DE69724822T2 - Oximeter mit analog-digital-umwandlung - Google Patents

Oximeter mit analog-digital-umwandlung Download PDF

Info

Publication number
DE69724822T2
DE69724822T2 DE69724822T DE69724822T DE69724822T2 DE 69724822 T2 DE69724822 T2 DE 69724822T2 DE 69724822 T DE69724822 T DE 69724822T DE 69724822 T DE69724822 T DE 69724822T DE 69724822 T2 DE69724822 T2 DE 69724822T2
Authority
DE
Germany
Prior art keywords
light
analog
oxygen saturation
oximeter
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69724822T
Other languages
English (en)
Other versions
DE69724822D1 (de
Inventor
T. Michael LARSEN
L. James REUSS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Criticare Systems Inc
Original Assignee
Criticare Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Criticare Systems Inc filed Critical Criticare Systems Inc
Application granted granted Critical
Publication of DE69724822D1 publication Critical patent/DE69724822D1/de
Publication of DE69724822T2 publication Critical patent/DE69724822T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Liquid Crystal Substances (AREA)
  • Glass Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft generell ein verbessertes Oximeter zum nichtinvasiven Messen der arteriellen Sauerstoffsättigung. Genauer betrifft die vorliegende Erfindung ein verbessertes Verfahren zur direkten Digitalsignalerzeugung aus Eingangssignalen, welche durch eine Sensorvorrichtung erzeugt werden, welche mit dem Oximeter verbunden ist.
  • Bei sämtlichen Oximetern werden Eingangssignale von einer Sensorvorrichtung empfangen, welche direkt mit dem blutführenden Gewebe eines Patienten verbunden ist, wie etwa einem Finger oder einem Ohrläppchen. Die Sensorvorrichtung besteht generell aus einer Rotlicht-LED, einer Infrarot-LED und einem oder zwei Photodetektoren. Licht von jeder LED wird durch das Gewebe gesandt, und die Photodetektoren erfassen die Menge des Lichts, welches das Gewebe durchdringt. Das erfaßte Licht besteht aus zwei Komponenten für jeden Frequenzbereich. Eine Wechselstromkomponente stellt die erfaßte Menge pulsierenden Bluts dar, während die Gleichstromkomponente die Menge nichtpulsierenden Bluts darstellt. Daher werden vier getrennte Komponenten des erfaßten Lichts untersucht, um die arterielle Sauerstoffsättigung zu bestimmen: Rotlicht-Gleichstrom, Rotlicht-Wechselstrom, Infrarot-Gleichstrom und Infrarot-Wechselstrom. Die erfaßte Lichtmenge wird sodann verwendet, um die Sauerstoffsättigung in dem Blut des Patienten auf Basis der folgenden Gleichung zu bestimmen: (IR(AC)/IR(DC))/(Rot(AC)/Rot(DC))
  • Bei einem traditionellen Oximeter wird das Ausgangssignal in eine Analogspannung umgewandelt und sodann in Infrarot- und Rotlicht-Komponenten getrennt. Einige Oximeter trennen ferner die Wechselstrom- und Gleichstromkomponenten. Dabei werden getrennte Analogschaltungen verwendet, um diese Signale aufzunehmen, zu demultiplexieren und zu filtern. Bei diesen Systemen ist es daher notwendig, die Analogverarbeitungselemente sorgfältig abzugleichen, um Fehler zu minimieren, welche durch Unterschiede der Verstärkung bzw. des Frequenzgangs bei den zwei Schaltungen entstehen können.
