DE69434185T2 - Urethrales gerät zur ablation mittels hochfrequenz - Google Patents

Urethrales gerät zur ablation mittels hochfrequenz Download PDF

Info

Publication number
DE69434185T2
DE69434185T2 DE69434185T DE69434185T DE69434185T2 DE 69434185 T2 DE69434185 T2 DE 69434185T2 DE 69434185 T DE69434185 T DE 69434185T DE 69434185 T DE69434185 T DE 69434185T DE 69434185 T2 DE69434185 T2 DE 69434185T2
Authority
DE
Germany
Prior art keywords
electrode
ablation
ablation electrode
flexible
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69434185T
Other languages
English (en)
Other versions
DE69434185D1 (de
Inventor
Mir A Imran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE69434185D1 publication Critical patent/DE69434185D1/de
Application granted granted Critical
Publication of DE69434185T2 publication Critical patent/DE69434185T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00274Prostate operation, e.g. prostatectomy, turp, bhp treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1273Generators therefor including multiple generators in one device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1497Electrodes covering only part of the probe circumference

Description

  • Die Erfindung betrifft ein transurethrales Hochfrequenzgerät zur Ablation der Prostatadrüse.
  • Bislang wurden Vorrichtungen und Verfahren bereitgestellt, welche zur Ablation oder zum Zerstören von Gewebe in der Prostatadrüse verwendet wurden, um verschiedene Wirkungen einer vergrößerten Prostatadrüse zu überwinden, die typischerweise als benigne Prostata-Hypertrophie bezeichnet wird. Solche Vorrichtungen und Verfahren verwendeten Katheter zur Durchführung einer Mikrowellen- und Hochfrequenzablation. Solche Prozeduren verwendeten jedoch typischerweise eine Resektion der Urethra oder verursachten ein Eindringen in die Urethrawand oder eine Beschädigung der Urethrawand während der Durchführung der Ablation der Prostatadrüse. Solche Techniken machten oftmals die Verwendung eines Ultraschall-Betrachtungsinstruments notwendig, um die Position der Prostatadrüse sichtbar zu machen und eine Positionierung des distalen Endabschnitts des Katheters in der Prostatadrüse zu unterstützen. Es besteht daher die Notwendigkeit eines neuen und verbesserten Geräts sowie Verfahrens, welche diese Nachteile überwinden.
  • Die DE 2407559 offenbart eine Sonde, welche innerhalb der Wände der Sonde positionierte Antennenstrahler aufweist. Der Sonde wird ein Kühlmittel zugeführt und mittels eines mit dem proximalen Ende der Sonde gekoppelten Koaxialkabels wird den Strahlern Mikrowellenenergie, insbesondere im diametralen Wellenlängenbereich, zugeführt.
  • Die EP-A-0370890 beschreibt ein Gerät für die chirurgische Hyperthermie-Behandlung von Geweben, vorzugsweise der Prostata, welches von dem Typ ist, der mit Heizmitteln zum Erzeugen einer Hyperthermie ausgestattet ist, und welches eine Mikrowellen-Erzeugungseinrichtung umfasst, die in einem strahlenden Sondenmittel angeordnet ist, das dafür eingerichtet ist, in einen Hohlraum des Körpers eingeführt zu werden. Es ist ein Strahlungsreflexionsschirm vorgesehen, um empfindliche Gewebe, welche nicht die zu behandelnden Gewebe sind, vor der Wärme zu schützen. Dieser Schirm kann einen Ballon umfassen, welcher eine strahlungsreflektierende Flüssigkeit enthält.
  • Allgemein ist es eine Aufgabe der vorliegenden Erfindung, ein transurethrales Hochfrequenzgerät zur Ablation der Prostatadrüse bereitzustellen.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem eine Ablation ohne Zerstörung der urethralen Wand ausgeführt werden kann.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät bereitzustellen, welches die Notwendigkeit einer Ultraschall-Betrachtung überflüssig macht.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem eine Ablationselektrode durch den distalen Endabschnitt eines in der Urethra angeordneten Katheters getragen wird.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem ein Temperaturmessmittel zum Messen der Temperatur der Ablationselektrode bereitgestellt ist.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem eine gekühlte Ablationselektrode bereitgestellt ist.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät bereitzustellen, bei welchem die gekühlte Ablationselektrode zur Schonung der urethralen Wand und außerdem zur Ermöglichung einer Vergrößerung der Tiefe der Läsionen, welche erzeugt werden können, vorgesehen ist.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät bereitzustellen, bei welchem es möglich ist, die Position des distalen Endabschnitts des Katheters innerhalb der Prostatadrüse ohne die Verwendung von Ultraschall zu bestimmen.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem ein Impedanzmessmittel durch den distalen Endabschnitt des Katheters getragen wird, um festzustellen, wann der distale Endabschnitt in das Gebiet der Prostatadrüse eintritt.
    • Eine weitere Aufgabe der Erfindung ist es, ein Gerät der oben genannten Art bereitzustellen, bei welchem die Impedanzmessung verwendet wird, das Anlegen von Hochfrequenzenergie an die Ablationselektrode zu steuern/zu regeln.
  • Weitere Aufgaben und Merkmale der Erfindung werden aus der folgenden Beschreibung offensichtlich, in welcher die bevorzugten Ausführungsformen in Verbindung mit den beigefügten Zeichnungen im Detail ausgeführt sind.
  • 1 ist eine schematische Illustration eines die vorliegende Erfindung enthaltenden Geräts, welche zeigt, wie das Gerät zur Durchführung einer Ablation in der Prostatadrüse eingesetzt wird.
  • 2 ist eine vergrößerte Querschnittsansicht eines Abschnitts des in 1 gezeigten Katheters.
  • 3 ist eine Querschnittsansicht entlang der Linie 3–3 von 2.
  • 4 ist eine Querschnittsansicht entlang der Linie 4–4 von 2.
  • 5 ist eine Querschnittsansicht entlang der Linie 5–5 von 2.
  • 6 ist eine schematische Darstellung der Impedanzmessschaltung, welche in dem in 1 gezeigten Gerät verwendet wird.
  • 7 ist eine schematische Darstellung der Hochfrequenz-Energieschaltung, welche bei dem in 1 gezeigten Gerät eingesetzt wird.
  • 8 ist ein Graph, welcher die während einer Ablationsprozedur in der Prostatadrüse auftretenden Temperaturen zeigt.
  • Allgemein ist das Hochfrequenzgerät für eine Ablation der Prostatadrüse durch die Urethra aus einer Sonde gebildet, welche die Form eines flexiblen, länglichen Elements mit proximalen und distalen Endabschnitten aufweist und dafür eingerichtet ist, in die Urethra eingeführt zu werden. Eine Ablationselektrode ist durch den distalen Endabschnitt des flexiblen, länglichen Elements getragen. Das flexible, längliche Element weist in sich einen ersten Strömungskanal zum Zuführen eines gekühlten Fluids zu der Ablationselektrode zur Kühlung derselben auf. Das flexible, längliche Element ist außerdem mit einem zusätzlichen Strömungskanal versehen, um das gekühlte Fluid zurückzuführen, nachdem es im geringen Abstand an der Ablationselektrode vorbeigeströmt ist. Mit der Ablationselektrode sind Mittel verbunden, um der Elektrode Hochfrequenzenergie zuzuführen, während sie gekühlt wird, um Hochfrequenzenergie durch die urethrale Wand dem Gewebe der Prostatadrüse zuzuführen. Die Kühlung der Ablationselektrode dient dazu, die urethrale Wand vor der durch die Hochfrequenzenergie erzeugten Wärme zu schützen. Ein Impedanzmessmittel ist durch den distalen Endabschnitt des flexiblen, länglichen Elements getragen, um festzustellen, wann der distale Endabschnitt des flexiblen, länglichen Elements, in die Prostatadrüse eingetreten ist.
  • Insbesondere ist das transurethrale Hochfrequenzgerät 10 zur Ablation der Prostatadrüse aus einer Sonde 11 gebildet, welche das flexible, längliche Element 12 umfasst, das aus einem geeigneten Material wie Kunststoff, gebildet ist und einen proximalen und einen distalen Endabschnitt 13 und 14 aufweist. Der proximale Endabschnitt 13 ist mit einem ersten und einem zweiten Bein 16 und 17 versehen, welche durch Anschlussstücke 18 und 19 mit Schläuchen 21 und 22 verbunden sind. Die Schläuche 21 und 22 sind mit Anschlussstücken 23 und 24 verbunden, die an einem Block 26 angebracht sind, der schematisch eine gekühlte Salinelösung sowie eine Pumpe repräsentiert. Die gekühlte Salinelösung und die Pumpe 26 werden dazu verwendet, eine geeignete Kühlflüssigkeit, beispielsweise eine Salinelösung unter Druck durch den Schlauch 21 zuzuführen, wobei durch den Schlauch 22 ein Rücklauf bereitgestellt ist.
