DE4218652A1 - Process for producing aluminium doping profile in semiconductors - by diffusion in vacuum and oxidising atmosphere - Google Patents

Process for producing aluminium doping profile in semiconductors - by diffusion in vacuum and oxidising atmosphere

Info

Publication number
DE4218652A1
DE4218652A1 DE19924218652 DE4218652A DE4218652A1 DE 4218652 A1 DE4218652 A1 DE 4218652A1 DE 19924218652 DE19924218652 DE 19924218652 DE 4218652 A DE4218652 A DE 4218652A DE 4218652 A1 DE4218652 A1 DE 4218652A1
Authority
DE
Germany
Prior art keywords
aluminum
vacuum
diffusion
depth
doping profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19924218652
Other languages
German (de)
Other versions
DE4218652C2 (en
Inventor
Gerhard Dr Schmidt
Hans-Joachim Dr Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Siemens AG
Original Assignee
Siemens AG
EUPEC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, EUPEC GmbH filed Critical Siemens AG
Priority to DE19924218652 priority Critical patent/DE4218652C2/en
Publication of DE4218652A1 publication Critical patent/DE4218652A1/en
Application granted granted Critical
Publication of DE4218652C2 publication Critical patent/DE4218652C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation

Abstract

Al doping profile is produced in a Si semiconductor body by coating or implanting a region near the surface of the body and diffusing in by a a treatment initially in vacuum at e.g. 1230 deg.C for 10 hrs. The Al is then diffused in to a greater depth by treatment in an oxidising atmos. e.g. at 1240 deg.C for 20 hrs. Initial depth of diffusion is 1/3-2/3 of the final depth. ADVANTAGE - Interaction between Al with Si oxide layers is reduced.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Erzeugen eines Aluminium-Dotierungsprofils in einem Silizium-Halb­ leiterkörper durch Belegen oder Implantieren eines ober­ flächennahen Bereichs des Halbleiterkörpers mit Aluminium und durch anschließendes Eintreiben des Aluminiums in oxidierender Atmosphäre in eine vorbestimmte Tiefe.The invention relates to a method for producing an aluminum doping profile in a silicon half conductor body by covering or implanting an upper area close to the surface of the semiconductor body with aluminum and then driving the aluminum in oxidizing atmosphere to a predetermined depth.

Ein solches Verfahren ist Stand der Technik. Es wird üb­ licherweise dazu verwendet, bei einem n-leitenden Halblei­ terkörper einen pn-Übergang mit geringem Dotierungsgra­ dienten einzustellen. Die Beigabe von Sauerstoff zur Gas­ atmosphäre im Eintreibraum und die daraus folgende Bil­ dung einer Oxid-Schicht auf der Silizium-Oberfläche wird im allgemeinen vorgenommen, um eine gute Qualität der Silizium-Oberfläche nach Abätzen dieser Oxidschicht zu gewährleisten. Es hat sich jedoch herausgestellt, daß das Aluminium bei dem üblichen Eintreibschritt in oxidierender Atmosphäre insbesondere dann relativ stark und inhomogen aus dem Halbleiterkörper wieder ausdiffundiert, wenn das Aluminium bis zu einer großen Tiefe in der Größenordnung von 100 µm in den Halbleiterkörper eingetrieben werden soll. Dies führt zur Inhomogenität der Aluminium-Randkon­ zentration und des Schichtwiderstandes der mit Aluminium dotierten Schicht.Such a method is state of the art. It is practiced lichlich used for an n-type semi-conductor a pn junction with a low doping level served to adjust. The addition of oxygen to the gas atmosphere in the driving room and the resulting bil an oxide layer on the silicon surface generally made to a good quality of Silicon surface after etching off this oxide layer guarantee. However, it has been found that the Aluminum in the usual driving step in oxidizing The atmosphere is particularly strong and inhomogeneous diffuses out of the semiconductor body again if that Aluminum to a great depth of the order of 100 µm are driven into the semiconductor body should. This leads to the inhomogeneity of the aluminum edge cones centering and sheet resistance with aluminum doped layer.

Zurückführen läßt sich dieses im wesentlichen auf eine Wechselwirkung zwischen dem im oberflächennahen Bereich des Siliziums sitzenden Aluminium und der während des Ein­ treibens wachsenden Siliziumoxidschicht. Hierbei bildet sich auch Aluminiumoxid.This can essentially be traced back to a Interaction between that near the surface of the silicon seated aluminum and that during the on driving growing silicon oxide layer. Here forms alumina.

