DE4306382A1 - Verfahren zur Herstellung eines Poly-1-olefins - Google Patents

Verfahren zur Herstellung eines Poly-1-olefins

Info

Publication number
DE4306382A1
DE4306382A1 DE4306382A DE4306382A DE4306382A1 DE 4306382 A1 DE4306382 A1 DE 4306382A1 DE 4306382 A DE4306382 A DE 4306382A DE 4306382 A DE4306382 A DE 4306382A DE 4306382 A1 DE4306382 A1 DE 4306382A1
Authority
DE
Germany
Prior art keywords
reactor
line
carbon atoms
component
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4306382A
Other languages
English (en)
Inventor
Werner Dr Breuers
Rainer Dr Lecht
Ludwig Dr Boehm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to DE4306382A priority Critical patent/DE4306382A1/de
Priority to DE59404496T priority patent/DE59404496D1/de
Priority to AT94102777T priority patent/ATE159955T1/de
Priority to SG1996006996A priority patent/SG52626A1/en
Priority to ES94102777T priority patent/ES2111193T3/es
Priority to EP94102777A priority patent/EP0613909B1/de
Priority to JP03156694A priority patent/JP3513205B2/ja
Priority to BR9400767A priority patent/BR9400767A/pt
Priority to CA002116752A priority patent/CA2116752A1/en
Priority to KR1019940003947A priority patent/KR100286409B1/ko
Publication of DE4306382A1 publication Critical patent/DE4306382A1/de
Priority to US08/576,858 priority patent/US5798309A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/901Monomer polymerized in vapor state in presence of transition metal containing catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/904Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines kugelförmigen Poly-1-olefins mittels eines hochaktiven, kugelförmigen Ziegler-Katalysators.
Es sind bereits eine Vielzahl von Katalysatoren des Ziegler-Typs zur Polymerisation von α-Olefinen bekannt. Viele dieser Katalysatoren basieren auf Magnesiumchlorid als Trägermaterial, das durch Umsetzung einer magnesiumorganischen Verbindung R′-Cl, wie z. B. Tetrachlormethan, erhalten wird (vgl. US 4 442 225, US 4 439 539, DE 30 10 202).
Dabei ist es jedoch nicht möglich, ein Magnesiumchlorid mit kugelförmigen Teilchen zu erhalten.
Andererseits ist bekannt, daß sphärisches Magnesiumchlorid bei der Umsetzung einer magnesiumorganischen Verbindung R2Mg mit einer chlororganischen Verbindung R′-Cl in Gegenwart einer aluminiumorganischen Verbindung, wie Triethylaluminium, und einer Elektronendonorverbindung, wie Diisoamylether, entsteht (vgl. EP 99 284). Einschränkend gilt hierbei, daß R′ ein Kohlenwasserstoffrest mit drei oder mehr C-Atomen sein muß und daß das dem Chlor benachbarte Kohlenstoffatom entweder ein sekundäres oder tertiäres C- Atom sein muß.
Bekannt sind weiterhin Verfahren, bei denen durch Umsetzung einer magnesiumorganischen Verbindung (z. B. ®BOMAG-A, Witco GmbH.) mit einer chlororganischen Verbindung, einem Elektronen-Donator und einer Übergangsmetallverbindung kugelförmige Ziegler-Katalysatoren gebildet werden (vgl. EP 249 869, WO 9 200 332). Zur Bindung der Übergangsmetall­ komponente sind in diesen Fällen Elektronen-Donatoren notwendig.
Es wurde nun gefunden, daß ein hochaktiver, kugelförmiger Ziegler-Katalysator durch Umsetzung des Reaktionsproduktes aus einer magnesiumorganischen Verbindung, einer chlororganischen Verbindung und gegebenenfalls einer aluminiumorganischen Verbindung mit Alkoholen und Übergangsmetall­ verbindungen hergestellt werden kann, wobei auf die Zugabe des Alkohols auch verzichtet werden kann. Weiterhin wurde gefunden, daß der Katalysator besonders vorteilhaft in einem Gasphasen-Polymerisationsverfahren eingesetzt werden kann.
Die Erfindung betrifft somit ein Verfahren zur Herstellung eines Polyolefins durch Polymerisation von α-Olefinen bei einer Temperatur von 50 bis 150°C und einem Druck von 1 bis 40 bar in Gegenwart eines Katalysators bestehend aus einer Übergangsmetallkomponente (Komponente A) und einer metallorganischen Verbindung (Komponente B), dadurch gekennzeichnet, daß die Komponente A hergestellt wurde durch
  • a) Umsetzung einer magnesiumorganischen Verbindung der Formel R1 xMgR2 2-x, worin R1 und R2 gleiche oder verschiedene Alkylreste mit 2 bis 12 Kohlenstoffatomen sind und x eine Zahl zwischen 0 und 2 ist, mit einem aliphatischen primären Chlorkohlenwasserstoff in einer Menge von 0,5 bis 2,5 mol des Chlorkohlenwasserstoffs, bezogen auf 1 mol der magnesiumorganischen Verbindung, und gegebenenfalls einer aluminiumorganischen Verbindung der Formel AlR3 n(OR4)3-n, worin R3 und R4 gleiche oder verschiedene Alkylreste mit 1 bis 8 Kohlenstoffatomen sind und n 0, 1, 2 und 3 bedeutet, oder dem Umsetzungsprodukt von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit 4 bis 20 Kohlenstoffatome enthaltenden Diolefinen, bei einer Temperatur von 30 bis 110°C,
  • b) Behandlung des erhaltenen Feststoffs mit einem Alkohol in einer Menge von 0,001 bis 1 mol pro Grammatom des im Feststoff enthaltenen Magnesiums bei einer Temperatur von -20 bis 150°C, und
