human Albumin zugegeben und 24 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension mit Wasser gewaschen.
Beispiel 16
1000 mg Polyacrolein-Mikropartikel aus Beispiel 4 werden in 50 ml Wasser resuspendiert. Zu dieser Suspension werden 1000 mg von (2-Diethylamino(- ethylamin zugegeben und 20 Stunden bei Raumtemperatur gerührt. Danach wird die Suspension gegen Wasser dialysiert.
In-vitro-Versuche
In in-vitro-Experimenten werden durch Rückstreumessungen der Echoamplitude von Suspensionen beispielhaft ausgewählter erfindungsgemäßer Mikropartikel deren sehr gute akustische Eigenschaften belegt.
Zur Erklärung der in-vitro-Versuche und der daraus gewonnenen Abbildungen:
Die Meßapparatur besteht aus einem Ultraschallsender kombiniert mit einem Ultraschallempfänger und einer Meßküvette mit der Probe. Zur Messung der akustischen Eigenschaften der Probe wird ein Ultraschallimpuls ausgesendet. Der Impuls wird an der Glaswand der Küvette gestreut, durchläuft die Probe und wird dann, falls die Probe nicht echogen ist, an der Rückseite der Küvette gestreut. Die Rückstreuung des Ultraschallimpulses wird vom Empfänger gemessen und durch eine Änderung der Amplitude (siehe Abbildungen) angezeigt.
In Abb. 1 ist das Rückstreuverhalten von Wasser (als Beispiel für eine nichtechogene Probe) dargestellt. Es ist deutlich die Rückstreuamplitude der Vorderwand (bei 3 µsec) und der Rückwand (bei ca. 16 µsec) der Küvette erkennbar.
Wird eine echogene Probe vermessen, so ergibt sich eine Rückstreuverhalten wie es in den Abb. 2-4 wiedergegeben ist. Das Rückstreusignal der Küvettenwand wird nicht erhalten, da der Ultraschallimpuls durch Wechselwirkung mit der echogenen Probe dissipiert bzw. so verändert wird, daß keine Rückstreuung mehr zum Empfänger erfolgen kann.
Es wurden die Rückstreuamplituden von wäßrigen Partikelsuspensionen der Beispiele 8 (Abb. 2), 11 (Abb. 4), jeweils in einer Konzentration von 0,5 mg/ml, bestimmt.
In-vivo-Versuche
Zur Durchführung einer echokardiographischen Untersuchung bei einem ca. 10 kg schweren Hund (Beagle) werden die erfindungsgemäßen Kontrastmittel folgenderweise verwendet: Aus dem Vial mit der gebrauchsfertigen Suspension wird 1 ml der Lösung entnommen, die 40 µg/ml mit Albumin gekoppelte Partikel (Beispiel 15) in 5% Glukoselösung enthält. Die Injektion dieses Kontrastmittels erfolgt in die Vena saphena ramus caudalis über einen allseitig offenen Dreiwegehahn mit einer Injektionsgeschwindigkeit von mindestens 1 ml/s, günstiger jedoch mit einer Geschwindigkeit von 3 ml/s, gefolgt von einer Nachinjektion von 5 ml einer physiologischen Kochsalzlösung (0,9%ig). Die Nachinjektion erfolgt, um einen möglichst lange bestehenbleibenden Kontrastmittelbolus zu erhalten. Vor der Injektion (Abb. 5) wird ein "apikaler Vierkammerblick" bei dem Versuchstier mit einem handelsüblichen Schallkopf für die Echokardiographie an der Thoraxwand (transthorakale Ableitung) eingestellt und mit einer Klammer fixiert. Vor, während und nach der Injektion wird die Schallableitung auf dem Bildschirm des Ultraschall- Untersuchungsgerätes angezeigt und ggf. auf Videoband oder mit einem Videoprinter dokumentiert. Diese Versuchsanordnung entspricht dem Stand der Technik und ist dem Fachmann bekannt.
Bei Erreichen des Ultraschall-Kontrastmittels im rechten Herz lassen sich die Kontrasteffekte im Farbdoppler, im 2D-Echobild oder im M-Mode Echobild verfolgen. Das Kontrastmittel markiert zuerst das Blut des rechten Vorhofes, dann wird der rechte Ventrikel und schließlich die Pulmonalarterie kontrastiert. Hierbei tritt eine homogene Füllung auf, die für eine diagnostische Untersuchung ausreichende Zeit anhält. Während die Höhlen des rechten Herzens sich wieder mit nicht kontrastiertem Blut füllen (Abnahme und Verschwinden der Echogenität in den Herzhöhlen) erscheint das Kontrastmittel nach der Lungenpassage (transkapillär) in den Pulmonalvenen, füllt dann ist linken Vorhof, den linken Ventrikel und das nachfolgende Hochdrucksystem homogen. Die Kontrasteffekte in den Höhlen des linken Herzens halten länger an als die auf der rechten Herzseite. Neben der Kontrastierung der Höhlen des linken Herzens erfolgt auch eine Kontrastierung anderer Organe, die die Durchblutung wiederspiegelt.
Abb. 6 zeigt die Füllung des linken Ventikels mit Kontrastmittel.
Die Verwendung der erfindungsgemäßen Ultraschall-Kontrastmittel beschränkt sich nicht auf die Sichtbarmachung der Blutströme im Gefäßsystem, eine Kontrastierung von Körperhöhlen ist ebenso möglich. Bedingt durch die Durchblutungsdarstellung kann auch mit gutem Erfolg die Untersuchung anderer Organe mit diesen Kontrastmitteln erfolgen.