  • Der proximale Endabschnitt 13 ist außerdem mit einer Abzweigung 31 versehen, von welchem aus sich ein Kabel 32 erstreckt, um eine Mehrzahl von Leitern zu führen, wie im Folgenden beschrieben wird, welche mit einem Hochfrequenzgenerator mit Impedanzmessfähigkeiten, repräsentiert durch den Block 36, verbunden sind.
  • Das flexible, längliche, röhrenförmige Element 12 ist mit einem zentralen Strömungshohlraum 41 versehen, welcher dafür eingerichtet ist, die durch den Schlauch 21 zugeführte, gekühlte Salinelösung aufzunehmen. Das flexible, längliche, röhrenförmige Element 12 ist außerdem mit zwei zusätzlichen mondförmigen oder sichelförmigen Hohlräumen 42 und 43 versehen, wobei der Hohlraum 42 als ein Rücklaufhohlraum für die Saline-Lösung verwendet wird und der Hohlraum 43 als Drahthohlraum dient. Eine aus einem geeigneten leitfähigen Material wie Platin oder rostfreiem Stahl gebildete Hülse 46, welche im Wesentlichen den gleichen Durchmesser aufweist wie das flexible, längliche, röhrenförmige Element 12, ist durch geeignete Mittel wie einen Klebstoff (nicht gezeigt) an dem distalen Endabschnitt 14 befestigt. Die Hülse 46 ist mit einer Zentralbohrung 47 versehen, welche durch diese hindurch verläuft. Wie insbesondere in 2 gezeigt ist, führt der zentrale Strömungshohlraum 41 in die Bohrung 47, so dass die dort austretende, gekühlte Salinelösung in der Nähe des distalen Endabschnitts der Hülse 46 austritt. Wie durch die Pfeile 48 angedeutet ist, strömt sie anschließend hinter der Innenfläche der Hülse 46 im Kontakt mit dieser entlang und somit in den Rücklaufhohlraum 42, welcher mit der Bohrung 47 in Verbindung steht.
  • Die halbkreisförmige Spitze 51 ist aus einem geeigneten Material, wie etwa einem Kunststoff, gebildet und an dem distalen Endabschnitt der Hülse 46 befestigt durch geeignete Mittel, wie etwa einen Montageblock 52, der ebenfalls aus einem Kunststoff gebildet und an dem distalen Endabschnitt der Hülse 46 durch ein geeignetes Mittel, wie etwa einen Klebstoff (nicht gezeigt), befestigt ist.
  • Wenigstens zwei und vorzugsweise vier Impedanzmesselektroden 56 sind von der halbkreisförmigen Spitze 51 getragen und – wie gezeigt – darin eingebettet und in Umfangsrichtung um 90° in Bezug zueinander separiert. Die Impedanzmesselektroden 56 können ebenfalls aus einem geeigneten Material, wie etwa Platin, gebildet sein und sind durch isolierte Leiter 57 angeschlossen, welche durch in dem Montageblock 52 vorgesehene Löcher 58 in die Bohrung 47 der Hülse 46 und somit in den Drahthohlraum 43 hinein verlaufen. Wenngleich die Leiter 57 durch die Bohrung 47 hindurch verlaufen, welche der Kühllösung ausgesetzt ist, so ist doch der Drahthohlraum 43 gegenüber der Bohrung 47 durch einen Epoxyd-Stopfen 61 am Eingang zum Drahthohlraum 43 abgedichtet (siehe 2). Ein weiterer isolierter Leiter 66 verläuft durch den Drahthohlraum 43 und ist an einer Lötstelle 67 mit der Hülsenelektrode 46 verbunden.
  • Mittel zum Messen der Temperatur der Hülsenelektrode 46 sind bereitgestellt und sind aus einem Thermistor 71 gebildet, welcher, wie in 2 gezeigt, neben der Innenfläche der Hülsenelektrode angeordnet ist und mit einem isolierten Leiter 72 angeschlossen ist, der ebenfalls in den Drahthohlraum 43 hinein verläuft.
  • Da die Prostatadrüse, in welcher die Ablation durchzuführen ist, in zwei an gegenüberliegenden Seiten der Urethra angeordnete Teile unterteilt ist, kann es wünschenswert sein, segmentierte Isolationsschichten 76 an gegenüberliegenden Seiten der Hülsenelektrode 46 bereitzustellen, wie in 4 gezeigt ist, so dass Hochfrequenzenergie nur in den Gebieten von der Hülsenelektrode abgestrahlt wird, welche die voneinander im Abstand angeordneten Gebiete zwischen den Isolationsschichten 76 sind.
  • Die Sonde 11 kann von geeigneter Größe, etwa 2,33 mm bis 3,33 mm (7 bis 10 French) mit einer Länge von 25,4 cm bis 38,1 cm (10 bis 15 Zoll) sein. Skaleneinteilungen 77 sind an der Sonde vorgesehen und können in Zentimeter oder Zoll ausgeführt sein.
  • Die Funktionsweise und die Verwendung des transurethralen Hochfrequenzgeräts zur Ablation der Prostatadrüse in Ausführung des Verfahrens der vorliegenden Erfindung kann nun in Verbindung mit den 6, 7 und 8 kurz beschrieben werden. Es sei angenommen, dass eine männliche Person. oder Patient an einer benignen Prostata-Hypertrophie leidet, welche medizinische Behandlung erfordert. Die halbkreisförmige Spitze 51 der Sonde 11 wird in die Urethra 81 des Penis 82 eingeführt und wird allmählich vorgeschoben, bis sich die durch die Sonde 11 getragene halbkreisförmige Spitze 51 in der Nähe der Prostatadrüse 83 befindet, welche in Nachbarschaft der Blase 84 angeordnet ist.
  • Zu Beginn dieser Prozedur wird die in 6 gezeigte Impedanzmessschaltung des Geräts 10 eingeschaltet. Wie gezeigt, sind die von der halbkreisförmigen Spitze 51 getragenen Impedanzmesselektroden 56 in zwei im Abstand von 180° voneinander angeordneten Paaren angeordnet, wobei ein Paar gegenüber dem anderen Paar um 90° versetzt ist. Wie gezeigt, ist eine Elektrode eines jeden Paares mit Erde verbunden, während die andere Elektrode mit dem Operationsverstärker 91 verbunden ist, dessen Ausgang mit einem Vollwellengleichrichter 92 verbunden ist. Der Ausgang des Vollwellengleichrichters 92 ist mit einer Anzeigeeinheit 93 verbunden, welche von der Art eines Videoanzeigemonitors sein kann.
  • Eine Hochfrequenz-Gleichstromquelle 96 ist vorgesehen, um einen sehr kleinen Gleichstrom von weniger als 10 mA jeder der nicht mit der Erde verbundenen Messelektroden 56 zuzuführen. Die Quelle 96 kann eine geeignete Frequenz, wie beispielsweise 100 bis 200 KHz, aufweisen. Die Frequenz der Hochfrequenz von dem Gleichstromgenerator 96 wird so gewählt, dass sie hoch genug ist, um keinerlei Stimulation des Sphinkter-Muskels der Urethra zu verursachen. Der Strom wird ausreichend niedrig gehalten, so dass im Wesentlichen keine Erwärmung der Elektroden 56 auftritt, jedoch noch immer die Messung einer Impedanz möglich ist. Die durch die Impedanzmesselektrode 56 abgegriffene Wechselspannung wird durch den Verstärker 91 verstärkt und dem Vollwellengleichrichter 92 zugeführt und in eine Gleichspannung umgewandelt, welche auf der Anzeigeeinheit 93 angezeigt wird.
  • Alternativ können die Gleichstromausgangssignale von den Vollwellengleichrichtern 92 einer Mikro-Steuer-/Regeleinrichtung mit einem A/D-Wandler zugeführt werden, dessen Ausgang einer Anzeigeeinheit 97 zugeführt wird. Die Mikro-Steuer-/Regeleinrichtung verarbeitet Signale von den zwei Sätzen von Messelektroden 56 und kann mit einem einfachen Algorithmus die zwei Impedanzen multiplizieren und dadurch die Impedanzänderung vergrößern, um ein Signal zu erhalten, welches das Quadrat der gemessenen Impedanz ist. Eine Zwei-zu-Eins-Änderung in der gemessenen Impedanz würde daher durch eine Vier-zu-Eins-Änderung an der Anzeigeeinheit 97 repräsentiert werden. Wenn nur ein einziger Satz von Messelektroden vorgesehen ist, so sollte beachtet werden, dass die Mikro-Steuer-/Regeleinrichtung 96 selbstverständlich mit einem Algonthmus ausgestattet sein kann, der eine Quadrierschaltung repräsentieren würde, um wiederum eine Impedanzänderung zu verstärken.
  • Es wurde herausgefunden, dass eine Impedanzmessung durch die Verwendung der Impedanzmesselektroden 56 an der halbkreisförmigen Spitze 51 einen sehr zuverlässigen Indikator dafür bereitstellt, wann die halbkreisförmige Spitze 51 die Prostatadrüse erreicht, so dass die Hochfrequenzelektrode 46 in der Prostatadrüse in der gewünschten Position korrekt positioniert werden kann. Wie herausgefunden wurde, wird dies dadurch ermöglicht, dass die elektrische Impedanz in der Prostatadrüse im Vergleich zum Rest des Körpers sehr gering ist und beispielsweise lediglich die Hälfte von der anderer Körpergewebe wie Muskelgewebe ist. Es wurde herausgefunden, dass Körperfett typischerweise eine Impedanz im Bereich von 300 bis 400 Ohm und Muskelgewebe eine Impedanz im Bereich von 120 bis 130 Ohm aufweisen, während das Gewebe in der Prostatadrüse eine Impedanz im Bereich von 50 bis 60 Ohm aufweist, was gegenüber der Impedanz von Muskeln eine Zwei-zu-Eins-Impedanzreduzierung darstellt. Diese merkliche Impedanzreduzierung kann durch die Messelektroden 56 gut gemessen werden. Durch die Beobachtung der Anzeigeeinheiten 93 oder der Anzeigeeinheit 97, falls diese verwendet wird, kann somit gut bestimmt werden, wann die halbkreisförmige Spitze 51 beginnt, in die Prostatadrüse 83 einzutreten.