  • c) Umsetzung des so erhaltenen Trägermaterials mit einer oder mehreren Verbindungen der Formel M1Xm(OR5)4-m, worin M1 Titan oder Zirkon, R5 ein Alkylrest mit 2 bis 10 Kohlenstoffatomen, X ein Halogenatom und m eine ganze Zahl von 0 bis 4 ist, in einer Menge von 0,1 bis 5 mol pro Grammatom des im Trägermaterial enthaltenen Magnesiums bei einer Temperatur von 20 bis 180°C,
oder durch Ausführung der Schritte a und c unter Auslassung von b, oder durch gleichzeitiges Ausführen der Schritte b und c.
Zunächst wird ein kugelförmiger Feststoff gebildet. Dazu wird eine magnesiumorganische Verbindung mit einer organischen Chlorverbindung und gegebenenfalls einer aluminiumorganischen Verbindung umgesetzt.
Die magnesiumorganische Verbindung ist ein Magnesiumdialkyl der Formel R1 xMgR2 2-n, worin R1 und R2 gleiche oder verschiedene Alkylreste mit 2 bis 12 Kohlenstoffatomen sind und x eine Zahl zwischen 0 und 2. Bevorzugt werden Di-n-butylmagnesium, Di-n-octylmagnesium, n-Butyl-n-octylmagnesium, n- Butylethylmagnesium, n-Butyl-sec-butylmagnesium oder Gemische dieser Verbindungen. Besonders bevorzugt ist ein Magnesiumdialkyl der Formel [(n- C4H9)1,2-1,7(n-C8H17)0,3-0,8Mg], insbesondere [(n-C4H9)1,5(n-C8H17)0,5Mg].
Als aliphatischer primärer Chlorkohlenwasserstoff ist beispielsweise Tetrachlormethan, Trichlormethan, Methylenchlorid, 1-Chlorpropan oder 1,1,1- Trichlorethan geeignet, wobei auch Gemische eingesetzt werden können. Bevorzugt verwendet werden Trichlormethan und Tetrachlormethan.
Als aluminiumorganische Verbindung ist eine Alkyl- oder Alkoxyaluminiumverbindung der Formel AlR3 n(OR4)3-n geeignet, worin R3 und R4 gleiche oder verschiedene Alkylreste mit 1 bis 8 Kohlenstoffatomen sind und n 0, 1, 2 und 3 bedeutet. Ebenso geeignet ist auch das Umsetzungsprodukt von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit 4 bis 20 Kohlenstoffatome enthaltenden Diolefinen, vorzugsweise Isopren. Beispielsweise sei Aluminiumisoprenyl genannt.
Zur Darstellung des aus kugelförmigen Teilchen bestehenden Feststoffs wird die magnesiumorganische Verbindung und gegebenenfalls die aluminiumorganische Verbindung in einem inerten, flüssigen Kohlenwasserstoff unter Stickstoff- oder Argonatmosphäre gelöst. Diese Lösung wird unter gleichmäßigem Rühren bei einer Temperatur von 30 bis 110°C, bevorzugt von 40 bis 80°C, mit einer Lösung der chlororganischen Verbindung zusammengebracht. Die Umsetzung kann in der Weise durchgeführt werden, daß man die chlororganische Verbindung zu der Lösung der magnesiumorganischen Verbindung in dem flüssigen Kohlenwasserstoff gibt, oder umgekehrt.
Bei dieser Umsetzung kann sowohl die Reaktionszeit als auch der Verdünnungsgrad der Reaktanden in weiten Grenzen variiert werden. Die Reaktionszeit beträgt 30 min bis zu mehreren Stunden, vorzugsweise 1 Stunde bis 5 Stunden. Die Reaktanden werden als 0,5 bis zu 15 molare Lösungen eingesetzt.
Der Ansatz enthält bis zu 2,5 mol, bevorzugt bis zu 2,0 mol der chlororganischen Verbindung, bezogen auf ein mol der magnesiumorganischen Verbindung.
Es entsteht eine Suspension eines aus kugelförmigen Teilchen bestehenden Feststoffs. Die Suspension wird ohne weitere Waschschritte dem nächsten Reaktionsschritt zugeführt. Der Feststoff kann jedoch auch zunächst in getrockneter Form isoliert, gelagert und zur späteren Weiterverarbeitung resuspendiert werden.
Zur Suspension des aus kugelförmigen Teilchen bestehenden Feststoffes wird ein aliphatischer Alkohol gegeben. Der Alkohol wird im Molverhältnis 0,001 bis 1, bevorzugt 0,01 bis 0,5 mol, bezogen auf ein Grammatom Magnesium bei einer Temperatur von -20 bis 150°C, bevorzugt 20 bis 90°C, zu dem Feststoff gegeben. Die Reaktionszeit beträgt in Abhängigkeit von der Reaktivität der Reaktanten 0,1 bis 3 Stunden, vorzugsweise bis zu 1 h.
Eingesetzt werden aliphatische oder cycloaliphatische Alkohole oder Alkohole mit mehreren Hydroxyfunktionen. Beispiele sind Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, sec-Butanol, t-Butanol, Pentanole, Hexanole, Amylalkohol, Ethylhexanol, Glykol, Glycerin und Cyclohexanol. Besonders bevorzugt wird Ethanol verwendet.
Das auf diese Weise erhaltene kugelförmige Trägermaterial wird unter Stickstoff- oder Argonatmosphäre mit einer Übergangsmetallverbindung der Formel M1Xm(OR5)4-m umgesetzt, worin M1 Titan oder Zirkon, R5 ein Alkylrest mit 2 bis 10 Kohlenstoffatomen, X ein Halogenatom, bevorzugt Chlor, und m eine ganze Zahl von 0 bis 4, bevorzugt aber 2 oder 4 ist. Man kann ein Gemisch aus mehreren dieser Verbindungen oder mehrere dieser Verbindungen nacheinander einsetzen. Möglich ist auch die parallele Zugabe von Alkohol und einer oder mehrerer Verbindungen des Typs M1Xm(OR5)4-m.
Bevorzugte Verbindungen sind z. B. TiCl4, TiCl3(OC2H5), TiCl3(O-iC3H7), TiCl2(OC2H5)2, TiCl2(O-iC3H7)2, TiCl2(O-CH2C6H5)2, TiCl(OC2H5)3, Ti(OC2H5)4 und ZrCl4.
Ganz besonders bevorzugt ist TiCl4.