Claims (16)

1. Mikropartikel bestehend aus bioabbaubaren Polymeren, dadurch gekennzeichnet, daß sie aufgebaut sind aus polymerisierbaren Aldehyden, die gewünschtenfalls zur Copolymerisation fähige Zusätze und/oder Crosslinker enthalten, gegebenenfalls Tensiden oder Tensidgemischen, Gasen und/oder leichtflüchtigen Flüssigkeiten in freier oder gebundener Form, Kopplungsagentien, gegebenenfalls über diese Kopplungsagenzien gebundenen Bio- oder Makromolekülen sowie gegebenenfalls diagnostisch oder therapeutisch wirksamen Bestandteilen.
2. Pharmazeutische Mittel, dadurch gekennzeichnet, daß sie Mikropartikel nach Anspruch 1 sowie gegebenenfalls in der Galenik übliche Zusätze enthalten.
3. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie in der Ultraschalldiagnostik angewendet werden.
4. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie in der künstlichen partiellen Hyperthermie angewendet werden.
5. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie durch ein äußeres Magnetfeld gelenkt werden können.
6. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß die polymerisierbaren Aldehyde ausgewählt werden aus:
  • I. α,β-ungesättigten Aldehyden, wie zum Beispiel
    Acrolein
    Crotonaldehyd
    Propionaldehyd
  • II. α-substituierten Acroleinderivaten, wie zum Beispiel
    α-Methylacrolein
    α-Chloroacrolein
    α-Phenylacrolein
    α-Ethylacrolein
    α-Isopropylacrolein
    α-n-Butylacrolein
    α-n-Propylacrolein
  • III. Dialdehyden, wie zum Beispiel
    Glutaraldehyd, Succinaldehyd oder deren Derivate oder deren Mischungen mit zur Copolymerisation fähigen Zusätzen, wie zum Beispiel:
    α-substituierten Acroleinen
    β-substituierten Acroleinen
    Ethylcyanacrylaten
    Methylcyanacrylaten
    Butylcyanacrylaten
    Hexylcyanacrylaten
    Methylmetacrylaten
    Vinylalkoholen
    Acrylsäuren
    Methacrylsäuren
    Acrylsäurechloriden
    Methacrylsäurechloriden
    Acrylnitril
    Methacrylnitrilen
    Acrylamiden
    Substituierten Acrylamiden
    Hydroxymethylmethacrylaten
    Mesityloxid
    Dimethylaminoethylmethacrylaten-2-Vinylpyridinen
    N-vinyl-2-Pyrrolidinon
7. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß die gegebenenfalls enthaltenen Tenside ausgewählt werden aus ionogenen oder nicht-ionogenen oberflächenaktiven Substanzen wie zum Beispiel: Polyethylenoxid
Polyoxyethylenpolyoxypropylenen wie
Pluronic® F 68, Pluronic® F 108, Pluronic® F 127, Polyethylenglykol, Poloxamid 908, Polaxamer 407
Carbonsäuresalzen, wie zum Beispiel: Natriumoleat
Polyoxyethylenfettsäureestern, wie zum Beispiel: Polyoxyethylenstearat
Natriumdioctylsulfosuccinat
Polyglutaraldehydnatriumhydrogensulfit-Addukt
Polyvinylsulfonsäure
8. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß als Gase bzw. leichtflüchtige Flüssigkeiten Ammoniak
Luft
Edelgase bzw. Edelgasverbindungen (Helium, Neon, Argon, Xenon, Krypton)
Schwefelhalogenide, wie zum Beispiel: Schwefelhexafluorid,
Stickstoff
Kohlenstoffoxide
Sauerstoff
Wasserstoff,
Kohlenwasserstoffe oder deren Gemische, wie zum Beispiel:
Methan
Ethan
Propan
Butan
Pentan
Neopentan
Isopentan
Cyclopentan
Ethylen
Propylen
Acetylen
3,3-Dimethyl-1-Butin
2,3-Pentadien
2-Methyl-2-Buten
2-Methyl-1,3-Butadien
2-Butin
2-Methyl-1-Buten
3-Methyl-1-Buten,
halogenierte Kohlenwasserstoffe oder Gemische, wie zum Beispiel:
Methylenchlorid
1,1-Dichlorethylen
Isopropylchlorid
Dibromdifluormethan
Brommethan,
Ether, wie zum Beispiel: Dimethylether, Diethylether oder fluorierte Ether,
oder Verbindungen wie zum Beispiel:
Dimethylaminoaceton
Propylenoxid
N-Ethylmethylamin
N-Ethyldimethylamin
Furanverwendet werden.
9. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß als Kopplungsagenzien
  • I. Aminogruppenhaltige Verbindungen, wie zum Beispiel:
    Hydroxylamin
    Butylamin
    Allylamin
    Ethanolamin
    Trishydroxymethylaminomethan
    3-Amino-1-propansulfonsäure
    5-Aminovaleriansäure
    8-Aminooctansäure
    D-Glucosaminhydrochlorid
    Aminogalactose
    Aminosorbit
    Aminomannit
    Diethylaminoethylamin
    Aniline
    Sulfonilsäureamid
    Cholin
    N-Methylglucamin
    Piperazin
    1,6-Hexandiamin
    Harnstoff
    Hydrazin
    Glycin
    Alanin
    Lysin
    Serin
    Valin
    Leucin
    Peptide
    Proteine
    Albumin
    Polylysin
    Gelatine
    Polyglykolamine
    Aminopolyalkohole
    Dextransulfate mit Aminogruppen
    Antikörper
    Immunoglobuline
  • II. Säuregruppenhaltige Verbindungen, wie z. B.: Carbonsäuren
    Essigsäure
    Propionsäure
    Buttersäure
    Valeriansäure
    Capronsäure
    Caprylsäure
    Caprinsäure
    Laurinsäure
    Myristinsäure
    Palmitinsäure
    Stearinsäure
    Ölsäure
    Linolsäure
    Linolensäure
    Cyclohexancarbonsäure
    Phenylessigsäure
    Benzoylessigsäure
    Chlorbenzoesäure
    Brombenzoesäure
    Nitrobenzoesäure
    Ortho-Phthalsäure
    Meta-Phthalsäure
    Para-Phthalsäure
    Salicylsäure
    Hydroxybenzoesäure
    Aminobenzoesäure
    Methoxybenzoesäure
  • III. Hydroxygruppenhaltige Verbindungen, wie z. B.: Alkohole
    Methanol
    Ethanol
    Propanol
    Butanol
    Pentanol
    Hexanol
    Heptanol
    Octanol
    Decanol
    Dodecanol
    Tetradecanol
    Hexadecanol
    Octadecanol
    Isopropylalkohol
    Isobutylalkohol
    Isopentylalkohol
    Cyclopentanol
    Cyclohexanol
    Crotylalkohol
    Benzylalkohol
    Phenylalkohol
    Diphenylmethanol
    Triphenylmethanol
    Zimtalkohol
    Ethylenglykol
    1,3-Propandiol
    Glycerin
    Pentaerythrit
  • IV. Polymerisierfähige Substanzen, wie
    α,β-ungesättigte Aldehyde, wie z. B.:
    Acrolein
    Crotonaldehyd
    Propionaldehyd
