DE4141386A1 - Hall sensor integrated on semiconductor chip mfd. using semiconductor processing - has current conductor for producing magnetic field and magnetic field regional cover of ferromagnetic material and substrate with two different conducting types - Google Patents

Hall sensor integrated on semiconductor chip mfd. using semiconductor processing - has current conductor for producing magnetic field and magnetic field regional cover of ferromagnetic material and substrate with two different conducting types

Info

Publication number
DE4141386A1
DE4141386A1 DE4141386A DE4141386A DE4141386A1 DE 4141386 A1 DE4141386 A1 DE 4141386A1 DE 4141386 A DE4141386 A DE 4141386A DE 4141386 A DE4141386 A DE 4141386A DE 4141386 A1 DE4141386 A1 DE 4141386A1
Authority
DE
Germany
Prior art keywords
hall sensor
magnetic field
sensor according
hall
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4141386A
Other languages
German (de)
Other versions
DE4141386C2 (en
Inventor
Lothr Dipl Phys Blossfeld
Soenke Dipl Phys Dr Mehrgardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to DE4141386A priority Critical patent/DE4141386C2/en
Publication of DE4141386A1 publication Critical patent/DE4141386A1/en
Application granted granted Critical
Publication of DE4141386C2 publication Critical patent/DE4141386C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

The substrate (1) of one conducting type, is provided with a zone (2) embedded in its surface of the opposing conducting type, representing the Hall plate. A first insulating layer (3) covers the substrate surface, and a metal loop (4) mounted on the insulating layer (3) overlaps the zone (2). A second insulating layer (5) covers the metal loop (4) and a covering layer (6) of a ferromagnetic material, overlies the entire structure. The insulating layers are made of silicon dioxide and the metal loop is made of aluminium. USE/ADVANTAGE - Sensors are used as sensing elements for micro-electronics and simultaneously as interface between surrounding and data processing, above all for automation of control and regulating processes. Has sufficient sensitivity.

Description

Die Erfindung betrifft einen in Halbleitertechnik hergestellten Hallsensor.The invention relates to a semiconductor technology Hall sensor manufactured.

Sensoren sind die Fühlerelemente der Mikroelektronik, sie sind gleichzeitig Schnittstelle zwischen Umgebung und Informationsverarbeitung, und werden vor allem in der Automatisierung von Steuer- und Regelprozessen angewendet. Sie sind ferner Meßwertaufnehmer, die eine Rückmeldung über Zustandsveränderungen der technischen Systeme ermöglichen. Als Bindeglieder zwischen der analogen Erfassung von Temperatur, Druckbeschleunigung etc. mit der digitalen Einrichtung der Prozessoren entscheiden sie wesentlich über die Meßgeschwindigkeit mit.Sensors are the sensor elements of microelectronics, they are simultaneously the interface between the environment and Information processing, and are mainly used in the Automation of control and regulation processes applied. They are also sensors that provide feedback on Enable changes in the state of the technical systems. As a link between the analog acquisition of Temperature, pressure acceleration etc. with the digital They make a significant decision about the setup of the processors the measuring speed with.

Die Messung von Gleichströmen erfolgt überlicherweise über einen Spannungsabfall von Widerständen. Hohe Stromstärken erzeugen jedoch große Leistungen und bei vielen Anwendungsbereichen einen nicht zu tolerierenden Spannungsabfall. Besonders kritisch ist diese Art der Messung, wenn mit kurzen hohen Stromspitzen zu rechnen ist.DC currents are usually measured using a voltage drop of resistors. High currents but produce great accomplishments and with many Areas of application an intolerable Voltage drop. This type of is particularly critical Measurement when short, high current peaks are to be expected.

Die Messung von Wechsel strömen über Spulen haben den Nachteil, daß sehr schnelle Stromänderungen hohe Spitzenspannungen erzeugen, die eine Auswertelektronik zerstören können. Die Verwendung von Hallsensoren kann dies vermeiden.The measurement of alternating currents over coils have the Disadvantage that very fast changes in current Generate peak voltages that an evaluation electronics can destroy. The use of Hall sensors can do this avoid.

Hallsensoren haben sich als eine wesentliche Bereicherung der Sensorenpalette erwiesen. Sie stellen ein ideales Interface zwischen dem genannten mechanischen und den elektronischen Systemen dar.Hall sensors have proven to be an essential asset of the sensor range. They represent an ideal Interface between the mechanical and the electronic systems.