In der vorstehend beschriebenen Reaktion wird die Titan- oder Zirkonverbindung in einer Menge von 0,5 bis 5 mol, bevorzugt 0,8 bis 2,5 mol, insbesondere 1 mol, bezogen auf ein Grammatom Magnesium des kugelförmigen Trägermaterials, eingesetzt. Die Reaktionstemperatur beträgt 20 bis 180°C, bevorzugt 60 bis 100°C, und die Reaktionszeit beträgt in Abhängigkeit von der geforderten Titan- bzw. Zirkonbelegung 30 min bis zu mehreren Stunden, bevorzugt 1 bis 2 Stunden.
Die auf diese Weise hergestellte Katalysatorkomponente A wird abschließend bei einer Temperatur von 0 bis 100°C, bevorzugt von 10 bis 60°C, durch wiederholtes Waschen mit einem inerten Kohlenwasserstoff von löslichen Komponenten, wie Metall- oder Halogenverbindungen befreit.
Die erfindungsgemäß hergestellte Katalysatorkomponente A liegt in Form von kugelförmigen Teilchen vor, deren mittlerer Durchmesser 20 bis 150 µm, bevorzugt 40 bis 80 µm, beträgt und die ein Verhältnis von mittlerem Durchmesser in Masse, Dm, zu mittlerem Durchmesser in Zahl, Dn, von kleiner 1,5, vorzugsweise 1,02 bis 1,3, aufzuweisen.
Zur Erhöhung der mechanischen Stabilität kann die Katalysatorkomponente A vor der eigentlichen Polymerisation einer Präpolymerisation unterzogen werden. Dazu wird die Katalysatorkomponente A in einen Reaktor überführt, in dem ein Suspensionsmittel und Aluminiumalkyl vorgelegt wurden.
Als Suspensionsmittel dient ein gesättigter Kohlenwasserstoff mit 3 bis 15 Kohlenstoffatomen, wie zum Beispiel Propan, Butan, Pentan, Hexan, Heptan, Octan, Nonan, Decan, Cyclohexan oder Gemische derartiger Verbindungen oder deren Isomeren.
Das Aluminiumalkyl ist ein solches mit 1 bis 20 Kohlenstoffatomen in den Alkylresten, wie es unter Komponente B beschrieben wird.
Die Präpolymerisation wird bei einer Temperatur von 50 bis 110°C, vorzugsweise 50 bis 95°C, einem Druck von 0,5 bis 20 bar, vorzugsweise 0,5 bis 8 bar, während einer Zeit von 0,5 bis 6 h, vorzugsweise 0,5 bis 1,5 h durchgeführt.
Die Komponente A wird in Form einer Suspension in einem inerten Kohlenwasserstoff, oder aber nach Abtrennen des Suspensionsmittels trocken oder als Präpolymerisat zur Polymerisation von α-Olefinen eingesetzt.
Bevorzugt ist die Polymerisation von Ethylen oder Propylen oder die Copolymerisation von Ethylen mit Propylen oder die Copolymerisation von Ethylen oder Propylen mit einem α-Olefin mit 4 bis 10 Kohlenstoffatomen und einer oder mehreren Doppelbindungen, wie z. B. 1-Buten, Isobuten, 4-Methylpenten, 1-Hexen oder 1,3-Butadien.
Die Polymerisation wird sowohl kontinuierlich als auch diskontinuierlich in Suspension in einem gesättigten Kohlenwasserstoff mit 3 bis 15 Kohlenstoffatomen, wie z. B. Propan, Butanen, Pentanen, Hexanen, Heptanen, Octanen, Nonanen, Cyclohexanen oder Gemischen derartiger Verbindungen oder kontinuierlich in der Gasphase durchgeführt. Bevorzugt ist die Polymerisation in der Gasphase.
Im allgemeinen wird Wasserstoff als Molmassenregler verwendet.
Als Komponente B (Cokatalysator) wird eine metallorganische Verbindung der Gruppe I bis III des Periodensystems eingesetzt. Bevorzugt wird eine Aluminiumverbindung der Formel AlR6 pY3-p eingesetzt, worin p 1, 2 oder 3 und R6 ein Alkyl- oder Arylrest mit 1 bis 20 Kohlenstoffatomen, Y Wasserstoff, ein Halogenatom oder eine Alkoxy- oder Aryloxygruppe mit jeweils 1 bis 20 Kohlenstoffatomen ist.
Beispiele sind Aluminiumtrialkyle oder Aluminiumalkylhydride, weiterhin halogenhaltige aluminiumorganische Verbindungen, wie Dialkylaluminiumhalogenide, Alkylaluminiumdihalogenide oder Alkylaluminiumsesquichloride, die allein oder im Gemisch eingesetzt werden können. Besonders bevorzugt werden als aluminiumorganische Verbindungen chlorfreie Verbindungen eingesetzt. Hierfür eignen sich einerseits Aluminiumtrialkyle AlR6 3 oder Aluminiumdialkylhydride der Formel AlR6 2H, in denen R6 ein Alkylrest mit 1 bis 20 Kohlenstoffatomen bedeutet. Beispiele sind Al(CH3)3, Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(iC4H9)3, Al(iC4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(iC4H9)(C12H25)2.
Andererseits eignen sich als chlorfreie aluminiumorganische Verbindungen auch die Umsetzungsprodukte von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit Kohlenwasserstoffresten mit 1 bis 6 Kohlenstoffatomen, vorzugsweise Al(iC4H9)3 oder Al(iC4H9)2H, mit 4 bis 20 Kohlenstoffatome enthaltenden Diolefinen, vorzugsweise Isopren. Beispielsweise sei Aluminiumisoprenyl genannt.
Es können auch Mischungen von metallorganischen Verbindungen der I. bis III. Gruppe des Periodensystems, insbesondere Mischungen verschiedener aluminiumorganischer Verbindungen eingesetzt werden.
Beispielsweise seien folgende Mischungen genannt:
Al(C2H5)3 und Al(iC4H9)3, Al(C2H5)2Cl und Al(C8H17)3, Al(C2H5)3 und Al(C8H17)3, Al(C4H9)2H und Al(C8H17)3, Al(C4H9)3 und Al(C8H17)3, Al(C2H5)3 und Al(C12H25)3, Al(C4H9)3 und Al(C12H25)3, Al(C2H5)3 und Al(C16H33)3, Al(C3H7)3 und Al(C18H37)2(iC4H9) und Aluminiumisoprenyl (Umsetzungsprodukt von Isopren mit Al(iC4H9)3 oder Al(iC4H9)2H).
