DE69111719T3 - Stabile mikroblasensuspensionen zur injektion in lebewesen. - Google Patents

Stabile mikroblasensuspensionen zur injektion in lebewesen. Download PDF

Info

Publication number
DE69111719T3
DE69111719T3 DE69111719T DE69111719T DE69111719T3 DE 69111719 T3 DE69111719 T3 DE 69111719T3 DE 69111719 T DE69111719 T DE 69111719T DE 69111719 T DE69111719 T DE 69111719T DE 69111719 T3 DE69111719 T3 DE 69111719T3
Authority
DE
Germany
Prior art keywords
gas
air
suspension
microbubbles
phospholipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69111719T
Other languages
English (en)
Other versions
DE69111719D1 (de
DE69111719T2 (de
Inventor
Michel Schneider
Daniel Bichon
Philippe Bussat
Jerome Puginier
Eva Hybl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bracco International BV
Original Assignee
Bracco International BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8205915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69111719(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bracco International BV filed Critical Bracco International BV
Publication of DE69111719D1 publication Critical patent/DE69111719D1/de
Application granted granted Critical
Publication of DE69111719T2 publication Critical patent/DE69111719T2/de
Publication of DE69111719T3 publication Critical patent/DE69111719T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/227Liposomes, lipoprotein vesicles, e.g. LDL or HDL lipoproteins, micelles, e.g. phospholipidic or polymeric