  • Die vorliegende Erfindung verbessert dieses Verfahren durch Empfangen von Eingangsstromsignalen von mindestens zwei und vorzugsweise drei LED's verschiedener Wellenlängen und direktes Umwandeln dieser Eingangssignale in digitale Spannungswerte, ohne zunächst eine Umwandlung in Analogspannungen vorzunehmen oder die Signale zu trennen. Dies wird durch Verwenden eines Ladungsdigitalisierungs-Analog-Digital-Wandlers mit einem ausreichenden Arbeitsbereich, um die starken Gleichstromsignale darzustellen, und einer ausreichenden Auflösung, um die schwachen Wechselstromsignale darzustellen. Dieser Ladungsdigitalisierungswandler verwendet ein Stromintegrationsglied als erste Stufe, welches ein Eingangsrauschen zu mitteln und zu filtern neigt. Dies ist eine Verbesserung gegenüber der Umwandlung von Strom in Spannung, welche bei traditionellen Oximetern verwendet wird, die zur Verstärkung eines Rauschens neigen.
  • Wenn der Eingangsstrom in einen digitalen Spannungswert umgewandelt wird, werden sämtliche Eingangssignale anstatt der getrennten Analogverarbeitungs-Hardwarepfade, welche bei dem traditionellen Verfahren erforderlich sind, in dem gleichen Digitalverarbeitungs-Hardwarepfad verarbeitet. Dieses System beseitigt die Notwendigkeit, Analogverarbeitungs-Hardwareelemente abzugleichen und vermindert mögliche Fehler daher weiter. Ferner kann, wenn die Signale digitalisiert werden, ein Mikroprozessor sämtliche Signalverarbeitungs-, Demultiplexierungs- und Filterschritte durchführen, welche bei traditionellen Oximetern erforderlich sind. Diese Reduktion der Analogsignalverarbeitungsstufe steigert sowohl die Geschwindigkeit als auch die Genauigkeit des Oximeters, vermindert die Kosten durch Beseitigen teurer Analogverarbeitungselemente und vermindert die Größe des Oximeters durch Beseitigen von Analogverarbeitungselementen mit großer räumlicher Ausdehnung.
  • Es ist daher eine Aufgabe der vorliegenden Endung, ein verbessertes Verfahren zum nichtinvasiven Messen von Fluidparametern zu schalten.
  • Es ist eine weitere Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zum Messen der arteriellen Blutsättigung zu schalten.
  • Es ist eine weitere Aufgabe der Erfindung, verbesserte Geschwindigkeit und Genauigkeit der Messungen, welche durch das Oximeter erfolgen, zu schaffen.
  • Es ist eine weitere Aufgabe der Endung, eine direkte Analog-Digital-Umwandlung des Eingangsstromsignals mit einem ausreichenden Arbeitsbereich, um starke Gleichstromsignale zu messen, und einer ausreichenden Auflösung, um schwache Wechselstromsignale darzustellen, zu schalten, so daß genaue Messungen mit reduzierter Analogsignalverarbeitung vorgenommen werden können.
  • Es ist eine weitere Aufgabe der Erfindung, eine Verminderung möglicher Fehler durch direktes Umwandeln des Eingangsstromsignals in ein digitales Spannungssignal zu schalten, wodurch der Umwandlungsschritt von Strom in Spannung umgangen wird, welcher ein Rauschen verstärken kann.