Die Komponente A kann als Suspension direkt mit der Komponente B umgesetzt werden; sie kann jedoch zunächst als Feststoff isoliert, gelagert und zur späteren Weiterverwendung resuspendiert werden.
Das Mischen der Komponente A und der Komponente B kann vor der Polymerisation in einem Rührkessel bei einer Temperatur von -30 bis 150°C, vorzugsweise -10 bis 120°C erfolgen. Es ist auch möglich, die beiden Komponenten direkt im Polymerisationskessel bei einer Polymerisationstemperatur von 20 bis 150°C zu vereinigen. Die Zugabe der Komponente B kann jedoch auch in zwei Schritten erfolgen, indem vor der Polymerisationsreaktion die Komponente A mit einem Teil der Komponente B bei einer Temperatur von -30 bis 150°C umgesetzt wird und die weitere Zugabe der Komponente B in dem Polymerisationsreaktor bei einer Temperatur von 20 bis 200°C erfolgt.
Die Polymerisationstemperatur beträgt 50 bis 150°C, bevorzugt 50 bis 100°C, und der Druck 1 bis 40 bar, vorzugsweise 3 bis 25 bar.
Besonders vorteilhaft wird der oben beschriebene Katalysator in dem in den Figuren dargestellten Gasphasen-Polymerisations-Verfahren eingesetzt.
Bezugszeichenliste
(1) Reaktor oder erster Reaktor
(11) Gasverteiler
(12) Wirbelbett
(13) Kreisgasleitung
(14) Verdichter
(15) Wärmetauscher
(16) Zuleitung
(17) Abgasleitung
(18) Zuleitung
(19) Austragsleitung
(2) zweiter Reaktor
(21) Gasverteiler
(22) Wirbelbett
(23) Kreisgasleitung
(24) Verdichter
(25) Wärmetauscher
(26) Zuleitung
(27) Abgasleitung
(29) Austragsleitung
(3) Vorratsbunker
(31) Absperrorgan
(32) Entnahmeleitung
(33) Zuleitung
(34) Ableitung
(35) Absperrorgan
[41] Füllstandsmessung
[42] Druckmessung
[43] Temperaturmessung
[44] Druckdifferenzmessung
[45] Volumenstrommessung
[46] Gasanalytik
Fig. 1 zeigt die für ein einstufiges Polymerisationsverfahren verwendete Apparatur. Der Reaktor (1) mit Gasverteiler (11) ist mit einer Kreisgasleitung (13) versehen. In dieser Kreisgasleitung (13) ist ein Verdichter (14) angeordnet, dem ein Wärmetauscher (15) nachgeschaltet ist. Vor dem Verdichter (14) mündet eine Zuleitung (16) in die Kreisgasleitung (13). Eine weitere Zuleitung (18) führt in den Reaktor (1). Am Kopf des Reaktors (1) befindet sich eine Abgasleitung (17) in der Kreisgasleitung (13). Über die Austragsleitung (19) und das Absperrorgan (31) kann der Reaktor (1) in einen Vorratsbunker (3), welcher mit einer Entnahmeleitung (32) versehen ist, entleert werden. Der Vorratsbunker (3) kann über die Zuleitungen (33) und die Ableitung (34) mit einem inerten Gas gespült werden. Die Apparatur ist mit Geräten zur Füllstandsmessung [41], zur Druckmessung [42], zur Temperaturmessung [43], zur Druckdifferenzmessung [44], zur Volumenstrommessung [45] und zur Bestimmung der Gaszusammensetzung (Gasanalytik) [46] ausgerüstet.
Fig. 2 zeigt die für ein zweistufiges Polymerisationsverfahren verwendete Apparatur. Die in Fig. 1 beschriebene Apparatur ist ergänzt durch einen zweiten Reaktor (2) mit Gasverteiler (21), der durch die Austragsleitung (19) mit dem Reaktor (1) verbunden ist. Der Reaktor (2) ist mit einer Kreisgasleitung (23) versehen, in welcher ein Verdichter (24) mit nachgeschaltetem Wärmetauscher (25) eingefügt ist. Eine Zuleitung (26) führt vor dem Verdichter (24) in die Kreisgasleitung (23) und am Kopf des Reaktors (2) befindet sich eine Abgasleitung (27). Über eine Austragsleitung (29) mit Absperrorgan (31) kann der Reaktor (2) in den Vorratsbunker (3) entleert werden. Auch der zweite Reaktor ist mit Geräten zur Füllstandsmessung [41], zur Druckmessung [42], zur Temperaturmessung [43], zur Druckdifferenzmessung [44], zur Volumenstrommessung [45] und zur Bestimmung der Gaszusammensetzung (Gasanalytik) [46] ausgerüstet.
Ein grobkörniges, aus kugelförmigen Teilchen bestehendes Wirbelbett (12) wird in den Reaktor (1) gefüllt. In Bodennähe des Reaktors befindet sich der Gasverteiler (11), der das Wirbelbett (12) im Ruhezustand trägt und im Betriebszustand für das im Wirbelgas (Kreisgas) enthaltene feinkörnige Polymere durchlässig ist. Das Reaktionsgas wird durch die Kreisgasleitung (13) unter den Gasverteiler (11) geführt und wirbelt das Wirbelbett (12) nach Durchtritt durch den Gasverteiler (11) vollständig auf. Die Durchmischung des Wirbelbettes (12) durch das Kreisgas kann jedoch auch unterhalb des sogenannten "Wirbelpunktes" erfolgen. Zusätzlich kann der Reaktor (1) mit einem Rührorgan ausgestattet werden, welches auch wandgängig sein kann. Der Kreisgasstrom wird durch einen Verdichter (14) erzeugt. Die Polymerisationswärme wird durch einen Wärmetauscher (15) abgeführt.
Der Katalysator wird als trockener Feststoff, oder suspendiert in einem leichtsiedenden Kohlenwasserstoff, wie beispielsweise Propan, Butan oder Pentan oder als Paste, oberhalb des Gasverteilers (11) seitlich durch die Zuleitung (18) dosiert. Die Zuführung des Katalysators erfolgt vorzugsweise unterhalb der Oberfläche des Wirbelbettes (12). Die Katalysator führende Leitung (18) kann mit einem inerten Gas gespült werden.