Die bislang bekannten Hallsensoren, hergestellt mittels Halbleitertechnik in Silizium, sind aufgrund der geringen Elektronenbeweglichkeit darin nicht sehr empfindlich. Magnetfeldstärken von 100 G und mehr sind notwendig, um die Toleranzen bei der Herstellung der Hallplatte und der Auswertelektronik abzudecken.The Hall sensors known to date, produced by means of  Semiconductor technology in silicon, are due to the low Electron mobility in it is not very sensitive. Magnetic field strengths of 100 G and more are necessary in order to Tolerances in the manufacture of the Hall plate and the Cover evaluation electronics.

Der Abstand der Hallsensoren vom Magneten oder der magnetfelderzeugenden Spule oder dergleichen darf deshalb nur sehr gering sein. Zwangsläufig wird er durch das Gehäuse, in dem sich der Sensor befindet, und der verwendeten Mechanik bestimmt. Mißt man den elektrischen Strom über sein Magentfeld, so kann der Sensor unbeweglich gegenüber dem Magnetfeld gehalten sein. Da ein stromdurchflossener Leiter nur ein sehr schwaches Magentfeld erzeugt, das zudem mit gemäß der Formel 1/r abnimmt, ist der Leiter möglichst unmittelbar in der Nähe des Hallelements anzubringen.The distance of the Hall sensors from the magnet or the magnetic field generating coil or the like may therefore only be very small. It is inevitably determined by the housing in which the sensor is located and the mechanics used. If one measures the electric current over his magnetic field, the sensor can be held immovably in relation to the magnetic field. Since a current-carrying conductor only generates a very weak magnetic field, which also decreases with the formula 1 / r , the conductor must be attached as close as possible to the Hall element.

Bei einer Stromstärke von ca. 1A erzeugt ein Stromleiter im Abstand von 100 um ein Magnetfeld in der Größenordnung von 20 G, das heißt eine Feldstärke, die einen sehr empfindlichen Sensor erfordern. Mit Hilfe einer Spule und entsprechenden Windungen bzw. einem höheren Strom läßt sich der Wert erhöhen, so daß der Hallsensor anspricht. Eine Spule läßt sich jedoch zusammen mit einem Halbleiterchip nicht integrieren und die Anordnung wäre auch zu teuer.At a current of approx. 1A, a current conductor in the Distance of 100 µm around a magnetic field of the order of 20 G, that means a field strength that a very sensitive sensor. With the help of a coil and corresponding turns or a higher current can increase the value so that the Hall sensor responds. A However, the coil can be used together with a semiconductor chip not integrate and the arrangement would also be too expensive.

Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt somit die Aufgabe zugrunde, einen Hallsensor anzugeben, der bei Integrierung auf einem Halbleiterchip eine hinreichende Empfindlichkeit aufweist.The invention as characterized in the claims the task is based on a Hall sensor to be specified when integrated on a semiconductor chip has sufficient sensitivity.

Die Erfindung wird nachstehend anhand der einzelnen Figuren der Zeichnung näher erläutert, die verschiedenen Ausführungsbeispiele darstellen. Gleiche Merkmale in ihnen sind dabei mit gleichen Bezugszeichen versehen. The invention is described below with reference to the individual figures the drawing explains the various Represent embodiments. Same features in them are provided with the same reference numerals.  

Fig. 1 zeigt den Schnitt durch das Grundprinzip der Erfindung, Fig. 1 shows a section through the basic principle of the invention,

Fig. 2a zeigt die Draufsicht auf eine spezielle Ausbildungsform, Fig. 2a shows the top view of a special design form,

Fig. 2b zeigt den Schnitt durch Fig. 2a längs der Linie A-B Fig. 3 zeigt den Querschnitt durch eine andere spezielle Ausbildungsform der Erfindung, FIG. 2b shows the section through Fig. 2 along the line AB Fig. 3 shows the cross sectional view of another specific embodiment of the invention,

Fig. 4 und 5 zeigen weitere Ausbildungsformen der Erfindung FIGS. 4 and 5 show further embodiments of the invention