  • Es ist eine weitere Aufgabe der Erfindung, eine Verminderung möglicher Fehler durch Verarbeiten sämtlicher Signale in einem Digitalverarbeitungs-Hardwarepfad zu schaffen, wodurch die Notwendigkeit abgeglichener Analogverarbeitungselemente beseitigt wird.
  • Bei einem Ausführungsbeispiel der vorliegenden Erfindung umfaßt ein Oximeter zum nichtinvasiven Messen der arteriellen Sauerstoffkonzentration:
    eine Einrichtung zum Erzeugen mindestens zweier Lichtwellenlängen;
    eine Einrichtung zum Richten des Lichts auf eine Gewebeprobe, welche eine pulsierende Blutversorgung umfaßt;
    eine Einrichtung zum Erfassen des Lichts nach dem Durchgang durch die Gewebeprobe und zum Erzeugen eines elektrischen Stromsignals, welches die Absorption jeder Wellenlänge des Lichts darstellt;
    eine Einrichtung zum direkten Umwandeln des elektrischen Stromsignals in ein digitales Spannungssignal;
    eine Einrichtung zum Verarbeiten des digitalen Spannungssignals;
    und eine Einrichtung zum Bestimmen der arteriellen Sauerstoffkonzentration.
  • Vorzugsweise umfaßt die Einrichtung zum Erzeugen von Licht LED's, welche Licht in drei Frequenzbereichen erzeugen.
  • Vorteilhafterweise umfaßt die Einrichtung zum Erfassen des Lichts mindestens einen Photodetektor, welcher Licht mit den zwei Wellenlängen erfaßt und ein elektrisches Stromsignal auf Basis der Menge des jeweils erfaßten Lichts erzeugt.
  • Wünschenswerterweise umfaßt die Einrichtung zum direkten Umwandeln des elektrischen Stromsignals in ein digitales Spannungssignal einen Ladungsdigitalisierungs-Analog-Digital-Wandler.
  • Die Einrichtung zum direkten Umwandeln des elektrischen Stromsignals in ein digitales Spannungssignal umfaßt einen Ladungsdigitalisierungs-Analog-Digital-Wandler mit einem ausreichenden Arbeitsbereich, um starke Gleichstromsignale zu messen, und einer ausreichenden Auflösung, um schwache Wechselstromsignale darzustellen, welche dem Gleichstrom aufmoduliert sind.
  • Die Einrichtung zum direkten Umwandeln des elektrischen Stromsignals in ein digitales Spannungssignal umfaßt einen Ladungsdigitalisierungs- Analog-Digital-Wandler, welcher vorzugsweise ein Stromintegrationsglied in der ersten Stufe umfaßt.
  • Es ist eine weitere Aufgabe der Erfindung, ein verbessertes Oximeter zu schaffen, welches eine verminderte Anzahl elektronischer Schaltelemente aufweist.
  • Es ist eine weitere Aufgabe der vorliegenden Erfindung, eine Verkleinerung der Oximetergröße durch Beseitigen von Analogverarbeitungselementen mit großer räumlicher Ausdehnung zu schaffen.
  • Es ist eine weitere Aufgabe der Erfindung, ein verbessertes Verfahren und System zum direkten Umwandeln mindestens zweier Signale von LED's mit verschiedenen Wellenlängen in eine digitale Signalform zu schaffen.