Die Reaktanden Ethylen, Wasserstoff, Comonomer (beispielsweise Propylen, Buten, Methylpenten, Hexen) und Cokatalysator (beispielsweise Triethylaluminium, Isoprenylaluminium, Triisobutylaluminium, Ethylaluminiumsesquichlorid), wie auch der Hilfsstoff Stickstoff, werden vor dem Verdichter (14) durch die Leitung (16) in das Kreisgas eingeleitet. Durch die Leitung (17) wird Abgas entnommen. Der Abgasmengenstrom kann gegebenenfalls durch eine Regeleinrichtung kontrolliert werden.
Alle an der Apparatur erfaßten Meßwerte können vorteilhaft einem Prozeßleitsystem zugeleitet und zur Prozeßsteuerung herangezogen werden.
Das freifließende Polymerpulver wird über eine Austragsleitung (19) in einen Vorratsbunker (3) ausgetragen. Die Austragsleitung (19) enthält ein Absperrorgan (31), welches aus einer Schleuse oder aus zwei hintereinander­ geschalteten taktweise betriebenen Ventilen bestehen kann, so daß der Austrag kontinuierlich oder quasikontinuierlich erfolgt. Die Austragsleitung (19) ist durch ein genügend großes Gefälle als Falleitung ausgestaltet. Der Vorratsbunker (3) kann durch die Zuleitungen (33) und die Ableitung (34) mit einem Inertgas, beispielsweise Stickstoff, gespült werden, um das Monomere aus dem Produkt zu entfernen. Dabei ist es möglich, das Produkt kontinuierlich durchzusetzen und mit dem Inertgas zu spülen.
Das Verfahren kann einstufig (Fig. 1) oder mehrstufig (Fig. 2) betrieben werden. Fig. 2 zeigt schematisch die zweistufige Betriebsweise. Wie aus der Darstellung hervorgeht, entsprechen die einzelnen Stufen der mehrstufigen Fahrweise im wesentlichen dem einstufigen Verfahren. Das Produkt aus der ersten Stufe gelangt über die Leitung (19) und ein Absperrorgan (35) (welches dem Absperrorgan (31) entspricht) innerhalb des Wirbelbettes (22) in den Reaktor (2). Im Gegensatz zur ersten Stufe fehlt hier die Katalysator-Dosierung. Die Austragsleitung (29) ist als Falleitung ausgebildet und führt das Polymere in den Vorratsbunker (3). In diesem Falle enthält die Leitung (29) das Absperrorgan (31).
Die Teilchen der nach dem erfindungsgemäßen Verfahren hergestellten Polymerisate und Copolymerisate zeichnen sich durch eine kompakte, gleichmäßige kugelförmige Gestalt mit einer sehr engen Korngrößenverteilung aus. Das Verhältnis von mittlerem Durchmesser in Masse, Dm, zu mittlerem Durchmesser in Zahl, Dn, ist kleiner 1,5, vorzugsweise von 1,02 bis 1,3. Das Verhältnis D/d liegt im Bereich von 1,05 bis 1,2. Der Durchmesser des Polymerkorns liegt im Bereich von 100 bis 1500 µm, vorzugsweise 300 bis 1000 µm. Die Polymeren besitzen eine hohe Schüttdichte.
Ein weiterer Vorteil des erfindungsgemäßen Katalysators liegt in der hohen Katalysatoraktivität, so daß nur sehr geringe Mengen des Katalysators für die Polymerisation notwendig sind. Dadurch müssen die Polymerisate auch keiner zusätzlichen Nachbehandlung, wie beispielsweise aufwendigen Wasch- oder Reinigungsoperationen, unterworfen werden. Weiterhin treten keine unerwünschten Verfärbungen des Produktes durch Katalysatorreste auf.
Der Restgehalt an Titan und/oder Zirkonium in den erfindungsgemäß hergestellten Polymeren beträgt weniger als 10 ppm, vorzugsweise weniger als 3 ppm.
Durch seine gute Wasserstoffansprechbarkeit ist der Katalysator besonders in zweistufigen Verfahren zur Herstellung von Polymeren mit einer breiten, bimodalen Molmassenverteilung geeignet.
Der Ersatz von schwefelhaltigen Elektronen-Donatoren wie Diethylsulfit durch Alkohole wie Ethanol führt zu einer Beseitigung der Geruchsbelästigung und zu erweiterten Einsatzmöglichkeiten des Polymeren.
Durch die kugelförmige Gestalt der Teilchen und die damit verbundene sehr gute Rieselfähigkeit der Polymerisate und Copolymerisate werden erhebliche Vereinfachungen und Vorteile bei der Handhabung, Trocknung und Verarbeitung erzielt.
Die Erfindung wird nachfolgend durch die Beispiele näher erläutert.
Der Schmelzindex MFI (190/5) wurde nach DIN 53 735 bei 190°C und bei einer Belastung von 5 kp bestimmt.
Das Verhältnis Dm zu Dn wurde nach NF X 11-630 vom Juni 1981 bestimmt:
Dm = [Σni(Di)3Di]/[Σni(Di)3]
Dn = [ΣniDi]/Σni
ni = Anzahl der Proben gleichen Durchmessers
Di = Durchmesser der i-ten Probe
Die Korngrößenverteilung Dm/Dn der Komponente A wurde mittels Bildanalyse ermittelt.
Beispiel 1
Zu 306 cm3 einer Lösung von Butyloctylmagnesium (285 mmol Mg) der ungefähren Zusammensetzung [(n-C4H9)1,5(n-C8H17)0,5Mg], welche unter dem Namen ®BOMAG-A in Handel erhältlich ist, in Heptan wurden innerhalb von 90 min bei 70 bis 80°C 27,7 cm3 (285 mmol) CCl4 in 140 cm3 Benzin (Siedebereich 100/120°C) gegeben. Anschließend wurde der Ansatz 120 min bei 85°C gerührt. Die dabei resultierende Suspension wurde innerhalb von 5 Minuten bei einer Temperatur von 85°C mit einer Mischung aus 7,6 cm3 (130 mmol) absolutem Ethanol und 8,4 cm3 Benzin (Siedebereich 100/120°C) versetzt und anschließend eine Stunde bei 85°C gerührt. Danach wurden 18,9 cm3 (171 mmol) TiCl4 bei einer Temperatur von 93 bis 97°C innerhalb von 10 Minuten zugetropft. Die Suspension wurde zwei Stunden bei 98°C gerührt und anschließend 6 × mit je 700 cm3 Benzin (Siedebereich 100/120°C) bei 50 bis 60°C gewaschen. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,037 : 2,12.