Das in Fig. 1 gezeigte Grundprinzip des erfindungsgemäßen Hallsensors zeigt den Siliziumhalbleiterkörper 1 vom p-Leitungstyp, in dessen Oberfläche eine Zone 2 vom entgegengesetzten Leitungstyp eingelassen ist, die die Hallplatte darstellt. Eine erste Isolierschicht 3 aus z. B. Siliziumdioxyd deckt den Aufbau ab. Auf der Isolierschicht ist eine Metallschleife 4, die Zone 2 überlappend, aufgebracht, um ein starkes Magnetfeld bei kleinen Strömen auf dem Halbleiterplättchen zu erzeugen. Metallbahnen in der Halbleitertechnik sind sehr dünn, sie können aber im Durchmesser galvanisch verstärkt werden. Die Metallschleife 4 wird von einer zweiten Isolierschicht 5 abgedeckt, die selbst wiederum mit einer Deckschicht 6 aus ferromagnetischem Material überzogen ist, die gleichsam den gesamten Aufbau umhüllt und damit das Magnetfeld verstärkt.The basic principle of the Hall sensor according to the invention shown in FIG. 1 shows the silicon semiconductor body 1 of the p-type conduction, in whose surface a zone 2 of the opposite conduction type is embedded, which represents the Hall plate. A first insulating layer 3 made of z. B. Silicon dioxide covers the structure. A metal loop 4 , overlapping zone 2 , is applied to the insulating layer in order to generate a strong magnetic field with small currents on the semiconductor die. Metal tracks in semiconductor technology are very thin, but they can be galvanically reinforced in diameter. The metal loop 4 is covered by a second insulating layer 5 , which in turn is covered with a cover layer 6 made of ferromagnetic material, which, as it were, envelops the entire structure and thus reinforces the magnetic field.

In den Fig. 2a und 2b ist ein Ausführungsbeispiel gezeigt, bei dem das Halbleiter-Trägerband 7 (leadframe) derart ausgebildet ist, daß ein Teil desselben eine Leiterbahn bildet, die als Metallschleife 4 für den Hallsensor wirkt. Diese Ausbildungsform eignet sich besonders für die Flip-Chip-Technik. In FIGS. 2a and 2b, an embodiment is shown in which the semiconductor carrier tape 7 (lead frame) is formed such that a part thereof forms a conductor track which acts as a metal loop 4 for the Hall sensor. This form of training is particularly suitable for flip-chip technology.

Fig. 2a zeigt dabei die Draufsicht auf das montierte, verkapselte Bauelement in geöffnetem Zustand. Auf dem Trägerband 7 ist das Halbleiterplättchen 8 mit der Hallplatte 2 befestigt, wobei diese über der Öffnung 9 in dem Trägerband zu liegen kommt. Man sieht, daß die Plattform des Trägerbandes 7, die das Halbleiterplättchen 8 trägt, von der üblichen Ausbildung derart abweicht, daß sie die erforderliche Metallschleife 4 bildet. Auf den Halbleiterplättchen 8 sind die entsprechenden Anschlußpads 10′ angeordnet, die mit den Kontaktfingern 11 verbunden sind. Fig. 2a shows the top view of the assembled, encapsulated device in the open state. The semiconductor plate 8 is fastened on the carrier tape 7 with the Hall plate 2 , which comes to lie above the opening 9 in the carrier tape. It can be seen that the platform of the carrier tape 7 , which carries the semiconductor die 8 , deviates from the usual configuration in such a way that it forms the required metal loop 4 . On the semiconductor chip 8 , the corresponding connection pads 10 'are arranged, which are connected to the contact fingers 11 .

Fig. 2b zeigt den Schnitt längs der Linie AB in Fig. 2. Man sieht hier den das Trägerband 7, auf das das Halbleiterplättchen aufgesetzt ist. Dessen Oberfläche ist die Hallplatte 2 eingelassen. Die ganze Anordnung kann wieder durch ein ferromagnetisches Material abgedeckt werden. FIG. 2b shows the section along the line AB in FIG. 2. Here you can see the carrier tape 7 on which the semiconductor die is placed. The surface of the Hall plate 2 is embedded. The whole arrangement can again be covered by a ferromagnetic material.