Description

  • Die vorliegende Erfindung betrifft injizierbare Suspensionen von Luft- oder Gas-Mikrobläschen, die durch eine Flüssigkeits-Gas-Grenzschicht begrenzt werden, in einer physiologisch verträglichen, wäßrigen Trägerphase, wobei die Luft- oder Gas-Mikrobläschen nicht in Liposomenvesikel verkapselt sind, geeignet zur Ultraschall-Echographie des Blutstroms oder von Körperhohlräumen von Lebewesen, wobei die Suspensionen von etwa 0,01 bis etwa 20 Gew.-% gelöste oder dispergierte oberflächeaktive Stoffe enthalten, dadurch gekennzeichnet, daß mindestens einer der oberflächenaktiven Stoffe ein filmbildendes Phospholipid ist, das in der Suspension zumindest teilweise in lamellarer oder laminarer Form vorliegt, und daß die Suspensionen kein Eisen(III)salz enthalten.
  • Die Erfindung betrifft auch Verfahren zur Herstellung der erfindungsgemäßen Suspensionen und die Verwendung trockener Zusammensetzungen, die nach Mischen mit einer wäßrigen Trägerflüssigkeit die o.g. sterilen Suspensionen von Mikrobläschen bilden, die danach als Kontrastmittel zur Ultraschall-Echographie und zu weiteren Zwecken verwendbar sind.
  • Es ist bekannt, daß Mikrokörper, wie Mikrosphären oder Mikrokügelchen aus Luft oder Gas, z.B. Mikrobläschen oder Mikroballons, die in einer Flüssigkeit suspendiert wurden, hervorragend als Ultraschall-Reflektoren zur Echographie zu gebrauchen sind. In dieser Offenbarung bezeichnet der Begriff "Mikrobläschen" insbesondere Luft- oder Gaskügelchen in Suspension in einer Flüssigkeit, die im wesentlichen bei der Einleitung von Luft oder Gas in verteilter Form entsteht, wobei die Flüssigkeit vorzugsweise auch Surfactanten oder Tenside zur Steuerung ihrer Oberflächen-Eigenschaften und der Stabilität der Bläschen enthält. Insbesondere sollte man berücksichtigen, daß das innere Volumen der Mikrobläschen durch die Gas/Flüssigkeits-Grenzphase limitiert wird oder in anderen Worten, daß die Mikrobläschen nur von einer flüchtigen Schicht begrenzt werden, die eine leichte Bin dung der Moleküle der Flüssigkeit und des Tensides an die Gas-Flüssigkeits-Grenzphase umfaßt.
  • Im Gegensatz dazu beschreibt der Begriff "Mikrokapsel" oder "Mikroballon" vorzugsweise Luft- oder Gaskörper mit einer materiellen Begrenzung oder Schicht, die von anderen Molekülen als denen der Flüssigkeit der Suspension gebildet wird, z.B. einer polymeren Membranwand. Sowohl Mikrobläschen als auch Mikroballons können als Ultraschall-Kontrastmittel verwendet werden. Beispielsweise wird die Injektion von Gasmikrobläschen oder Mikroballons (im Bereich von 0,5 bis 10 μm) in einer Trägerflüssigkeit in den Blutstrom von Lebewesen die Ultraschall-Echographie-Abbildung deutlich verstärken, wodurch die Darstellung der inneren Organe erleichtert wird. Die Darstellung von Gefäßen und inneren Organen kann die medizinische Diagnose wesentlich unterstützen, beispielsweise beim Nachweis von kardiovaskulären und anderen Erkrankungen.
  • Die Entstehung von Suspensionen aus Mikrobläschen in einem injizierbaren, flüssigen Träger, der zur Echographie geeignet ist, kann auf verschiedene Arten erfolgen. Die DE-A-3 529 195 (Max-Planck-Gesell.) offenbart beispielsweise ein Verfahren zur Herstellung von 0,5 bis 50 μm-Bläschen, bei dem eine wäßrige, emulgierte Mischung, die ein wasserlösliches Polymer, ein Öl und Mineralsalze enthält, mit einer geringen Menge Luft durch eine kleine Öffnung von einer Spritze in eine andere vor- und zurückgedrückt wird. Die mechanischen Kräfte sind dabei für die Bildung der Bläschen in der Flüssigkeit verantwortlich.
  • M.W. Keller et al. ( J. Ultrasound Med. 5 (1986), 439-8) haben beschrieben, daß Lösungen, die hohe Konzentrationen an gelösten Stoffen wie Dextrose, Renografin-76, Iopamidol (ein Röntgen-Kontrastmittel) und ähnliche enthalten, einer Hohlraumbildung durch Ultraschall unter atmosphärischem Druck unterworfen wurden. Dabei wird die Luft durch die Energie der Hohlraumbildung in die Lösung gedrückt.
  • Weitere Verfahren beruhen auf dem Schütteln einer Trägerflüssigkeit, in die lufthaltige Mikropartikel gegeben wurden, wobei die Trägerflüssigkeit normalerweise viskositätsverstärkende Agentien, z.B. wasserlösliche Polypeptide oder Kohlenhydrate und/oder Tenside, als Stabilisatoren enthält. Dabei wird im Ergebnis festgestellt, daß die Stabilität der Mikrobläschen gegenüber Abbau oder Verflüchtigung in die Atmosphäre durch die Viskosität und Oberflächeneigenschaften der Trägerflüssigkeit bestimmt wird. Die Luft oder das Gas in den Mikropartikeln kann aus interpartikulär oder intrakristallin eingeschlossenem Gas sowie aus Oberflächen-adsorbiertem Gas oder aus Gas bestehen, das durch Reaktion mit der normalerweise wäßrigen Trägerflüssigkeit hergestellt wurde. Diese Zusammenhänge werden umfassend beispielsweise in der EP-A-52.575 (Ultra Med. Inc.) beschrieben, in der Aggregate von 1 bis 50 μm-Partikeln aus Kohlenhydraten (z.B. Galactose, Maltose, Sorbitol, Gluconsäure, Sucrose, Glukose und ähnliche) in wäßriger Lösung aus Glykolen oder Polyglykolen oder anderen wasserlöslichen Polymeren verwendet werden.
  • Auch in EP-A-123.235 und 122.624 (Schering, siehe EP-A-320.433) wird Luft verwendet, die in Festkörpern eingeschlossen ist. EP-A-122.624 beispielsweise beansprucht eine flüssige Zusammensetzung für ein Kontrastmittel zur Ultraschall-Echographie, die Mikropartikel eines festen Tensides enthält, wobei letzteres gegebenenfalls mit Mikropartikeln eines Nicht-Tensides vermischt sein kann. Wie in diesem Dokument offenbart wird, resultiert die Bildung von Luft-Bläschen in der Lösung aus der Freisetzung der Luft, die auf der Oberfläche der Partikel adsorbiert oder im Gitter der Partikel eingeschlossen oder zwischen einzelnen Partikeln gebunden wurde, was durch Vermischen der Partikel mit dem flüssigen Träger erreicht wird.
  • EP-A-131.540 (Schering) offenbart ebenfalls die Herstellung von Mikrobläschen-Suspensionen, in denen eine stabilisierte, injizierbare Trägerlässigkeit, z.B. eine physiologische, wäßrige Lösung aus Salz oder eine Lösung eines Zuckers, wie Maltose, Dextrose, Lactose oder Galactose, ohne Viskositäts-Verstärker mit Mikropartikeln (im Bereich von 0,1 bis 1 μm) desselben Zuc kers vermischt wird, der die eingeschlossene Luft enthält. Damit sich die Suspension der Bläschen in der Trägerflüssigkeit entwickeln kann, empfehlen die o.g. Dokumente, daß die flüssige und die feste Komponente unter sterilen Bedingungen heftig miteinander vermischt werden. Das Vermischen der beiden Komponenten wird in wenigen Sekunden durchgeführt und nach der Herstellung muß die Suspension sofort verwendet werden, d.h. sie sollte innerhalb von 5 – 10 Minuten für Echographie-Messungen injiziert werden. Dies beweist, daß die Bläschen in der Suspension nicht langlebig sind, und daß ein praktisches Problem bei der Verwendung von Mikrobläschen-Suspensionen zur Injektion deren mangelnde Stabilität im Verlauf der Zeit ist. Die vorliegende Erfindung beseitigt diesen Nachteil vollständig.
  • US-A-4 466 442 (Schering) offenbart eine Reihe von verschiedenen Verfahren zur Herstellung von Suspensionen aus Gas-Mikrobläschen in einem flüssigen Träger unter Verwendung von (a) einer Lösung aus einem Tensid (oberflächenaktives Mittel) in einer Trägerflüssigkeit (wäßrig) und (b) eine Lösung mit einem Viskositäts-Verstärker als Stabilisator. Gemäß den dort zur Herstellung der Bläschen verwendeten Verfahren wird eine Mischung aus (a), (b) und Luft mit hoher Geschwindigkeit durch eine kleine Öffnung gedrückt; oder (a) wird in (b) injiziert, kurz bevor sie zusammen mit einem physiologisch akzeptablen Gas verwendet werden; oder eine Säure wird zu (a) und ein Carbonat zu (b) gegeben, wobei die Bestandteile direkt vor der Verwendung miteinander vermischt werden und die Säure mit dem Carbonat reagiert, um CO2-Bläschen herzustellen; oder während der Lagerung wird ein Gas unter Druck zu einer Mischung aus (a) und (b) gegeben, wobei das Gas dann unter Bildung von Mikrobläschen entspannt wird, wenn die Mischung zur Injektion verwendet wird.
  • Die Tenside, die in Bestandteil (a) von US-A-4 466 442 verwendet wurden, umfassen Lecithine, Ester und Ether der Fettsäuren und Fettalkohole mit Polyoxyethylen- und polyoxyethylierten Polyolen wie Sorbitol, Glykol und Glycerol, Cholesterol und Polyoxyethylen-Polyoxypropylen-Polymere. Die viskositäts-verstärkenden und stabilisierenden Bestandteile umfassen beispielsweise Mono- und Polysaccharide (Glucose, Lactose, Sucrose, Dextran, Sorbitol), Polyole, d.h. Glycerol, Polyglykole, und Polypeptide wie Proteine, Gelatine, Oxypolygelatine, Plasmaproteine und ähnliche.
  • In einem typischen, bevorzugten Beispiel dieser Veröffentlichung werden gleiche Volumina von (a) einer 0,5 gew.-%igen, wäßrigen Lösung mit 0,5 Gew.% Pluronic F-68 (ein Polyoxypropylen-Polyoxyethylen-Polymer) und (b) einer 10%igen Lactoselösung unter sterilen Bedingungen (geschlossene Röhrchen) miteinander vermischt, um eine Suspension aus Mikrobläschen herzustellen, die fertig zur Verwendung als Ultraschall-Kontrastmittel ist und wenigstens zwei Minuten stabil bleibt. Etwa 50% der Bläschen hatten eine Größe von weniger als 50 μm.
  • Obwohl die Errungenschaften des Standes der Technik verdienstvoll sind, haben sie mehrere Nachteile, die die praktische Anwendung durch Ärzte und Krankenhäuser stark limitieren, namentlich ihre relativ kurze Lebenszeit (was die Reproduzierbarkeit eines Testes schwierig macht), eine relativ geringe Ausgangskonzentration an Bläschen (die Anzahl der Bläschen übersteigt selten 104 bis 105-Bläschen/ml, und die Zahl nimmt mit der Zeit stark ab) und schlechte Reproduzierbarkeit der Ausgangszahl von Bläschen von Test zu Test (was Vergleiche ebenfalls erschwert). Es ist ferner bekannt, daß für die effiziente Darstellung bestimmter Organe, z.B. des linken Herzens, Bläschen kleiner als 50 μm, vorzugsweise im Bereich von 0,5–10 μm, benötigt werden; bei größeren Bläschen bestehen die Risiken einer Verklumpung und anschließender Embolie.
  • Darüber hinaus kann die zwingende Gegenwart von festen Mikropartikeln oder von hohen Konzentrationen an Elektrolyten und anderen relativ inerten, gelösten Substanzen in der Trägerflüssigkeit in einigen Fällen physiologisch unerwünscht sein. Schließlich sind die Suspensionen bei Lagerung vollständig instabil und können nicht als solche verkauft werden; daher wird viel Erfahrung benötigt, um die Mikrobläschen im richtigen Moment direkt vor der Verwendung herzustellen.
  • Natürlich existieren stabile Suspensionen aus Mikrokapseln, z.B. Mikroballons mit einer festen, Luft-dichten, stabilen, polymeren Membran, die hervorragend über lange Lagerzeiten in Suspension erhalten bleiben, die entwickelt wurden, um diese Unzulänglichkeiten zu überkommen (siehe beispielsweise K.J. Widder, EP-A-324.938). Die Eigenschaften der Mikrokapseln, in denen ein Gas innerhalb von festen Membranvesikeln eingeschlossen ist, unterscheiden sich jedoch deutlich von denen der Gasmikrobläschen der vorliegenden Erfindung und gehören zu einem anderen Stand der Technik. Während beispielsweise die hier offenbarten Gasmikrobläschen einfach entweichen oder sich im Blutstrom auflösen, wenn die Stabilisatoren in die Trägerflüssigkeit abgeschieden oder metabolisiert werden, muß das feste, polymere Material, das die Wände der oben genannten Mikroballons bildet, schließlich von dem getesteten Organismus beseitigt werden, was eine erhebliche Belastung für ihn sein kann. Auch können Kapseln mit einer festen, nicht-elastischen Membran bei Druckunterschieden irreversibel brechen.
  • Die erfindungsgemäße Zusammensetzung gemäß Anspruch 1 beseitigt vollständig die hier beschriebenen Probleme.
  • Der Begriff "lamellare Form", der den Zustand von wenigstens einem Teil der Phospholipide der vorliegenden Zusammensetzung definiert, bedeutet, daß die Phospholipide im Gegensatz zu den Mikropartikeln des Standes der Technik (beispielsweise EP-A-0 123 235) in Form von dünnen Filmen vorliegen, die aus einer oder mehreren Schichten (in laminierter Form) bestehen. Die Umwandlung der schicht-bildenden Phospholipide in lamellare Form kann einfach durchgeführt werden, beispielsweise durch Hochdruck-Homogenisierung oder durch Beschallung mit akustischen oder Ultraschall-Frequenzen. In diesem Zusammenhang sollte herausgestellt werden, daß die Existenz von Liposomen eine bekannte und nützliche Verdeutlichung von Fällen ist, in denen Tenside, insbesondere Phospholipide, in lamellarer Form vorliegen.
  • Liposomen-Lösungen sind wäßrige Suspensionen von mikroskopischen Vesikeln, im wesentlichen sphärisch geformt, die Substanzen eingeschlossen haben. Diese Vesikel werden normalerweise aus einem oder mehreren konzentrisch angeordneten molekularen Schichten (Lamellen) aus amphipatischen Bestandteilen gebildet, d.h. aus Bestandteilen mit einer lipophoben, hydrophilen Gruppe und einer lipophilen, hydrophoben Gruppe. Siehe beispielsweise "Liposome Methodology", Ed. L.D. Leserman et al., Inserm 136, 2-8 May 1982). Viele oberflächenaktive Mittel oder Tenside, einschließlich Lipide, insbesondere Phospholipide, können laminarisiert werden, um dieser Art von Struktur zu entsprechen. In dieser Erfindung werden vorzugsweise Lipide verwendet, die normalerweise zur Herstellung von Liposomen verwendet werden, beispielsweise die Lecithine und andere Tenside, die im folgenden detaillierter offenbart werden, wodurch keineswegs die Verwendung von anderen Tensiden ausgeschlossen wird, vorausgesetzt, daß diese Schichten oder Filme bilden können.
  • Es ist wichtig zu beachten, daß keine Verwechslungen zwischen der vorliegenden Erfindung und der Offenbarung von Ryan (US-A-4 900 540) entstehen, die die Verwendung von luft- oder gasgefüllten Liposomen zur Echographie offenbart. In diesem Verfahren schließt Ryan Luft oder Gas in liposome Vesikel ein; in den Ausführungsformen der vorliegenden Erfindung werden Mikrobläschen aus Luft oder Gas in einer Suspension aus Liposomen (d.h. mit Flüssigkeit gefüllte Liposomen) gebildet, und die Liposomen stabilisieren offensichtlich die Mikrobläschen. Bei Ryan befindet sich die Luft innerhalb der Liposomen, was bedeutet, daß im Rahmen der vorliegend verwendeten Terminologie die Luftgefüllten Liposomen von Ryan zur Klasse der Mikroballons und nicht zu der der Mikrobläschen der vorliegenden Erfindung gehören.
  • Um erfindungsgemäße Suspensionen aus Mikrobläschen herzustellen, geht man praktischerweise von Liposomen-Suspensionen oder Lösungen aus, die durch irgendein Verfahren hergestellt wurden, das im Stand der Technik beschrieben wurde, mit dem offensichtlichen Unterschied, daß in dem vorliegenden Fall die Liposomen-Vesikel vorzugsweise "unbeladen" sind, d.h, sie brauchen kein anderes Material als die Flüssigkeit der Suppension zu enthalten, was normalerweise bei klassischen Liposomen das Ziel ist. Deswegen werden die Liposomen der vorliegenden Erfindung vorzugsweise eine wäßrige Phase enthalten, die identisch oder ähnlich zur wäßrigen Phase der Lösung selbst ist. Daraufhin wird Luft oder Gas in die Liposomen-Lösung eingeführt, so daß eine Suspension aus Mikrobläschen entsteht, wobei die Suspension durch die Gegenwart der Phospholipide in lamellarer Form stabilisiert wird. Dennoch kann das Material, aus dem die Liposomen-Wände bestehen, im Rahmen der vorliegenden Erfindung verändert werden, beispielsweise durch kovalente Bindung fremder Moleküle, die für bestimmte Zwecke entworfen wurden, wie später erklärt werden wird.
  • Die Herstellung von Liposomen-Lösungen wurde umfangreich in vielen Veröffentlichungen diskutiert, z.B. US-A-4 224 179 und WO-A-88/09165 und alle Literaturhinweise, die darin erwähnt werden. Dieser Stand der Technik wird hier als Hinweis verwendet, um beispielhaft die verschiedenen Verfahren darzustellen, die geeignet sind, schichtbildende Tenside in lamellare Form zu überführen. Eine weitere wesentliche Literaturstelle von M.C. Woodle und D. Papahadjopoulos findet sich in "Methods in Enzymology 171 (1989), 193.
  • Beispielsweise wird in einem Verfahren, das in D.A. Tyrrell et al., Biochimica & Biophysica Acta 457 (1976), 259–302, offenbart wurde, eine Mischung aus einem Lipid und einem wäßrigen, flüssigen Träger starkem Rühren ausgesetzt und danach bei Raum- oder erhöhter Temperatur mit akustischen oder Ultraschall-Frequenzen beschallt. Im Rahmen der vorliegenden Erfindung wurde herausgefunden, daß Beschallung ohne Rühren ausreichend ist. Auch ein Gerät zur Herstellung von Liposomen, ein Hochdruck-Homogenisator, wie ein Mikro-Fluidisator, der von Microfluidics Corp., Newton, MA 02164 USA gekauft werden kann, kann vorteilhaft verwendet werden. Große Volumen von Liposomen-Lösungen können mit diesem Gerät unter Druck hergestellt werden, der 600 bis 1200 bar erreichen kann.