  • Wenngleich ein einzelner Satz von Messelektroden zum Messen der Impedanz vorgesehen sein kann, so sind zwei Sätze von Messelektroden vorgesehen, um eine Überprüfung, dass eine Impedanzänderung aufgetreten ist, zu unterstützen. Somit kann beispielsweise die Sonde 11 um 90° gedreht werden, indem einfach der proximale Endabschnitt mit der Hand ergriffen und gedreht wird, während sich die Sonde in der Urethra 81 befindet. Wird also durch eine des Paares von Messelektroden eine Impedanzänderung gemessen, so kann diese Impedanzänderung durch Drehen der Messelektroden um 90° überprüft werden, um zu überprüfen, dass die gleiche Impedanzänderung durch den anderen Satz von Elektroden gemessen wird. Dies ermöglicht es zu überprüfen, dass der Eingang in die Prostatadrüse 83 erreicht wurde. Nachdem dieser Eingangspunkt oder Bereich gemessen wurde, kann die Sonde 11 eine vorbestimmte Distanz vorgeschoben werden, welche außen an der Seite 77 der Sonde 11 gemessen wird, um sicherzustellen, dass die Hochfrequenz-Hülsenelektrode in der korrekten Position innerhalb der Prostatadrüse positioniert ist. Dies kann auf einfache Weise bewerkstelligt werden, da die Prostatadrüse im Allgemeinen von bekannter Größe ist, wobei der Abstand zwischen den entgegengesetzten Außenenden der Prostatadrüse bekannt ist, so dass die HF-Hülsenelektrode korrekt innerhalb der Prostatadrüse positioniert werden kann. Ferner ist es durch die Verwendung der zwei Paare von Hülsenelektroden 56 möglich, die Sonde 11 durch eine geeignete Drehung derselben von außerhalb der Urethra per Hand zu positionieren und die Sonde 11 dadurch so zu positionieren, dass die nicht isolierten Abschnitte der Hülsenelektrode 46, welche sich zwischen den Isolationsschichten 76 erstrecken, derart angeordnet sind, dass sie mit den Lappen an gegenüberliegenden Seiten der Prostatadrüse ausgerichtet sind, in welchen die Einwirkung von Hochfrequenzenergie erwünscht ist.
  • Während oder nach der Durchführung der vorstehend beschriebenen Positionierungsprozedur für die Sonde 11 kann die Vorrichtung 26 für die gekühlte Salinelösung und die Pumpe eingeschaltet werden, so dass die gekühlte Salinelösung für zumindest etwa eine Minute durch den zentralen Hohlraum 41 eingeleitet wird, über das Innere der Hülsenelektrode 46 hinweg strömt und durch den Hohlraum 42 austritt, um die Temperatur der Elektrode sowie der umgebenden urethralen Wand auf ungefähr 20 bis 25 °C zu reduzieren, bevor irgendwelche Hochfrequenzenergie von dem Hochfrequenz-Energiegenerator 37 angewendet wird. Wie in 7 gezeigt ist, ist der Hochfrequenz-Energiegenerator 37 aus einer Hochfrequenz-Energiequelle 101 eines herkömmlichen Typs, beispielsweise mit einer Frequenz von 400 bis 500 KHz sowie mit einer Leistungsausgabe im Bereich von 20 bis 30 Watt gebildet. Die Quelle 101 ist mit einem Ausgang versehen, welcher mit dem Leiter 66 und mit der Hochfrequenzelektrode 46 verbunden ist. Die Temperatur der Hochfrequenzelektrode wird durch den Thermistor 71 gemessen, welcher durch die Leiter 72 und 73 mit einem Verstärker 102 verbunden ist. Der Ausgang des Verstärkers 102 wird einer Vergleichseinrchtung 103 zugeführt, welche einen Eingang aufweist, der mit einem regelbaren Temperatureinstellpotentiometer 104 mit einem einstellbaren Kontaktarm 106 verbunden ist. Die Ausgabe der Vergleichseinrichtung 103 wird der HF-Energiequelle 101 zugeführt, um an der Hochfrequenzelektrode eine konstante Temperatur beizubehalten, welche wie im Folgenden beschrieben, bestimmt wird. Wie herkömmlich wird eine dispergierende Rückführungs-Kontaktfläche 111 an einer geeigneten Position am Körper des Patienten positioniert, um als Rückführung für die Hochfrequenzenergie zu dienen, und zwar in einer Weise, wie sie dem Fachmann wohl bekannt ist.
  • Wie in 7 gezeigt ist, nimmt die Temperatur allmählich zu, wenn die Hochfrequenzenergie an die Elektrode 46 angelegt wird. Beginnend mit dem Kontaktpunkt mit der die Urethra 81 bildenden Wand nimmt die Temperatur allmählich zu, wie dies durch die in 7 gezeigte durchgezogene Kurve 116 gezeigt ist, bis sie die in 7 gezeigte Leistungscharakteristik 117 mit unterbrochener Linie erreicht. Diese Leistungscharakteristik 117 repräsentiert den Fall der Temperaturen, welche sich einstellen würden, wenn keine Kühlung einer Ablations- oder Hülsenelektrode 46 durchgeführt werden würde. Die urethrale Wand, welche die Urethra 81 bildet, weist typischerweise eine Dicke im Bereich von 1 bis 2 mm auf, wie dies durch diese Abmessung in 8 gezeigt ist. typischerweise ist es durch Kühlung der Hochfrequenzelektrode 46 möglich, die Temperatur an der urethralen Wand im Bereich von 37 bis 40 °C zu halten, was deutlich unterhalb der Temperatur liegt, bei welcher ein irreversibler Schaden an menschlichem Gewebe auftreten kann, was z.B. typischerweise bei ungefähr 50 °C vorkommt. Wie in 8 gezeigt ist, beginnt die Kurve 116 die unterbrochene 50 °C-Linie 117 somit an einem Punkt zu schneiden, welcher sich am äußeren Rand oder ein wenig jenseits des äußeren Rands der urethralen Wand befindet, die durch die Distanz von 1 bis 2 mm repräsentiert ist. Danach steigt die Kurve 116, welche Temperatur repräsentiert, für eine Distanz von ungefähr 1 cm – was im Allgemeinen die Distanz ist, in welcher die Ablation von Gewebe in der Prostatadrüse erwünscht ist – schnell oberhalb von 50 °C an, um eine Hochfrequenzablation dieses Gewebes zu bewirken. Die Temperatur steigt an, bis die Kurve 116 die Kurve mit unterbrochener Linie 118 erreicht und sinkt in einer Distanz von ungefähr 1 cm dann allmählich unter die Temperatur von 50 °C. Eine irreversible Beschädigung des Gewebes in der Prostatadrüse wird daher nur innerhalb dieses Bereichs von 1 cm von der Elektrode unter Aussparung der ersten 1 bis 2 mm des Gewebes, welche die Wand der Urethra 81 darstellen, auftreten. Es ist ersichtlich, dass es mit einem solchen Verfahren möglich ist, auf einfache Weise eine Läsion mit einer Tiefe im Bereich von 0,5 bis 1 cm innerhalb der Prostatadrüse in Abhängigkeit von der von der Hochfrequenzquelle angelegten Energiemenge zu erzeugen. Um sicherzustellen, dass die Wand der Urethra 81 während dieser Ablationsprozedur ausgespart wird, wird die vorstehend beschriebene Regelung unter Verwendung des Thermistors 71 eingesetzt, um die Hochfrequenz-Energiequelle 101 derart zu steuern/zu regeln, dass die Temperatur der Hülsenelektrode 46 unterhalb 50 °C gehalten wird.
  • Es sollte beachtet werden, dass in Verbindung mit dem Vorstehenden für die vorstehend beschriebenen Impedanzmessmittel automatische Steuerungen und Regelungen bereitgestellt werden können, in welchen der Hochfrequenz-Energiegenerator 37 automatisch eingeschaltet werden kann, nachdem eine Saline-Kühllösung der Elektrode für eine Zeitdauer von mindestens 1 Minute zugeführt wurde, um die Temperatur auf das gewünschte Niveau von ungefähr 25 °C zu reduzieren. Außerdem sollte beachtet werden, dass die Sonde 11 während der Prozedur gedreht werden kann, um eine zusätzliche Ablation der Prostatadrüse zu erzielen, falls dies gewünscht ist. Nachdem die gewünschte Menge an Ablation erzielt worden ist, kann die Sonde 11 auf einfache Weise aus der Urethra 81 entfernt werden, um die Prozedur abzuschließen.
  • Aus dem Vorstehenden ist ersichtlich, dass ein transurethrales Hochfrequenzgerät zur Ablation der Prostatadrüse sowie ein Verfahren durch die Verwendung desselben bereitgestellt worden sind, wodurch es ermöglicht wird, eine solche Ablation ohne Verursachung irgendwelcher signifikanter Beschädigung der urethralen Wand zu erzielen, während gleichzeitig ein Eindringen in die urethrale Wand und eine Verursachung einer Beschädigung derselben überflüssig wird. Zusätzlich ist es möglich, das Verfahren zur Positionierung der Sonde ohne die Verwendung von Ultraschall-Bildgebungsmitteln durchzuführen. Es wurde somit eine relativ einfache Sonde bereitgestellt, bei welcher eine Positionierung und eine Ablation durch dieselbe Sonde bewerkstelligt werden kann.