Fig. 3 zeigt den Schnitt durch eine weitere Ausbildungsform, bei der das Magnetfeld erzeugende Stromleiter aus ferromagnetischem Material als Trägerkörper 13 und Abdeckkappe 14 ausgebildet ist, also gleichsam einen Ring mit einem Spalt bildet, in deren Inneren der Halbleiterkörper in einer Kunststoffumhüllung verkapselt ist. Um ein besonders starkes Magnetfeld zu erzeugen, müssen die Magentfeldlinien möglichst nahe auf den Hallsensor 2 gebündelt werden. Zu diesem Zweck hat die Abdeckkappe 14 einen Ansatz 15, der sich in Richtung auf die in dem Halbleiterkörper angeordnete Hallplatte erstreckt. Dabei ist der Durchmesser des Ansatzes 15 so zu wählen, daß er nicht größer als die Hallplatte 2 im Halbleiterplättchen 8 ist. Fig. 3 shows the section through a further embodiment, in which the magnetic field generating current conductor made of ferromagnetic material is formed as a carrier body 13 and cover cap 14 , that is to say it forms a ring with a gap, in the interior of which the semiconductor body is encapsulated in a plastic envelope. In order to generate a particularly strong magnetic field, the magnetic field lines must be bundled as close as possible to the Hall sensor 2 . For this purpose, the cover cap 14 has an extension 15 which extends in the direction of the Hall plate arranged in the semiconductor body. The diameter of the extension 15 is to be selected so that it is not larger than the Hall plate 2 in the semiconductor wafer 8 .

Wie in Fig. 4 gezeigt, kann der Rahmen aus ferromagnetischem Material auch einteilig in Form eines Hüllkörpers 16 ausgebildet sein, wobei die Enden zu einem dem Ansatz 15 in der Fig. 4 entsprechenden Teil um 155 gebogen sind.As shown in FIG. 4, the frame made of ferromagnetic material can also be formed in one piece in the form of an enveloping body 16 , the ends being bent by 155 to form a part corresponding to the projection 15 in FIG. 4.

Eine weitere Ausbildungsform, und zwar die Anwendung der Erfindung in Verbindung mit einer gedruckten Schaltung ist in Fig. 5 gezeigt. Auf der Schaltungsplatine 17 sitzt der Halbleiterkörper 8 mit der integrierten Hallplatte 2. Er ist über Bonddrähte 111 mit den auf der Platine aufgelöteten Leiterbahnen 112 verbunden. Der Aufbau aus den genannten Teilen und der Kunststoffumhüllung 12 ist wie in Fig. 3 von einer aus der Unterschale 13 und der Abdeckkappe 14 bestehenden Hülle aus ferromagnetischem Material umgeben. Dabei erstreckt sich von der Unterschale 113 ausgehend der Fuß 18 in Richtung auf die Hallplatte 2, um die schon in Fig. 3 dort unter Zuhilfenahme des Ansatzes 15 angestrebte Wirkung zu erzielen.Another embodiment, the application of the invention in connection with a printed circuit is shown in Fig. 5. The semiconductor body 8 with the integrated Hall plate 2 is seated on the circuit board 17 . It is connected via bond wires 111 to the conductor tracks 112 soldered onto the circuit board. The structure of the parts mentioned and the plastic covering 12 is, as in FIG. 3, surrounded by a covering made of the lower shell 13 and the cover cap 14 made of ferromagnetic material. The foot 18 extends from the lower shell 113 in the direction of the Hall plate 2 in order to achieve the effect already sought there in FIG. 3 with the aid of the extension 15 .

Die Vorteile der Erfindung bestehen somit darin, daß in ihr ein Hallsensor angegeben wird, der auf einem Halbleiterplättchen integriert ist und gleichzeitig eine ausreichende Empfindlichkeit aufweist.The advantages of the invention are thus that in it a Hall sensor is specified which is based on a Is integrated and at the same time a has sufficient sensitivity.

Claims (9)