  • In einem anderen Verfahren, nach der Lehre des GB-A-2 134 869 (Squibb), werden Mikropartikel (10 μm oder kleiner) eines was serlöslichen, festen Trägers (NaCl, Sucrose, Lactrose und weitere Kohlenhydrate) mit einem amphipatischen Agens beschichtet; die Auflösung des beschichteten Trägers in einer wäßrigen Phase wird zu Liposomen-Vesikeln führen. In GB-A-2 135 647 werden unlösliche Partikel, z.B. Glas- oder Harzmikrokugeln durch Anfeuchten in einer Lösung eines Lipids in einem organischen Lösungsmittel beschichtet, wonach das Lösungsmittel durch Verdampfen entfernt wird. Die lipidbeschichteten Mikrokugeln werden danach mit einer wäßrigen Trägerphase kontaktiert, wobei Liposomen-Vesikel in der Trägerphase entstehen.
  • Das Einleiten von Luft oder Gas in eine Lösung aus Liposomen, damit sich darin eine Suspension aus Mikrobläschen bildet, kann nach bekannten Verfahren ausgeführt werden, unter anderem durch Injektion, wobei die Luft oder das Gas durch winzige Öffnungen in die Liposomen-Lösung gedrückt wird oder das Gas wird in der Lösung gelöst, indem Druck appliziert und danach der Druck schlagartig abgelassen wird. Eine weitere Möglichkeit liegt im Rühren oder Beschallen der Liposomen-Lösung in Gegenwart von Luft oder einem einschließbaren Gas. Man kann auch die Bildung eines Gases in der Lösung aus Liposomen selbst herbeiführen, indem beispielsweise ein Gas durch eine chemische Reaktion freigesetzt wird, z.B. durch die Zersetzung eines gelösten Carbonats oder Bicarbonats durch eine Säure. Der gleiche Effekt kann erreicht werden, indem eine niedrigsiedende Flüssigkeit, beispielsweise Butan, unter Druck in der wäßrigen Phase gelöst und danach die Flüssigkeit zum Sieden gebracht wird, indem der Druck schlagartig abgelassen wird.
  • Ein vorteilhaftes Verfahren besteht jedoch auch darin, den trockenen Tensiden in lamellarer Form oder in Form dünner Schichten mit Luft oder einem adsorbierbaren oder einschließbaren Gas zu kontaktieren, bevor das Tensid in die flüssige Trägerphase eingeführt wird. In diesem Zusammenhang kann das Verfahren von dem Verfahren abgeleitet werden, das in GB-A-2 135 647 offenbart wird, d.h. feste Mikropartikel oder Kugeln werden in eine Lösung eines Schicht-bildenden Tensides (oder einer Mischung aus Tensiden) in einem flüchtigen Lösungsmittel getaucht, wonach das Lösungsmittel verdampft wird und die Kugeln im Kontakt mit Luft (oder einem adsorbieren Gas) für eine ausreichende Zeit belassen werden, so daß die Luft oberflächlich an die Schicht des Tensides gebunden wird. Danach werden die Kugeln, die mit einem Luftgefüllten Tensid beschichtet sind, in eine Trägerflüssigkeit, normalerweise Wasser, mit oder ohne Additive, gegeben, wobei Luftbläschen in der Flüssigkeit durch vorsichtiges Mischen entstehen, starkes Rühren ist völlig unnötig. Die festen Kugeln können von der Mikrobläschen-Suspension, die auffallend stabil ist, abgetrennt werden, beispielsweise durch Filtration.
  • Selbstverständlich kann man anstelle der unlöslichen Kugeln oder Sphären als unterstützende Partikel wasserlösliche Materialien verwenden, wie die in GB-A- 2 134 869 (Kohlenhydrate oder hydrophile Polymere) offenbarten, wobei die unterstützenden Partikel sich schließlich auflösen, was eine abschließende Abtrennung der Feststoffe überflüssig macht. Darüber hinaus kann das Material der Partikel in diesem Fall so ausgewählt werden, daß es als Stabilisator oder Viskositäts-Verstärker wirkt, sofern es gewünscht wird.
  • In einer Variante des Verfahrens kann man auch von dehydrierten Liposomen ausgehen, d.h. Liposomen, die durch konventionelle Verfahren in Form von wäßrigen Lösungen hergestellt wurden und danach durch bekannte Verfahren dehydriert wurden, wie z.B. wie in US-A-4 229 360 offenbart, auf die hierin Bezug genommen wird. Eines der Verfahren zum Dehydrieren von Liposomen, das in dieser Quellenangabe empfohlen wird, ist die Gefriertrocknung (Lyophilisation), d.h. die Liposomen-Lösung wird gefroren und durch Eindampfen unter reduziertem Druck (Sublimation) getrocknet. Vor Durchführung der Gefriertrocknung wird eine hydrophile, stabilisierende Komponente in der Lösung gelöst, beispielsweise ein Kohlenhydrat wie Lactose oder Sucrose oder ein hydrophiles Polymer wie Dextran, Stärke, PVP, PVA und ähnliche. Dies ist vorteilhaft für die vorliegende Erfindung, weil derartige hydrophile Komponenten eine homogene Größenverteilung der Mikrobläschen unterstützen und die Lagerstabilität erhöhen. Die Herstellung von stark verdünnten, wäßrigen Lösungen (0,1 – 10 Gew.-%) aus gefriergetrockneten Liposomen, die beispielsweise im Gewichtsverhältnis von 5:1 bis 10:1 Lactose zu Lipid stabilisiert wurden, ermöglicht es, wäßrige Mikrobläschen-Susp-ensionen herzustellen, in denen 108-109 Mikrobläschen/ml gezählt werden (Größenverteilung hauptsächlich 0,5–10μm), die für wenigstens einen Monat (und wahrscheinlich wesentlich länger) ohne wesentliche, beobachtbare Veränderungen stabil sind. Man erhält diese durch einfaches Auflösen der luft-gelagerten, trockenen Liposomen ohne Schütteln oder starke Durchmischung. Darüber hinaus ist das Gefriertocknungs-Verfahren unter reduziertem Druck sehr nützlich, da es es ermöglicht, nach Trocknung den Druck über den getrockneten Liposomen mit irgendeinem einschließbaren Gas, d.h. Stickstoff, CO2, Argon, Methan, Freon, etc. wieder herzustellen, wobei nach Auflösung der Liposomen, die unter derartigen Bedingungen hergestellt wurden, Suspensionen aus Mikrobläschen erhalten werden, die die genannten Gase enthalten.
  • Mikrobläschen-Suspensionen, die hergestellt wurden, indem Gas-Druck auf eine verdünnte Lösung aus laminierten Lipiden in Wasser (0,1–10 Gew.-%) appliziert und danach der Druck schlagartig abgelassen wurde, haben sogar eine noch höhere Bläschen-Konzentration, z.B. in der Größenordnung von 1010-1011 Bläschen/ml. Die durchschnittliche Bläschengröße ist jedoch etwas größer als 10μm, z.B. im Bereich von 10 – 50 μm. In diesem Fall kann die Größenverteilung der Bläschen durch Zentrifugation und Dekantieren der Schicht eingeengt werden.
  • Phospholipide, die in der vorliegenden Erfindung zu gebrauchen sind, können aus allen amphipatischen Stoffen ausgewählt werden, die in der Lage sind, stabile Schichten in Gegenwart von Wasser und Gasen zu bilden. Bevorzugte Phospholipide, die laminarisiert werden können, umfassen die Lecithine (Phosphatidylcholin) und andere Phospholipide, unter anderem Phosphatidsäure (PA), Phospatidylinositol Phosphatidylethanolamin (PE), Phosphatdidylserin (PS), Phosphatidylglycerol (PG), Cardiolipin (CL), Sphingomyeline, Plasmogene, Cerebroside, etc. Beispiele geeigneter Lipide sind Phospholipide im allgemeinen, beispielsweise natürliche Lecithine, wie Ei-Lecithin oder Sojabohnen-Lecithin, oder synthetische Lecithine wie gesättigte, synthetische Lecithine, beispielsweise Dimyristoylphosphatidylcholin, Dipalmitoylphosphatidylcholin oder Distearoylphosphatidylcholin oder ungesättigte synthetische Lecithine, wie Dioleylphosphatidylcholin oder Dilinoleylphosphatidylcholin, wobei Ei-Lecithin oder Sojabohnen-Lecithin bevorzugt ist. Zusätze wie Cholesterol und weitere Substanzen (siehe unten) können zu einem oder mehreren der oben genannten Lipide dazugegeben werden, in einem Verhältnis, das im Bereich von 0 bis 50 Gew.-% liegt.
  • Solche Zusätze können weitere Tenside umfassen, die in Mischung mit dem schichtbildenden Tensiden verwendet werden können und von denen die meisten im Stand der Technik zitiert werden, der in der Einleitung dieser Beschreibung diskutiert wurde. Man kann beispielsweise freie Fettsäuren, Ester von Fettsäuren mit Polyoxyalkylenverbindungen wie Polyoxypropylenglykol und Polyoxyethylenglykol; Ether von Fett-Alkoholen mit Polyoxyalkylenglykolen; Ester von Fettsäuren mit polyoxyalkyliertem Sorbitan; Seifen; Glycerolpolyalkylenstearat; Glycerolpolyoxyethylenricinoleat; Homo- und Copolymere von Polyalkylenglykolen; polyethoxyliertes Sojaöl und Castoröl sowie hydrierte Derivate; Ether und Ester von Sucrose oder anderen Kohlenhydraten mit Fettsäuren,, Fett-Alkoholen, wobei diese wahlweise polyoxyalkyliert sind; Mono-, Di- und Triglyceride von gesättigten oder ungesättigten Fettsäuren; Glyceride des Sojaöls und Sucrose auflisten. Die Menge der nicht schichtbildenden Tenside oder oberflächenaktiven Substanzen kann bis zu 50 Gew.-% der Gesamtmenge der Tenside in der Zusammensetzung erreichen, liegt aber vorzugsweise zwischen Null und 30%.
  • Die Gesamtmenge an Tensiden im Verhältnis zur wäßrigen Trägerflüssigkeit liegt am Besten im Bereich von 0,01 zu 25 Gew.-%, wobei Mengenverhältnisse im Bereich 0,5 – 5% bevorzugt sind, weil man immer versucht, die Menge an aktiven Substanzen in einer injizierbaren Lösung so gering wie möglich zu halten, um die Einführung von fremden Materialien in Lebewesen zu minimieren, selbst wenn diese harmlos und physiologisch verträglich sind.
  • Weitere mögliche Zusatzstoffe zu den Tensiden umfassen:
    • a) Substanzen, die bekanntermaßen zu einer negative Ladung auf Liposomen führen, beispielsweise Phosphatidsäure, Phosphatidylglycerol oder Dicetylphosphat;
    • b) Substanzen, die bekanntermaßen zu einer positiven Ladung führen, beispielsweise Stearylamin oder Stearylaminacetat;
    • c) Substanzen, die bekanntermaßen die physikalischen Eigenschaften der Lipid-Schicht in bevorzugter Weise beeinflussen; beispielsweise können Caprolactam und/oder Sterole wie Cholesterol, Ergosterol, Phytosterol, Sitosterol, Sitosterolpyroglutamat, 7-Dehydro-cholesterol oder Lanosterol die Steifheit der Lipidschicht beeinflussen;
    • d) Substanzen, die bekanntermaßen antioxydative Eigenschaften haben, um die chemische Stabilität der Stoffe in den Suspensionen zu verbessern, wie Tocopherol, Propylgallat, Ascorbylpalmitat oder butyliertes Hydroxytoluol.
  • Der erfindungsgemäße, wäßrige Träger ist meistens Wasser mit möglicherweise kleinen Mengen von physiologisch-verträglichen Flüssigkeiten wie Isopropanol; Glycerol, Hexanol und ähnliche (siehe beispielsweise EP-A- 52.575). Im allgemeinen wird die Menge der organischen, wasserlöslichen Flüssigkeiten 5 – 10 Gew.-% nicht übersteigen.
  • Die vorliegende Zusammensetzung kann ebenfalls darin gelöste oder suspendierte, hydrophile Bestandteile und Polymere enthalten, die allgemein unter dem Begriff Viskositätsverstärker oder Stabilisatoren definiert werden. Obwohl die Gegenwart derartiger Bestandteile zur Gewährleistung der Lagerstabilität der Luft- oder Gasbläschen nicht notwendig ist, sind sie in den vorliegenden Dispersionen jedoch vorteilhaft, um den Lösungen eine Art von "Körper" zu geben. Sofern gewünscht, können die oberen Konzentrationen solcher Zusatzstoffe sehr hoch sein, wenn sie vollständig harmlos sind, beispielsweise bis zu 80 – 90 Gew.-% der Lösung bei Iopamidol und anderen iodierten Röntgenkontrastmitteln. Andere Viskositäts-Verstärker jedoch, wie beispielsweise Zucker, z.B. Lactose, Sucrose, Maltose, Galactose, Glucose, etc. oder hydrophile Polymere wie Stärke, Dextran, Polyvinylalkohol, Polyvinylpyrolidon, Dextrin, Xanthan oder teilweise hydrolisierte Cellulose-Oligomere, sowie Proteine und Polypeptide sind in Konzentrationen zwischen etwa 1 und 40 Gew.-% am besten, ein Bereich von etwa 5 – 20% ist bevorzugt.
  • Wie im Stand der Technik beschrieben, können die injizierbaren Zusammensetzungen dieser Erfindung ebenfalls physiologisch-akzeptable Elektrolyte enthalten; ein Beispiel ist eine isotonische Lösung eines Salzes.
  • Die vorliegende Erfindung umfaßt auch die Verwendung trockener, lagerfähiger, pulverförmiger Formulierungen zur Herstellung der jetzigen Mikrobläschen enthaltenden Dispersionen durch einfaches Mischen der pulverförmigen Formulierungen mit Wasser oder einer wäßrigen Trägerphase. Vorzugsweise enthalten solche trockenen Gemische oder Formulierungen alle festen Bestandteile, die benötigt werden, um die gewünschten Mikrobläschen-Suspensionen durch einfache Zugabe von Wasser herzustellen, d.h. grundsätzlich Tenside in lamellarer Form, die Luft oder Gas darin eingeschlossen oder adsorbiert enthalten, das zur Mikrobläschen-Bildung benötigt wird, und zusätzlich die weiteren nicht schichtbildenden Tenside, die Viskositäts-Verstäker und Stabilisatoren und gegebenenfalls weitere Zusatzstoffe. Wie zuvor ausgeführt, findet der Einschluß von Luft oder Gas durch die laminierten Phospholipide einfach statt, indem die Tenside der Luft (oder dem Gas) bei Raum- oder superatmosphärischem Druck für eine Zeit ausgesetzt werden, die ausreicht, um den Einschluß der Luft oder des Gases in den Tensiden zu bewirken. Die Zeitdauer kann sehr kurz sein, z.B. im Bereich von wenigen Sekunden bis zu wenigen Minuten, obwohl Überexposition, d.h. Lagerung unter Luft oder unter einer gasförmigen Atmosphäre keineswegs schädlich ist. Es ist wichtig, daß die Luft einen möglichst großen Teil der zur Verfügung stehenden Oberfläche des laminierten Phospholipides kontaktieren kann, d.h. das trockene Material sollte vorzugsweise in einem "flockigen", leicht fließenden Zustand sein. Dies ist genau der Zustand, der bei der Gefriertrocknung einer wäß rigen Lösung aus Liposomen und hydrophilen Agenzien resultiert, wie in US-A-4 229 360 offenbart.
  • Im allgemeinen liegt das Gewichtsverhältnis der Tenside zu dem hydrophilen Viskositätsverstärker in der trockenen Formulierung im Bereich von 0,1:10 bis 10:1, wobei weitere mögliche Stoffe, soweit vorhanden, in einem Verhältnis vorliegen, das 50% in Bezug auf die gesamten Tenside plus die Viskositätsverstärker nicht übersteigt.
  • Die erfindungsgemäß verwendeten, trockenen Mischformulierungen können durch sehr einfache Verfahren hergestellt werden. Wie bereits dargestellt, umfaßt ein bevorzugtes Verfahren zunächst die Herstellung einer wäßrigen Lösung, in der die schichtbildenden Lipide laminarisiert werden, beipielsweise durch Beschallung oder unter Verwendung eines konventionellen Verfahrens, das gewöhnlicherweise im Liposomen-Bereich verwendet wird, wobei diese Lösung auch die anderen gewünschten Zusatzstoffe, d.h. Viskositäts-Verstärker, nicht schichtbildende Tenside, Elektrolyte etc. enthält und danach zu einem frei fließfähigem Pulver gefriergetrocknet wird, welches daraufhin in Gegenwart von Luft oder einem einschließbaren Gas gelagert wird.
  • Das trockene Gemisch kann für eine beliebige Zeitdauer in trockener Form belassen und als solches verkauft werden. Für die Verwendung, d.h. zur Herstellung einer Gas- oder Luft-Mikrobläschen-Suspension zur Ultraschall-Darstellung, löst man einfach ein bestimmtes Gewicht der trockenen, pulverisierten Formulierung in einer sterilen wäßrigen Phase, z.B. Wasser oder einem physiologisch-akzeptablen Medium. Die Pulvermenge hängt von der gewünschten Konzentration an Bläschen in dem injizierbaren Produkt ab, eine Zahl von etwa 108-109 Bläschen/ml ist im allgemeinen das Ergebnis der Herstellung einer 5 – 20 gew-%igen Lösung des Pulvers in Wasser. Natürlich ist diese Zahl lediglich ein Indikator, die Anzahl der Bläschen hängt im wesentlichen von der Menge der Luft oder des Gases ab, die während der Herstellung in das trockene Pulver eingeschlossen wurde. wenn die Schritte bei der Herstellung kontrolliert werden, wird die Auflösung der trockenen Formulierung Mikrobläschen-Suspensionen mit gut reproduzierbaren Zählungen bereitstellen.
  • Die resultierenden Mikrobläschen-Suspensionen (Bläschen im Bereich von 0,5 – 10 μm) sind überragend stabil über die Zeit, die Anzahl, die zu Beginn gemessen wurde, bleibt unverändert oder ändert sich nur gering in einem Zeitraum von Wochen und sogar Monaten; die einzig nachweisbare Veränderung ist eine Art Auftrennung, die größeren Bläschen (um 10 μm) tendieren dazu, schneller aufzusteigen als die kleinen.
  • Es konnte ferner festgestellt werden, daß die Mikrobläschen-Suspensionen der Erfindung verdünnt werden können, wobei nur ein sehr geringer Verlust in der Zahl von Mikrobläschen durch die Verdünnung zu erwarten ist, d.h. sogar für den Fall einer hohen Verdünnungsrate, z.B. 1/102 bis 1/104, stimmt die Zahl der Mikrobläschenreduktion mit der Verdünnungsrate überein. Dies zeigt, daß die Stabilität der Bläschen vom Phospholipid in laminarer Form mehr als von der Gegenwart von Stabilisatoren oder Viskositäts-Verstärkern abhängt, wie im Stand der Technik. Diese Eigenschaft ist vorteilhaft für die Reproduzierbarkeit von Darstellungstests, da die Bläschen nicht durch die Verdünnung mit Blut bei Injektionen in den Patienten beeinflußt werden.