    α-substituierte Acroleinderivate, wie z. B.:
    α-Methylacrolein
    α-Chloroacrolein
    α-Phenylacrolein
    α-Ethylacrolein
    α-Isopropylacrolein
    α-n-Butylacrolein
    α-n-Propylacrolein
    Dialdehyde, wie z. B.:
    Glutaraldehyd, Succinaldehyd oder deren Derivate oder deren Mischungen mit zur Copolymerisation fähigen Zusätzen, wie z. B.:
    α-substituierten Acroleinen
    β-substituierten Acroleinen
    Ethylcyanacrylaten Methylcycanacrylaten
    Butylcyanacrylaten
    Hexylcycanacrylaten
    Methylmetacrylaten
    Vinylalkoholen
    Acrylsäuren
    Methacrylsäuren
    Acrylsäurechloriden
    Acrylnitril
    Methacrylnitrilen
    Acrylamiden
    Substituierten Acrylamiden
    Hydroxymethylmethacrylaten
    Mesityloxid
    Dimethylaminoethylmethacrylaten-2-Vinylpyridinen
    N-vinyl-2-Pyrrolidinon
verwendet werden.
10. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie als Bio- oder Makromoleküle organ- oder gewebespezifische Verbindungen, wie zum Beispiel monoklonale Antikörper enthalten.
11. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie diagnostisch oder therapeutisch wirksame Bestandteile zur Diagnose und Therapie von Tumoren wie zum Beispiel Doxorubicin
Actinomycin
Magnetit
Mitomycin C
Triamcinolonenthalten.
12. Verfahren zur Herstellung von Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, daß man eine 0 bis 40%, vorzugsweise 0,01 bis 10% w/v Tensid(e) und 0 bis 10% w/v diagnostisch oder therapeutisch wirksame Bestandteile und Gase oder leichtflüchtige Flüssigkeiten enthaltende wäßrige Lösung unter Mischen, bei einer Temperatur von -5° bis +80°C, vorzugsweise 0° bis 40°C, einem pH-Wert von 7 bis 14, vorzugsweise 9 bis 13, innerhalb von 1 Minute bis 10 Stunden, vorzugsweise 10 Minuten bis 2 Stunden, und gegebenenfalls unter Einleiten von Gas mit copolymerisierbarem/n Aldehyd(en) bis zu einer Konzentration bezogen auf die Reaktionsmischung von 0,1 bis 50%, vorzugsweise 3 bis 20% w/v, sowie mit copolymerisierbaren Zusätzen einer Konzentration bezogen auf die Reaktionslösung von 0 bis 20%, vorzugsweise 1 bis 5% w/v, mit Crosslinker(n) einer Konzentration bezogen auf die Reaktionsmischung von 0-5%, vorzugsweise 0,1 bis 1% w/v, umsetzt, anschließend - gegebenenfalls nach Reinigung, die so erhaltenen Mikropartikel mit einer wäßrigen Lösung, die - bezogen auf die Aldehydmenge - bis zu äquimolare Mengen an Kopplungsagenz sowie 0 bis 20%, vorzugsweise 0,01 bis 10% w/v Tensid(e) bezogen auf das Gesamtvolumen enthält, unter Rühren bis zu 3 Tagen, vorzugsweise bis zu 2 Tagen, bei Temperaturen von 0° bis 60°C, vorzugsweise 5° bis 30°C, bei einem pH-Wert von 3 bis 9, vorzugsweise 5 bis 8, umsetzt und - gewünschtenfalls nach Reinigung - diese gegebenenfalls an Bio- oder Makromoleküle bindet.
13. Verfahren zur Herstellung der pharmazeutischen Mittel nach Anspruch 2, dadurch gekennzeichnet, daß man die in Wasser gelösten oder suspendierten Mikropartikel, gegebenenfalls mit den in der Galenik üblichen Zusätzen, in eine für die enterale oder perenterale Applikation geeignete Form bringt.
14. Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Durchmesser von 0,1 bis 40 µm haben.
15. Pharmazeutische Mittel nach Anspruch 2, dadurch gekennzeichnet, daß die Konzentration der Mikropartikel 1 µg bis 100 mg pro ml, vorzugsweise 10 µg bis 1 mg pro ml, galenischer Formulierung beträgt.
DE4004430A 1990-02-09 1990-02-09 Aus polyaldehyden aufgebaute kontrastmittel Withdrawn DE4004430A1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE4004430A DE4004430A1 (de) 1990-02-09 1990-02-09 Aus polyaldehyden aufgebaute kontrastmittel
JP03521891A JP3363912B2 (ja) 1990-02-09 1991-02-05 生分解性ポリマーからなる微粒子およびその製法、該微粒子を含有する超音波診断用薬剤および超音波造影剤
PT96691A PT96691B (pt) 1990-02-09 1991-02-07 Processo para a preparacao de microparticulas de polimeros biodegradaveis e de composicoes farmaceuticas que os contem
FI910596A FI910596A (fi) 1990-02-09 1991-02-07 Syntetiserade kontrastmedel av polyaldedyd.
ZA91961A ZA91961B (en) 1990-02-09 1991-02-08 Contrast media synthesized from polyaldehydes
HU91427A HUT61490A (en) 1990-02-09 1991-02-08 Process for producing microparticles comprising optionally diagnostically or therapeutically active parts and consisting of biologically decomposable polymers
NO910510A NO300916B1 (no) 1990-02-09 1991-02-08 Gassholdige hulpartikler
AU70982/91A AU649996B2 (en) 1990-02-09 1991-02-11 Contrast media synthesized from polyaldehydes
DE59108153T DE59108153D1 (de) 1990-02-09 1991-02-11 Aus Polyaldehyden aufgebaute gasenthaltende Mikropartikel als Kontrastmittel
ES91250038T ES2094192T3 (es) 1990-02-09 1991-02-11 Agentes de contraste constituidos por poli(aldehidos).
EP91250038A EP0441468B1 (de) 1990-02-09 1991-02-11 Aus Polyaldehyden aufgebaute gasenthaltende Mikropartikel als Kontrastmittel
IE43491A IE76315B1 (en) 1990-02-09 1991-02-11 Contrast media synthesised from polyaldehydes
AT91250038T ATE142507T1 (de) 1990-02-09 1991-02-11 Aus polyaldehyden aufgebaute gasenthaltende mikropartikel als kontrastmittel
DK91250038.6T DK0441468T3 (de) 1990-02-09 1991-02-11
CA002036107A CA2036107A1 (en) 1990-02-09 1991-02-11 Contrast media synthesized from polyaldehydes
NZ237060A NZ237060A (en) 1990-02-09 1991-02-11 Microparticles formed from biodegradable aldehydes
US08/373,467 US5501863A (en) 1990-02-09 1995-01-17 Contrast media synthesized from polyaldehydes
GR960402562T GR3021206T3 (en) 1990-02-09 1996-09-30 Gas-containing microparticles composed of polyaldehydes as contrast agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4004430A DE4004430A1 (de) 1990-02-09 1990-02-09 Aus polyaldehyden aufgebaute kontrastmittel