1. In Halbleitertechnik hergestellter integrierter Hallsensor mit einem Stromleiter zur Erzeugung des Magnetfeldes und einer Magnetfeldbereichabdeckung aus ferromagnetischem Material.1. Integrated in semiconductor technology Hall sensor with a current conductor for generating the Magnetic field and a magnetic field area cover ferromagnetic material. 2. Hallsensor nach Anspruch 1, gekennzeichnet durch ein Substrat (1) des einen Leitungstyps mit einer in seiner Oberfläche eingelassenen Zone (2) des entgegengesetzten Leitungstyps, die Hallplatte darstellend, einer die Substratoberfläche abdeckenden Isolierschicht (3), einer Metallschleife (4), die auf der Isolierschicht (3) die Zone (2) überlappend aufgebracht ist, einer zweiten, die Metallschleife (4) abdeckenden Isolierschicht (5), und einer den gesamten Aufbau überziehenden Deckschicht (6) aus ferromagnetischem Material.2. Hall sensor according to claim 1, characterized by a substrate ( 1 ) of one conduction type with a zone ( 2 ) of the opposite conduction type embedded in its surface, representing the Hall plate, an insulating layer ( 3 ) covering the substrate surface, a metal loop ( 4 ), which is applied to the insulating layer ( 3 ) overlapping the zone ( 2 ), a second insulating layer ( 5 ) covering the metal loop ( 4 ), and a covering layer ( 6 ) made of ferromagnetic material covering the entire structure. 3. Hallsensor nach Anspruch 2, dadurch gekennzeichnet, daß die Isolierschichten (3), (5) aus Siliziumdioxid bestehen.3. Hall sensor according to claim 2, characterized in that the insulating layers ( 3 ), ( 5 ) consist of silicon dioxide. 4. Hallsensor nach Anspruch 2, dadurch gekennzeichnet, daß die Metallschleife (4) aus Aluminium besteht.4. Hall sensor according to claim 2, characterized in that the metal loop ( 4 ) consists of aluminum. 5. Hallsensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Metallschleife (4) als Teil des Trägerbandes ausgebildet ist und aus Kupfer besteht.5. Hall sensor according to one of claims 1 to 3, characterized in that the metal loop ( 4 ) is formed as part of the carrier tape and consists of copper. 6. Hallsensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß auf dem Halbleiterplättchen eine Schaltung zur Auswertung des Sensorsignals mit integriert ist.6. Hall sensor according to one of claims 1 to 5, characterized characterized in that on the semiconductor die Integrated circuit for evaluating the sensor signal is. 7. Hallsensor nach Anspruch 2, dadurch gekennzeichnet, daß die Deckschicht (6) als einschaliger Hüllkörper (16) ausgebildet ist.7. Hall sensor according to claim 2, characterized in that the cover layer ( 6 ) is designed as a single-shell envelope ( 16 ). 8. Hallsensor nach Anspruch 2, dadurch gekennzeichnet, daß die Deckschicht (6) zweischalig mit ineinandergreifender Unterschale (13) und Abdeckkappe (14) ausgebildet ist.8. Hall sensor according to claim 2, characterized in that the cover layer ( 6 ) is formed with two shells with an interlocking lower shell ( 13 ) and cover cap ( 14 ). 9. Hallsensor nach Anspruch 2, dadurch gekennzeichnet, daß das Halbleiterbauelement (8) mit der Hallplatte (2) auf einer gedruckten Schaltungsplatine aufgesetzt ist und die ferromagnetische Abdeckung sowohl das Hallbauelement als auch eine oder mehrere Leiterbahnen der Platine umgibt.9. Hall sensor according to claim 2, characterized in that the semiconductor component ( 8 ) with the Hall plate ( 2 ) is placed on a printed circuit board and the ferromagnetic cover surrounds both the Hall component and one or more conductor tracks of the board.
DE4141386A 1991-12-16 1991-12-16 Hall sensor Expired - Fee Related DE4141386C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4141386A DE4141386C2 (en) 1991-12-16 1991-12-16 Hall sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4141386A DE4141386C2 (en) 1991-12-16 1991-12-16 Hall sensor

Publications (2)

Publication Number Publication Date
DE4141386A1 true DE4141386A1 (en) 1993-06-17
DE4141386C2 DE4141386C2 (en) 1995-06-29

Family

ID=6447134

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4141386A Expired - Fee Related DE4141386C2 (en) 1991-12-16 1991-12-16 Hall sensor

Country Status (1)