  • Ein weiterer Vorteil der erfindungsgemäßen Bläschen gegenüber den Mikrokapseln des Standes der Technik, die von einer stabilen aber zerbrechlichen Membran umgeben sind, die unter Streß irreversibel zerbrechen kann, liegt darin, daß, wenn die vorliegenden Suspensionen schlagartigen Druckveränderungen ausgesetzt sind, die vorliegenden Bläschen zeitweise elastisch kontrahieren und danach ihre ursprüngliche Form wieder erlangen, wenn der Druck nachläßt. Dies ist für den klinischen Gebrauch wesentlich, wo die Mikrobläschen durch das Herz gepumpt werden und deswegen wechselnden Druck-Impulsen ausgesetzt sind.
  • Die Gründe, warum die erfindungsgemäßen Mikrobläschen so stabil sind, sind nicht vollständig verstanden. Da zur Verhinderung der Freisetzung der Bläschen die Auftriebskräfte gleich groß sein sollten wie die Rückhaltekräfte aufgrund von Reibung, d.h. aufgrund von Viskosität, wurde die Theorie aufgestellt, daß die Bläschen wahrscheinlich von dem laminarisierten Tensiden umgeben sind. Ob dieses laminarisierte Tensid in Form einer kontinuierlichen oder diskontinuierlichen Membran vorliegt oder sogar als geschlossene Sphäre, die den Mikrobläschen anhängt, ist im Moment nicht bekannt, wird jedoch erforscht. Der Mangel an detailliertem Wissen über das zugrundeliegende Phänomen schließt jedoch die vollständige industrielle Anwendbarkeit der vorliegenden Erfindung nicht aus.
  • Die Bläschen-Suspension der vorliegenden Erfindung sind auch in weiteren medizinischen/diagnostischen Anwendungen nützlich, bei denen es wünschenswert ist, stabilisierte Mikrobläschen nach ihrer Injektion gezielt an spezifische Stellen im Körper zu dirigieren, beispielsweise zu Thrombosen, die in Blutgefäßen vorliegen, zu ateriosklerotischen Läsionen (Plaques) in Arterien, zu Tumorzellen, sowie zur Diagnose von veränderten Oberflächen der Körperhohlräume, z.B. Stellen von Ulceration im Magen oder Tumoren in der Blase. Dafür kann man monoklonale Antikörper, die durch genetic engineering maßgeschneidert wurden, Antikörperfragmente und Polypeptide, die zur Nachahmung von Antikörpern hergestellt wurden, bioadhäsive Polymere, Lectine und andere Kennstellen-erkennende Moleküle an die Schicht des Tensides binden, die die Mikrobläschen stabilisiert. Monoklonale Antikörper können somit an Phospholipid-Doppelschichten durch Verfahren gebunden werden, die von L.D.Leserman, P. Machy und J. Barbet offenbart wurden ("Lipsome Technology Vol. III", S. 29, herausgegeben von G. Gregoriadis, CRC press 1984). In einer weiteren Anwendung wird ein Palmitoyl-Antikörper zunächst synthetisiert und dann in die Phosphilipid-Doppelschichten eingebaut, nach L. Huang, A. Huang und S.J. Kennel ("Liposome Technology Vol. III", S. 51, Herausgeber G. Gregoriadis, CRC Press 1984). Alternativ dazu können einige der Phospholipide, die in der vorliegenden Erfindung verwendet werden, besonders ausgewählt werden, um eine bevorzugte Aufnahme in Organe oder Gewebe oder eine erhöhte Halbwertzeit im Blut zu bewirken. So führen GM1 Ganglioside- oder Phosphatidylinositol enthaltende Liposo men, vorzugsweise unter Zugabe von Cholesterol, zu erhöhten Halbwertzeiten im Blut nach intravenöser Applikation, in Analogie mit A. Gabizon, D. Papahadjopoulos, Proc. Natl. Acad. Sci. USA 85 (1988) 6949.
  • Die Gase in den Mikrobläschen der vorliegenden Erfindung können zusätzlich zu den gängigen, harmlosen, physiologisch akzeptablen Gasen wie CO2, Stickstoff, N2O, Methan, Butan, Freon und Mischungen davon, radioaktive Gase wie133Xe oder 81Kr umfassen und sind für die Nuklearmedizin bei Messungen der Blutzirkulation, für die Lungenscintygraphie etc. von besonderem Interesse.
  • Die folgenden Beispiele erläutern die Erfindung von einem praktischen Standpunkt.
  • Echogene Messungen
  • Echogenizitäts-Messungen wurden in einem Puls-Echosystem durchgeführt, das aus einem Plexiglas-Probenhalter (Durchmesser 30 mm) und einem Transducer-Halter, der in einem temperierten Wasserbad eingetaucht war und einem Pulser-Empfänger (Accutron M3010S) mit einem externen Vorverstärker mit eingestelltem Verstärkungsfaktor von 40 dB und einem internen Verstärker mit einstellbarem Verstärkungsfaktor von –40 bis +40 dB für das Empfangsteil. Um das Verhältnis von Signal zu Hintergrundrauschen zu verbessern, wurde ein 10 MHz Tiefpaßfilter in das Empfangsteil eingebaut. Die A/D Karte im IBM PC war eine Sonotek STR 832. Die Messungen wurden bei 2,25, 3,5, 5 und 7,5 MHz durchgführt.
  • Beispiel 1
  • Eine Liposomen-Lösung (50 mg Lipide pro ml) wurde nach dem REV Verfahren (vgl. F. Szoka Jr. und D. Papahadjopoulus, Proc. Natl. Acad. Sci. USA 75 (1978) 4194) in destilliertem Wasser unter Verwendung von hydriertem Soya-Lecithin (NC 95 H, Nattermann Chemie, Köln, W. Germany) und Dicetylphosphat im molaren Verhältnis von 9/1 hergestellt. Diese Liposomen-Lösung wurde bei 65 °C durch ein 1μm Polycarbonat-Filter (Nucleopore) extrudiert (um die Vesikelgröße zu kalibrieren). Zwei ml dieser Lösung wurden mit 5 ml einer 75%-igen Iopamidol Lösung in Wasser vermischt, und 0,4 ml Luft und die Mischung wurden durch ein zwei Spritzen System vor und zurück gedrückt, wie in DE-35 29 195 offenbart, während ein leichter Überdruck kontinuierlich erhalten blieb. Dies führte zur Bildung von einer Mikrobläschen-Suspension aus Luft in der Flüssigkeit (105-106 Bläschen pro ml, Bläschengröße 1–20μm , durch Licht-Mikroskopie ermittelt), die für mehrere Stunden bei Raumtemperatur stabil war. Diese Suspension ergab beim Testen durch Ultraschall-Echographie bei 7,5, 5, 3,5 und 2,25 MHz ein starkes Echosignal.
  • Beispiel 2
  • Eine Lösung aus destilliertem Wasser (100 ml), die 2 Gew.-% hydriertes Soyalecithin und Dicetylphosphat in einem molaren Verhältnis von 9/1 enthielt, wurde für 15 Min. bei 60–65°C mit einem Branson Sonden-Beschaller (Typ 250) beschallt.
  • Nach Abkühlung, wurde die Lösung für 15 Min. bei 10 000 g zentrifugiert, der Überstand wurde wiedergewonnen und mit Lactose versetzt, um eine 7,5 Gew.-%ige Lösung zu bilden. Die Lösung wurde in einen geschlossenen Behälter gestellt, in dem für wenige Minuten ein Druck von 4 bar mit Stickstoff hergestellt wurde, während der Behälter geschüttelt wurde. Danach wurde der Druck schlagartig abgelassen, wodurch eine hoch konzentrierte Bläschensuspension erhalten wurde (1010-1011 Bläschen/ml). Die Größenverteilung der Bläschen war jedoch breiter als in Beispiel 1, d.h. von etwa 1 bis 50μm. Die Suspension war sehr stabil, nach einigen Tagen erfolgte jedoch eine Auftrennung der stehenden Phase, da die größeren Bläschen die Tendenz entwickelten sich in den oberen Schichten der Suspension zu konzentrieren.
  • Beispiel 3
  • 20 g Glaskugeln (Durchmesser etwa 1 mm) wurden in eine Lösung aus 100 mg Dipalmitoylphosphatidylcholin (Fluka A.G. Buchs) in 10 ml Chloroform eingetaucht. Die Kugeln wurden unter reduziertem Druck in einem rotierenden Eindampfer gedreht, bis das gesamte CHCl3 verdampft war. Die Kugeln wurden unter atmosphärischem Druck für wenige Minuten weitergedreht und 10 ml destil liertes Wasser wurden zugegeben. Die Kugeln wurden entfernt, und eine Lösung aus Luftmikrobläschen wurde erhalten, von der durch Überprüfung unter dem Mikroskop gezeigt werden konnte, daß sie etwa 106 Bläschen/ml enthielt. Die durchschnittliche Größe der Bläschen war etwa 3 – 5 μm. Die Suspension war wenigstens für mehrere Tage stabil.
  • Beispiel 4
  • Eine hydrierte Suspension aus Sojalecithin/Dicetylphosphat in Wasser wurde unter Verwendung des REV-Verfahrens laminarisiert, wie in Beispiel 1 beschrieben. 2 ml der Liposomen-Herstellung wurden zu 8 ml einer 15%igen Maltoselösung in destilliertem Wasser gegeben. Die resultierende Lösung wurde bei –30°C gefroren, daraufhin bei 0,1 Torr lyophilisiert. Vollständige Sublimationen des Eis wurde nach ein paar Stunden erhalten. Danach wurde der Luftdruck in dem evakuierten Behälter wieder hergestellt, so daß das lyophilisierte Pulver in wenigen Minuten mit Luft-gesättigt wurde.
  • Das trockene Pulver wurde daraufhin in 10 ml sterilem Wasser unter vorsichtigem Mischen aufgelöst, wobei eine Mikrobläschen-Suspension erhalten wurde (108 – 109 Mikrobläschen per ml, dynamische Viskosität < 20 mPa.s). Diese Suspension, die in der Mehrzahl Bläschen im Bereich von 1 – 5 μm enthielt, war für eine sehr lange Zeitdauer stabil, da eine Vielzahl an Bläschen noch nach zwei Monaten Lagerung nachgewiesen werden konnten. Diese Mikrobläschen-Suspension gab ein starkes Signal bei der Ultraschall-Echographie. Wenn in diesem Beispiel die Lösung gefroren wird, indem sie in Luft bei – 30 bis –70°C gesprüht wird, um gefrorenen Schnee anstelle eines monolitischen Blocks zu erhalten und der Schnee daraufhin unter Vakuum eingedampft wird, werden exzellente Ergebnisse erhalten.
  • Beispiel 5
  • Zwei ml-Proben der Liposomen-Lösung, die erhalten wurde, wie in Beispiel 4 beschrieben, wurden mit 10 ml einer 5%igen wäßrigen Lösung aus Gelatine (Probe 5A), Humanalbumin (Probe 5B), Dextran (Probe 5C) und Iopamidol (Probe 5D) vermischt. Alle Proben wur den lyophilisiert. Nach der Lyophilisierung und der Einführung von Luft wurden die verschiedenen Proben vorsichtig mit 20 ml sterilem Wasser vermischt. In allen Fällen lag die Bläschen-Konzentration über 108 Bläschen pro ml, und beinahe alle Bläschen waren kleiner 10 μm. Das Verfahren des vorangegangenen Beispiels wurde mit 9 ml der Liposomen-Präpration (450 mg Lipide) und lediglich 1 ml einer 5%igen Humanalbuminlösung wiederholt. Nach dem Lyophilisieren, Aussetzen der Luft und Zugabe des sterilen Wassers (20 ml) enthielt die resultierende Lösung 2 × 108-Bläschen pro ml, die meisten davon kleiner als 10 μm.
  • Beispiel 6
  • Lactose (500 mg), die zu einer Partikelgröße von 1 – 3 μm fein vermahlen war, wurde mit einer Lösung aus 100 mg Dimyristoylphosphatidylcholin/Cholesterol/Dipalmitoylphosphatidsäure (von Fluka) in einem molaren Verhältnis von 4:1:1 in Chloroform (5 ml) angefeuchtet und danach unter Vakuum in einem rotierenden Eindampfer eingedampft. Das resultierende, frei fließende, weiße Pulver wurde für wenige Minuten bei normalem Druck unter Stickstoff rotiert und danach in 20 ml sterilem Wasser aufgelöst. Eine Mikrobläschen-Suspension mit etwa 105-106 Mikrobläschen pro ml im Größenbereich von 1 bis 10 μm wurde erhalten, wie durch Beobachtung unter dem Mikroskop festgestellt wurde. In diesem Beispiel war das Gewichtsverhältnis von beschichtetem Tensiden zu wasserlöslichem Träger 1:5. Exzellente Ergebnisse (107-108 Mikrobläschen-ml) wurden ebenfalls erhalten, wenn dieses Verhältnis auf einen geringeren Wert reduziert wurde, d.h. auf bis zu 1:20, was tatsächlich die Effizienz des Tensides zur Aufnahme von Luft steigert, d.h. daß dadurch das Gewicht der Tenside abnimmt, das benötigt wird, um dieselbe Bläschenzahl herzustellen.
  • Beispiel 7
  • Eine wäßrige Lösung, die 2% hydriertes Sojalecithin und 0,4% Pluronic® F68 (nicht-ionisches Polyoxyethylen-Polyoxypropylen-Copolymer Tensid) enthielt, wurde beschallt, wie in Beispiel 2 beschrieben. Nach Abkühlen und Zentrifugieren, wurden 5 ml von dieser Lösung zu 5 ml einer 15%igen Maltoselösung in Wasser gegeben. Die resultierende Lösung wurde bei –30°C gefroren und unter 0,1 Torr eingedampft. Daraufhin wurde der Luftdruck in dem Gefäß, das das trockene Pulver enthielt, wieder hergestellt. Es wurde für einige Sekunden an der Luft stehengelassen, wonach es zur Herstellung einer 10 Gew.-%igen Lösung verwendet wurde, von der unter dem Mikroskop gezeigt werden konnte, daß sie eine Suspension aus sehr kleinen Bläschen (< 10 μm) war; die Bläschen-Konzentration lag im Bereich von 107-Bläschen pro ml. Dieses Präparat gab sehr starke Signale in der Ultraschall-Echographie bei 2,25, 3,5, 5 und 7,5 Mhz.
  • Beispiel 8
  • Zweidimensionale Echokardiographie wurde an einem Versuchshund nach Injektion von 0,1 – 2 ml des Präparats, das in Beispiel 4 erhalten wurde, in die peripheren Venen durchgeführt. Die Opazität des linken Herzens mit klarer Abgrenzung des Endokardiums konnte beobachtet werden, wodurch bestätigt wurde, daß die Mikrobläschen (oder wenigstens ein signifikanter Teil von ihnen) in der Lage waren, die pulmonare, kapillare Zirkulation zu überschreiten.
  • Beispiel 9
  • Ein lyophilisiertes Pulver aus Phospholipid/Maltose wurde hergestellt, wie in Beispiel 4 beschrieben. Am Ende des Lyophilisierungsschrittes wurde jedoch eine Gasmischung, die 133Xe enthielt, in den evakuierten Behälter anstelle von Luft eingefüllt. Wenige Minuten später wurde Wasser zugegeben und nach vorsichtigem Mischen war eine Mikrobläschen-Suspension entstanden, die 133Xe in der Gasphase enthielt. Diese Mikrobläschen-Suspension wurde in Lebewesen injiziert, um Untersuchungen durchzuführen, die die Verwendung von 133Xe als Indikator benötigten. Exzellente Ergebnisse wurden erhalten.
  • Beispiel 10 (Vergleich)
  • In US-A-4 900 540 offenbaren Ryan et al. Gas-gefüllte Liposomen für Ultraschall-Untersuchungen. Nach der Literaturstelle werden Liposomen mit konventionellen Mitteln aber unter Zugabe eines Gases oder eines Gasvorläufers zu der wäßrigen Zusammensetzung hergestellt, wodurch der Kern der Liposomen entstand (Spalte 2, Zeilen 15–27).
  • Die Verwendung eines Gasvorläufers (Bicarbonat) wird in Beispielen 1 und 2 des Zitats detailliert beschrieben. Die Verwendung eines wäßrigen Trägers und die Zugabe von Gas, um das Gas in den Liposomen einzuschließen (von Ryan et al. nicht beispielhaft erläutert), setzt voraus, daß das Gas in Form von sehr kleinen Bläschen vorliegt, d.h. in einer Größe ähnlich oder kleiner als die Größe der Liposomen-Vesikel.
  • Wäßrige Medien, in die Luft in Form von sehr kleinen Bläschen (2,5 – 5 μm) eingeschlossen werden kann, werden in M.W. Keller et al., J. Ultrasound Med. 5 (1986), 413–498 offenbart.
  • Eine Menge von 126 mg Eilecithin und 27 mg Cholesterol wurden in 9 ml Chloroform in einer 200 ml Rundboden-Flasche gelöst. Die Lösung von Lipiden wurde in einem Rotationsverdampfer bis zur Trockenheit eingedampft, wodurch sich eine Schicht der Lipide an den Wänden der Flasche bildete. 10 ml einer 50 Gew.-%igen, wäßrigen Dextroselösung wurden für 5 min beschallt, nach M. W. Keller et al. (ibid), um Luftmikrobläschen darin herzustellen und die beschallte Lösung wurde in die Flasche gegeben, die die Lipidschicht enthielt, wobei das Schütteln des Behälters mit der Hand in einem Hydratisieren des Phospholipids und der Bildung von multilamellaren Liposomen in ber bläschenhaltigen Trägerflüssigkeit resultierte.
  • Nachdem sie für eine Weile stehengelassen wurde, wurde die resultierende Liposomen-Suspension einer Zentrifugation bei 5.000 g für 15 min unterworfen, um die Luft aus dem Träger zu entfernen, die nicht in Vesikeln eingeschlossen worden war. Es wurde ferner erwartet, daß während der Zentrifugation die Luftgefüllten Liposomen durch Auftriebskräfte an die Oberfläche wandern würden.
  • Nach Zentrifugation wurden die Behälter untersucht und zeigten einen Rest am Boden, der aus Liposomen bestand, die agglomeriert und mit Dextrose gefüllt waren, und eine klare, überstehende Flüssigkeit in der im wesentlichen keine Bläschen waren. Die Menge an luftgefüllten Liposomen, die aufgrund der Auftriebskraft aufgestiegen waren, war vernachlässigbar gering und konnte nicht bestimmt werden.
  • Beispiel 11 (Vergleich)
  • Eine injizierbare Kontrast-Zusammensetzung wurde nach Ryan (US-A-4 900 540, Spalte 3, Beispiel 1) hergestellt. Eilecithin (126 mg) und Cholesterol (27 mg) wurden in 9 ml Diethylether aufgelöst. Zu der Lösung wurden 3 ml einer 0,2 molaren, wäßrigen Bicarbonat-Lösung gegeben und das resultierende Zweiphasen-System wurde beschallt, bis es homogen wurde. Die Mischung wurde in einem Rotationsverdampfer eingedampft und 3 ml einer 0,2 molaren, wäßrigen Bicarbonat-Lösung wurden dazugegeben.
  • Ein 1 ml Anteil der Liposomen-Suspension wurde in die Drosselvene eines Versuchskaninchens injiziert, wobei sich das Tier unter Bedingungen zur Ultraschalldarstellung des Herzen unter Verwendung eines Acuson 128-XP5-Ultraschall-Bildgebers (7,5 Übertragungssonde zur Darstellung des Herzens) befand. Die Sonde ermöglichte eine Querschnittsdarstellung des rechten und linken Ventrikels (mit Papillarmuskel). Nach der Injektion wurde eine geringe und vorübergehende (einige Sekunden) Steigerung im Umriß des rechten Ventrikels beobachtet. Der Effekt war jedoch wesentlich schlechter als der Effekt, der unter Verwendung von Präparaten nach Beispiel 4 beobachtet wurde. Keine Verbesserung in der Darstellung des linken Ventrikels wurde festgestellt, was darauf hindeutet, daß die CO2-beladenen Liposomen die Grenze der pulmonaren Kapillaren nicht passierten.