Claims (9)

  1. In einer transurethralen Hochfrequenzvorrichtung (10) zur Ablation der Prostata durch die durch eine urethrale Wand gebildete Urethra eine Sonde (11), welche aufgebaut ist aus einem flexiblen, länglichen, röhrenförmigen Element (12), welches einen proximalen und einen distalen Endabschnitt (13, 14) aufweist und derart bemessen ist, dass es für ein Einführen in die Urethra ausgelegt ist, einer geschlossenen abgerundeten Spitze (51) aus nichtleitfähigem Material, welche von dem distalen Endabschnitt des flexiblen, länglichen, röhrenförmigen Elements (12) getragen ist, einer zylindrischen Hülsenablationselektrode (46), welche aus einem leitfähigen Material gebildet ist, an dem distalen Endabschnitt (13) des flexiblen, länglichen, röhrenförmigen Elements (12) in der Nähe der geschlossenen abgerundeten Spitze (51) getragen ist, in sich eine Bohrung (47) aufweist und allgemein einen Durchmesser aufweist, der gleich dem Durchmesser des flexiblen, länglichen, röhrenförmigen Elements (12) ist, so dass sie dafür ausgelegt ist, innerhalb der Prostata und in direktem Kontakt mit der urethralen Wand positioniert zu sein, wobei das flexible, längliche, röhrenförmige Element (12) darin mit einem ersten Strömungshohlraum (41) zum Zuführen eines gekühlten Fluids zu der Bohrung der Ablationselektrode (46) zur Kühlung der Ablationselektrode und mit einem zweiten Strömungshohlraum (42) zum Zurückführen des gekühlten Fluids von der Bohrung (47) der Ablationselektrode (46) versehen ist, mit der Sonde (11) verbundenen Mitteln, um dem ersten Strömungshohlraum (41) der Sonde (11) eine Kühlmittellösung zuzuführen, mit der Sonde (11) verbundenen Mitteln, um der Ablationselektrode (46) Hochfrequenzenergie zuzuführen, während sie durch die Kühlmittellösung gekühlt wird, sowie Mitteln zum Überwachen der Temperatur der Ablationselektrode (46), so dass die Ablationselektrode (46) auf einer Temperatur unterhalb einer vorbestimmten Temperatur gehalten wird, um die urethrale Wand vor irreversiblem Schaden durch die der Ablationselektrode (46) zugeführte Hochfrequenzenergie zu bewahren.
  2. Vorrichtung nach Anspruch 1, ferner umfassend eine segmentierte Isolationsschicht (76), welche von der Hülsenelektrode (46) getragen wird, so dass die Hochfrequenzenergie von der Hülsenelektrode (46) nur in dem nicht durch die segmentierte Isolationsschicht (76) abgedeckten Gebiet abgestrahlt wird.
  3. Vorrichtung nach Anspruch 1, in welchem das flexible, längliche, röhrenförmige Element (12) und die durch den distalen Endabschnitt (13) des flexiblen, länglichen, röhrenförmigen Elements (12) getragene Ablationselektrode (46) eine solche Konfiguration aufweisen, dass sie während der Anwendung von Hochfrequenzenergie bei der Durchführung einer Ablation ohne die Notwendigkeit eines physikalischen Eindringens in die urethrale Wand innerhalb der Urethra verbleiben können.
  4. Vorrichtung nach Anspruch 1, in welchem die Mittel zum Messen der Temperatur der Ablationselektrode (46) automatische Mittel (103) zum Steuern/Regeln des Anlegens von Hochfrequenzenergie an die Elektrode umfassen, so dass die Elektrode die vorbestimmte Temperatur nicht überschreitet.
  5. Vorrichtung nach Anspruch 4, in welchem die Mittel zum Steuern/Regeln der Temperatur der Ablationselektrode (46) die Temperatur derart steuern/regeln, dass die Temperatur der urethralen Wand eine Temperatur im Bereich von 37–40°C nicht überschreitet.
  6. Vorrichtung nach Anspruch 1 zusammen mit Impedanzmessmitteln (56), welche an dem distalen Endabschnitt (13) des flexiblen, länglichen Elements (12) getragen sind und ein elektrisches Signal bereitstellen, sowie Mitteln, welche in einer Entfernung von der Sonde (11) mit dem elektrischen Signal gekoppelt sind, um die gemessene Impedanz anzuzeigen.
  7. Vorrichtung nach Anspruch 6, in welchem die Impedanzmessmittel wenigstens ein Paar Impedanzmesselektroden (56) sowie Mittel (96) zum Zuführen von Hochfrequenz-Gleichstromenergie von weniger als 10 mA zu der Impedanzmesselektrode (56) umfassen.
  8. Vorrichtung nach Anspruch 7, in welchem die Impedanzmessmittel erste und zweite in Umfangsrichtung im Abstand voneinander angeordnete Impedanzmesselektroden (56) umfassen, welche durch den distalen Endabschnitt des flexiblen, länglichen, röhrenförmigen Elements (12) getragen sind.
  9. Vorrichtung nach Anspruch 8, in welchem die Elektroden des ersten und des zweiten Paars von Impedanzmesselektroden (56) mit einem Abstand von ungefähr 90° angeordnet sind.
DE69434185T 1993-06-10 1994-05-31 Urethrales gerät zur ablation mittels hochfrequenz Expired - Lifetime DE69434185T2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7491893A 1993-06-10 1993-06-10
US74918 1993-06-10
PCT/US1994/006124 WO1994028809A1 (en) 1993-06-10 1994-05-31 Transurethral radio frequency ablation apparatus

Publications (2)

Publication Number Publication Date
DE69434185D1 DE69434185D1 (de) 2005-01-20
DE69434185T2 true DE69434185T2 (de) 2005-06-02

Family

ID=22122433

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69434185T Expired - Lifetime DE69434185T2 (de) 1993-06-10 1994-05-31 Urethrales gerät zur ablation mittels hochfrequenz

Country Status (9)

Country Link
US (2) US5520684A (de)
EP (1) EP0703756B1 (de)
JP (1) JP3587848B2 (de)
AT (1) ATE284650T1 (de)
AU (2) AU686173B2 (de)
CA (1) CA2164860C (de)
DE (1) DE69434185T2 (de)
IL (1) IL109923A (de)
WO (1) WO1994028809A1 (de)