  • Diese und weitere Aufgaben und Vorteile der Erfindung werden gemeinsam mit dem Aufbau und der Funktionsweise davon durch die folgende genaue Beschreibung bei Betrachtung in Verbindung mit der beigefügten Zeichnung, welche unten beschrieben wird, ersichtlich.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • 1 stellt ein Blockschaltbild des Oximeters mit direkter Digitalumwandlung in Verbindung mit einer Sensorvorrichtung dar;
  • 2 stellt die Sensorvorrichtung und das Oximeter mit direkter Digitalumwandlung in Verbindung mit einem Patienten dar.
  • Genaue Beschreibung des bevorzugten Ausführungsbeispiels
  • Ein Blockschaltbild eines erfindungsgemäß konstruierten Oximeters 10 mit direkter Digitalumwandlung ist gemeinsam mit einer externen Sensor vorrichtung 20 in 1 dargestellt. Das Oximeter 10 mit direkter Digitalumwandlung umfaßt einen Ladungsdigitalisierungs-Analog-Digital-Wandler 30, einen Mikroprozessor 40, einen Digital-Analog-Wandler/LED-Treiber 50 und ein Blitz-EPROM 60. Um eine ausreichende Genauigkeit zu erreichen, wandelt der Ladungsdigitalisierungs-Analog-Digital-Wandler 30 vorzugsweise das analoge Eingangssignal in ein digitales Signal mit mindestens 20 Bits um.
  • Bei einem bevorzugten Ausführungsbeispiel (siehe 2) wird der Sensor 20 an einer blutführenden Gewebeprobe angebracht, wie etwa dem Finger oder dem Ohrläppchen eines Patienten. Hier ist dargestellt, daß der Sensor 20 aus einer Rotlicht-LED 70, einer Infrarot-LED 80 und einem einzigen Photodetektor 90 besteht, doch kann der Sensor drei oder mehr LED's mit verschiedenen Wellenlängen und eine zugeordnete Vielzahl von Photodetektoren umfassen. Die LED's 70 und 80 werden durch Digitalsignale von dem Mikroprozessor 40 betrieben. Diese Digitalsignale werden mittels des Digital-Analog-Wandlers/LED-Treibers 50 in Analogspannung umgewandelt. Licht von den LED's 70 und 80 wird durch die Gewebeprobe gesandt und wird durch den Photodetektor 90 erfaßt, welcher ein analoges Stromsignal mit einer Amplitude erzeugt, welche proportional zu der Lichtmenge ist, welche in jedem Frequenzbereich erfaßt wird. Sodann wird das Stromsignal von dem Photodetektor 90 mit einer Auflösung von 20 Bits durch den Ladungsdigitalisierungs-Analog-Digital-Wandler 30 digitalisiert und zu dem Mikroprozessor 40 gesandt. Demultiplexierung, Umgebungsstörungserkennung und -beseitigung sowie Signalfilterung erfolgen mittels Digitalsignalverarbeitungs-Softwareprogrammen in dem Mikroprozessor 40. Wenn die Signale verarbeitet sind, berechnet der Mikroprozessor 40 den Wert des Verhältnisses (IR(AC)/(IR(DC))/(Rot(AC)/Rot(DC))wobei die Gleichstromkomponente den nicht pulsierenden Blutstrom darstellt und die Wechselstromkomponente den pulsierenden Blutstrom an zeigt. Sodann bestimmt der Mikroprozessor 40 die absolute arterielle Sauerstoffsättigung durch Vergleichen des Ergebnisses mit dem Wert, welcher in einer Verzeichnistabelle in dem Blitz-EPROM 60 gespeichert ist.
  • Obgleich bevorzugte Ausführungsbeispiele der Erfindung dargestellt und beschrieben wurden, ist für Fachkundige zu ersehen, daß verschiedene Änderungen und Abwandlungen vorgenommen werden können, ohne von der Erfindung in deren weiteren Aspekten gemäß Darlegung in den folgenden Ansprüchen abzuweichen.