Ziel der Erfindung ist es, ein Verfahren der angegebenen Art derart weiterzubilden, daß die erwähnte Wechselwir­ kung zwischen der oxidierenden Atmosphäre und dem Aluminium mindestens stark vermindert wird.The aim of the invention is a method of the specified Kind in such a way that the above-mentioned interaction between the oxidizing atmosphere and the aluminum is at least greatly reduced.

Dieses Ziel wird dadurch erreicht, daß das Aluminium nach dem Belegen bzw. Implantieren und vor dem Eintreiben in oxidierender Atmosphäre im Vakuum in eine Tiefe eingetrie­ ben wird, die geringer ist als die vorbestimmte Tiefe.This goal is achieved in that the aluminum after loading or implanting and before driving in oxidizing atmosphere in a vacuum ben that is less than the predetermined depth.

Weiterbildungen der Erfindung sind Gegenstand der Unter­ ansprüche.Further developments of the invention are the subject of the sub Expectations.

Die Erfindung wird anhand eines Ausführungsbeispiels in Verbindung mit den Fig. 1 bis 3 näher erläutert. Dabei zeigen die Figuren einen Halbleiterkörper nach charakteris­ tischen Verfahrensschritten.The invention is explained in more detail using an exemplary embodiment in conjunction with FIGS. 1 to 3. The figures show a semiconductor body after characteristic process steps.

In Fig. 1 ist ein n-leitender, aus Silizium bestehender Halbleiterkörper 1 gezeigt. Er wird z. B. im Vakuum bei einer Temperatur von z. B. 960-1000°C für die Dauer von z. B. zwei bis sechs Stunden mit Aluminium belegt. Dabei entstehen stark mit Aluminium dotierte Siliziumschichten 2, 3 (Fig. 1) auf der Oberseite und Unterseite des Halb­ leiterkörpers 1. Diese Schichten haben beispielsweise eine Dicke zwischen 1 und 2 µm. Als nächstes (Fig. 2) werden die Schichten 2, 3 in einer Vakuumampulle bei z. B. 1230°C für eine Dauer von 10 Stunden in eine Tiefe W1 eingetrieben. Die Schichten 2, 3 sind dann beispielsweise jeweils 60 µm dick.In Fig. 1 an n-type, existing silicon semiconductor body 1 is shown. He is z. B. in a vacuum at a temperature of z. B. 960-1000 ° C for the duration of z. B. occupied for two to six hours with aluminum. This results in silicon layers 2 , 3 ( FIG. 1) heavily doped with aluminum on the top and bottom of the semiconductor body 1 . These layers have a thickness of between 1 and 2 µm, for example. Next ( Fig. 2), the layers 2 , 3 in a vacuum ampoule at z. B. 1230 ° C for a period of 10 hours into a depth W1. The layers 2 , 3 are then each 60 μm thick, for example.

Als nächster Schritt (Fig. 3) werden die Schichten 2, 3 in oxidierender Atmosphäre, z. B. in einem offenen Rohr bei einer Temperatur von z. B. 124O°C für eine Dauer von z. B. 20 Stunden weiter in eine Tiefe W2 eingetrieben. As the next step ( Fig. 3), the layers 2 , 3 in an oxidizing atmosphere, for. B. in an open tube at a temperature of z. B. 124O ° C for a period of z. B. driven 20 hours further into a depth W2.

Hierbei stellt sich eine Dicke der Zonen 2, 3 von z. B. 90 µm ein. Außerdem bilden sich Siliziumoxidschichten 4, 5 auf den Schichten 2, 3.This results in a thickness of zones 2 , 3 of z. B. 90 microns. In addition, silicon oxide layers 4 , 5 form on the layers 2 , 3 .