Dm/Dn = 1,18.
Beispiel 2
306 cm3 einer Lösung von Butyloctylmagnesium (285 mmol Mg; wie in Beispiel 1) in Heptan wurden innerhalb von 90 min mit einer Lösung von 49 cm3 (605 mmol) CHCl3 in 140 cm3 Benzin (Siedebereich 100/120°C) versetzt und danach noch 120 min bei 75 bis 77°C gerührt. Die dabei resultierende Suspension wurde bei 85°C innerhalb von 15 Minuten mit einer Mischung aus 3,6 cm3 (62 mmol) absolutem Ethanol und 12,4 cm3 Benzin (Siedebereich 100/120°C) versetzt und anschließend bei 85°C eine Stunde gerührt. Danach wurden 31,4 cm3 (285 mmol) TiCl4 bei einer Temperatur von 85°C innerhalb von 25 Minuten zugetropft. Die Suspension wurde für 2 Stunden bei 94°C gerührt und anschließend 6 × mit je 700 cm3 Benzin (Siedebereich 100/120°C) bei 50 bis 60°C gewaschen. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,031 : 2,03.
Dm/Dn = 1,12.
Beispiel 3
Es wurde analog dem Beispiel 2 verfahren, jedoch wurden statt Ethanol 26,2 cm3 (125 mmol) Tetraethylorthotitanat zugegeben. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,174 : 2,22.
Dm/Dn = 1,08.
Beispiel 4
Es wurde analog Beispiel 1 verfahren, jedoch wurden zusätzlich zu 15 mmol Ethanol 110 mmol Tetraethylorthotitanat zugegeben. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,103 : 2,18.
Dm/Dn = 1,15.
Beispiel 5
Es wurde analog dem Beispiel 2 verfahren, jedoch wurden statt 3,6 cm3 Ethanol 5,25 cm3 (90 mmol) Ethanol mit 10,75 cm3 Benzin (Siedebereich 100/120°C) gemischt und bei Raumtemperatur umgesetzt. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,003 : 2,05.
Dm/Dn = 1,2.
Beispiel 6
Es wurde analog Beispiel 5 verfahren, jedoch wurde das Ethanol/Benzingemisch bei 85°C zugegeben. Anschließend wurden 150 cm3 (entsprechend 2,66 mmol Titan) der Katalysatorsuspension entnommen und mit 2,26 cm3 einer 1-molaren Triethylaluminium-Lösung versetzt. Die Mischung wurde 2 h bei 120°C gerührt. Anschließend waren 46% des Titan (IV) zu Titan (Ill) reduziert. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,029 : 2,04.
Beispiel 7
Es wurde analog Beispiel 6 verfahren, jedoch wurden 1,33 cm3 einer 1-molaren Triethylaluminium-Lösung verwendet. Die Umsetzung erfolgt über 2 Stunden bei Raumtemperatur. Anschließend waren 25% des Titan (IV) zu Titan (III) reduziert. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von Mg : Ti : Cl = 1 : 0,003 : 2,05.
Beispiel 8
In einem 1,5 dm3 Stahlautoklaven wurden 690 cm3 Benzin (Siedebereich 100/120°C), 20 mmol Triethylaluminium und 93,2 cm3 (entsprechend 10 mmol Titan) der Katalysatorsuspension aus Beispiel 3 vorgelegt. Anschließend wurden 2 bar Argon und 1,1 bar Wasserstoff aufgedrückt, die Präpolymerisation fand nach Zugabe von Ethylen bei einem Gesamtdruck von 6 bar und einer Temperatur von 65°C innerhalb einer Stunde statt.
Beispiel 9
Es wurde analog Beispiel 2 verfahren, jedoch wurde auf die Zugabe von Ethanol verzichtet. Die Analyse ergab ein Magnesium:Titan:Chlor-Verhältnis von 1 : 0,018 : 2,03.
Dm/Dn = 1,04.
Beispiele 10 bis 22
Eine Ethylenpolymerisation wurde entsprechend der Tabelle in einem 1,5-dm3- Stahlautoklaven bei einer Temperatur von 85°C und einem Druck von 6 bar in 800 cm3 Benzin (Siedebereich 100/120°C) durchgeführt. Als Komponente B wurden jeweils 1 mmol Triethylaluminium (TEA), 5 mmol Triisobutylaluminium TIBA oder 5 mmol Isoprenylaluminium (IPRA) zugesetzt. Der Anteil an Polymerteilchen < 100 µm betrug < 0,1%.
Tabelle
Ethylenpolymerisation
Beispiel 23
Zur Gasphasenpolymerisation wurde die in Fig. 1 schematisch dargestellte Apparatur verwendet. Der Reaktor wurde vor dem Reaktionsstart mit 20 kg Polyethylen, welches einen mittleren Korndurchmesser von 500 µm aufwies, gefüllt. Bei 80°C und 20 bar wurden 45 m3/h eines Gasgemisches aufwärts durch das Schüttbett geleitet. Das Gasgemisch setzte sich aus Ethylen, Wasserstoff und Stickstoff zusammen. Der Reaktor wurde kontinuierlich mit 2 kg/h Ethylen und mit Katalysator beschickt. Der Katalysator aus Beispiel 2 wurde dazu analog Beispiel 8 einer Vorpolymerisation unterworfen. Die Katalysatormenge wurde so geregelt, daß der Ethylenpartialdruck konstant blieb. Die Dosierung des Wasserstoffs - als Molmassenregler - wurde so geregelt, daß das Verhältnis der Partialdrücke von Ethylen und Wasserstoff konstant blieb. Neben dem Katalysator wurde Triethylaluminium als Cokatalysator in einem Verhältnis von Al/Ti von 200 : 1 dosiert. Das unter diesen Bedingungen erhaltene Polymere besaß einen MFl 190/5 von 3 g/10 min, einen d50-Wert von 600 µm, einen Anteil mit d50 < 200 µm von weniger als 2% und eine Schüttdichte von 500 g/dm3.