Claims (13)

  1. Oximeter (10) zum nicht-invasiven Messen der arteriellen Sauerstoffsättigung, umfassend: einen Sensor (20), welcher mindestens eine erste und eine zweite Lichtemissionsvorrichtung (70, 80) zum Erzeugen von Licht mit mindestens zwei Wellenlängen umfaßt; mindestens einen Photodetektor (90) zum Erfassen des Lichts nach Durchlaufen einer Gewebeprobe mit einer pulsierenden Blutversorgung und zum Erzeugen eines analogen elektrischen Stromsignals, welches die Absorption jeder Wellenlänge des Lichts darstellt; gekennzeichnet durch einen Ladungsdigitalisierungs-Analog-Digital-Wandler (30), welcher einen Eingang aufweist, welcher mit einem Ausgang des Sensors (20) verbunden ist, um das analoge elektrische Stromsignal, welches durch den Photodetektor (90) erzeugt wird, direkt zu empfangen und das analoge elektrische Stromsignal direkt in ein digitales Spannungssignal umzuwandeln; und eine Verarbeitungseinheit (40) zum Verarbeiten des digitalen Spannungssignals, um eine arterielle Sauerstoffsättigung zu berechnen.
  2. Oximeter nach Anspruch 1, wobei der Sensor (20) LEDs umfaßt, welche Licht mit drei Wellenlängen erzeugen.
  3. Oximeter nach Anspruch 1 oder 2, wobei der Analog-Digital-Wandler (30) einen ausreichenden Arbeitsbereich aufweist, um starke Gleichstromsignale zu messen, und eine ausreichende Auflösung, um schwache Wechselstromsignale, durch welche die Gleichstromsignale moduliert sind, wiederzugeben,.
  4. Oximeter nach einem beliebigen vorangehenden Anspruch, wobei der Ladungsdigitalisierungs-Analog-Digital-Wandler (30) einen Stromintegrator in der ersten Stufe umfaßt.
  5. Oximeter nach einem beliebigen vorangehenden Anspruch, wobei die Verarbeitungseinheit (40) Rechnerausführungssoftwareprogramme umfaßt.
  6. Oximeter nach einem beliebigen vorangehende Anspruch, ferner umfassend eine gespeicherte Nachschlagetabelle zum Berechnen der Sauerstoffsättigung.
  7. Oximeter nach einem beliebigen vorangehenden Anspruch, ferner umfassend eine Nachschlagetabelle, welche in einem Blitz-EPROM (60) gespeichert ist, zur Berechnung der Sauerstoffsättigung.
  8. Verfahren zum nicht-invasiven Messen der arteriellen Sauerstoffsättigung, umfassend die Schritte: Erzeugen von Licht mit mindestens einer ersten und einer zweiten Wellenlänge; Leiten des Lichts zu einer Gewebeprobe mit einer pulsierenden Blutversorgung; Erfassen des Lichts nach Durchlaufen der Gewebeprobe und Erzeugen eines analogen eleitrischen Stromsignals, welches das Absorptionsverhältnis jeder Wellenlänge des Lichts darstellt; gekennzeichnet durch direktes Senden des analogen elektrischen Stromsignals zu einem Ladungsdigitalisierungs-Analog-Digital-Wandler (30) zum direkten Umwandeln des analogen elektrischen Stromsignals in ein digitales Spannungssignal unter Verwendung des Ladungsdigitalisierungs-Analog-Digital-Wandlers (30); und darauffolgendes Verarbeiten des digitalen Spannungssignals, um eine arterielle Sauerstoffsättigung zu berechnen.
  9. Verfahren nach Anspruch 8, ferner umfassend den Schritt des Verwendens einer gespeicherten Nachschlagetabelle zum Berechnen der Sauerstoffsättigung.
  10. Verfahren nach Anspruch 8 oder 9, ferner umfassend die Schritte des Speicherns einer Nachschlagetabelle in einem Blitz-EPROM (60) und des Verwendens dieser Nachschlagetabelle zum Berechnen der Sauerstoffsättigung.
  11. Verfahren nach einem der Ansprüche 8 bis 10, ferner umfassend die Schritte des Erkennens und Filterns eines Umgebungsrauschens aus dem digitalen Spannungssignal.
  12. Verfahren nach einem der Ansprüche 8 bis 11, ferner umfassend die Schritte einer Demultiplexierbehandlung des digitalen Spannungssignals, um einen ersten Wert, welcher das erfaßte Licht mit der ersten Wellenlänge darstellt, und einen zweiten Wert, welcher das erfaßte Licht mit der zweiten Wellenlänge darstellt, zu liefern.
  13. Verfahren nach Anspruch 12, ferner umfassend den Schritt, den ersten und den zweiten Wert des digitalen Spannungssignals digital zu filtern.
DE69724822T 1996-07-17 1997-07-17 Oximeter mit analog-digital-umwandlung Expired - Lifetime DE69724822T2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/683,617 US5842981A (en) 1996-07-17 1996-07-17 Direct to digital oximeter
US683617 1996-07-17
PCT/US1997/012484 WO1998002087A1 (en) 1996-07-17 1997-07-17 Direct to digital oximeter