Families Citing this family (387)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
AU686173B2 (en) * 1993-06-10 1998-02-05 Mir A. Imran Transurethral radio frequency ablation apparatus
US6071280A (en) 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5928229A (en) 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5817049A (en) * 1994-05-09 1998-10-06 Somnus Medical Technologies, Inc. Method for treatment of airway obstructions
US6152143A (en) * 1994-05-09 2000-11-28 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5807308A (en) * 1996-02-23 1998-09-15 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5743870A (en) * 1994-05-09 1998-04-28 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5707349A (en) * 1994-05-09 1998-01-13 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5730719A (en) * 1994-05-09 1998-03-24 Somnus Medical Technologies, Inc. Method and apparatus for cosmetically remodeling a body structure
US6092528A (en) * 1994-06-24 2000-07-25 Edwards; Stuart D. Method to treat esophageal sphincters
US5823197A (en) * 1994-06-24 1998-10-20 Somnus Medical Technologies, Inc. Method for internal ablation of turbinates
US6009877A (en) * 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5827277A (en) * 1994-06-24 1998-10-27 Somnus Medical Technologies, Inc. Minimally invasive apparatus for internal ablation of turbinates
US6733495B1 (en) 1999-09-08 2004-05-11 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
US5746224A (en) * 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US6044846A (en) * 1994-06-24 2000-04-04 Edwards; Stuart D. Method to treat esophageal sphincters
WO1996034571A1 (en) * 1995-05-04 1996-11-07 Cosman Eric R Cool-tip electrode thermosurgery system
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
KR100463935B1 (ko) 1995-06-23 2005-05-16 자이러스 메디칼 리미티드 전기수술기구
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
CA2224975A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
US6080150A (en) 1995-08-15 2000-06-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US5951547A (en) 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6689127B1 (en) 1995-08-15 2004-02-10 Rita Medical Systems Multiple antenna ablation apparatus and method with multiple sensor feedback
US5913855A (en) 1995-08-15 1999-06-22 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6090105A (en) 1995-08-15 2000-07-18 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
US6059780A (en) 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US5925042A (en) 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5810804A (en) 1995-08-15 1998-09-22 Rita Medical Systems Multiple antenna ablation apparatus and method with cooling element
US6132425A (en) 1995-08-15 2000-10-17 Gough; Edward J. Cell necrosis apparatus
US5980517A (en) 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US5879349A (en) * 1996-02-23 1999-03-09 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US5800379A (en) * 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US6126657A (en) * 1996-02-23 2000-10-03 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US5738114A (en) * 1996-02-23 1998-04-14 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5820580A (en) * 1996-02-23 1998-10-13 Somnus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5938692A (en) * 1996-03-26 1999-08-17 Urologix, Inc. Voltage controlled variable tuning antenna
US5987360A (en) * 1996-05-03 1999-11-16 Urologix, Inc. Axial preferential thermal therapy
US7022105B1 (en) * 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US5743904A (en) * 1996-05-06 1998-04-28 Somnus Medical Technologies, Inc. Precision placement of ablation apparatus
US5833643A (en) * 1996-06-07 1998-11-10 Scieran Technologies, Inc. Apparatus for performing ophthalmic procedures
US6258111B1 (en) 1997-10-03 2001-07-10 Scieran Technologies, Inc. Apparatus and method for performing ophthalmic procedures
US5800486A (en) * 1996-06-17 1998-09-01 Urologix, Inc. Device for transurethral thermal therapy with cooling balloon
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
US5836943A (en) * 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5908418A (en) * 1996-09-13 1999-06-01 Dority; Douglas B. Hand held coagulating device
US8353908B2 (en) 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US6464697B1 (en) 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
IT1290866B1 (it) * 1996-12-24 1998-12-14 Francesco Garbagnati Sonda-catetere per il trattamento di tumori di organi parenchimatosi con ipertermia interstiziale indotta da radiofrequenza
US5964756A (en) * 1997-04-11 1999-10-12 Vidamed, Inc. Transurethral needle ablation device with replaceable stylet cartridge
US6312426B1 (en) * 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
US6241666B1 (en) * 1997-07-03 2001-06-05 Cardiac Pathways Corp. Ablation catheter tip with a buffer layer covering the electrode
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
JP2001514921A (ja) * 1997-08-13 2001-09-18 サークス, インコーポレイテッド 組織収縮のための非侵襲性デバイス、方法、およびシステム
US20030178032A1 (en) * 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
WO1999017672A1 (en) 1997-10-06 1999-04-15 Somnus Medical Technologies, Inc. Electro-surgical instrument with a graphical user interface
US6579288B1 (en) * 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6533781B2 (en) 1997-12-23 2003-03-18 Team Medical Llc Electrosurgical instrument
AU2114299A (en) * 1998-01-14 1999-08-02 Conway-Stuart Medical, Inc. Electrosurgical device for sphincter treatment
AU2317899A (en) * 1998-01-14 1999-08-02 Conway-Stuart Medical, Inc. Gerd treatment apparatus and method
US6440128B1 (en) 1998-01-14 2002-08-27 Curon Medical, Inc. Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US6440127B2 (en) * 1998-02-11 2002-08-27 Cosman Company, Inc. Method for performing intraurethral radio-frequency urethral enlargement
US6447505B2 (en) * 1998-02-11 2002-09-10 Cosman Company, Inc. Balloon catheter method for intra-urethral radio-frequency urethral enlargement
US8906010B2 (en) * 1998-02-19 2014-12-09 Mederi Therapeutics, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6423058B1 (en) 1998-02-19 2002-07-23 Curon Medical, Inc. Assemblies to visualize and treat sphincters and adjoining tissue regions
US6355031B1 (en) 1998-02-19 2002-03-12 Curon Medical, Inc. Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter
CA2319517A1 (en) 1998-02-19 1999-08-26 Curon Medical, Inc. Electrosurgical sphincter treatment apparatus
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6402744B2 (en) 1998-02-19 2002-06-11 Curon Medical, Inc. Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6325798B1 (en) 1998-02-19 2001-12-04 Curon Medical, Inc. Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions
US7165551B2 (en) * 1998-02-19 2007-01-23 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US6790207B2 (en) 1998-06-04 2004-09-14 Curon Medical, Inc. Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract
US6258087B1 (en) 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
EP1056405A1 (de) 1998-02-27 2000-12-06 Curon Medical, Inc. Vorrichtung zur elektrochirurghischen behanndlung des speisenröhrenschliessmuskels
US20030135206A1 (en) * 1998-02-27 2003-07-17 Curon Medical, Inc. Method for treating a sphincter
WO1999044522A1 (en) * 1998-03-06 1999-09-10 Conway-Stuart Medical, Inc. Apparatus to electrosurgically treat esophageal sphincters
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
US6358260B1 (en) 1998-04-20 2002-03-19 Med-Logics, Inc. Automatic corneal shaper with two separate drive mechanisms
US6131579A (en) 1998-04-21 2000-10-17 Somnus Medical Technologies, Inc. Wire based temperature sensing electrode
WO1999055245A1 (en) * 1998-04-30 1999-11-04 Edwards Stuart D Electrosurgical sphincter treatment apparatus
US6802841B2 (en) * 1998-06-04 2004-10-12 Curon Medical, Inc. Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction
US20110071468A1 (en) * 1998-06-04 2011-03-24 Mederi Therapeutics, Inc. Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction
US6537248B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US6183468B1 (en) * 1998-09-10 2001-02-06 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6123702A (en) * 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6156032A (en) * 1998-09-30 2000-12-05 Scimed Life Systems, Inc. Method for causing a stricture of a body passageway
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
EP1131011B1 (de) 1998-11-16 2005-04-13 United States Surgical Corporation Gerät zur thermischen behandlung von gewebe
US6210406B1 (en) * 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
US6122551A (en) * 1998-12-11 2000-09-19 Urologix, Inc. Method of controlling thermal therapy
US6723094B1 (en) * 1998-12-18 2004-04-20 Kai Desinger Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue
DE102004033595A1 (de) * 2004-07-07 2006-02-16 Celon Ag Medical Instruments Bipolare Koagulationselektrode
AU4696100A (en) 1999-05-04 2000-11-17 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
US6272384B1 (en) 1999-05-27 2001-08-07 Urologix, Inc. Microwave therapy apparatus
US6478793B1 (en) * 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
US6306132B1 (en) * 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6702832B2 (en) 1999-07-08 2004-03-09 Med Logics, Inc. Medical device for cutting a cornea that has a vacuum ring with a slitted vacuum opening
US7175644B2 (en) * 2001-02-14 2007-02-13 Broncus Technologies, Inc. Devices and methods for maintaining collateral channels in tissue
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6692494B1 (en) 1999-08-05 2004-02-17 Broncus Technologies, Inc. Methods and devices for creating collateral channels in the lungs
US7022088B2 (en) * 1999-08-05 2006-04-04 Broncus Technologies, Inc. Devices for applying energy to tissue
US6712812B2 (en) 1999-08-05 2004-03-30 Broncus Technologies, Inc. Devices for creating collateral channels
US7815590B2 (en) * 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
AU7352500A (en) 1999-09-08 2001-04-10 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
CA2384025A1 (en) * 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling a family of treatment devices
US6699285B2 (en) 1999-09-24 2004-03-02 Scieran Technologies, Inc. Eye endoplant for the reattachment of a retina
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
CA2388861C (en) 1999-11-16 2013-09-03 Robert A. Ganz System and method of treating abnormal tissue in the human esophagus
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US7097641B1 (en) 1999-12-09 2006-08-29 Cryocath Technologies Inc. Catheter with cryogenic and heating ablation
US6547776B1 (en) 2000-01-03 2003-04-15 Curon Medical, Inc. Systems and methods for treating tissue in the crura
US6428508B1 (en) 2000-02-01 2002-08-06 Enlighten Technologies, Inc. Pulsed vacuum cataract removal system