Publications (1)

Publication Number Publication Date
DE4004430A1 true DE4004430A1 (de) 1991-08-14

Family

ID=6400056

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4004430A Withdrawn DE4004430A1 (de) 1990-02-09 1990-02-09 Aus polyaldehyden aufgebaute kontrastmittel
DE59108153T Expired - Lifetime DE59108153D1 (de) 1990-02-09 1991-02-11 Aus Polyaldehyden aufgebaute gasenthaltende Mikropartikel als Kontrastmittel

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59108153T Expired - Lifetime DE59108153D1 (de) 1990-02-09 1991-02-11 Aus Polyaldehyden aufgebaute gasenthaltende Mikropartikel als Kontrastmittel

Country Status (17)

Country Link
US (1) US5501863A (de)
EP (1) EP0441468B1 (de)
JP (1) JP3363912B2 (de)
AT (1) ATE142507T1 (de)
AU (1) AU649996B2 (de)
CA (1) CA2036107A1 (de)
DE (2) DE4004430A1 (de)
DK (1) DK0441468T3 (de)
ES (1) ES2094192T3 (de)
FI (1) FI910596A (de)
GR (1) GR3021206T3 (de)
HU (1) HUT61490A (de)
IE (1) IE76315B1 (de)
NO (1) NO300916B1 (de)
NZ (1) NZ237060A (de)
PT (1) PT96691B (de)
ZA (1) ZA91961B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072888A1 (de) * 1999-05-27 2000-12-07 Schering Aktiengesellschaft Mehrstufen-verfahren zur herstellung von gasgefüllten mikrokapseln