Publications (2)

Publication Number Publication Date
DE69724822D1 DE69724822D1 (de) 2003-10-16
DE69724822T2 true DE69724822T2 (de) 2004-07-01

Family

ID=24744795

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69724822T Expired - Lifetime DE69724822T2 (de) 1996-07-17 1997-07-17 Oximeter mit analog-digital-umwandlung

Country Status (10)

Country Link
US (1) US5842981A (de)
EP (1) EP0955869B1 (de)
JP (1) JP2000514683A (de)
CN (1) CN1160021C (de)
AU (1) AU720111B2 (de)
BR (1) BR9710330A (de)
CA (1) CA2260928C (de)
DE (1) DE69724822T2 (de)
ES (1) ES2206740T3 (de)
WO (1) WO1998002087A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653975B1 (de) 2012-04-16 2015-12-16 FESTO AG & Co. KG Sensormodul
DE102014117879A1 (de) * 2014-12-04 2016-06-09 Osram Opto Semiconductors Gmbh Pulsoxymetrie-Vorrichtung und Verfahren zum Betreiben einer Pulsoxymetrie-Vorrichtung

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9702434A (es) 1991-03-07 1998-05-31 Masimo Corp Aparato de procesamiento de señales.
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
RU2144211C1 (ru) 1991-03-07 2000-01-10 Мэсимо Корпорейшн Устройство и способ обработки сигналов
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
EP1905352B1 (de) 1994-10-07 2014-07-16 Masimo Corporation Signalverarbeitungsmethode
US6163715A (en) * 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US5855550A (en) 1996-11-13 1999-01-05 Lai; Joseph Method and system for remotely monitoring multiple medical parameters
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US20030208535A1 (en) 2001-12-28 2003-11-06 Appleman Kenneth H. Collaborative internet data mining system
CA2692298C (en) 1997-02-07 2014-10-28 About.Com, Inc. Collaborative internet data mining system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
AU7672698A (en) * 1998-06-11 1999-12-30 S.P.O. Medical Equipment Ltd. Physiological stress detector device and method
US6990365B1 (en) * 1998-07-04 2006-01-24 Edwards Lifesciences Apparatus for measurement of blood analytes
US7400918B2 (en) * 1998-07-04 2008-07-15 Edwards Lifesciences Measurement of blood oxygen saturation
EP1598003A3 (de) 1998-08-13 2006-03-01 Whitland Research Limited Optische Vorrichtung
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US6339715B1 (en) 1999-09-30 2002-01-15 Ob Scientific Method and apparatus for processing a physiological signal
US6433696B1 (en) 1999-11-05 2002-08-13 Alto U.S., Inc. Carbon monoxide emitting apparatus, carbon monoxide monitor shutoff, and circuit therefor
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
EP2322085B1 (de) 2000-04-17 2014-03-12 Covidien LP Pulsoximetersensor mit stufenweiser Funktion
US6889153B2 (en) 2001-08-09 2005-05-03 Thomas Dietiker System and method for a self-calibrating non-invasive sensor
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US20090281838A1 (en) 2008-05-07 2009-11-12 Lawrence A. Lynn Medical failure pattern search engine
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
JP4642279B2 (ja) 2001-06-28 2011-03-02 株式会社日立メディコ 生体光計測装置
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US6654621B2 (en) 2001-08-29 2003-11-25 Bci, Inc. Finger oximeter with finger grip suspension system
IL145445A (en) * 2001-09-13 2006-12-31 Conmed Corp A method for signal processing and a device for improving signal for noise
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
ATE479343T1 (de) 2002-10-01 2010-09-15 Nellcor Puritan Bennett Inc Verwendung eines kopfbandes zur spannungsanzeige und system aus oxymeter und kopfband
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
US7006856B2 (en) 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US8135447B2 (en) 2003-10-02 2012-03-13 Panasonic Electric Works Co., Ltd. Optical biological information measuring apparatus, optical biological information measuring method, biological information decision apparatus, program and recording medium
US7190985B2 (en) 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
US7120479B2 (en) 2004-02-25 2006-10-10 Nellcor Puritan Bennett Inc. Switch-mode oximeter LED drive with a single inductor
US7534212B2 (en) 2004-03-08 2009-05-19 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7194293B2 (en) 2004-03-08 2007-03-20 Nellcor Puritan Bennett Incorporated Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US9143572B2 (en) 2004-09-17 2015-09-22 About, Inc. Method and system for providing content to users based on frequency of interaction
US20080281298A1 (en) * 2005-02-07 2008-11-13 Andersen David R Electronic support system for biological data sensor
US7392075B2 (en) 2005-03-03 2008-06-24 Nellcor Puritan Bennett Incorporated Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8204565B2 (en) * 2005-04-04 2012-06-19 University Of Iowa Research Foundation Reagentless optical analyte detection system