Country Link
DE (1) DE4141386C2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549181A1 (en) * 1995-12-30 1997-07-03 Bosch Gmbh Robert Appliance for measuring the current in conductor
WO1999014605A1 (en) * 1997-09-15 1999-03-25 Institute Of Quantum Electronics A current monitor system and a method for manufacturing it
DE19828089A1 (en) * 1998-06-24 1999-12-30 Univ Schiller Jena Magnetometer
EP1107327A2 (en) * 1999-12-09 2001-06-13 Sanken Electric Co., Ltd. Semiconductor current detector of improved noise immunity
EP1107328A2 (en) * 1999-12-09 2001-06-13 Sanken Electric Co., Ltd. Current detector having a hall-effect device
EP1267173A2 (en) * 2001-06-15 2002-12-18 Sanken Electric Co., Ltd. Hall-effect current detector
DE10065965B4 (en) * 2000-03-11 2007-11-29 Geyer Ag Production method for a current sensor of the microsystem technology
US7476816B2 (en) 2003-08-26 2009-01-13 Allegro Microsystems, Inc. Current sensor
US7598601B2 (en) 2003-08-26 2009-10-06 Allegro Microsystems, Inc. Current sensor
US7709754B2 (en) 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
US8080994B2 (en) 2006-05-12 2011-12-20 Allegro Microsystems, Inc. Integrated current sensor
CN103134970A (en) * 2011-11-29 2013-06-05 上海汽车集团股份有限公司 Integrated hall sensors and current detection device suitable for automobile application
EP2278345A3 (en) * 2009-07-07 2013-07-17 Monolithic Power Systems, Inc. A Hall effect current sensor system and associated flip-chip packaging
CH707687A1 (en) * 2013-03-08 2014-09-15 Melexis Technologies Nv Current sensor.
WO2014149416A3 (en) * 2013-03-15 2014-10-23 Allegro Microsystems, Llc Magnetic field sensor having an externally accessible coil
US9018948B2 (en) 2012-07-26 2015-04-28 Infineon Technologies Ag Hall sensors and sensing methods
US9024629B2 (en) 2011-09-16 2015-05-05 Infineon Technologies Ag Hall sensors having forced sensing nodes
US9103868B2 (en) 2011-09-15 2015-08-11 Infineon Technologies Ag Vertical hall sensors
US9170307B2 (en) 2012-09-26 2015-10-27 Infineon Technologies Ag Hall sensors and sensing methods
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11644485B2 (en) 2021-10-07 2023-05-09 Allegro Microsystems, Llc Current sensor integrated circuits
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame
US11800813B2 (en) 2020-05-29 2023-10-24 Allegro Microsystems, Llc High isolation current sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007967C2 (en) * 2000-02-22 2002-01-17 Daimler Chrysler Ag Multi-layer arrangement of electrical conductors with integrated current detection
DE10143437A1 (en) * 2001-09-05 2003-03-27 Hella Kg Hueck & Co Device for determining the position of an electronic selection lever of a motor vehicle gearbox has an array of Hall sensors mounted using a lead frame in a curved selection housing so that production costs are reduced
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-Z.: Elektronik 7/91, S. 142-150 Sonderhefe der Zeitschrift Technisches Messen tm "Sensoren '90", S. 23-30 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549181A1 (en) * 1995-12-30 1997-07-03 Bosch Gmbh Robert Appliance for measuring the current in conductor
WO1999014605A1 (en) * 1997-09-15 1999-03-25 Institute Of Quantum Electronics A current monitor system and a method for manufacturing it
DE19828089A1 (en) * 1998-06-24 1999-12-30 Univ Schiller Jena Magnetometer
EP1107327A2 (en) * 1999-12-09 2001-06-13 Sanken Electric Co., Ltd. Semiconductor current detector of improved noise immunity
EP1107328A2 (en) * 1999-12-09 2001-06-13 Sanken Electric Co., Ltd. Current detector having a hall-effect device
EP1107328A3 (en) * 1999-12-09 2004-10-13 Sanken Electric Co., Ltd. Current detector having a hall-effect device
EP1107327A3 (en) * 1999-12-09 2004-12-29 Sanken Electric Co., Ltd. Semiconductor current detector of improved noise immunity
DE10065965B4 (en) * 2000-03-11 2007-11-29 Geyer Ag Production method for a current sensor of the microsystem technology
EP1267173A2 (en) * 2001-06-15 2002-12-18 Sanken Electric Co., Ltd. Hall-effect current detector
EP1267173A3 (en) * 2001-06-15 2005-03-23 Sanken Electric Co., Ltd. Hall-effect current detector
US7476816B2 (en) 2003-08-26 2009-01-13 Allegro Microsystems, Inc. Current sensor
US7598601B2 (en) 2003-08-26 2009-10-06 Allegro Microsystems, Inc. Current sensor
US7709754B2 (en) 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
EP2402770A1 (en) * 2005-05-27 2012-01-04 Allegro Microsystems Inc. Current sensor
US8080994B2 (en) 2006-05-12 2011-12-20 Allegro Microsystems, Inc. Integrated current sensor
EP2278345A3 (en) * 2009-07-07 2013-07-17 Monolithic Power Systems, Inc. A Hall effect current sensor system and associated flip-chip packaging
US9103868B2 (en) 2011-09-15 2015-08-11 Infineon Technologies Ag Vertical hall sensors
US9024629B2 (en) 2011-09-16 2015-05-05 Infineon Technologies Ag Hall sensors having forced sensing nodes
CN103134970A (en) * 2011-11-29 2013-06-05 上海汽车集团股份有限公司 Integrated hall sensors and current detection device suitable for automobile application
CN103134970B (en) * 2011-11-29 2015-12-16 上海汽车集团股份有限公司 Be suitable for integrated hall sensors and the current sensing means of automobile application
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9018948B2 (en) 2012-07-26 2015-04-28 Infineon Technologies Ag Hall sensors and sensing methods
US9170307B2 (en) 2012-09-26 2015-10-27 Infineon Technologies Ag Hall sensors and sensing methods
CH707687A1 (en) * 2013-03-08 2014-09-15 Melexis Technologies Nv Current sensor.
US9529013B2 (en) 2013-03-08 2016-12-27 Melexis Technologies Nv Current sensor
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10753963B2 (en) 2013-03-15 2020-08-25 Allegro Microsystems, Llc Current sensor isolation
US9865807B2 (en) 2013-03-15 2018-01-09 Allegro Microsystems, Llc Packaging for an electronic device
WO2014149416A3 (en) * 2013-03-15 2014-10-23 Allegro Microsystems, Llc Magnetic field sensor having an externally accessible coil
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11800813B2 (en) 2020-05-29 2023-10-24 Allegro Microsystems, Llc High isolation current sensor
US11644485B2 (en) 2021-10-07 2023-05-09 Allegro Microsystems, Llc Current sensor integrated circuits
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame