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425366A (en) * 1988-02-05 1995-06-20 Schering Aktiengesellschaft Ultrasonic contrast agents for color Doppler imaging
US6088613A (en) 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US5922304A (en) 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US20020150539A1 (en) * 1989-12-22 2002-10-17 Unger Evan C. Ultrasound imaging and treatment
US5542935A (en) 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5656211A (en) 1989-12-22 1997-08-12 Imarx Pharmaceutical Corp. Apparatus and method for making gas-filled vesicles of optimal size
US6146657A (en) 1989-12-22 2000-11-14 Imarx Pharmaceutical Corp. Gas-filled lipid spheres for use in diagnostic and therapeutic applications
US6551576B1 (en) 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5469854A (en) 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US6001335A (en) 1989-12-22 1999-12-14 Imarx Pharmaceutical Corp. Contrasting agents for ultrasonic imaging and methods for preparing the same
US5776429A (en) 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US6613306B1 (en) 1990-04-02 2003-09-02 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US7083778B2 (en) * 1991-05-03 2006-08-01 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
IN172208B (de) 1990-04-02 1993-05-01 Sint Sa
USRE39146E1 (en) 1990-04-02 2006-06-27 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US5578292A (en) 1991-11-20 1996-11-26 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US20010024638A1 (en) * 1992-11-02 2001-09-27 Michel Schneider Stable microbubble suspensions as enhancement agents for ultrasound echography and dry formulations thereof
US6989141B2 (en) * 1990-05-18 2006-01-24 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20040208826A1 (en) * 1990-04-02 2004-10-21 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US5445813A (en) * 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
AU636481B2 (en) * 1990-05-18 1993-04-29 Bracco International B.V. Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography
US20030194376A1 (en) * 1990-05-18 2003-10-16 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
GB9106673D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
GB9106686D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
US5874062A (en) 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
US5205290A (en) 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5993805A (en) 1991-04-10 1999-11-30 Quadrant Healthcare (Uk) Limited Spray-dried microparticles and their use as therapeutic vehicles
GB9107628D0 (en) 1991-04-10 1991-05-29 Moonbrook Limited Preparation of diagnostic agents
US6723303B1 (en) 1991-09-17 2004-04-20 Amersham Health, As Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane
US5409688A (en) * 1991-09-17 1995-04-25 Sonus Pharmaceuticals, Inc. Gaseous ultrasound contrast media
MX9205298A (es) 1991-09-17 1993-05-01 Steven Carl Quay Medios gaseosos de contraste de ultrasonido y metodo para seleccionar gases para usarse como medios de contraste de ultrasonido
GB9200387D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
GB9200391D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
GB9200388D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
IL104084A (en) 1992-01-24 1996-09-12 Bracco Int Bv Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them
US5871710A (en) * 1992-09-04 1999-02-16 The General Hospital Corporation Graft co-polymer adducts of platinum (II) compounds
CA2144749A1 (en) * 1992-09-16 1994-03-31 Jo Klaveness Improvements in or relating to contrast agents
DE4232755A1 (de) * 1992-09-26 1994-03-31 Schering Ag Mikropartikelpräparationen aus biologisch abbaubaren Mischpolymeren
US6383470B1 (en) 1992-09-26 2002-05-07 Thomas Fritzsch Microparticle preparations made of biodegradable copolymers
GB9221329D0 (en) 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
EP0680341B1 (de) * 1993-01-25 2001-05-09 Sonus Pharmaceuticals, Inc. Phase-Stift Kolloide zur Verwendung als Ultraschallkontrastmittel
IL108416A (en) 1993-01-25 1998-10-30 Sonus Pharma Inc Colloids with phase difference as contrast ultrasound agents
GB9318288D0 (en) * 1993-09-03 1993-10-20 Nycomed Imaging As Improvements in or relating to contrast agents
US7083572B2 (en) * 1993-11-30 2006-08-01 Bristol-Myers Squibb Medical Imaging, Inc. Therapeutic delivery systems
CN1068229C (zh) 1993-12-15 2001-07-11 勃勒柯研究有限公司 超声对比介质、含该介质的对比剂及方法
DE4406474A1 (de) 1994-02-23 1995-08-24 Schering Ag Gas enthaltende Mikropartikel, diese enthaltende Mittel, deren Verwendung in der Ultraschalldiagnostik, sowie Verfahren zur Herstellung der Partikel und Mittel
GB9417941D0 (en) * 1994-09-06 1994-10-26 Nycomed Imaging As Improvements in or relating to contrast agents
US5540909A (en) 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
GB9423419D0 (en) * 1994-11-19 1995-01-11 Andaris Ltd Preparation of hollow microcapsules
US6743779B1 (en) 1994-11-29 2004-06-01 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US5997898A (en) 1995-06-06 1999-12-07 Imarx Pharmaceutical Corp. Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery
US6107102A (en) * 1995-06-07 2000-08-22 Regents Of The University Of California Therapeutic microdevices and methods of making and using same
JPH11507913A (ja) * 1995-06-07 1999-07-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 治療用マイクロデバイスならびにその製造方法および使用方法
US5804162A (en) 1995-06-07 1998-09-08 Alliance Pharmaceutical Corp. Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
US6521211B1 (en) 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
US6139819A (en) 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
US6231834B1 (en) 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
DE19543077C2 (de) * 1995-11-13 1997-10-16 Schering Ag Verwendung von gashaltigen Metallkomplexen als Ultraschallkontrastmittel
US5611344A (en) * 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
DK0904113T3 (da) * 1996-03-05 2004-08-30 Acusphere Inc Mikroindkapslede fluorerede gasser til anvendelse som billeddannende midler