Das Vor-Eintreiben des Aluminiums in Vakuum bewirkt, daß sich ein Großteil des Aluminiums schon deutlich von der Oberfläche des Halbleiterkörpers ins Scheibeninnere ent­ fernt hat, wenn anschließend unter oxidierender Atmosphäre weiter eingetrieben wird. Die Wechselwirkung der eindiffun­ dierten Aluminium-Atome mit den Siliziumoxidschichten 4, 5 wird damit deutlich reduziert. Durch das beschriebene Vor- Eintreiben in der Vakuumampulle wird die Homogenität des Schichtwiderstandes der mit Aluminium dotierten Schicht deutlich verbessert. Außerdem wird es leichter, den Wert des Schichtwiderstandes zu reproduzieren.The pre-driving of the aluminum in a vacuum has the effect that a large part of the aluminum has already clearly moved away from the surface of the semiconductor body into the inside of the wafer when it is subsequently driven in under an oxidizing atmosphere. The interaction of the diffused aluminum atoms with the silicon oxide layers 4 , 5 is thus significantly reduced. The described pre-driving in the vacuum ampoule significantly improves the homogeneity of the sheet resistance of the layer doped with aluminum. In addition, it becomes easier to reproduce the sheet resistance value.

Anstatt in einer Vakuumampulle einzutreiben, könnte auch eine andere Vakuumdiffusion verwendet werden, wie z. B. ein Hochtemperaturschritt in einem sogenannten "Rapid Thermal Annealer".Instead of driving in a vacuum ampoule, you might as well another vacuum diffusion can be used, e.g. B. a high temperature step in a so-called "rapid Thermal Annealer ".

Allgemein empfiehlt es sich, im Vakuum so weit voreinzu­ treiben, daß ein Großteil des Aluminiums von der Oberfläche so weit entfernt ist, daß er mit den sich bildenden Oxid­ schichten 4, 5 nicht in Wechselwirkung treten kann. Es empfiehlt sich dabei, das Aluminium im Vakuum in eine Tie­ fe W1 einzutreiben, die etwa ein Drittel bis zwei Drittel der vorbestimmten Tiefe W2 beträgt. Die Belegungstemperatur ist in jedem Falle niedriger als die Eintreibtemperatur.In general, it is advisable to drive so far in a vacuum that a large part of the aluminum is so far away from the surface that it cannot interact with the oxide layers 4 , 5 that form. It is advisable to drive the aluminum in a vacuum into a depth W1, which is approximately one third to two thirds of the predetermined depth W2. The occupancy temperature is always lower than the driving temperature.

Anstatt die Oberfläche mit Aluminium zu belegen, kann das Aluminium auch durch Implantieren in einen oberflächen­ nahen Bereich eingebracht werden.Instead of covering the surface with aluminum, it can Aluminum can also be implanted in a surface near area.

Claims (3)

1. Verfahren zum Erzeugen eines Aluminium-Dotierungspro­ fils in einem Silizium-Halbleiterkörper durch Belegen oder Implantieren eines oberflächennahen Bereichs des Halblei­ terkörpers mit Aluminium und durch anschließendes Eintrei­ ben des Aluminiums in oxidierender Atmosphäre in eine vorbestimmte Tiefe, dadurch gekennzeichnet, daß das Aluminium nach dem Belegen und vor dem Eintreiben in oxidierender Atmosphäre im Vakuum in eine Tiefe (W1) eingetrieben wird, die geringer ist als die vorbestimmte Tiefe (W2).1. A method for producing an aluminum-Dotopingpro fils in a silicon semiconductor body by covering or implanting a surface near the surface of the semiconductor body with aluminum and by subsequently inserting the aluminum in an oxidizing atmosphere to a predetermined depth, characterized in that the aluminum after Document and before driving in an oxidizing atmosphere in a vacuum is driven to a depth (W1) which is less than the predetermined depth (W2). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Aluminium im Vakuum in eine Tiefe (W1) eingetrieben wird, die etwa ein Drittel bis zwei Drittel der vorbestimmten Tiefe (W2) beträgt.2. The method according to claim 1, characterized in that the Aluminum is driven to a depth (W1) in a vacuum, which is about a third to two thirds of the predetermined Depth (W2). 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Vakuum bei einer Temperatur eingetrieben wird, die höher ist als diejenige Temperatur, bei der belegt wird.3. The method according to claim 1 or 2, characterized in that in Vacuum is driven at a temperature that is higher is the temperature at which it is occupied.
DE19924218652 1992-06-05 1992-06-05 Process for producing an aluminum doping profile Expired - Fee Related DE4218652C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19924218652 DE4218652C2 (en) 1992-06-05 1992-06-05 Process for producing an aluminum doping profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19924218652 DE4218652C2 (en) 1992-06-05 1992-06-05 Process for producing an aluminum doping profile

Publications (2)