Claims (23)

  1. Injizierbare Suspension von Luft- oder Gas-Mikrobläschen, die durch eine Flüssigkeits-Gas-Grenzschicht begrenzt werden, in einer physiologisch verträglichen, wäßrigen Trägerphase, wobei die Luft- oder Gas-Mikrobläschen nicht in Liposomenvesikel verkapselt sind, geeignet zur Ultraschall-Echographie des Blutstroms oder von Körperhohlräumen von Lebewesen, wobei die Suspension von etwa 0,01 bis etwa 20 Gew.-% gelöste oder dispergierte oberflächeaktive Stoffe enthält, dadurch gekennzeichnet, daß mindestens einer der oberflächenaktiven Stoffe ein filmbildendes Phospholipid ist, das in der Suspension zumindest teilweise in lamellarer oder laminarer Form vorliegt, und daß die Suspension kein Eisen(III)salz enthält.
  2. Suspension gemäß Anspruch 1, in der das lamellare Phospholipid in Form von mono- oder pluri-molekularen Membranschichten vorliegt.
  3. Suspension gemäß Anspruch 1, in der die Größe der meisten Mikrobläschen weniger als 50 μm, vorzugsweise weniger als 10 μm, beträgt.
  4. Suspension gemäß einem der vorstehenden Ansprüche, in der das Phospholipid aus Phosphatidsäure, Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin, Phosphatidylinositol, Cardiolipin und Sphingomyelin ausgewählt ist.
  5. Suspension gemäß Anspruch 1, die zusätzlich Substanzen enthält, die aus Dicetylphosphat, Cholesterin, Ergosterin, Phytosterin, Sitosterin, Lanosterin, Tocopherol, Propylgal lat, Ascorbylpalmitat, und butyliertem Hydroxytoluol ausgewählt sind.
  6. Suspension gemäß einem der vorherstehenden Ansprüche, die zusätzlich gelöste Viskositätsverstärker oder Stabilisatoren enthält, die aus linearen oder vernetzten Poly- oder Oligosacchariden, Zuckern, hydrophilen Polymeren und jodierten Substanzen ausgewählt sind, in einem Gewichtsverhältnis zu den oberflächenaktiven Stoffen etwa zwischen 1:5 bis 100:1.
  7. Suspension gemäß einem der vorstehenden Ansprüche, die zusätzlich bis zu 50 Gew.-% nicht-laminare oberflächeaktive Stoffe enthält, die aus Fettsäuren, Estern und Ethern von Fettsäuren und Alkoholen mit Polyolen ausgewählt sind.
  8. Suspension nach Anspruch 7, in der die Polyole Polyalkylenglykole, polyalkylenierte Zucker und andere Kohlenhydrate, und polyalkyleniertes Glycerin sind.
  9. Suspension gemäß Anspruch 1, die 107 – 108 Mikrobläschen/ml, 108 – 109 Mikrobläschen/ml oder 1010 – 1011 Mikrobläschen/ml enthält.
  10. Verfahren zur Herstellung von Suspensionen gemäß den Ansprüchen 1 bis 9, gekennzeichnet durch die folgenden Schritte: (a) Auswahl von mindestens einem filmbildenden Phospholipid und Umwandlung desselben in lamellare Form; (b) Kontaktieren des Phospholipides in lamellarer Form mit Luft oder einem adsorbierbaren oder einschließbaren Gas für eine Zeit, die ausreichend ist, damit die Luft oder das Gas von dem Phospholipid gebunden werden; und (c) Mischen des Phospholipids in lamellarer Form mit einem wäßrigen, flüssigen Träger, wodurch eine stabile Dis persion von Luft- oder Gas-Mikrobläschen in dem flüssigen Träger gebildet wird.
  11. Verfahren nach Anspruch 10, bei dem Schritt (c) vor Schritt (b) durchgeführt wird und letzterer durch Einleiten von unter Druck stehender Luft oder von unter Druck stehendem Gas in den flüssigen Träger und anschließendes Ablassen des Drucks erfolgt.
  12. Verfahren nach Anspruch 10, bei dem Schritt (c) durch vorsichtiges Vermischen der Bestandteile durchgeführt wird, Schütteln ist nicht notwendig, wodurch die in Schritt (b) an den lamellaren, oberflächenaktiven Stoff gebundene Luft oder das Gas eine Suspension von stabilen Mikrobläschen bildet.
  13. Verfahren nach den Ansprüchen 10 oder 11, bei dem der flüssige Träger gelöste, stabilisierende Bestandteile enthält, die aus wasserlöslichen Proteinen, Polypeptiden, Zuckern, Poly- und Oligosacchariden und hydrophilen Polymeren ausgewählt sind.
  14. Verfahren nach Anspruch 10, bei dem die Umwandlung in Schritt (a) dadurch bewirkt wird, daß Partikel aus löslichen oder unlöslichen Materialien mit dem oberflächenaktiven Stoff beschichtet werden; Schritt (b) dadurch bewirkt wird, daß die beschichteten Partikel für eine gewisse Zeit unter Luft oder Gas belassen werden; und Schritt (c) dadurch bewirkt wird, daß die beschichteten Partikel mit einem wäßrigen, flüssigen Träger gemischt werden.
  15. Verfahren nach Anspruch 10, bei dem die Umwandlung in Schritt (a) dadurch bewirkt wird, daß eine wäßrige Lösung von filmbildenden Lipiden beschallt oder unter hohem Druck homogenisiert wird, wobei dieses Vorgehen zumindest teilweise die Bildung von Liposomen bewirkt.
  16. Verfahren nach Anspruch 15, bei dem Schritt (b) durch Gefriertrocknen einer Liposomen enthaltenden Lösungen bewirkt wird, wobei letztere gegebenenfalls hydrophile Stabilisatoren enthält, und das resultierende gefriergetrocknete Produkt für eine gewisse Zeitdauer mit Luft oder einem Gas kontaktiert wird.
  17. Verwendung einer trockenen pulverförmigen Formulierung, welche beim Auflösen in Wasser eine wäßrige Suspension von Mikrobläschen bildet, dadurch gekennzeichnet, daß sie mindestens ein filmbildendes Phospholipid in lamellarer oder laminarer Form und wasserlösliche Stabilisatoren enthält, zur Herstellung von Kontrastmitteln für die Ultraschallechographie.
  18. Verwendung nach Anspruch 17, bei der das Phospholipid aus Phosphatidsäure, Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin, Phosphatidylinositol, Cardiolipin und Sphingomyelin ausgewählt ist.
  19. Verwendung nach den Ansprüchen 17 oder 18, weiter enthaltend Substanzen, ausgewählt aus Dicetylphosphat, Cholesterin, Ergosterin, Phytosterin, Sitosterin, Lanosterin, Tocopherol, Propylgallat, Ascorbylpalmitat und butyliertem Hydroxytoluol.
  20. Verwendung nach Anspruch 17, bei der die Phospholipide in laminarer Form in Form feiner Schichten vorliegen, die auf der Oberfläche von löslichem oder unlöslichem, festem, partikulärem Material abgeschieden sind.
  21. Verwendung nach Anspruch 20, bei der die löslichen Partikel aus wasserlöslichen Kohlenhydraten, Polysacchariden, synthetischen Polymeren, Albumin, Gelatine oder Iopamidol hergestellt sind.
  22. Verwendung nach einem der Ansprüche 17 bis 21, bei der die Formulierung zusätzlich bis zu 50 Gew.-% nicht-laminare oberflächenaktive Stoffe enthält, die aus Fettsäuren, Estern und Ethern von Fettsäuren und Alkoholen mit Polyolen ausgewählt ist.
  23. Verwendung nach Anspruch 17, bei der die Formulierung gefriergetrocknete Liposomen enthält.
DE69111719T 1990-04-02 1991-04-02 Stabile mikroblasensuspensionen zur injektion in lebewesen. Expired - Lifetime DE69111719T3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP90810262 1990-04-02
EP90810262 1990-04-02
PCT/EP1991/000620 WO1991015244A2 (en) 1990-04-02 1991-04-02 Stable microbubbles suspensions injectable into living organisms

Publications (3)

Publication Number Publication Date
DE69111719D1 DE69111719D1 (de) 1995-09-07
DE69111719T2 DE69111719T2 (de) 1996-04-04
DE69111719T3 true DE69111719T3 (de) 2005-02-24

Family

ID=8205915

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69111719T Expired - Lifetime DE69111719T3 (de) 1990-04-02 1991-04-02 Stabile mikroblasensuspensionen zur injektion in lebewesen.

Country Status (19)

Country Link
US (13) US5271928A (de)
EP (1) EP0474833B2 (de)
JP (3) JP2842453B2 (de)
KR (1) KR960002184B1 (de)
CN (1) CN1055413C (de)
AT (1) ATE125711T1 (de)
AU (1) AU630030B2 (de)
CA (1) CA2056371C (de)
DE (1) DE69111719T3 (de)
DK (1) DK0474833T4 (de)
ES (1) ES2075438T5 (de)
GR (1) GR3017324T3 (de)
IE (1) IE69018B1 (de)
IL (1) IL97730A (de)
IN (1) IN172208B (de)
IS (1) IS3686A7 (de)
NZ (1) NZ237637A (de)
WO (1) WO1991015244A2 (de)
ZA (1) ZA912427B (de)