WO1997040679A1 (en) 1996-05-01 1997-11-06 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
US5837221A (en) * 1996-07-29 1998-11-17 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents
US6414139B1 (en) 1996-09-03 2002-07-02 Imarx Therapeutics, Inc. Silicon amphiphilic compounds and the use thereof
US6017310A (en) * 1996-09-07 2000-01-25 Andaris Limited Use of hollow microcapsules
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
EP0977597B1 (de) 1996-09-11 2003-01-15 Imarx Pharmaceutical Corp. Verbesserte verfahren zur diagnostischen bilderzeugung unter verwendung eines kontrastmittels und eines vasodilators
FR2753639B1 (fr) * 1996-09-25 1998-12-11 Procede de preparation de microcapsules de matieres actives enrobees par un polymere et nouvelles microcapsules notamment obtenues selon le procede
DE19648663A1 (de) * 1996-11-14 1998-05-28 Schering Ag Flüssigkeitsgefüllte Mikropartikel mit neuem Wirkungsprinzip und deren Verwendung als Diagnostika und Therapeutika
AU5161298A (en) * 1996-11-25 1998-06-22 Imarx Pharmaceutical Corp. Perfluorinated-ether compositions as diagnostic contrast agents
US6068600A (en) * 1996-12-06 2000-05-30 Quadrant Healthcare (Uk) Limited Use of hollow microcapsules
CA2275604A1 (en) * 1997-01-03 1998-07-09 Kenneth Iain Cumming Sustained release cisapride mini-tablet formulation
US6090800A (en) 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
US6143276A (en) 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6537246B1 (en) * 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
US6120751A (en) 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
AU739919B2 (en) * 1997-04-30 2001-10-25 Point Biomedical Corporation Microparticles useful as ultrasonic contrast agents and for delivery of drugs into the bloodstream
US20050019266A1 (en) * 1997-05-06 2005-01-27 Unger Evan C. Novel targeted compositions for diagnostic and therapeutic use
US6416740B1 (en) 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
US6548047B1 (en) 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6123923A (en) 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
GB9800813D0 (en) 1998-01-16 1998-03-11 Andaris Ltd Improved ultrasound contrast imaging method and apparatus
US6958148B1 (en) 1998-01-20 2005-10-25 Pericor Science, Inc. Linkage of agents to body tissue using microparticles and transglutaminase
US6919076B1 (en) 1998-01-20 2005-07-19 Pericor Science, Inc. Conjugates of agents and transglutaminase substrate linking molecules
DE19813174A1 (de) * 1998-03-25 1999-05-27 Schering Ag Mikropartikel aus Polymeren und mindestens einer gerüstbildenden Komponente und ihre Herstellung und Verwendung in der Ultraschalldiagnostik und zur ultraschallinduzierten Wirkstofffreisetzung
US7220596B2 (en) * 1998-04-15 2007-05-22 Utah State University Real time detection of antigens
EP1068532A4 (de) * 1998-04-15 2003-07-16 Univ Utah State Realzeit-detektion von antikörpern
DE19851605A1 (de) * 1998-11-09 2000-05-11 Messer Griesheim Gmbh Mikropartikel enthaltendes Injektionsanästhesiemittel
DK1163002T3 (da) * 1999-03-24 2009-01-19 Secr Defence Polykationiske kulhydrater som immunstimulanser i vacciner
US6765019B1 (en) 1999-05-06 2004-07-20 University Of Kentucky Research Foundation Permeable, water soluble, non-irritating prodrugs of chemotherapeutic agents with oxaalkanoic acids
AU6635900A (en) * 1999-08-13 2001-03-13 Point Biomedical Corporation Microparticles useful as ultrasonic contrast agents and for lymphatic system
AU6636000A (en) * 1999-08-13 2001-03-13 Point Biomedical Corporation Hollow microspheres with controlled fragility for medical use
CA2399695A1 (en) * 2000-03-22 2001-09-27 The Secretary Of State For Defence Pharmaceutical composition for administration to mucosal surfaces
US20040126900A1 (en) * 2001-04-13 2004-07-01 Barry Stephen E High affinity peptide- containing nanoparticles
DE10119522A1 (de) * 2001-04-20 2002-12-05 Innovacell Biotechnologie Gmbh Herstellung und Anwendung einer Suspensionszusammensetzung mit einem Ultraschall-Kontrastmittel
US20030215394A1 (en) * 2002-05-17 2003-11-20 Short Robert E. Microparticles having a matrix interior useful for ultrasound triggered delivery of drugs into the bloodstream
US6919068B2 (en) * 2002-05-17 2005-07-19 Point Biomedical Corporation Method of preparing gas-filled polymer matrix microparticles useful for echographic imaging
FR2850385B1 (fr) * 2003-01-29 2007-04-20 Inst Gustave Roussy Igr Microparticules echogenes, servant notamment comme agent de contraste pour l'exploration ultrasonique et/ou comme emboles pour le detections ultrasoniques
US20040185108A1 (en) * 2003-03-18 2004-09-23 Short Robert E. Method of preparing gas-filled polymer matrix microparticles useful for delivering drug
JP2007516216A (ja) * 2003-09-12 2007-06-21 バンクラプシー エステート オブ ファークス, インコーポレイテッド 生物学的に活性な因子の部位特異的送達のための、磁気成分および生体適合性ポリマーを含む磁気標的化可能な粒子
US7025726B2 (en) 2004-01-22 2006-04-11 The Regents Of The University Of Nebraska Detection of endothelial dysfunction by ultrasonic imaging
US8012457B2 (en) 2004-06-04 2011-09-06 Acusphere, Inc. Ultrasound contrast agent dosage formulation
US7964219B2 (en) * 2004-08-12 2011-06-21 Qps, Llc Pharmaceutical compositions for controlled release delivery of biologically active compounds
CA2637569C (en) * 2006-01-18 2013-01-08 Yuhua Li Pharmaceutical compositions with enhanced stability
US20100291116A1 (en) * 2007-09-26 2010-11-18 Dsm Ip Assets B.V. Microparticle comprising cross-linked polymer
WO2011005939A2 (en) 2009-07-09 2011-01-13 Mayo Foundation For Medical Education And Research Long acting atrial natriuretic peptide (la-anp) and methods for use thereof
WO2013032784A1 (en) 2011-08-30 2013-03-07 Mayo Foundation For Medical Education And Research Natriuretic polypeptides
WO2013103896A1 (en) 2012-01-06 2013-07-11 Mayo Foundation For Medical Education And Research Treating cardiovascular or renal diseases
US11072642B2 (en) 2016-11-09 2021-07-27 Mayo Foundation For Medical Education And Research MANP analogues