Also Published As

Publication number Publication date
DE4141386C2 (en) 1995-06-29

Similar Documents

Publication Publication Date Title
DE4141386C2 (en) Hall sensor
DE19680088B4 (en) Calibration and manufacturing process for a magnetic sensor
EP0772046B1 (en) Magnetic field probe and current or energy probe
DE60027257T2 (en) Current detector with a Hall effect arrangement
DE19680089B4 (en) Magnetic sensor with improved calibration
DE602005003777T2 (en) Surface mount integrated current sensor
DE102004010126B4 (en) Magnetic field sensor and method for producing the same
DE69827559T2 (en) Housing for a magnetic field sensor
DE69530726T2 (en) MEASURING DEVICE FOR MAGNETIC FIELDS
EP2801832B1 (en) Device for current measurement
DE102011107703A1 (en) Integrated current sensor
EP0537419A1 (en) Device comprising an integrated magnetic field sensor and first and second magnetic flux concentrator, and method to build into a container of synthetic material a plurality of these devices
DE4008141A1 (en) SENSOR WITH HALL EFFECT
DE19744050A1 (en) Magnetic sensor, e.g. for angular position determination
CH651152A5 (en) Messwandler for measuring an especially a measuring electricity generated magnetic field.
DE10018269B4 (en) scanning
DE4341890A1 (en) Magnetic arrangement for detection of object movement - has premagnetising magnet with hollow part with holder for magnetoresistive element
WO2017005359A1 (en) Electrical component and method for producing an electrical component of this type
DD264091A1 (en) CAPACITED MAGNETORESISTIVE COMPONENT FOR POTENTIAL-FREE CURRENT MEASUREMENT
DE4301595A1 (en) Inductive sensor
EP0977018A1 (en) Electrode arrangement for magneto-inductive flow sensors
DE3910750A1 (en) Connecting device for an electronic component
DE3401488C1 (en) Measuring probe
WO2017198570A1 (en) Method for covering an electric unit, and electric component
EP0444226B1 (en) Method and apparatus for adjusting an Eddy-current displacement transducer

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: MICRONAS INTERMETALL GMBH, 79108 FREIBURG, DE

8327 Change in the person/name/address of the patent owner

Owner name: MICRONAS GMBH, 79108 FREIBURG, DE

8320 Willingness to grant licences declared (paragraph 23)
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110701