Families Citing this family (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5334381A (en) * 1989-12-22 1994-08-02 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5305757A (en) 1989-12-22 1994-04-26 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5773024A (en) * 1989-12-22 1998-06-30 Imarx Pharmaceutical Corp. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5228446A (en) * 1989-12-22 1993-07-20 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5542935A (en) * 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5656211A (en) 1989-12-22 1997-08-12 Imarx Pharmaceutical Corp. Apparatus and method for making gas-filled vesicles of optimal size
US5352435A (en) * 1989-12-22 1994-10-04 Unger Evan C Ionophore containing liposomes for ultrasound imaging
US6146657A (en) 1989-12-22 2000-11-14 Imarx Pharmaceutical Corp. Gas-filled lipid spheres for use in diagnostic and therapeutic applications
US6551576B1 (en) * 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5088499A (en) * 1989-12-22 1992-02-18 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US6088613A (en) 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US6001335A (en) 1989-12-22 1999-12-14 Imarx Pharmaceutical Corp. Contrasting agents for ultrasonic imaging and methods for preparing the same
US5922304A (en) 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US5776429A (en) 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US5705187A (en) * 1989-12-22 1998-01-06 Imarx Pharmaceutical Corp. Compositions of lipids and stabilizing materials
US20020150539A1 (en) * 1989-12-22 2002-10-17 Unger Evan C. Ultrasound imaging and treatment
US5580575A (en) * 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5733572A (en) 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US5469854A (en) * 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5578292A (en) 1991-11-20 1996-11-26 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US5445813A (en) * 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
US6989141B2 (en) 1990-05-18 2006-01-24 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20010024638A1 (en) * 1992-11-02 2001-09-27 Michel Schneider Stable microbubble suspensions as enhancement agents for ultrasound echography and dry formulations thereof
US6613306B1 (en) 1990-04-02 2003-09-02 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20040208826A1 (en) * 1990-04-02 2004-10-21 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
IN172208B (de) * 1990-04-02 1993-05-01 Sint Sa
US5556610A (en) * 1992-01-24 1996-09-17 Bracco Research S.A. Gas mixtures useful as ultrasound contrast media, contrast agents containing the media and method
USRE39146E1 (en) 1990-04-02 2006-06-27 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US7083778B2 (en) 1991-05-03 2006-08-01 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20030194376A1 (en) * 1990-05-18 2003-10-16 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
AU636481B2 (en) * 1990-05-18 1993-04-29 Bracco International B.V. Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography
US5562099A (en) * 1990-10-05 1996-10-08 Massachusetts Institute Of Technology Polymeric microparticles containing agents for imaging
DE4100470A1 (de) 1991-01-09 1992-07-16 Byk Gulden Lomberg Chem Fab Echokontrastmittel
US5370901A (en) 1991-02-15 1994-12-06 Bracco International B.V. Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients
GB9106686D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
GB9106673D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
US5874062A (en) * 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
US5205290A (en) * 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
GB9107628D0 (en) * 1991-04-10 1991-05-29 Moonbrook Limited Preparation of diagnostic agents
US5993805A (en) * 1991-04-10 1999-11-30 Quadrant Healthcare (Uk) Limited Spray-dried microparticles and their use as therapeutic vehicles
US6723303B1 (en) 1991-09-17 2004-04-20 Amersham Health, As Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane
MX9205298A (es) * 1991-09-17 1993-05-01 Steven Carl Quay Medios gaseosos de contraste de ultrasonido y metodo para seleccionar gases para usarse como medios de contraste de ultrasonido
US6875420B1 (en) 1991-09-17 2005-04-05 Amersham Health As Method of ultrasound imaging
DE69230885T3 (de) * 1991-09-17 2008-01-24 Ge Healthcare As Gasförmige ultraschallkontrastmittel
US5409688A (en) * 1991-09-17 1995-04-25 Sonus Pharmaceuticals, Inc. Gaseous ultrasound contrast media
GB9200388D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
GB9200387D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
IL104084A (en) * 1992-01-24 1996-09-12 Bracco Int Bv Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them
GB9221329D0 (en) * 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
CA2150488A1 (en) * 1992-12-02 1994-06-09 Rodney David Bee Cosmetic composition
CN1068230C (zh) * 1993-01-25 2001-07-11 索纳斯药品有限公司 用作超声造影剂的相转变胶体
IL108416A (en) 1993-01-25 1998-10-30 Sonus Pharma Inc Colloids with phase difference as contrast ultrasound agents
US5558855A (en) * 1993-01-25 1996-09-24 Sonus Pharmaceuticals Phase shift colloids as ultrasound contrast agents
US5695740A (en) * 1993-05-12 1997-12-09 The Board Of Regents Of The University Of Nebraska Perfluorocarbon ultrasound contrast agent comprising microbubbles containing a filmogenic protein and a saccharide
US5701899A (en) * 1993-05-12 1997-12-30 The Board Of Regents Of The University Of Nebraska Perfluorobutane ultrasound contrast agent and methods for its manufacture and use
US5716597A (en) * 1993-06-04 1998-02-10 Molecular Biosystems, Inc. Emulsions as contrast agents and method of use
US5855865A (en) * 1993-07-02 1999-01-05 Molecular Biosystems, Inc. Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas
US5798091A (en) 1993-07-30 1998-08-25 Alliance Pharmaceutical Corp. Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement
EP0711179B2 (de) * 1993-07-30 2010-09-01 IMCOR Pharmaceutical Co. Stabilisierte mikrogasblaeschen-zusammensetzungen für echografie
GB9318288D0 (en) * 1993-09-03 1993-10-20 Nycomed Imaging As Improvements in or relating to contrast agents
US7083572B2 (en) * 1993-11-30 2006-08-01 Bristol-Myers Squibb Medical Imaging, Inc. Therapeutic delivery systems
PT682530E (pt) 1993-12-15 2003-06-30 Bracco Research Sa Misturas de gases uteis como meios de contraste para ultrassons
DE4406474A1 (de) 1994-02-23 1995-08-24 Schering Ag Gas enthaltende Mikropartikel, diese enthaltende Mittel, deren Verwendung in der Ultraschalldiagnostik, sowie Verfahren zur Herstellung der Partikel und Mittel
US5736121A (en) 1994-05-23 1998-04-07 Imarx Pharmaceutical Corp. Stabilized homogenous suspensions as computed tomography contrast agents
US5965109A (en) * 1994-08-02 1999-10-12 Molecular Biosystems, Inc. Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier
US5730955A (en) * 1994-08-02 1998-03-24 Molecular Biosystems, Inc. Process for making gas-filled microspheres containing a liquid hydrophobic barrier
US5540909A (en) * 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
GB9423419D0 (en) * 1994-11-19 1995-01-11 Andaris Ltd Preparation of hollow microcapsules
US6743779B1 (en) 1994-11-29 2004-06-01 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
IL116328A (en) * 1994-12-16 1999-09-22 Bracco Research Sa Frozen suspension of gas microbubbles in frozen aqueous carrier for use as contrast agent in ultrasonic imaging
TW319763B (de) * 1995-02-01 1997-11-11 Epix Medical Inc
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US5560364A (en) * 1995-05-12 1996-10-01 The Board Of Regents Of The University Of Nebraska Suspended ultra-sound induced microbubble cavitation imaging
US5997898A (en) * 1995-06-06 1999-12-07 Imarx Pharmaceutical Corp. Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery
US6139819A (en) * 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
WO2004073750A1 (en) 1995-06-07 2004-09-02 Harald Dugstad Improvements in or relating to contrast agents
US6231834B1 (en) 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US5804162A (en) * 1995-06-07 1998-09-08 Alliance Pharmaceutical Corp. Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
US6521211B1 (en) * 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
ATE265863T1 (de) * 1995-06-07 2004-05-15 Imarx Pharmaceutical Corp Neue zielgerichtete mittel zur diagnostischen und therapeutischen verwendung
US6033645A (en) 1996-06-19 2000-03-07 Unger; Evan C. Methods for diagnostic imaging by regulating the administration rate of a contrast agent
US5648098A (en) * 1995-10-17 1997-07-15 The Board Of Regents Of The University Of Nebraska Thrombolytic agents and methods of treatment for thrombosis
UA59358C2 (uk) * 1996-01-24 2003-09-15 Бик Гулден Ломберг Хеміше Фабрік Гмбх Спосіб приготування порошкоподібного пульмонологічного порошкоподібного препарату та препарат, одержаний в такий спосіб
SK284200B6 (sk) * 1996-02-19 2004-10-05 Amersham Health As Vodná disperzia plynových mikrobublín, kontrastná látka s jej obsahom, spôsob prípravy kontrastnej látky a jej použitie
US6165442A (en) * 1996-02-19 2000-12-26 Nycomed Imaging As Thermally stabilized ultrasound contrast agent
US5611344A (en) * 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US6245747B1 (en) 1996-03-12 2001-06-12 The Board Of Regents Of The University Of Nebraska Targeted site specific antisense oligodeoxynucleotide delivery method
JP2001507207A (ja) 1996-05-01 2001-06-05 イマアーレクス・フアーマシユーチカル・コーポレーシヨン 化合物を細胞に送達する方法
US5849727A (en) 1996-06-28 1998-12-15 Board Of Regents Of The University Of Nebraska Compositions and methods for altering the biodistribution of biological agents
US5837221A (en) * 1996-07-29 1998-11-17 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents
GB9617811D0 (en) 1996-08-27 1996-10-09 Nycomed Imaging As Improvements in or relating to contrast agents
US6414139B1 (en) 1996-09-03 2002-07-02 Imarx Therapeutics, Inc. Silicon amphiphilic compounds and the use thereof
US6017310A (en) * 1996-09-07 2000-01-25 Andaris Limited Use of hollow microcapsules
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
CA2263568C (en) 1996-09-11 2008-12-02 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a contrast agent and a renal vasodilator
US20070036722A1 (en) * 1996-10-28 2007-02-15 Pal Rongved Separation processes
IL129445A0 (en) * 1996-10-28 2000-02-29 Nycomed Imaging As Improvements in or relating to diagnostic/therapeutic agents
US6331289B1 (en) 1996-10-28 2001-12-18 Nycomed Imaging As Targeted diagnostic/therapeutic agents having more than one different vectors
WO1998018495A2 (en) * 1996-10-28 1998-05-07 Marsden, John, Christopher Improvements in or relating to diagnostic/therapeutic agents
BR9712683A (pt) 1996-10-28 1999-10-19 Nyomed Imaging A S Agente de diagnóstico e/ou terapeuticamente ativo alvejável, formulação combinada, processo para preparação e uso do mesmo, formulação combinada, e processos para gerar imagens intensificadas de um corpo animal humano ou não-humano e para investigação in vitro de alvejamento por um agente.
EP0971747B1 (de) 1996-10-28 2005-12-28 Amersham Health AS Kontrastmittel
US6261537B1 (en) * 1996-10-28 2001-07-17 Nycomed Imaging As Diagnostic/therapeutic agents having microbubbles coupled to one or more vectors
WO1998018497A2 (en) * 1996-10-28 1998-05-07 Nycomed Imaging As Contrast agents
ES2264159T3 (es) * 1996-10-28 2006-12-16 Amersham Health As Mejoras en/o relacionadas con agentes de diagnostico/terapeuticos.
US6068600A (en) * 1996-12-06 2000-05-30 Quadrant Healthcare (Uk) Limited Use of hollow microcapsules
US6143276A (en) 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6090800A (en) 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
US6120751A (en) 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
US6537246B1 (en) * 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
US20050019266A1 (en) * 1997-05-06 2005-01-27 Unger Evan C. Novel targeted compositions for diagnostic and therapeutic use
US6416740B1 (en) 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
US6245318B1 (en) * 1997-05-27 2001-06-12 Mallinckrodt Inc. Selectively binding ultrasound contrast agents
AU7702798A (en) 1997-05-30 1998-12-30 Alliance Pharmaceutical Corporation Methods and apparatus for monitoring and quantifying the movement of fluid
AU726115C (en) * 1997-08-12 2001-12-20 Bracco Research S.A. Administrable compositions and methods for magnetic resonance imaging
US6001333A (en) * 1997-09-12 1999-12-14 See; Jackie R. Methods of preparing micro encapsulated agents for use in the detection of tumors by CT imaging
US6548047B1 (en) 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6309623B1 (en) * 1997-09-29 2001-10-30 Inhale Therapeutic Systems, Inc. Stabilized preparations for use in metered dose inhalers
US20060165606A1 (en) * 1997-09-29 2006-07-27 Nektar Therapeutics Pulmonary delivery particles comprising water insoluble or crystalline active agents
US6565885B1 (en) * 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6623430B1 (en) 1997-10-14 2003-09-23 Guided Therapy Systems, Inc. Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system
US6726650B2 (en) * 1997-12-04 2004-04-27 Bracco Research S.A. Automatic liquid injection system and method
US6123923A (en) 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
US6524553B2 (en) 1998-03-31 2003-02-25 Bristol-Myers Squibb Pharma Company Quinolone vitronectin receptor antagonist pharmaceuticals
US6548663B1 (en) 1998-03-31 2003-04-15 Bristol-Myers Squibb Pharma Company Benzodiazepine vitronectin receptor antagonist pharmaceuticals
CN1295578A (zh) 1998-03-31 2001-05-16 杜邦药品公司 用于血管生成性疾病成像的药物
US6537520B1 (en) 1998-03-31 2003-03-25 Bristol-Myers Squibb Pharma Company Pharmaceuticals for the imaging of angiogenic disorders
WO2000035492A2 (en) 1998-12-18 2000-06-22 Du Pont Pharmaceuticals Company Vitronectin receptor antagonist pharmaceuticals
US6794518B1 (en) 1998-12-18 2004-09-21 Bristol-Myers Squibb Pharma Company Vitronectin receptor antagonist pharmaceuticals
US6569402B1 (en) 1998-12-18 2003-05-27 Bristol-Myers Squibb Pharma Company Vitronectin receptor antagonist pharmaceuticals
CA2349333A1 (en) 1998-12-18 2000-06-22 Du Pont Pharmaceuticals Company Vitronectin receptor antagonist pharmaceuticals
US6511649B1 (en) 1998-12-18 2003-01-28 Thomas D. Harris Vitronectin receptor antagonist pharmaceuticals
US6444192B1 (en) 1999-02-05 2002-09-03 The Regents Of The University Of California Diagnostic imaging of lymph structures
DE60022494T2 (de) * 1999-05-21 2006-01-26 Mallinckrodt, Inc. Vorrichtung zur resuspension von kontrastmitteln
AU5457300A (en) * 1999-06-01 2000-12-18 Drexel University Surface stabilized microbubbles for use in ultrasound contrast and drug deliveryagents
US7192698B1 (en) * 1999-08-17 2007-03-20 Purdue Research Foundation EphA2 as a diagnostic target for metastatic cancer
US7220401B2 (en) * 1999-09-24 2007-05-22 Barnes-Jewish Hospital Blood clot-targeted nanoparticles
US20030144570A1 (en) * 1999-11-12 2003-07-31 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating disease utilizing a combination of radioactive therapy and cell-cycle inhibitors
ES2525087T5 (es) 2000-05-10 2018-06-28 Novartis Ag Polvos basados en fosfolípidos para administración de fármacos
US7871598B1 (en) * 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
CA2410887C (en) 2000-06-02 2012-07-24 Bracco Research Usa Compounds for targeting endothelial cells, compositions containing the same and methods for their use
WO2002009674A2 (en) * 2000-07-28 2002-02-07 Inhale Therapeutic Systems, Inc. Methods and compositions to upregulate, redirect or limit immune responses to bioactive compounds
WO2004026111A2 (en) 2000-11-16 2004-04-01 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
GB0102691D0 (en) * 2001-02-02 2001-03-21 Nestle Sa Water soluable powders and tablets
DE10108799A1 (de) * 2001-02-19 2002-09-05 Laser & Med Tech Gmbh Verfahren und Vorrichtung zur Ultraschallimpfung von biologischem Zellmaterial
US6962071B2 (en) * 2001-04-06 2005-11-08 Bracco Research S.A. Method for improved measurement of local physical parameters in a fluid-filled cavity
ES2364636T3 (es) 2001-12-19 2011-09-08 Novartis Ag Administración pulmonar de aminoglucósidos.
US7261876B2 (en) 2002-03-01 2007-08-28 Bracco International Bv Multivalent constructs for therapeutic and diagnostic applications
ES2398393T3 (es) 2002-03-01 2013-03-15 Dyax Corp. Péptidos de unión a KDR y a VEGF/KDR y su uso en diagnóstico y terapia
US8623822B2 (en) 2002-03-01 2014-01-07 Bracco Suisse Sa KDR and VEGF/KDR binding peptides and their use in diagnosis and therapy
CA2513044A1 (en) 2002-03-01 2004-08-05 Dyax Corp. Kdr and vegf/kdr binding peptides and their use in diagnosis and therapy
US7211240B2 (en) 2002-03-01 2007-05-01 Bracco International B.V. Multivalent constructs for therapeutic and diagnostic applications
US7794693B2 (en) * 2002-03-01 2010-09-14 Bracco International B.V. Targeting vector-phospholipid conjugates
DE10211886B4 (de) * 2002-03-18 2004-07-15 Dornier Medtech Gmbh Verfahren und Einrichtung zum Erzeugen bipolarer akustischer Impulse
US20040126400A1 (en) * 2002-05-03 2004-07-01 Iversen Patrick L. Delivery of therapeutic compounds via microparticles or microbubbles
DE10223196B4 (de) * 2002-05-24 2004-05-13 Dornier Medtech Systems Gmbh Verfahren und Einrichtung zum Transferieren von Molekülen in Zellen
US20040018237A1 (en) 2002-05-31 2004-01-29 Perricone Nicholas V. Topical drug delivery using phosphatidylcholine
US6803046B2 (en) * 2002-08-16 2004-10-12 Bracco International B.V. Sincalide formulations
WO2004024123A1 (en) * 2002-09-16 2004-03-25 Vasogen Ireland Limited Accelerating recovery from trauma
US20070128117A1 (en) * 2003-02-04 2007-06-07 Bracco International B.V. Ultrasound contrast agents and process for the preparation thereof
DE602004029010D1 (de) * 2003-02-04 2010-10-21 Bracco Suisse Sa Ultraschall kontrastmittel und verfahren zur erstellung
EP1592456A1 (de) 2003-02-13 2005-11-09 BRACCO IMAGING S.p.A. KONTRASTVERSTûRKTE R NTGENPHASENDARSTELLUNG
ES2396368T3 (es) 2003-03-03 2013-02-21 Dyax Corporation Péptidos que se unen específicamente al receptor del HGF (CMET) y usos de los mismos
US20040258760A1 (en) * 2003-03-20 2004-12-23 Wheatley Margaret A. Isolated nanocapsule populations and surfactant-stabilized microcapsules and nanocapsules for diagnostic imaging and drug delivery and methods for their production
ITFI20030077A1 (it) * 2003-03-26 2004-09-27 Actis Active Sensors S R L Metodo per l'indagine ecografica tramite mezzi di contrasto
EP1615556B1 (de) * 2003-04-15 2012-06-13 Philips Intellectual Property & Standards GmbH Verfahren zur bestimmung von zustandsgrössen sowie von zustandsgrössenänderungen
US8021303B2 (en) 2003-06-12 2011-09-20 Bracco Research Sa System for extracting morphological information through a perfusion assessment process
KR101025490B1 (ko) 2003-06-12 2011-04-04 브라코 인터내셔날 비.브이. 초음파 콘트라스트 조영에서 보충 커브 피팅을 통한 혈류 개산
WO2005002546A1 (en) * 2003-06-27 2005-01-13 Smithkline Beecham Corporation Stabilized topotecan liposomal composition and methods
US7537788B2 (en) 2003-07-25 2009-05-26 Rubicor Medical, Inc. Post-biopsy cavity treatment implants and methods
US7744852B2 (en) 2003-07-25 2010-06-29 Rubicor Medical, Llc Methods and systems for marking post biopsy cavity sites
US20050020899A1 (en) 2003-07-25 2005-01-27 Rubicor Medical, Inc. Post-biopsy cavity treatmetn implants and methods
US7358226B2 (en) * 2003-08-27 2008-04-15 The Regents Of The University Of California Ultrasonic concentration of drug delivery capsules
DE10353780A1 (de) * 2003-11-18 2005-06-23 Beiersdorf Ag Partikel aus fester Hülle und potenziell feuchtigkeitsempfindliche oder wasserunlösliche Wirkstoffe enthaltendem flüssigem Kern, Zubereitungen diese enthaltend und Verfahren zu ihrer Herstellung
JP2005154282A (ja) * 2003-11-20 2005-06-16 Mebiopharm Co Ltd ガス封入リポソームの製造法
NO20035401D0 (no) * 2003-12-04 2003-12-04 Amersham Health As Metode
CN1897978B (zh) * 2003-12-22 2011-11-23 博莱科瑞士股份有限公司 具有用于反差成像的活性组分的充气微囊组件
WO2005063305A1 (en) * 2003-12-22 2005-07-14 Bracco Research Sa Gas-filled microvesicle assembly for contrast imaging
CN1321697C (zh) * 2003-12-23 2007-06-20 中国人民解放军军事医学科学院毒物药物研究所 一种以磷脂类成分为成膜材料的超声造影剂组合物及其制备方法
DE602005021057D1 (de) 2004-01-20 2010-06-17 Toronto E Hochfrequenz-ultraschall-darstellung mit kontrastmitteln
US8357351B2 (en) 2004-04-21 2013-01-22 Ananth Annapragada Nano-scale contrast agents and methods of use
US7713517B2 (en) * 2004-04-21 2010-05-11 Marval Biosciences, Inc. Compositions and methods for enhancing contrast in imaging
US8012457B2 (en) 2004-06-04 2011-09-06 Acusphere, Inc. Ultrasound contrast agent dosage formulation
GB2445322B (en) 2004-08-13 2008-08-06 Stichting Tech Wetenschapp Intravasular ultrasound techniques
EP1784228B1 (de) 2004-08-18 2016-10-05 Bracco Suisse SA Gasgefüllte mikrovesikelzusammensetzung für kontrastbilddarstellungen
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
CA2583600A1 (en) * 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for noninvasive cosmetic enhancement
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
DK1855759T3 (en) 2004-10-06 2017-06-06 Guided Therapy Systems Llc Tissue Ultrasound Treatment System
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
JP4804906B2 (ja) * 2004-12-15 2011-11-02 ドルニエル メドテック システムズ ゲーエムベーハー 循環器および神経疾患の患者における細胞治療および組織再生の衝撃波による改良方法
CA2588182C (en) 2004-12-23 2014-05-06 Bracco Research Sa A perfusion assessment method and system based on bolus administration
US20080045919A1 (en) * 2004-12-23 2008-02-21 Bracco Research S.A. Liquid Transfer Device for Medical Dispensing Containers
US7846100B2 (en) 2005-03-03 2010-12-07 Bracco International Bv Medical imaging system based on a targeted contrast agent
EP1714642A1 (de) * 2005-04-18 2006-10-25 Bracco Research S.A. Pharmazeutische Formulierung mit gasgefüllten Mikrokapseln zur ultraschallgesteuerten Freisetzung
EP1875327A2 (de) 2005-04-25 2008-01-09 Guided Therapy Systems, L.L.C. Verfahren und system zum verbessern der computerperipheriesicherheit
US20090110643A1 (en) * 2005-05-23 2009-04-30 Mebiopharm Co., Ltd. Method of Producing Liposomes Containing Gas Enclosed Therein