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910414A1 (de) * 1978-03-17 1979-09-27 California Inst Of Techn Verfahren zur herstellung von polyglutaraldehyd und seine verwendung
US4267234A (en) * 1978-03-17 1981-05-12 California Institute Of Technology Polyglutaraldehyde synthesis and protein bonding substrates
US4276885A (en) * 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
US4349530A (en) * 1980-12-11 1982-09-14 The Ohio State University Implants, microbeads, microcapsules, preparation thereof and method of administering a biologically-active substance to an animal
US4413070A (en) * 1981-03-30 1983-11-01 California Institute Of Technology Polyacrolein microspheres
US4678814A (en) * 1981-03-30 1987-07-07 California Institute Of Technology Polyacrolein microspheres
US4438239A (en) * 1981-03-30 1984-03-20 California Institute Of Technology Microsphere coated substrate containing reactive aldehyde groups
IL63220A (en) * 1981-07-01 1985-09-29 Yeda Res & Dev Process for production of polyacrolein microspheres
IL65131A0 (en) * 1982-02-28 1982-04-30 Yeda Res & Dev Process for the production of agarose-polyaldehyde beads and their biological applications
US4718433A (en) * 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
US4677138A (en) * 1983-10-19 1987-06-30 Yeda Research And Development Co., Ltd. High yield process for producing polyaldehyde microspheres
US4826689A (en) * 1984-05-21 1989-05-02 University Of Rochester Method for making uniformly sized particles from water-insoluble organic compounds
IE61591B1 (en) * 1987-12-29 1994-11-16 Molecular Biosystems Inc Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production
US4937081A (en) * 1988-01-14 1990-06-26 Daicel Chemical Industries Ltd. Process for producing porous, spherical particles
IE66912B1 (en) * 1988-02-05 1996-02-07 Schering Ag Ultrasonic contrast agents process for their preparation and their use as diagnostic and therapeutic agents
US5019400A (en) * 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
US5049403A (en) * 1989-10-12 1991-09-17 Horsk Hydro A.S. Process for the preparation of surface modified solid substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072888A1 (de) * 1999-05-27 2000-12-07 Schering Aktiengesellschaft Mehrstufen-verfahren zur herstellung von gasgefüllten mikrokapseln
US6652782B1 (en) 1999-05-27 2003-11-25 Schering Aktiengesellschaft Multi-stage method for producing gas-filled microcapsules