US8845632B2 (en) 2000-05-18 2014-09-30 Mederi Therapeutics, Inc. Graphical user interface for monitoring and controlling use of medical devices
US6663644B1 (en) 2000-06-02 2003-12-16 Med-Logics, Inc. Cutting blade assembly for a microkeratome
US7837720B2 (en) * 2000-06-20 2010-11-23 Boston Scientific Corporation Apparatus for treatment of tissue adjacent a bodily conduit with a gene or drug-coated compression balloon
US6958075B2 (en) * 2001-09-18 2005-10-25 Celsion Corporation Device and method for treatment of tissue adjacent a bodily conduit by thermocompression
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
US6405067B1 (en) 2000-07-07 2002-06-11 Biosense Webster, Inc. Catheter with tip electrode having a recessed ring electrode mounted thereon
US6942661B2 (en) 2000-08-30 2005-09-13 Boston Scientific Scimed, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6425905B1 (en) 2000-11-29 2002-07-30 Med-Logics, Inc. Method and apparatus for facilitating removal of a corneal graft
US6743226B2 (en) 2001-02-09 2004-06-01 Cosman Company, Inc. Adjustable trans-urethral radio-frequency ablation
US6807968B2 (en) 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US6582429B2 (en) * 2001-07-10 2003-06-24 Cardiac Pacemakers, Inc. Ablation catheter with covered electrodes allowing electrical conduction therethrough
US7077842B1 (en) * 2001-08-03 2006-07-18 Cosman Jr Eric R Over-the-wire high frequency electrode
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20060155261A1 (en) * 2001-09-19 2006-07-13 Curon Medical, Inc. Systems and methods for treating tissue regions of the body
US6939350B2 (en) * 2001-10-22 2005-09-06 Boston Scientific Scimed, Inc. Apparatus for supporting diagnostic and therapeutic elements in contact with tissue including electrode cooling device
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7128739B2 (en) * 2001-11-02 2006-10-31 Vivant Medical, Inc. High-strength microwave antenna assemblies and methods of use
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
CN1646066A (zh) * 2002-02-15 2005-07-27 效思因公司 利用热压缩和药物治疗邻近身体导管的组织的方法和装置
US20050267552A1 (en) * 2004-05-26 2005-12-01 Baylis Medical Company Inc. Electrosurgical device
US8518036B2 (en) 2002-03-05 2013-08-27 Kimberly-Clark Inc. Electrosurgical tissue treatment method
US7306596B2 (en) 2004-05-26 2007-12-11 Baylis Medical Company Inc. Multifunctional electrosurgical apparatus
US8043287B2 (en) 2002-03-05 2011-10-25 Kimberly-Clark Inc. Method of treating biological tissue
US6896675B2 (en) 2002-03-05 2005-05-24 Baylis Medical Company Inc. Intradiscal lesioning device
US8882755B2 (en) * 2002-03-05 2014-11-11 Kimberly-Clark Inc. Electrosurgical device for treatment of tissue
US20050177209A1 (en) * 2002-03-05 2005-08-11 Baylis Medical Company Inc. Bipolar tissue treatment system
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
US7258688B1 (en) * 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
WO2003092520A1 (en) 2002-05-06 2003-11-13 Sherwood Services Ag Blood detector for controlling anesu and method therefor
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US20040186467A1 (en) * 2003-03-21 2004-09-23 Swanson David K. Apparatus for maintaining contact between diagnostic and therapeutic elements and tissue and systems including the same
US7101387B2 (en) * 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7094214B2 (en) * 2003-06-27 2006-08-22 Codman & Shurtleff, Inc. System and method for clearing an implanted catheter that is connected to a shunt
DE10332564A1 (de) * 2003-07-11 2005-01-27 Celon Ag Medical Instruments Chirurgische Sonde
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US8002740B2 (en) * 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
DE10342709A1 (de) * 2003-09-11 2005-04-21 Biotronik Gmbh & Co Kg Katheter
AU2004285412A1 (en) 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
EP1691706A4 (de) 2003-11-10 2008-03-19 Surginetics Inc Elektrochirurgisches instrument
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US8052676B2 (en) 2003-12-02 2011-11-08 Boston Scientific Scimed, Inc. Surgical methods and apparatus for stimulating tissue
US7608072B2 (en) 2003-12-02 2009-10-27 Boston Scientific Scimed, Inc. Surgical methods and apparatus for maintaining contact between tissue and electrophysiology elements and confirming whether a therapeutic lesion has been formed
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7371233B2 (en) 2004-02-19 2008-05-13 Boston Scientific Scimed, Inc. Cooled probes and apparatus for maintaining contact between cooled probes and tissue
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US20050245920A1 (en) * 2004-04-30 2005-11-03 Vitullo Jeffrey M Cell necrosis apparatus with cooled microwave antenna
US8187268B2 (en) * 2004-05-26 2012-05-29 Kimberly-Clark, Inc. Electrosurgical apparatus having a temperature sensor
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US8357154B2 (en) 2004-07-20 2013-01-22 Microline Surgical, Inc. Multielectrode electrosurgical instrument
AU2005285459A1 (en) * 2004-07-20 2006-03-23 Team Medical, Llc Multielectrode electrosurgical instrument
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
US7742795B2 (en) 2005-03-28 2010-06-22 Minnow Medical, Inc. Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7776035B2 (en) * 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7467075B2 (en) 2004-12-23 2008-12-16 Covidien Ag Three-dimensional finite-element code for electrosurgery and thermal ablation simulations
US7156570B2 (en) * 2004-12-30 2007-01-02 Cotapaxi Custom Design And Manufacturing, Llc Implement grip
US7536225B2 (en) * 2005-01-21 2009-05-19 Ams Research Corporation Endo-pelvic fascia penetrating heating systems and methods for incontinence treatment
US7862563B1 (en) 2005-02-18 2011-01-04 Cosman Eric R Integral high frequency electrode
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7799019B2 (en) 2005-05-10 2010-09-21 Vivant Medical, Inc. Reinforced high strength microwave antenna
US8016822B2 (en) 2005-05-28 2011-09-13 Boston Scientific Scimed, Inc. Fluid injecting devices and methods and apparatus for maintaining contact between fluid injecting devices and tissue
US20070005057A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Blade With Profile For Minimizing Tissue Damage
US7935113B2 (en) 2005-06-30 2011-05-03 Microline Surgical, Inc. Electrosurgical blade
US20070005056A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage
US7867225B2 (en) 2005-06-30 2011-01-11 Microline Surgical, Inc Electrosurgical instrument with needle electrode
US7867226B2 (en) 2005-06-30 2011-01-11 Microline Surgical, Inc. Electrosurgical needle electrode
US8562603B2 (en) 2005-06-30 2013-10-22 Microline Surgical, Inc. Method for conducting electrosurgery with increased crest factor
US7879031B2 (en) * 2005-09-27 2011-02-01 Covidien Ag Cooled RF ablation needle
US20070078454A1 (en) * 2005-09-30 2007-04-05 Mcpherson James W System and method for creating lesions using bipolar electrodes
US20070078453A1 (en) * 2005-10-04 2007-04-05 Johnson Kristin D System and method for performing cardiac ablation
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7842031B2 (en) * 2005-11-18 2010-11-30 Medtronic Cryocath Lp Bioimpedance measurement system and method
US8696656B2 (en) 2005-11-18 2014-04-15 Medtronic Cryocath Lp System and method for monitoring bioimpedance and respiration
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US7959627B2 (en) 2005-11-23 2011-06-14 Barrx Medical, Inc. Precision ablating device
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2575392C (en) 2006-01-24 2015-07-07 Sherwood Services Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
CA2639971A1 (en) * 2006-01-25 2007-08-02 Team Medical, Llc Coating suitable for surgical instruments
WO2007092610A2 (en) * 2006-02-07 2007-08-16 Tivamed, Inc. Vaginal remodeling device and methods
US7976542B1 (en) 2006-03-02 2011-07-12 Cosman Eric R Adjustable high frequency electrode
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8795270B2 (en) 2006-04-24 2014-08-05 Covidien Ag System and method for ablating tissue
US20070258838A1 (en) * 2006-05-03 2007-11-08 Sherwood Services Ag Peristaltic cooling pump system
US20070260240A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7763018B2 (en) 2006-07-28 2010-07-27 Covidien Ag Cool-tip thermocouple including two-piece hub
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
WO2008034100A2 (en) * 2006-09-14 2008-03-20 Lazure Technologies, Llc Ablation probe with deployable electrodes
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
JP5479901B2 (ja) 2006-10-18 2014-04-23 べシックス・バスキュラー・インコーポレイテッド 身体組織に対する所望の温度作用の誘発
CA2666661C (en) 2006-10-18 2015-01-20 Minnow Medical, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
EP2455034B1 (de) 2006-10-18 2017-07-19 Vessix Vascular, Inc. System zur Herbeiführung gewünschter Temperatureffekte auf Körpergewebe
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
WO2008086195A1 (en) * 2007-01-05 2008-07-17 Kim Daniel H Apparatus and method for prostatic tissue removal
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US8641711B2 (en) 2007-05-04 2014-02-04 Covidien Lp Method and apparatus for gastrointestinal tract ablation for treatment of obesity
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8353901B2 (en) * 2007-05-22 2013-01-15 Vivant Medical, Inc. Energy delivery conduits for use with electrosurgical devices
US9023024B2 (en) 2007-06-20 2015-05-05 Covidien Lp Reflective power monitoring for microwave applications
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
US9486269B2 (en) 2007-06-22 2016-11-08 Covidien Lp Electrosurgical systems and cartridges for use therewith
US20090005766A1 (en) * 2007-06-28 2009-01-01 Joseph Brannan Broadband microwave applicator
CN102688092B (zh) 2007-07-06 2015-04-22 柯惠有限合伙公司 在胃肠道中烧蚀以实现止血并根治倾向出血的创伤
US8251992B2 (en) 2007-07-06 2012-08-28 Tyco Healthcare Group Lp Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8273012B2 (en) 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
US8646460B2 (en) 2007-07-30 2014-02-11 Covidien Lp Cleaning device and methods
US8181995B2 (en) * 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US20090076500A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Multi-tine probe and treatment by activation of opposing tines
WO2009036468A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Transurethral systems and methods for ablation treatment of prostate tissue
US8562602B2 (en) 2007-09-14 2013-10-22 Lazure Technologies, Llc Multi-layer electrode ablation probe and related methods
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8651146B2 (en) 2007-09-28 2014-02-18 Covidien Lp Cable stand-off
US9023030B2 (en) * 2007-10-09 2015-05-05 Boston Scientific Scimed, Inc. Cooled ablation catheter devices and methods of use
US8535306B2 (en) 2007-11-05 2013-09-17 Angiodynamics, Inc. Ablation devices and methods of using the same