EP1952349B1 (de) 2005-11-10 2018-10-17 Bracco Suisse SA Sofortansicht einer kontrastmittelkonzentration bei bildgebungsanwendungen
JP5443760B2 (ja) 2005-11-10 2014-03-19 ブラッコ・シュイス・ソシエテ・アノニム 流動力学解析に基づく医療画像アプリケーションにおける固定化した造影剤の検出
BRPI0619522B8 (pt) 2005-12-09 2021-07-27 Bracco Suisse Sa conjugados de objetivação de vetor-fosfolipídio, composição compreendendo os referidos conjugados, composição de agente de contraste para ultra-som e método para preparo de microvesícula cheia de gás compreendendo um fosfolipídio e de fabricação de conjugado de peptídeo-fosfolipídio tendo baixos níveis de tfa
EP1797919A1 (de) * 2005-12-16 2007-06-20 Bracco Research S.A. Vorrichtung zum Übertragen von Flüssigkeiten für Behälter zur Abgabe von Medikamenten
WO2008016992A1 (en) 2006-08-01 2008-02-07 Scimed Life Systems, Inc. Pulse inversion sequences for nonlinear imaging
ATE469660T1 (de) 2006-09-05 2010-06-15 Bracco Research Sa Gasgefüllte mikrovesikel mit polymer- modifizierten lipiden
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US7976743B2 (en) * 2006-10-16 2011-07-12 Northwestern University Gas-containing liposomes
US20100059390A1 (en) * 2006-11-08 2010-03-11 Yuzhuo Li METHOD AND APARATUS FOR ELECTROCHEMICAL MECHANICAL POLISHING NiP SUBSTRATES
EP2117603A2 (de) 2006-12-19 2009-11-18 Bracco International B.V. Targeting und therapeutische verbindungen und gasgefüllte mikrovesikel mit diesen verbindungen
CN101605500B (zh) 2006-12-21 2013-01-30 博莱科瑞士股份有限公司 在医学成像应用中对固定造影剂脱离的检测
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
TWI526233B (zh) 2007-05-07 2016-03-21 指導治療系統股份有限公司 利用聲波能量調製藥劑輸送及效能之系統
US8052001B2 (en) * 2007-05-10 2011-11-08 Delta Electronics, Inc. Case assembly structure of electronic device
WO2009042621A2 (en) * 2007-09-24 2009-04-02 Mallinckrodt Inc. Injection system having microbubble-enhanced extravasation detection system
CN101951835B (zh) * 2007-12-05 2015-02-11 马维尔生物科学公司 纳米级对比剂和使用方法
US10130342B2 (en) 2007-12-28 2018-11-20 Bracco Suisse Sa Initialization of fitting parameters for perfusion assessment based on bolus administration
EP2234543B1 (de) 2007-12-28 2016-11-02 Bracco Suisse SA Quantifizierungsanalyse eines immobilisierten kontrastmittels bei medizinischen bildgebungsanwendungen
EP2090322A1 (de) 2008-02-18 2009-08-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Verwendung von FSH-Rezeptorliganden zur Diagnose und Behandlung von Krebs
ES2499395T3 (es) 2008-05-23 2014-09-29 Siwa Corporation Procedimientos para facilitar la regeneración
CN104545998B (zh) * 2008-06-06 2020-07-14 奥赛拉公司 用于美容处理和成像的系统和方法
WO2009152445A1 (en) * 2008-06-13 2009-12-17 Marval Biosciences, Inc. Imaging of atherosclerotic plaques using liposomal imaging agents
GB0811856D0 (en) * 2008-06-27 2008-07-30 Ucl Business Plc Magnetic microbubbles, methods of preparing them and their uses
AU2009301141B2 (en) * 2008-10-07 2015-08-27 Bracco Suisse S.A. Targeting construct comprising anti-polymer antibody and liposomes or microvesicles binding to the same
US20110045095A1 (en) * 2008-10-08 2011-02-24 The Regents Of The University Of California Polymer-phospholipid shelled microbubbles
EP2189112A1 (de) 2008-11-24 2010-05-26 Bracco Research S.A. Echzeit-Perfusionsbildgebung und -quantifizierung
WO2010069943A1 (en) 2008-12-16 2010-06-24 Bracco Research Sa Device for bolus administration of contrast agent
KR20110101204A (ko) 2008-12-24 2011-09-15 가이디드 테라피 시스템스, 엘.엘.씨. 지방 감소 및/또는 셀룰라이트 치료 방법 및 시스템
US10258563B2 (en) 2009-04-20 2019-04-16 Drexel University Encapsulation of microbubbles within the aqueous core of microcapsules
CN102460506B (zh) 2009-06-08 2017-07-21 博莱科瑞士股份有限公司 参数图像的自动定标
US10058837B2 (en) 2009-08-28 2018-08-28 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for production of gas-filled microbubbles
CA2769164C (en) 2009-09-01 2017-11-07 Bracco Suisse Sa Parametric images based on dynamic behavior over time
WO2011034892A2 (en) 2009-09-15 2011-03-24 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for microbubbles
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
WO2011084694A1 (en) 2009-12-17 2011-07-14 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Stabilized stat3 decoy oligonucleotides and uses therefor
EP2345732A1 (de) 2010-01-19 2011-07-20 Universite Paris Descartes Verfahren zur intrazellulären Abgabe von Nukleinsäuren
WO2011091160A1 (en) * 2010-01-20 2011-07-28 Henry Wu Custom-formulated phospholipid microbubbles and methods and uses thereof
EP2544593B1 (de) 2010-03-09 2014-12-31 Bracco Suisse SA Initialisierung von anpassungsparametern für die perfusionsbeurteilung basierend auf der bolusverabreichung
US10183182B2 (en) 2010-08-02 2019-01-22 Guided Therapy Systems, Llc Methods and systems for treating plantar fascia
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
WO2012019172A1 (en) 2010-08-06 2012-02-09 The Trustees Of Columbia University In The City Of New York Medical imaging contrast devices, methods, and systems
EP2603242B1 (de) 2010-08-09 2018-03-14 Bracco Suisse SA Gasgefüllte gerichtete mikrovesikel
PT2603238E (pt) 2010-08-09 2014-10-22 Inserm Inst Nat De La Santé Et De La Rech Médicale Métodos e composições farmacêuticas para o tratamento de uma doença ocular num indíviduo
US9649376B2 (en) 2010-09-27 2017-05-16 Siwa Corporation Selective removal of age-modified cells for treatment of atherosclerosis
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US8721571B2 (en) 2010-11-22 2014-05-13 Siwa Corporation Selective removal of cells having accumulated agents
EP2654788B1 (de) 2010-12-24 2018-03-14 Bracco Suisse SA Gasgefüllte mikrovesikel zur verwendung als impfstoff
EP2474327A1 (de) 2011-01-07 2012-07-11 RWTH Aachen Mikrodosierung von Ultraschallkontrastmitteln
DE102011005444A1 (de) * 2011-03-11 2012-09-13 Innora Gmbh Festes, negatives Röntgenkontrastmittel zur Darstellung des Gastrointestinaltraktes
CN103547258B (zh) 2011-03-17 2017-10-20 特兰斯德梅尔生物工艺股份有限公司 局部一氧化氮系统及其使用方法
WO2012136813A2 (en) 2011-04-07 2012-10-11 Universitetet I Oslo Agents for medical radar diagnosis
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
EP2545908A1 (de) * 2011-07-11 2013-01-16 RWTH Aachen Medium für Mikrobläschen oder Mikropartikel und seine Herstellung
KR20190080967A (ko) 2011-07-11 2019-07-08 가이디드 테라피 시스템스, 엘.엘.씨. 조직에 초음파원을 연결하는 시스템 및 방법
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US8871255B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Treatment of skin and soft tissue infection with nitric oxide
US8871254B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Systems and methods for treatment of acne vulgaris and other conditions with a topical nitric oxide delivery system
US8871261B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Cancer treatments and compositions for use thereof
US8871258B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Treatment and prevention of learning and memory disorders
US8871259B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Techniques and systems for treatment of neuropathic pain and other indications
US8871260B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Methods and compositions for muscular and neuromuscular diseases
US8871256B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Methods and systems for treatment of inflammatory diseases with nitric oxide
US8871257B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Prevention and treatment of cardiovascular diseases using systems and methods for transdermal nitric oxide delivery
US8871262B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Compositions and methods for treatment of osteoporosis and other indications
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
JP6313329B2 (ja) 2012-12-21 2018-04-18 ブラッコ・スイス・ソシエテ・アノニムBracco Suisse SA ガス封入マイクロベシクル
EP2936433B1 (de) 2012-12-21 2018-09-19 Bracco Suisse SA Segmentierung in diagnostischen bildgebungsgeräten basierend auf statistischer analyse im zeitablauf
CN204637350U (zh) 2013-03-08 2015-09-16 奥赛拉公司 美学成像与处理系统、多焦点处理系统和执行美容过程的系统
US9320706B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US9314433B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US9387159B2 (en) 2013-03-13 2016-07-12 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9849160B2 (en) 2013-03-13 2017-12-26 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US9393264B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US9295636B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US9241899B2 (en) 2013-03-13 2016-01-26 Transdermal Biotechnology, Inc. Topical systems and methods for treating sexual dysfunction
US9320758B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
US9750787B2 (en) 2013-03-13 2017-09-05 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US9295637B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Compositions and methods for affecting mood states
US9687520B2 (en) 2013-03-13 2017-06-27 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US9724419B2 (en) 2013-03-13 2017-08-08 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US9314423B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Hair treatment systems and methods using peptides and other compositions
US9295647B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
US9393265B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US20140271938A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
US20140271731A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US9339457B2 (en) 2013-03-13 2016-05-17 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US20140271937A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
US9314417B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9314422B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
WO2014140197A1 (en) 2013-03-15 2014-09-18 Westfaelische Wilhelms-Universitaet Muenster Detection of acute renal allograft rejection
CN105407968B (zh) 2013-07-03 2019-09-03 博莱科瑞士股份公司 用于对缺血性中风的超声处置的设备
KR101853948B1 (ko) * 2013-07-05 2018-05-02 사회복지법인 삼성생명공익재단 X-선 조영제 및 기포 촉진제를 함유하는 조영 조성물 및 그 제조방법
CN106163412B (zh) * 2014-04-07 2019-10-11 博莱科瑞士股份有限公司 利用非基频分析对声级进行原位估计
SG11201608691YA (en) 2014-04-18 2016-11-29 Ulthera Inc Band transducer ultrasound therapy
WO2015182647A1 (ja) * 2014-05-28 2015-12-03 武田薬品工業株式会社 抗菌水
KR102438295B1 (ko) 2014-09-19 2022-08-31 시와 코퍼레이션 염증 및 자가 면역 질환을 치료하기 위한 노화 방지 항체
CN104337766A (zh) * 2014-10-09 2015-02-11 唐春林 一种地高辛脂质微泡及其制备方法
HUE043680T2 (hu) 2014-12-18 2019-09-30 Bracco Suisse Sa Célbajuttató gázzal töltött mikrorészecske készítmény
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
US10537622B2 (en) 2014-12-22 2020-01-21 Bracco Suisse S.A. Gas-filled microvesicles for use as vaccine
CA2972423A1 (en) 2014-12-31 2016-07-07 Lantheus Medical Imaging, Inc. Lipid-encapsulated gas microsphere compositions and related methods
KR101853949B1 (ko) 2015-01-02 2018-05-02 사회복지법인 삼성생명공익재단 X-선 조영제 및 기포 촉진제를 함유하는 조영 조성물 및 그 제조방법
CN108601948B (zh) 2015-12-09 2021-04-20 皇家飞利浦有限公司 超声系统
KR20180091025A (ko) 2015-12-10 2018-08-14 브라코 스위스 에스.에이. 동적 역치화에 의한 고정된 조영제의 검출
AU2017208980B2 (en) 2016-01-18 2022-03-31 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
CA3011248A1 (en) 2016-02-09 2017-08-17 Bracco Suisse Sa A recombinant chimeric protein for selectins targeting
CN109071675A (zh) 2016-02-19 2018-12-21 Siwa有限公司 使用高级糖化终产物(age)的抗体治疗癌症、杀死转移性癌细胞和预防癌症转移的方法和组合物
WO2018191718A1 (en) 2017-04-13 2018-10-18 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
KR20180133527A (ko) 2016-05-04 2018-12-14 랜티우스 메디컬 이메징, 인크. 초음파 조영제의 제조 방법 및 장치
JP2019518763A (ja) 2016-06-23 2019-07-04 シワ コーポレーション 様々な疾患及び障害の治療において使用するためのワクチン
US10342828B1 (en) * 2016-06-27 2019-07-09 Roderick M. Dayton Fecal oxygenation
US9789210B1 (en) 2016-07-06 2017-10-17 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
KR102593310B1 (ko) 2016-08-16 2023-10-25 얼테라, 인크 이미징 오정렬을 감소시키도록 구성된 초음파 이미징 시스템, 초음파 이미징 모듈 및 이미징 오정렬을 감소시키는 방법
US10858449B1 (en) 2017-01-06 2020-12-08 Siwa Corporation Methods and compositions for treating osteoarthritis
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US11110063B2 (en) 2017-08-25 2021-09-07 MAIA Pharmaceuticals, Inc. Storage stable sincalide formulations
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
US20200360289A1 (en) * 2019-05-15 2020-11-19 Bracco Suisse Sa Freeze-dried product and gas-filled microvesicles suspension
CN111467266B (zh) * 2020-05-14 2022-10-28 深圳市陆讯纳米科技有限公司 一种臭氧纳米气泡漱口液及制备方法
CN111569683B (zh) * 2020-05-14 2022-04-15 深圳市陆讯纳米科技有限公司 一种高浓度长效臭氧纳米气泡水溶液及制备方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE52575C (de) * J. E. STROSCHEIN, Apotheker in Berlin S.O., Köpenickerstr. 32 Verfahren zur Erzeugung von Mustern auf Geweben und dergl. mittels Vexirfarbten
DE123235C (de) *
DE77752C (de) * R. A. LISTER, Victoria Iron Works, u. M. PEDERSEN, Dursley, County of Gloucester, Engl Einlafsventil mit Sieb für Milchschleudern
DE131540C (de) *
DE320433C (de) * 1915-07-13 1920-09-17 Erich F Huth G M B H Dr Anordnung zum Empfang elektrischer Schwingungen
DE327490C (de) * 1916-05-31 1920-10-13 Heinrich Schemann Kuenstliche Hand
NL302030A (de) 1962-12-21 1900-01-01
US3968203A (en) 1965-10-01 1976-07-06 Jerome G. Spitzer Aerosol astringent composition
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3650831A (en) 1969-03-10 1972-03-21 Armour Dial Inc Method of cleaning surfaces
US3900420A (en) 1970-05-18 1975-08-19 Felix Sebba Microgas emulsions and method of forming same
US4027007A (en) 1970-12-09 1977-05-31 Colgate-Palmolive Company Antiperspirants formulated with borax
GB1575343A (en) * 1977-05-10 1980-09-17 Ici Ltd Method for preparing liposome compositions containing biologically active compounds
CH621479A5 (de) * 1977-08-05 1981-02-13 Battelle Memorial Institute
CH624011A5 (de) * 1977-08-05 1981-07-15 Battelle Memorial Institute
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4256251A (en) 1978-04-24 1981-03-17 Lawrence M. Smith Surgical staplers and staple
US4192859A (en) * 1978-09-29 1980-03-11 E. R. Squibb & Sons, Inc. Contrast media containing liposomes as carriers
US4276885A (en) * 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
US4265251A (en) * 1979-06-28 1981-05-05 Rasor Associates, Inc. Method of determining pressure within liquid containing vessel
US4316391A (en) 1979-11-13 1982-02-23 Ultra Med, Inc. Flow rate measurement
CA1170569A (en) * 1980-11-17 1984-07-10 Julia S. Rasor Microbubble precursors and methods for their production and use
US4657756A (en) 1980-11-17 1987-04-14 Schering Aktiengesellschaft Microbubble precursors and apparatus for their production and use
US4681119A (en) 1980-11-17 1987-07-21 Schering Aktiengesellschaft Method of production and use of microbubble precursors
US4442843A (en) * 1980-11-17 1984-04-17 Schering, Ag Microbubble precursors and methods for their production and use
DE3141641A1 (de) 1981-10-16 1983-04-28 Schering Ag, 1000 Berlin Und 4619 Bergkamen Ultraschall-kontrastmittel und dessen herstellung
US4572203A (en) 1983-01-27 1986-02-25 Feinstein Steven B Contact agents for ultrasonic imaging
US4718433A (en) 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
GB2134869A (en) * 1983-02-15 1984-08-22 Squibb & Sons Inc Method of preparing liposomes and products produced thereby
GB2135647A (en) * 1983-02-15 1984-09-05 Squibb & Sons Inc Method of preparing liposomes and products produced thereby
US5141738A (en) 1983-04-15 1992-08-25 Schering Aktiengesellschaft Ultrasonic contrast medium comprising gas bubbles and solid lipophilic surfactant-containing microparticles and use thereof
DE3313946A1 (de) * 1983-04-15 1984-10-18 Schering AG, 1000 Berlin und 4709 Bergkamen Mikropartikel und gasblaeschen enthaltende ultraschall-kontrastmittel
DE3313947A1 (de) 1983-04-15 1984-10-18 Schering AG, 1000 Berlin und 4709 Bergkamen Mikropartikel und gasblaeschen enthaltende ultraschall-kontrastmittel
US4900540A (en) 1983-06-20 1990-02-13 Trustees Of The University Of Massachusetts Lipisomes containing gas for ultrasound detection
US4544545A (en) * 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
DE3324754A1 (de) * 1983-07-06 1985-01-17 Schering AG, 1000 Berlin und 4709 Bergkamen Ultraschallkontrastmittel sowie dessen herstellung
US5618514A (en) 1983-12-21 1997-04-08 Nycomed Imaging As Diagnostic and contrast agent
GB8504916D0 (en) * 1985-02-26 1985-03-27 Isc Chemicals Ltd Emulsions of perfluorocarbons in aqueous media
US4684479A (en) 1985-08-14 1987-08-04 Arrigo Joseph S D Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures
DE3529195A1 (de) 1985-08-14 1987-02-26 Max Planck Gesellschaft Kontrastmittel fuer ultraschalluntersuchungen und verfahren zu seiner herstellung
US4927623A (en) * 1986-01-14 1990-05-22 Alliance Pharmaceutical Corp. Dissolution of gas in a fluorocarbon liquid
EP0245019A3 (de) * 1986-04-30 1989-05-10 Michael A. Davis Kontrastmedium mit niedriger Dichte zur Diagnose von pathologischen Bedingungen
DE3637926C1 (de) 1986-11-05 1987-11-26 Schering Ag Ultraschall-Manometrieverfahren in einer Fluessigkeit mittels Mikroblaeschen
US4925678A (en) * 1987-04-01 1990-05-15 Ranney David F Endothelial envelopment drug carriers
FR2608942B1 (fr) 1986-12-31 1991-01-11 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une substance, sous forme de nanocapsules
US5283067A (en) * 1987-01-30 1994-02-01 Ciba-Geigy Corporation Parenteral suspensions
US5089181A (en) * 1987-02-24 1992-02-18 Vestar, Inc. Method of dehydrating vesicle preparations for long term storage
CH672733A5 (de) 1987-05-22 1989-12-29 Bracco Ind Chimica Spa
DE3741201A1 (de) * 1987-12-02 1989-06-15 Schering Ag Ultraschallarbeitsverfahren und mittel zu dessen durchfuehrung
US4844882A (en) * 1987-12-29 1989-07-04 Molecular Biosystems, Inc. Concentrated stabilized microbubble-type ultrasonic imaging agent
IE61591B1 (en) * 1987-12-29 1994-11-16 Molecular Biosystems Inc Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production
KR0133132B1 (ko) 1988-02-05 1998-04-17 쉐링 아게, 베를린 운트 베르크카멘 초음파 조영제, 이의 제법 및 이의 진단제로서의 용도
US5425366A (en) * 1988-02-05 1995-06-20 Schering Aktiengesellschaft Ultrasonic contrast agents for color Doppler imaging
US5171755A (en) * 1988-04-29 1992-12-15 Hemagen/Pfc Emulsions of highly fluorinated organic compounds
DE3828905A1 (de) 1988-08-23 1990-03-15 Schering Ag Mittel bestehend aus cavitate oder clathrate bildenden wirt/gast-komplexen als kontrastmittel
US5730954A (en) 1988-08-23 1998-03-24 Schering Aktiengesellschaft Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent
US4957656A (en) 1988-09-14 1990-09-18 Molecular Biosystems, Inc. Continuous sonication method for preparing protein encapsulated microbubbles
DE3934656A1 (de) 1989-10-13 1991-04-18 Schering Ag Verfahren zur herstellung von waessrigen dispersionen
US5776429A (en) 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US5228446A (en) 1989-12-22 1993-07-20 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5149319A (en) 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
US5088499A (en) * 1989-12-22 1992-02-18 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5123414A (en) * 1989-12-22 1992-06-23 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5209720A (en) 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
DE4004430A1 (de) 1990-02-09 1991-08-14 Schering Ag Aus polyaldehyden aufgebaute kontrastmittel
GB9003821D0 (en) 1990-02-20 1990-04-18 Danbiosyst Uk Diagnostic aid
US5445813A (en) 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
IN172208B (de) * 1990-04-02 1993-05-01 Sint Sa
US5556610A (en) * 1992-01-24 1996-09-17 Bracco Research S.A. Gas mixtures useful as ultrasound contrast media, contrast agents containing the media and method
US5190982A (en) 1990-04-26 1993-03-02 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5137928A (en) 1990-04-26 1992-08-11 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5205287A (en) 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
AU636481B2 (en) * 1990-05-18 1993-04-29 Bracco International B.V. Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography
US5215680A (en) * 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
DE4100470A1 (de) 1991-01-09 1992-07-16 Byk Gulden Lomberg Chem Fab Echokontrastmittel
GB9106686D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
GB9106673D0 (en) * 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
US5874062A (en) 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
GB9107628D0 (en) 1991-04-10 1991-05-29 Moonbrook Limited Preparation of diagnostic agents
US5147631A (en) 1991-04-30 1992-09-15 Du Pont Merck Pharmaceutical Company Porous inorganic ultrasound contrast agents
US5364612A (en) 1991-05-06 1994-11-15 Immunomedics, Inc. Detection of cardiovascular lesions
WO1992021382A1 (en) * 1991-06-03 1992-12-10 Holmes, Michael, John Improvements in or relating to contrast agents
DE4127442C2 (de) 1991-08-17 1996-08-22 Udo Dr Gros Wäßrige Dispersion Fluorcarbon enthaltender Phospholipid-Vesikel und ein Verfahren zu ihrer Herstellung
NZ244147A (en) 1991-09-03 1994-09-27 Hoechst Ag Echogenic particles which comprise a gas and at least one shaping substance, and their use as diagnostic agents
DE69230885T3 (de) 1991-09-17 2008-01-24 Ge Healthcare As Gasförmige ultraschallkontrastmittel
US5409688A (en) * 1991-09-17 1995-04-25 Sonus Pharmaceuticals, Inc. Gaseous ultrasound contrast media
AU2789192A (en) * 1991-10-04 1993-05-03 Mallinckrodt Medical, Inc. Gaseous ultrasound contrast agents
GB9200388D0 (en) 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
IL104084A (en) 1992-01-24 1996-09-12 Bracco Int Bv Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them
BR9306044A (pt) * 1992-03-06 1997-11-18 Nycomed Imaging Agente de contraste uso do mesmos processos para gerar imagens melhoradas de um corpo de animal humano ou não humano e para preparar um agente de contraste
WO1994009703A1 (en) * 1992-11-02 1994-05-11 Drexel University Surfactant-stabilized microbubble mixtures, process for preparing and methods of using the same
US5716597A (en) * 1993-06-04 1998-02-10 Molecular Biosystems, Inc. Emulsions as contrast agents and method of use
KR100218642B1 (ko) 1993-07-02 1999-09-01 스티븐 로손 열변성된 단백질로부터 캡슐화된 마이크로스피어의 제조방법
EP0711179B2 (de) 1993-07-30 2010-09-01 IMCOR Pharmaceutical Co. Stabilisierte mikrogasblaeschen-zusammensetzungen für echografie
US5601085A (en) 1995-10-02 1997-02-11 Nycomed Imaging As Ultrasound imaging
JP3914757B2 (ja) * 2001-11-30 2007-05-16 デュアキシズ株式会社 ウィルス検査のための装置と方法とシステム