Publication Number Publication Date
DE4218652A1 true DE4218652A1 (en) 1993-12-09
DE4218652C2 DE4218652C2 (en) 1996-04-04

Family

ID=6460509

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19924218652 Expired - Fee Related DE4218652C2 (en) 1992-06-05 1992-06-05 Process for producing an aluminum doping profile

Country Status (1)

Country Link
DE (1) DE4218652C2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266990A (en) * 1979-10-25 1981-05-12 Hitachi, Ltd. Process for diffusion of aluminum into a semiconductor
US4451303A (en) * 1982-01-18 1984-05-29 Tokyo Shibaura Denki Kabushiki Kaisha Diffusion of aluminum
US4525224A (en) * 1981-03-02 1985-06-25 Bbc Brown, Boveri & Cie Method for the doping of supporting silicon plates for the manufacture of semiconductors
US4820656A (en) * 1986-09-30 1989-04-11 Siemens Aktiengesellschaft Method for producing a p-doped semiconductor region in an n-conductive semiconductor body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266990A (en) * 1979-10-25 1981-05-12 Hitachi, Ltd. Process for diffusion of aluminum into a semiconductor
US4525224A (en) * 1981-03-02 1985-06-25 Bbc Brown, Boveri & Cie Method for the doping of supporting silicon plates for the manufacture of semiconductors
US4451303A (en) * 1982-01-18 1984-05-29 Tokyo Shibaura Denki Kabushiki Kaisha Diffusion of aluminum
US4820656A (en) * 1986-09-30 1989-04-11 Siemens Aktiengesellschaft Method for producing a p-doped semiconductor region in an n-conductive semiconductor body

Also Published As

Publication number Publication date
DE4218652C2 (en) 1996-04-04

Similar Documents

Publication Publication Date Title
DE102007026387B4 (en) Method for producing a semiconductor device
DE3219441C2 (en)
DE2652294C2 (en) Process for producing embedded oxide regions in semiconductor substrates
EP0018520B1 (en) Elimination process of crystal defects produced in n-type layers of a silicon semiconductor device by phosphorus ion implantation and device produced by this method
DE60127148T2 (en) Production process for SOI disc by heat treatment and oxidation of buried channels
DE112008003726B4 (en) Oxidation after oxide dissolution
DE2615754C2 (en)
DE10214066A1 (en) Semiconductor element with a retrograde doping profile in a channel region and a method for producing the same
DE19859429A1 (en) Process for the production of epitaxial silicon germanium layers
DE10055446A1 (en) Insulated gate bipolar transistor manufacturing method used for electric power converter, involves forming buffer layer by proton irradiation from back side of substrate
DE112019001738T5 (en) SEMI-CONDUCTOR DEVICE AND MANUFACTURING METHOD
DE2752439A1 (en) METHOD FOR PRODUCING SILICON SEMI-CONDUCTOR ARRANGEMENTS USING AN ION IMPLANT AND ASSOCIATED SEMICONDUCTOR ARRANGEMENT
EP0852062A2 (en) Doping process for producing homojunctions in semiconductor substrates
DE2534945C3 (en) Light emitting diode
DE102015114361B4 (en) METHOD OF PROCESSING AN OXYGEN CONTAINING SEMICONDUCTOR BODY
EP0005744B1 (en) Process for producing epitaxial layers on selectively doped silicon substrates with high impurity concentration
DE4218652A1 (en) Process for producing aluminium doping profile in semiconductors - by diffusion in vacuum and oxidising atmosphere
DE3147535C2 (en)
EP1131848B1 (en) Method for producing a power semiconductor device with a stop zone
DE2506436C3 (en) Diffusion process for producing aluminum-doped isolation zones for semiconductor components
DE4440072C1 (en) Forming trenched monocrystalline silicon carbide layer in substrate
DE3301479A1 (en) METHOD FOR PRODUCING A SEMICONDUCTOR ELEMENT
DE3913123A1 (en) Generation of recombination centres in semiconductor devices - by electron beam irradiation then stabilisation in medium temp. anneal after metallisation
EP1050076A1 (en) Method for producing diodes
EP0912995B1 (en) Semiconductor component with low contact resistance to highly doped regions

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: SIEMENS AG, 80333 MUENCHEN, DE

Owner name: INFINEON TECHNOLOGIES AG, 81669 MUENCHEN, DE

8339 Ceased/non-payment of the annual fee