Also Published As

Publication number Publication date
PT96691B (pt) 1998-07-31
IE76315B1 (en) 1997-10-22
NO910510L (no) 1991-08-12
JPH059132A (ja) 1993-01-19
NO910510D0 (no) 1991-02-08
JP3363912B2 (ja) 2003-01-08
CA2036107A1 (en) 1991-08-10
EP0441468B1 (de) 1996-09-11
DK0441468T3 (de) 1997-02-10
DE59108153D1 (de) 1996-10-17
ES2094192T3 (es) 1997-01-16
HU910427D0 (en) 1991-08-28
GR3021206T3 (en) 1996-12-31
PT96691A (pt) 1991-10-31
EP0441468A2 (de) 1991-08-14
FI910596A0 (fi) 1991-02-07
EP0441468A3 (en) 1992-05-27
FI910596A (fi) 1991-08-10
ZA91961B (en) 1991-11-27
NO300916B1 (no) 1997-08-18
AU7098291A (en) 1991-10-17
HUT61490A (en) 1993-01-28
IE910434A1 (en) 1991-08-14
US5501863A (en) 1996-03-26
NZ237060A (en) 1994-11-25
ATE142507T1 (de) 1996-09-15
AU649996B2 (en) 1994-06-09

Similar Documents

Publication Publication Date Title
EP0441468B1 (de) Aus Polyaldehyden aufgebaute gasenthaltende Mikropartikel als Kontrastmittel
EP0662005B1 (de) Mikropartikelpräparationen aus biologisch abbaubaren mischpolymeren
EP0186616B1 (de) Magnetische Partikel für die Diagnostik
US5141739A (en) Delivery of x-ray contrast agents using receptor mediated endocytosis
DE69632401T2 (de) Neue zielgerichtete mittel zur diagnostischen und therapeutischen verwendung
DE69222037T3 (de) Verbesserungen bei kontrastmitteln
EP0430863B1 (de) Kaskadenpolymer-gebundene Komplexbildner, deren Komplexe und Konjugate, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
DE69531732T2 (de) Segmentierte chelatformende polymere als bildformendes agens und arzneimittel
DE69533197T2 (de) Liposomale Mittel
US5776496A (en) Ultrasmall porous particles for enhancing ultrasound back scatter
DE19508049C2 (de) Verwendung von Methylenmalondiesterderivaten zur Herstellung von gasenthaltenden Mikropartikeln
EP0438206B1 (de) 6-Ring enthaltende makrocyclische Tetraaza-Verbindungen, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
EP1960002B1 (de) Wässrige dispersion von superparamagnetischen eindomänenteilchen, deren herstellung und verwendung zur diagnose und therapie
EP0586875A1 (de) Ultraschallkontrastmittel, Verfahren zu deren Herstellung und deren Verwendung als Diagnostika und Therapeutika
WO1996028191A1 (de) Verfahren zur herstellung von polymeren mikropartikeln, nach diesen verfahren hergestellte mikropartikel sowie deren verwendung in der medizinischen diagnostik
EP0331616A2 (de) Polymer-gebundene Komplexbildner, deren Komplexe, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
DE3443251C2 (de) Eisenoxid-Komplexe für die NMR-Diagnostik, diese Verbindungen enthaltende diagnostische Mittel, ihre Verwendung und Verfahren zu deren Herstellung
DE3701665A1 (de) Polymer-komplexe, verfahren zu deren herstellung und diese enthaltende pharmazeutische mittel
WO1995022994A1 (de) Gas enthaltende mikropartikel, diese enthaltende mittel, deren verwendung in der ultraschalldiagnostik, sowie verfahren zur herstellung der partikel und mittel
DE3508000A1 (de) Ferromagnetische partikel fuer die nmr-diagnostik
KR102358116B1 (ko) 기체 발포형 마이셀 및 이의 제조방법
KR20180107745A (ko) 기체 발포형 마이셀 및 이의 제조방법
JP2002527410A (ja) 新規超音波造影剤
DE69732370T2 (de) Spinresonanz kontrastmittel für das blut

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: SCHERING AG, 13353 BERLIN, DE

8141 Disposal/no request for examination