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US20070106126A1 (en) 2005-09-30 2007-05-10 Mannheimer Paul D Patient monitoring alarm escalation system and method
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US20070100220A1 (en) 2005-10-28 2007-05-03 Baker Clark R Jr Adjusting parameters used in pulse oximetry analysis
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US8702606B2 (en) 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8271063B2 (en) * 2006-06-16 2012-09-18 Medtor Llc System and method for a non-invasive medical sensor
US20070299323A1 (en) * 2006-06-27 2007-12-27 Martijn Wilco Arns Apparatus for measuring one or more physiological functions of a body and a method using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US20080081956A1 (en) 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US7925511B2 (en) 2006-09-29 2011-04-12 Nellcor Puritan Bennett Llc System and method for secure voice identification in a medical device
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7698002B2 (en) 2006-09-29 2010-04-13 Nellcor Puritan Bennett Llc Systems and methods for user interface and identification in a medical device
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7706896B2 (en) 2006-09-29 2010-04-27 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US8160668B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US8116852B2 (en) 2006-09-29 2012-02-14 Nellcor Puritan Bennett Llc System and method for detection of skin wounds and compartment syndromes
US8032528B2 (en) 2007-01-12 2011-10-04 About Inc. Method and system for managing content submission and publication of content
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US20090259116A1 (en) * 2007-11-14 2009-10-15 Yoram Wasserman Method and Apparatus for Processing a Pulsatile Biometric Signal
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US20100081904A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Device And Method For Securing A Medical Sensor to An Infant's Head
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
CN102846323A (zh) * 2011-07-01 2013-01-02 中国计量学院 一种基于led的无创血氧饱和度检测仪
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
CN105228517A (zh) * 2013-04-05 2016-01-06 日东电工股份有限公司 使用光学测量测定受测者的SpO2的方法及装置
CN106999112A (zh) 2014-10-10 2017-08-01 麦德托有限公司 用于无创医疗传感器的系统和方法
GB201608781D0 (en) * 2016-05-19 2016-07-06 Leman Micro Devices Sa Non-invasive blood analysis
EP3531912B1 (de) 2016-12-05 2020-11-11 Medipines Corporation Verfahren und vorrichtung für atemmessungen mit atemgasproben
CN109596552B (zh) * 2018-12-24 2021-07-16 中北大学 利用单距离光源-探测器对测量组织血氧饱和度的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
AU463065B2 (en) * 1972-02-01 1975-07-17 Oximetrix Inc. Oximeter and method
US3799672A (en) * 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
JPS5725217B2 (de) * 1974-10-14 1982-05-28
CA1037285A (en) * 1975-04-30 1978-08-29 Glenfield Warner Ear oximetry process and apparatus
US4167331A (en) * 1976-12-20 1979-09-11 Hewlett-Packard Company Multi-wavelength incremental absorbence oximeter
JPS5524004A (en) * 1978-06-22 1980-02-20 Minolta Camera Kk Oxymeter
JPS56104646A (en) * 1980-01-25 1981-08-20 Minolta Camera Kk Optical analyzer for forming ratio of element contained in organism
US4357105A (en) * 1980-08-06 1982-11-02 Buffalo Medical Specialties Mfg., Inc. Blood diagnostic spectrophotometer
US4407290A (en) * 1981-04-01 1983-10-04 Biox Technology, Inc. Blood constituent measuring device and method
US4740080A (en) * 1985-03-21 1988-04-26 Abbott Laboratories Analog to digital converter for fluid analyzing apparatus
US4819646A (en) * 1986-08-18 1989-04-11 Physio-Control Corporation Feedback-controlled method and apparatus for processing signals used in oximetry
US4773422A (en) * 1987-04-30 1988-09-27 Nonin Medical, Inc. Single channel pulse oximeter
US4807631A (en) * 1987-10-09 1989-02-28 Critikon, Inc. Pulse oximetry system
US4854699A (en) * 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
US5299120A (en) * 1989-09-15 1994-03-29 Hewlett-Packard Company Method for digitally processing signals containing information regarding arterial blood flow
US5190038A (en) * 1989-11-01 1993-03-02 Novametrix Medical Systems, Inc. Pulse oximeter with improved accuracy and response time
US5348004A (en) * 1993-03-31 1994-09-20 Nellcor Incorporated Electronic processor for pulse oximeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653975B1 (de) 2012-04-16 2015-12-16 FESTO AG & Co. KG Sensormodul
DE102014117879A1 (de) * 2014-12-04 2016-06-09 Osram Opto Semiconductors Gmbh Pulsoxymetrie-Vorrichtung und Verfahren zum Betreiben einer Pulsoxymetrie-Vorrichtung
US10485465B2 (en) 2014-12-04 2019-11-26 Osram Opto Semiconductors Gmbh Pulse oximetry device and method of operating a pulse oximetry device