US8439907B2 (en) * 2007-11-07 2013-05-14 Mirabilis Medica Inc. Hemostatic tissue tunnel generator for inserting treatment apparatus into tissue of a patient
US8187270B2 (en) * 2007-11-07 2012-05-29 Mirabilis Medica Inc. Hemostatic spark erosion tissue tunnel generator with integral treatment providing variable volumetric necrotization of tissue
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8038500B2 (en) * 2007-12-10 2011-10-18 Arko Development Limited Bubble generating assembly
US8998892B2 (en) 2007-12-21 2015-04-07 Atricure, Inc. Ablation device with cooled electrodes and methods of use
US8353907B2 (en) * 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
KR101626167B1 (ko) 2008-01-17 2016-05-31 시네론 메디컬 리미티드 개인용 모발 제거 장치 및 그 사용 방법
US20120022512A1 (en) * 2008-01-24 2012-01-26 Boris Vaynberg Device, apparatus, and method of adipose tissue treatment
JP2011509791A (ja) 2008-01-24 2011-03-31 シネロン メディカル リミテッド 脂肪組織治療の機器、装置および方法
WO2009111736A1 (en) 2008-03-06 2009-09-11 Aquabeam Llc Tissue ablation and cautery with optical energy carried in fluid stream
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US8272383B2 (en) 2008-05-06 2012-09-25 Nxthera, Inc. Systems and methods for male sterilization
US8059059B2 (en) * 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8608739B2 (en) * 2008-07-22 2013-12-17 Covidien Lp Electrosurgical devices, systems and methods of using the same
US20120022504A1 (en) * 2008-09-11 2012-01-26 Syneron Medical Ltd. Device, apparatus, and method of adipose tissue treatment
US20100100093A1 (en) * 2008-09-16 2010-04-22 Lazure Technologies, Llc. System and method for controlled tissue heating for destruction of cancerous cells
KR101523807B1 (ko) 2008-09-21 2015-05-28 시네론 메디컬 리미티드 개인용 피부 치료 장치
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US20100113963A1 (en) 2008-10-31 2010-05-06 Smits Karel F A A Impedance guided tunneling tool
CN102271602A (zh) 2008-11-06 2011-12-07 恩克斯特拉公司 用于治疗前列腺组织的系统和方法
JP2012508067A (ja) 2008-11-06 2012-04-05 エヌエックスセラ インコーポレイテッド 前立腺組織の治療のためのシステム及び方法
JP2012508069A (ja) 2008-11-06 2012-04-05 エヌエックスセラ インコーポレイテッド 前立腺肥大症の治療のためのシステムおよび方法
CN102271603A (zh) 2008-11-17 2011-12-07 明诺医学股份有限公司 得知或未得知组织形态的选择性能量积累
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8388611B2 (en) * 2009-01-14 2013-03-05 Nxthera, Inc. Systems and methods for treatment of prostatic tissue
US20100211055A1 (en) * 2009-02-18 2010-08-19 Shimon Eckhouse Method for body toning and an integrated data management system for the same
US9278230B2 (en) 2009-02-25 2016-03-08 Syneron Medical Ltd Electrical skin rejuvenation
US20100256735A1 (en) * 2009-04-03 2010-10-07 Board Of Regents, The University Of Texas System Intraluminal stent with seam
US8728139B2 (en) 2009-04-16 2014-05-20 Lazure Technologies, Llc System and method for energy delivery to a tissue using an electrode array
US9833277B2 (en) 2009-04-27 2017-12-05 Nxthera, Inc. Systems and methods for prostate treatment
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
DE102009048312B4 (de) * 2009-07-07 2017-05-11 Erbe Elektromedizin Gmbh Elektrochirurgisches Instrument und Verfahren zur Herstellung eines elektrochirurgischen Instruments
IN2012DN02321A (de) 2009-09-18 2015-08-21 Viveve Inc
WO2011037621A2 (en) 2009-09-22 2011-03-31 Mederi Therapeutics Inc. Systems and methods for controlling use and operation of a family of different treatment devices
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9775664B2 (en) 2009-09-22 2017-10-03 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
CN102821710B (zh) 2010-03-25 2016-06-22 恩克斯特拉公司 用于前列腺治疗的系统和方法
US9526911B1 (en) 2010-04-27 2016-12-27 Lazure Scientific, Inc. Immune mediated cancer cell destruction, systems and methods
TWI556849B (zh) 2010-10-21 2016-11-11 美敦力阿福盧森堡公司 用於腎臟神經協調的導管裝置
EP4059459A1 (de) 2010-10-25 2022-09-21 Medtronic Ireland Manufacturing Unlimited Company Mikrowellenkathetervorrichtungen für nierennervenmodulation
US20120191079A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US8974450B2 (en) * 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US10278774B2 (en) 2011-03-18 2019-05-07 Covidien Lp Selectively expandable operative element support structure and methods of use
JP2014521381A (ja) 2011-05-13 2014-08-28 ブロンカス テクノロジーズ, インコーポレイテッド 組織の切除のための方法およびデバイス
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
DK2755614T3 (en) 2011-09-13 2017-12-04 Nxthera Inc PROSTATE TREATMENT SYSTEMS
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
EP2819599B1 (de) 2012-02-29 2018-05-23 Procept Biorobotics Corporation Automatisierte bildgeführte geweberesektion und behandlung
US10335222B2 (en) 2012-04-03 2019-07-02 Nxthera, Inc. Induction coil vapor generator
US8403927B1 (en) 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
WO2014113724A2 (en) 2013-01-17 2014-07-24 Sharma Virender K Method and apparatus for tissue ablation
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
JP2016513563A (ja) 2013-03-14 2016-05-16 エヌエックスセラ インコーポレイテッド 前立腺癌を治療するためのシステムおよび方法
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US9968395B2 (en) 2013-12-10 2018-05-15 Nxthera, Inc. Systems and methods for treating the prostate
JP6422975B2 (ja) 2013-12-10 2018-11-14 エヌエックスセラ インコーポレイテッド 蒸気焼灼システム及び方法
EP4059563B1 (de) 2014-01-27 2023-09-27 Medtronic Ireland Manufacturing Unlimited Company Neuromodulationskatheter mit ummantelten neuromodulationselementen und zugehörige vorrichtungen
JP2017513600A (ja) 2014-04-24 2017-06-01 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ 編組シャフトを有する神経調節カテーテル及び関連システム及び方法
JP6673598B2 (ja) 2014-11-19 2020-03-25 エピックス セラピューティクス,インコーポレイテッド ペーシングを伴う組織の高分解能マッピング
EP3220844B1 (de) 2014-11-19 2020-11-11 EPiX Therapeutics, Inc. Systeme für hochauflösende gewebekartierung
SG11201703943VA (en) 2014-11-19 2017-06-29 Advanced Cardiac Therapeutics Inc Ablation devices, systems and methods of using a high-resolution electrode assembly
WO2016123498A1 (en) 2015-01-29 2016-08-04 Nxthera, Inc. Vapor ablation systems and methods
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016183475A1 (en) 2015-05-13 2016-11-17 Nxthera, Inc. Systems and methods for treating the bladder with condensable vapor
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
CA3017269A1 (en) 2016-03-15 2017-09-21 Epix Therapeutics, Inc. Improved devices, systems and methods for irrigated ablation
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
JP7049326B2 (ja) 2016-10-04 2022-04-06 アヴェント インコーポレイテッド 冷却型rfプローブ
EP3558139A4 (de) 2016-12-21 2020-08-12 Nxthera, Inc. Dampfablationssysteme und -verfahren
JP7193463B2 (ja) 2017-01-06 2022-12-20 ボストン サイエンティフィック サイムド,インコーポレイテッド 経腹膜蒸気焼灼システム及び方法
AU2018244318B2 (en) 2017-03-28 2023-11-16 Auris Health, Inc. Shaft actuating handle
US11832877B2 (en) 2017-04-03 2023-12-05 Broncus Medical Inc. Electrosurgical access sheath
US10987174B2 (en) 2017-04-07 2021-04-27 Auris Health, Inc. Patient introducer alignment
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
CN110809448B (zh) 2017-04-27 2022-11-25 Epix疗法公司 确定导管尖端与组织之间接触的性质
US20190059978A1 (en) * 2017-08-29 2019-02-28 Sea-Quan Su Non-invasive radio-frequency ablation system
WO2019232432A1 (en) 2018-06-01 2019-12-05 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
KR102579505B1 (ko) 2018-06-07 2023-09-20 아우리스 헬스, 인코포레이티드 고출력 기구를 가진 로봇 의료 시스템
AU2019204574A1 (en) 2018-06-27 2020-01-23 Viveve, Inc. Methods for treating urinary stress incontinence
WO2020005854A1 (en) 2018-06-28 2020-01-02 Auris Health, Inc. Medical systems incorporating pulley sharing
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
WO2020036686A1 (en) 2018-08-17 2020-02-20 Auris Health, Inc. Bipolar medical instrument
WO2020068303A1 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Systems and instruments for suction and irrigation
WO2020076447A1 (en) 2018-10-08 2020-04-16 Auris Health, Inc. Systems and instruments for tissue sealing
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
US11589913B2 (en) 2019-01-25 2023-02-28 Auris Health, Inc. Vessel sealer with heating and cooling capabilities
CN113613566A (zh) 2019-03-25 2021-11-05 奥瑞斯健康公司 用于医疗缝合的系统和方法
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
WO2020263949A1 (en) 2019-06-28 2020-12-30 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
US10959792B1 (en) 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
US11737845B2 (en) 2019-09-30 2023-08-29 Auris Inc. Medical instrument with a capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
CN114901200A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 高级篮式驱动模式
CN115802975A (zh) 2020-06-29 2023-03-14 奥瑞斯健康公司 用于检测连杆与外部对象之间的接触的系统和方法
WO2022003493A1 (en) 2020-06-30 2022-01-06 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33925A (en) * 1861-12-17 Improvement in fastenings for shoulder-straps
DE2407559C3 (de) * 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Wärmesonde
US4375220A (en) * 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US4682596A (en) * 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US4660571A (en) * 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
SU1459658A1 (ru) * 1986-04-24 1989-02-23 Благовещенский государственный медицинский институт Ранорасширитель
US4940064A (en) * 1986-11-14 1990-07-10 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4765331A (en) * 1987-02-10 1988-08-23 Circon Corporation Electrosurgical device with treatment arc of less than 360 degrees
US5178620A (en) * 1988-06-10 1993-01-12 Advanced Angioplasty Products, Inc. Thermal dilatation catheter and method
US5220927A (en) * 1988-07-28 1993-06-22 Bsd Medical Corporation Urethral inserted applicator for prostate hyperthermia
US4966597A (en) * 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
FR2639238B1 (fr) * 1988-11-21 1991-02-22 Technomed Int Sa Appareil de traitement chirurgical de tissus par hyperthermie, de preference la prostate, comprenant des moyens de protection thermique comprenant de preference des moyens formant ecran radioreflechissant
SU1690786A1 (ru) * 1989-06-30 1991-11-15 Каунасский Медицинский Институт Эндокардиальный электрод
US5009656A (en) * 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
US5057105A (en) * 1989-08-28 1991-10-15 The University Of Kansas Med Center Hot tip catheter assembly
US5047025A (en) * 1990-01-12 1991-09-10 Metcal, Inc. Thermal atherectomy device
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
EP0766533A1 (de) * 1991-05-17 1997-04-09 InnerDyne, Inc. Verfahren und vorrichtung zur thermischen ablation
US5304214A (en) * 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5342357A (en) * 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5403311A (en) * 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
AU686173B2 (en) * 1993-06-10 1998-02-05 Mir A. Imran Transurethral radio frequency ablation apparatus
US5462521A (en) * 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter

Also Published As

Publication number Publication date
JP3587848B2 (ja) 2004-11-10
EP0703756A1 (de) 1996-04-03
EP0703756B1 (de) 2004-12-15
EP0703756A4 (de) 1998-02-25
JPH09501329A (ja) 1997-02-10
US5520684A (en) 1996-05-28
AU718535B2 (en) 2000-04-13
IL109923A0 (en) 1994-10-07
AU6961794A (en) 1995-01-03
DE69434185D1 (de) 2005-01-20
WO1994028809A1 (en) 1994-12-22
ATE284650T1 (de) 2005-01-15
US5957922A (en) 1999-09-28
AU6383298A (en) 1998-07-09
IL109923A (en) 1998-12-06
CA2164860C (en) 2005-09-06
CA2164860A1 (en) 1994-12-22
AU686173B2 (en) 1998-02-05

Similar Documents

Publication Publication Date Title
DE69434185T2 (de) Urethrales gerät zur ablation mittels hochfrequenz
DE69634051T2 (de) Gerät zur ablation einer bestimmten masse
DE69510064T3 (de) Ablationsvorrichtung mit mehreren elektroden
EP2962655B1 (de) Antennenanordnung und elektrochirurgische vorrichtung
EP1044654B1 (de) Anordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
DE69636885T2 (de) Chirurgiesystem mit gekühlter Elektrodenspitze
DE69634786T2 (de) Radiofrequenzvorrichtung zur Ablation von Gewebemassen
DE60132938T2 (de) Chirurgische Mikrowellenablationsvorrichtung
US6663624B2 (en) RF treatment apparatus
DE69530493T2 (de) Ablationsgerät
DE69432671T2 (de) Flüssigkeitsgekühlte und perfundierte spitze eines katheters
DE69827270T2 (de) Vorrichtung zur therapeutischen kauterisation von vorbestimmten volumen biologischen gewebes
US20080167649A1 (en) Ablation apparatus and method
DE3011322A1 (de) Einrichtung zur mikrowellenbehandlung von koerpergewebe
DE2815156A1 (de) Anordnung zum oertlichen erwaermen von lebendem gewebe durch elektromagnetische wellen hoher frequenz fuer medizinische anwendungen
WO2006120116A1 (de) Biegeweiche applikationsvorrichtung zur hochfrequenztherapie von biologischem gewebe
EP0714635B1 (de) Hochfrequenztherapieeinrichtung zur interstitiellen Thermotherapie von Tumoren
AU2015201444B2 (en) Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure and method of manufacturing same
DE68929556T2 (de) Vorrichtung mit einer Kühlvorrichtung zur chirurgischen Behandlung von Geweben mit Hyperthermie, vorzugsweise der Prostata
AU2014200545B2 (en) Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure and method of manufacturing same
DE202014102548U1 (de) Systeme zum radiometrischen Messen einer Temperatur und Erkennen eines Gewebekontakts vor und während einer Gewebeablation

Legal Events

Date Code Title Description
8364 No opposition during term of opposition