Claims (9)

1. Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines α-Olefins bei einer Temperatur von 50 bis 150°C und einem Druck von 1 bis 40 bar in Gegenwart eines Katalysators bestehend aus einer Übergangsmetallkomponente (Komponente A) und einer metallorganischen Verbindung (Komponente B), dadurch gekennzeichnet, daß die Komponente A hergestellt wurde durch
  • a) Umsetzung einer magnesiumorganischen Verbindung der Formel R1 xMgR2 2-x, worin R1 und R2 gleiche oder verschiedene Alkylreste mit 2 bis 12 Kohlenstoffatomen sind und x eine Zahl von 0 bis 2 ist, mit einem aliphatischen primären Chlorkohlenwasserstoff in einer Menge von 0,5 bis 2,5 mol des Chlorkohlenwasserstoffs, bezogen auf 1 mol der magnesiumorganischen Verbindung,
  • b) Behandlung des erhaltenen Feststoffs mit einem Alkohol in einer Menge von 0,001 bis 1 mol pro Grammatom des im Feststoff enthaltenen Magnesiums bei einer Temperatur von -20 bis 150°C, und
  • c) Umsetzung des so erhaltenen Trägermaterials mit einer oder mehreren Verbindungen der Formel M1Xm(OR5)4-m, worin M1 Titan oder Zirkon, R5 ein Alkylrest mit 2 bis 10 Kohlenstoffatomen, X ein Halogenatom und m eine ganze Zahl von 0 bis 4 ist, in einer Menge von 0,1 bis 5 mol pro Grammatom des im Trägermaterial enthaltenen Magnesiums bei einer Temperatur von 20 bis 180°C.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umsetzung der magnesiumorganischen Verbindung mit dem aliphatischen primären Chlorkohlenwasserstoff in Gegenwart einer aluminiumorganischen Verbindung der Formel AlR3 n(OR4)3-n, worin R3 und R4 gleiche oder verschiedene Alkylreste mit 1 bis 8 Kohlenstoffatomen sind und n 0, 1, 2 und 3 bedeutet oder in Gegenwart des Umsetzungsproduktes von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit 4 bis 20 Kohlenstoffatomen enthaltenden Diolefinen, durchgeführt wurde.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Magnesiumdialkyl der Formel [(n-C4H9)1,2-1,7(n-C8H17)0,3-0,8Mg] verwendet wurde.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Alkohol Ethanol verwendet wurde.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Verbindung der Formel M1Xm(OR5)4-m, worin M1, R5 und m die in Anspruch 1 genannte Bedeutung haben, TiCl4 eingesetzt wurde.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schritt b entfällt.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Katalysatorkomponente A einer Präpolymerisation unterzogen wurde.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Polymerisation kontinuierlich ein- oder mehrstufig in einem Gasphasen- Verfahren erfolgt.
9. Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines α-Olefins bei einer Temperatur von 50 bis 150°C und einem Druck von 1 bis 40 bar, ein- oder mehrstufig in einem Gasphasenverfahren, dadurch gekennzeichnet, daß die Apparatur bei einem einstufigen Verfahren besteht aus einem Reaktor (1) mit einem Gasverteiler (11) und einer Kreisgasleitung (13), in welcher ein Verdichter (14) angeordnet ist, dem ein Wärmetauscher (15) nachgeschaltet ist, vor dem Verdichter (14) eine Zuleitung (16) in die Kreisgasleitung (13) mündet, eine weitere Zuleitung (18) in den Reaktor (1) führt, am Kopf des Reaktors (1) sich eine Abgasleitung (17) in der Kreisgasleitung (13) befindet, über eine Austragsleitung (19) und ein Absperrorgan (31) der Reaktor (1) in einen Vorratsbunker (3), welcher mit einer Entnahmeleitung (32) versehen ist, entleert werden kann, und bei einem zweistufigen Verfahren die Apparatur ergänzt wird durch einen zweiten Reaktor (2) mit Gasverteiler (21), der durch die Austragsleitung (19) mit dem Reaktor (1) verbunden ist, der Reaktor (2) mit einer Kreisgasleitung (23) versehen ist, in welcher ein Verdichter (24) und nachgeschaltetem Wärmetauscher (25) eingefügt ist, eine Zuleitung (26) vor dem Verdichter (24) in die Kreisgasleitung (23), am Kopf des Reaktors (2) sich eine Abgasleitung (27) befindet und über eine Austragsleitung (29) mit Absperrorgan (31) der Reaktor (2) in den Vorratsbunker (3) entleert werden kann, und die Polymerisation durchgeführt wird in Gegenwart eines Katalysators bestehend aus einer Übergangsmetallkomponente (Komponente A) und einer metallorganischen Verbindung (Komponente B), dadurch gekennzeichnet, daß die Komponente A hergestellt wurde durch
  • a) Umsetzung einer magnesiumorganischen Verbindung der Formel R1 xMgR2 2-x, worin R1 und R2 gleiche oder verschiedene Alkylreste mit 2 bis 12 Kohlenstoffatomen sind und x eine Zahl von 0 bis 1 ist, mit einem aliphatischen primären Chlorkohlenwasserstoff in einer Menge von 0,5 bis 2,5 mol des Chlorkohlenwasserstoffs, bezogen auf 1 mol der magnesiumorganischen Verbindung, gegebenenfalls in Gegenwart einer aluminiumorganischen Verbindung der Formel AlR3 n(OR4)3-n, worin R3 und R4 gleiche oder verschiedene Alkylreste mit 1 bis 8 Kohlenstoffatomen sind und n 0, 1, 2 und 3 bedeutet oder in Gegenwart des Umsetzungsproduktes von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit 4 bis 20 Kohlenstoffatomen enthaltenden Diolefinen,
  • b) Behandlung des erhaltenen Feststoffs mit einem Alkohol in einer Menge von 0,001 bis 1 mol pro Grammatom des im Feststoff enthaltenen Magnesiums bei einer Temperatur von -20 bis 150°C, und
  • c) Umsetzung des so erhaltenen Trägermaterials mit einer oder mehreren Verbindungen der Formel M1Xm(OR5)4-m, worin M1 Titan oder Zirkon, R5 ein Alkylrest mit 2 bis 10 Kohlenstoffatomen, X ein Halogenatom und m eine ganze Zahl von 0 bis 4 ist, in einer Menge von 0,1 bis 5 mol pro Grammatom des im Trägermaterial enthaltenen Magnesiums bei einer Temperatur von 20 bis 180°C.
DE4306382A 1993-03-02 1993-03-02 Verfahren zur Herstellung eines Poly-1-olefins Withdrawn DE4306382A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE4306382A DE4306382A1 (de) 1993-03-02 1993-03-02 Verfahren zur Herstellung eines Poly-1-olefins
EP94102777A EP0613909B1 (de) 1993-03-02 1994-02-24 Verfahren zur Herstellung eines Poly-1-olefins
AT94102777T ATE159955T1 (de) 1993-03-02 1994-02-24 Verfahren zur herstellung eines poly-1-olefins
SG1996006996A SG52626A1 (en) 1993-03-02 1994-02-24 Process for preparing a poly-1-olefin
ES94102777T ES2111193T3 (es) 1993-03-02 1994-02-24 Procedimiento para la preparacion de una poli-1-olefina.
DE59404496T DE59404496D1 (de) 1993-03-02 1994-02-24 Verfahren zur Herstellung eines Poly-1-olefins
JP03156694A JP3513205B2 (ja) 1993-03-02 1994-03-01 ポリ−1−オレフィンの製造方法
BR9400767A BR9400767A (pt) 1993-03-02 1994-03-01 Processo para a fabricação de uma poliolefina
CA002116752A CA2116752A1 (en) 1993-03-02 1994-03-01 Process for preparing a poly-1-olefin
KR1019940003947A KR100286409B1 (ko) 1993-03-02 1994-03-02 폴리-1-올레핀의 제조방법
US08/576,858 US5798309A (en) 1993-03-02 1995-12-22 Process for preparing a poly-1-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4306382A DE4306382A1 (de) 1993-03-02 1993-03-02 Verfahren zur Herstellung eines Poly-1-olefins