Also Published As

Publication number Publication date
US5380519A (en) 1995-01-10
DK0474833T4 (da) 2004-12-20
EP0474833B1 (de) 1995-08-02
IE911048A1 (en) 1991-10-09
JP4205779B2 (ja) 2009-01-07
US5567414A (en) 1996-10-22
AU630030B2 (en) 1992-10-15
CN1055298A (zh) 1991-10-16
ES2075438T3 (es) 1995-10-01
IE69018B1 (en) 1996-07-24
US20050207980A1 (en) 2005-09-22
IS3686A7 (is) 1991-10-03
AU7582891A (en) 1991-10-30
IN172208B (de) 1993-05-01
CA2056371C (en) 2004-07-27
US6136293A (en) 2000-10-24
EP0474833B2 (de) 2004-08-11
US5911972A (en) 1999-06-15
IL97730A0 (en) 1992-06-21
ATE125711T1 (de) 1995-08-15
US5531980A (en) 1996-07-02
KR960002184B1 (ko) 1996-02-13
DE69111719D1 (de) 1995-09-07
WO1991015244A3 (en) 1991-11-14
US7033574B1 (en) 2006-04-25
US6485705B1 (en) 2002-11-26
JP2842453B2 (ja) 1999-01-06
WO1991015244A2 (en) 1991-10-17
ZA912427B (en) 1992-01-29
DK0474833T3 (da) 1995-10-30
US5271928A (en) 1993-12-21
JP2003221350A (ja) 2003-08-05
NZ237637A (en) 1992-06-25
ES2075438T5 (es) 2005-03-16
JPH04506670A (ja) 1992-11-19
EP0474833A1 (de) 1992-03-18
US20030017109A1 (en) 2003-01-23
IL97730A (en) 1995-12-08
US5658551A (en) 1997-08-19
JPH1171265A (ja) 1999-03-16
KR920700699A (ko) 1992-08-10
DE69111719T2 (de) 1996-04-04
US6896875B2 (en) 2005-05-24
US5643553A (en) 1997-07-01
US6110443A (en) 2000-08-29
CN1055413C (zh) 2000-08-16
CA2056371A1 (en) 1991-10-03
GR3017324T3 (en) 1995-12-31

Similar Documents

Publication Publication Date Title
DE69111719T3 (de) Stabile mikroblasensuspensionen zur injektion in lebewesen.
DE69535203T2 (de) Mikrokapseln, verfahren zur herstellung und ihre anwendung
DE69721235T2 (de) Verbesserungen an (oder im bezug auf) kontrastmittel
DE69432358T2 (de) Gashaltige mikrosphären zur topischen und subkutanen anwendung
DE69632907T2 (de) Neue zusammensetzungen von lipiden und stabilisierenden materialen
DE69636486T2 (de) Gasemulsionen, die durch fluorierte Ether mit niedrigen Ostwaldkoeffizienten stabilisiert sind
US6613306B1 (en) Ultrasound contrast agents and methods of making and using them
US7083778B2 (en) Ultrasound contrast agents and methods of making and using them
DE19611769A1 (de) Mikropartikel, Verfahren zu deren Herstellung, sowie deren Verwendung in der Ultraschall Diagnostik
US20060034771A1 (en) Ultrasound contrast agents and methods of making and using them
US20010008626A1 (en) Ultrasound contrast agents and methods of making and using them
US20030185759A1 (en) Ultrasound contrast agents and methods of making and using them
US20030194376A1 (en) Ultrasound contrast agents and methods of making and using them
US20010012507A1 (en) Ultrasound contrast agents and methods of making and using them

Legal Events

Date Code Title Description
8363 Opposition against the patent
8366 Restricted maintained after opposition proceedings