Also Published As

Publication number Publication date
JP2000514683A (ja) 2000-11-07
CA2260928C (en) 2005-05-24
CA2260928A1 (en) 1998-01-22
WO1998002087A1 (en) 1998-01-22
AU3802997A (en) 1998-02-09
CN1225562A (zh) 1999-08-11
US5842981A (en) 1998-12-01
EP0955869B1 (de) 2003-09-10
EP0955869A1 (de) 1999-11-17
CN1160021C (zh) 2004-08-04
EP0955869A4 (de) 2001-03-14
DE69724822D1 (de) 2003-10-16
AU720111B2 (en) 2000-05-25
BR9710330A (pt) 2000-01-11
ES2206740T3 (es) 2004-05-16

Similar Documents

Publication Publication Date Title
DE69724822T2 (de) Oximeter mit analog-digital-umwandlung
DE19537646C2 (de) Verfahren und Vorrichtung zum Erkennen verfälschter Meßwerte in der Pulsoximetrie zur Messung der Sauerstoffsättigung
EP0892617B1 (de) Erkennung von störsignalen bei der pulsoxymetrischen messung
DE69829621T2 (de) Verfahren und Gerät zur Unterdrückung von Artefakten in physiologischen Signalen
US4948248A (en) Blood constituent measuring device and method
DE60125326T2 (de) Pulsoximeter
DE69530207T2 (de) Vorrichtung zur impedanz-kardiographie
DE69727998T2 (de) Optimaler Diagnosepunktdetektor für nichtinvasive Diagnose von Blutbestandteile
DE60024836T2 (de) Bilderzeugungsvorrichtung zur darstellung von konzentrationsverhältnissen
WO1998002087A9 (en) Direct to digital oximeter
WO1994003102A1 (en) Optical monitor (oximeter, etc.) with motion artefact suppression
DE2756462A1 (de) Schaltungsanordnung zum selektiven messen der konzentration einer substanz
WO2006099988A1 (de) Mobiles diagnosegerät
DE102015111658B4 (de) System, Verfahren und Computerprogramm zur kapazitiven Erfassung von elektrischen Biosignalen
EP0271340B1 (de) Messgerät und Verfahren zum Messen der arteriellen Blutsauerstoffsättigung
DE10246404B4 (de) Verfahren und System zur Messung von T-Wellen-Alternationen
DE69725622T2 (de) Verfahren für das harmonische filtern von daten
DE3629447A1 (de) Oximetrieverfahren und -vorrichtung
DE69730921T2 (de) Optisches Messgerät mit wellenlängenselektiver Lichtquelle
DE69732757T2 (de) Verfahren und Anlage für QRS-Dektektion
DE10319295B4 (de) Verfahren zur Bestimmung der Glucosekonzentration im Blut
DE4007393A1 (de) Vorrichtung zum messen der biopermeabilitaet
EP0029166A1 (de) Elektronisches Blutdruckmessgerät
DE2057660B2 (de) Vorrichtung zum Erzeugen eines elektrischen Signals, das für eine bestimmte Eigenschaft eines elektrischen Eingangssignals repräsentativ ist
EP1417926A1 (de) Verfahren und Vorrichtung zum nichtinvasiven Messen des Blutflusses sowie zum Erfassen und Bearbeiten eines EKG-Signals und Verwendung eines EKG-Geräts

Legal Events

Date Code Title Description
8364 No opposition during term of opposition