Publications (1)

Publication Number Publication Date
DE4306382A1 true DE4306382A1 (de) 1994-09-08

Family

ID=6481678

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4306382A Withdrawn DE4306382A1 (de) 1993-03-02 1993-03-02 Verfahren zur Herstellung eines Poly-1-olefins
DE59404496T Expired - Lifetime DE59404496D1 (de) 1993-03-02 1994-02-24 Verfahren zur Herstellung eines Poly-1-olefins

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59404496T Expired - Lifetime DE59404496D1 (de) 1993-03-02 1994-02-24 Verfahren zur Herstellung eines Poly-1-olefins

Country Status (10)

Country Link
US (1) US5798309A (de)
EP (1) EP0613909B1 (de)
JP (1) JP3513205B2 (de)
KR (1) KR100286409B1 (de)
AT (1) ATE159955T1 (de)
BR (1) BR9400767A (de)
CA (1) CA2116752A1 (de)
DE (2) DE4306382A1 (de)
ES (1) ES2111193T3 (de)
SG (1) SG52626A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002367755A1 (en) * 2002-11-29 2004-06-23 Borealis Technology Oy Ziegler natta catalyst system and polymerisation process using said zn catalyst system for producing ethylene copolymers having a broad molecular weight distribution
EP1855791A1 (de) * 2005-01-26 2007-11-21 Ineos Europe Limited Vorrichtung und verfahren zum abziehen von polymer aus einem gasphasenpolymerisationsreaktor
JP5420864B2 (ja) * 2008-08-01 2014-02-19 住友化学株式会社 気相重合装置およびオレフィンの重合方法
ES2700449T3 (es) * 2015-02-23 2019-02-15 Indian Oil Corp Ltd Procedimiento para preparar un catalizador para la polimerización de olefinas y polimerización
JP6902965B2 (ja) * 2017-08-29 2021-07-14 住友化学株式会社 ポリオレフィンの製造方法
US20240082803A1 (en) * 2019-10-25 2024-03-14 Exxonmobil Chemical Patents Inc. Fluidized bed reactor systems
JP2023549001A (ja) * 2021-10-08 2023-11-22 エルジー・ケム・リミテッド 反応液移送システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE99284C (de) *
CA920299A (en) * 1968-08-01 1973-01-30 Mitsui Petrochemical Industries Process for the polymerization and/or copolymerization of olefins with use of ziegler-type catalytsts supported on carrier
IT1042711B (it) * 1975-09-19 1980-01-30 Montedison Spa Compnenti di catalizzatori per la polimerizzazione di olefine
US4252670A (en) * 1979-01-10 1981-02-24 Imperial Chemical Industries Limited Olefine polymerization catalyst
ZA801724B (en) * 1979-04-01 1981-03-25 Stamicarbon Catalytic titanium compound,process for the manufacture thereof,and process for the polymerization of lakenes-1 with application of such a titanium component
CA1129400A (en) * 1979-09-28 1982-08-10 Masayasu Furusato PROCESS FOR POLYMERIZING .alpha.-OLEFINS
US4363902A (en) * 1980-03-17 1982-12-14 Wacker-Chemie Gmbh Process and heavy metal catalyst for the polymerization of α-olefins, particularly polyethylene
DE3010202A1 (de) * 1980-03-17 1981-09-24 Wacker-Chemie GmbH, 8000 München Verfahren zur polymerisation von (alpha)-olefinen
JPS57205407A (en) * 1981-06-11 1982-12-16 Toyo Sutoufuaa Chem:Kk Catalytic component for alpha-olefin polymerization and homopolymerization or copolymerization of alpha-olefin
JPS57205408A (en) * 1981-06-11 1982-12-16 Toyo Sutoufuaa Chem:Kk Catalytic component for alpha-olefin polymerization and homopolymerization or copolymerization of alpha-olefin
FR2529207A1 (fr) * 1982-06-24 1983-12-30 Bp Chimie Sa Procede pour la preparation de supports de catalyseurs pour la polymerisation des alpha-olefines et supports obtenus
FR2529209A1 (fr) * 1982-06-24 1983-12-30 Bp Chimie Sa Catalyseurs pour la polymerisation et la copolymerisation du propylene et procedes de polymerisation utilisant ces catalyseurs
US4562169A (en) * 1984-10-04 1985-12-31 Mobil Oil Corporation Alpha-olefins polymerization catalyst of high productivity
DE3620060A1 (de) * 1986-06-14 1987-12-17 Hoechst Ag Verfahren zur herstellung eines polyolefins
JPH0667978B2 (ja) * 1986-08-21 1994-08-31 出光石油化学株式会社 ブテン−1重合体の製造方法
DE4019925A1 (de) * 1990-06-22 1992-01-02 Hoechst Ag Verfahren zur herstellung eines polyolefins
IT1243829B (it) * 1990-10-11 1994-06-28 Enimont Anic Srl Componente solido di catalizzatore per la omo-e la co-polimerizzazione di etilene.
JPH0625347A (ja) * 1992-03-28 1994-02-01 Hoechst Ag 球形の触媒成分の製造方法

Also Published As

Publication number Publication date
EP0613909B1 (de) 1997-11-05
ATE159955T1 (de) 1997-11-15
JP3513205B2 (ja) 2004-03-31
US5798309A (en) 1998-08-25
BR9400767A (pt) 1994-10-18
ES2111193T3 (es) 1998-03-01
JPH06322017A (ja) 1994-11-22
KR100286409B1 (ko) 2001-04-16
DE59404496D1 (de) 1997-12-11
EP0613909A1 (de) 1994-09-07
KR940021588A (ko) 1994-10-19
SG52626A1 (en) 1998-09-28
CA2116752A1 (en) 1994-09-03

Similar Documents

Publication Publication Date Title
DE2952579C2 (de)
EP0302242B2 (de) Verfahren zur Herstellung eines Polyolefins mit einer breiten Molmassenverteilung
EP0526891B1 (de) Verfahren zur Herstellung von Ethylen(co)polymeren
EP0069951A1 (de) Verfahren zur Herstellung von Polyolefinen
WO2002094891A2 (de) Verfahren zur herstellung von olefinpolymeren sowie ausgewählte katalysatoren
DE3021469A1 (de) Aethylenpolymere, verfahren zu ihrer herstellung und ihre verwendung
DE2844312A1 (de) Verfahren zur herstellung von pulverigen aethylencopolymerisaten
DE2714743A1 (de) Polyaethylen niederer dichte und verfahren zu seiner herstellung
WO2002026841A1 (de) Verfahren zur voraktivierung von katalysatoren
EP0401776B1 (de) Verfahren zur Herstellung eines poly-1-olefins
DE3004768C2 (de)
EP0613909B1 (de) Verfahren zur Herstellung eines Poly-1-olefins
EP0652236B1 (de) Verfahren zur Herstellung eines Poly-1-olefins
EP0531838B1 (de) Verfahren zur Herstellung von Ziegler-Natta-Katalysatorsystemen
EP0535023B1 (de) Verfahren zur herstellung eines polyolefins
DE3538099A1 (de) Verfahren zur homo- und mischpolymerisation von olefinen
EP0849285B1 (de) Verfahren zur Gasphasenpolymerisation von C2-C8-Alk-1-enen mittels Ziegler-Natta- oder Metallocen-Katalysatorsystemen
DE2636125A1 (de) Verfahren zur polymerisation von alkenen-1
EP0810233B1 (de) Verfahren zur Herstellung von Polymerisaten von C2- bis C12-Alkenen unter Zusatz eines Reaktionsverzögerers
EP0136623B1 (de) Verfahren zur Homo- und Misch-polymerisation v. Ethylen
EP0531834B1 (de) Verfahren zur Herstellung von Ziegler-Natta-Katalysatorsystemen
DE3227447C2 (de)
EP1373333B1 (de) Verfahren zur dosierung von katalysatoren
EP0249869B1 (de) Verfahren zur Herstellung eines Polyolefins
EP0476432B1 (de) Verfahren zur Herstellung von Ethylen(co-)polymeren

Legal Events

Date Code Title Description
8141 Disposal/no request for examination