DE69916733T2 - Stabile Komplexe schwer löslicher Substanzen - Google Patents

Stabile Komplexe schwer löslicher Substanzen Download PDF

Info

Publication number
DE69916733T2
DE69916733T2 DE69916733T DE69916733T DE69916733T2 DE 69916733 T2 DE69916733 T2 DE 69916733T2 DE 69916733 T DE69916733 T DE 69916733T DE 69916733 T DE69916733 T DE 69916733T DE 69916733 T2 DE69916733 T2 DE 69916733T2
Authority
DE
Germany
Prior art keywords
compound
polymer
insoluble
water
ionic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69916733T
Other languages
English (en)
Other versions
DE69916733T3 (de
DE69916733D1 (de
Inventor
Antonio A. Clifton Albano
Wantanee Clifton Phuapradit
Harpreet K. West Orange Sandhu
Navnit Hargovindas Clifton Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26798138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69916733(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Application granted granted Critical
Publication of DE69916733D1 publication Critical patent/DE69916733D1/de
Publication of DE69916733T2 publication Critical patent/DE69916733T2/de
Publication of DE69916733T3 publication Critical patent/DE69916733T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Description

  • Die vorliegende Erfindung liefert pharmazeutische Zusammensetzungen, umfassend einen stabilen wasserunlöslichen Komplex, bestehend aus einer amorphen therapeutisch wirksamen Verbindung (z. B. einem Arzneimittel), dispergiert in einem ionischen Polymer. Die Komplexe gemäß der vorliegenden Erfindung sorgen für wesentliche Erhöhungen der Bioverfügbarkeit schlecht löslicher therapeutisch wirksamer Verbindungen.
  • Die Bioverfügbarkeit einer therapeutisch wirksamen Verbindung wird im Allgemeinen beeinflusst durch (i) die Solubilitäts/Löslichkeits-Rate der Verbindung und (ii) den Verteilungskoeffizienten/die Permeabilität der Verbindung durch die Gastrointestinalmembran eines Patienten. Der Hauptgrund der geringen Bioverfügbarkeit einer therapeutisch wirksamen bzw. aktiven Verbindung ist die geringe Solubilitäts/Löslichkeits-Rate der Verbindung. Geringe Bioverfügbarkeit ist häufig auch begleitet von nicht wünschenswert hohen Raten Patientenvariabilität und nicht vorhersagbarer Dosis/Therapie-Wirkungen aufgrund unberechenbarer Absorption der therapeutisch wirksamen Verbindung (z. B. Arzneimittel) durch den Patienten.
  • Mehrere Techniken werden verwendet, um die Bioverfügbarkeit von schlecht löslichen therapeutisch wirksamen Verbindungen zu verbessern. Diese Techniken sind unten zusammengefasst.
  • 1. Teilchengrößenverringerung: Eine schlecht lösliche therapeutisch wirksame Verbindung wird häufig mechanisch gemahlen, um die Teilchengröße der Verbindung zu verringern und dabei die Oberfläche zu erhöhen. Siehe Lachman et al., The Theory and Practice of Industrial Pharmacy, Kapitel 2, S. 45 (1986). Teilchengrößenverringerung in Teilchen mit Mikrometergröße können erreicht werden unter Verwendung einer Strahlmühle. Die mittlere Teilchengröße, die durch die Strahlmühle erhalten wird, ist typischerweise im Bereich von 1–10 μm. Ähnlich ergibt feuchtes Mahlen einer therapeutisch wirksamen Verbindung in der Gegenwart von Schutzkolloiden oder Polymeren typischerweise Teilchengrößen der Verbindung im Bereich von etwa 300–800 nm. Gemäß dieser Technik werden eine therapeutisch wirksame Verbindung und ein Polymer in Wasser dispergiert und durch ein Mahlmedium, wie etwa winzige Kügelchen (0,2–0,5 mm) gemahlen. Siehe U.S. Patent Nr. 5,494,683. Teilchengrößenverringerung kann jedoch nur die Lösungsrate der therapeutisch wirksamen Verbindung verbessern, jedoch nicht die Gesamtmenge der Verbindung in Lösung im Gleichgewicht.
  • 2. Feste Dispersion
  • 2.1 Verschmelzungsverfahren (Fusionsverfahren): Gemäß dieser Technik wird eine therapeutisch wirksame Verbindung in einem nichtionischen Polymer dispergiert, um eine feste Dispersion zu bilden. Typischerweise wird das nichtionische Polymer (z. B. Pluronic® und Polyethylenglykol) geschmolzen bei einer Temperatur über seinem Schmelzpunkt und die therapeutisch wirksame Verbindung wird unter Rühren in dem geschmolzenen Polymer gelöst. Siehe U.S. Patent Nr. 5,281,420. Die resultierende geschmolzene Masse wird dann auf Raumtemperatur gekühlt. Als ein Ergebnis dieses Verfahrens wird die therapeutisch wirksame Verbindung in dem Polymer geschmolzen und präzipitiert beim Kühlen in amorpher Form. Die amorphe Form der Verbindung weist im Allgemeinen eine schnellere Lösungsrate auf als die anfängliche kristalline Form der Verbindung. Daher wird durch Überführen der Verbindung in amorphe Form durch dieses Verfahren die Bioverfügbarkeit verbessert. Jedoch aufgrund der größeren Löslichkeit im Wässrigen und des niederen Schmelzpunktes nichtionischer Polymere kann die amorphe Form der therapeutisch wirksamen Verbindung nicht ihre Stabilität aufrechterhalten und wandelt sich schließlich wieder zurück in die kristalline Form um, nach Aussetzen unter hohe Feuchtigkeit und erhöhte Temperaturen, die häufig mit Langzeitaufbewahrung verbunden sind. Siehe Yoshioka et al., J. Pharm. Sci. 83: 1700–1705 (1994). Daher ist diese Technik nicht geeignet für die meisten Dosisformen therapeutisch wirksamer Verbindungen und gewiss nicht für diejenigen therapeutisch wirksamen Verbindungen, die geringe Solubilität aufweisen.
  • 2.2 Copräzipitation: In einem anderen bestehenden Verfahren zum Verbessern der Bioverfügbarkeit einer schlecht löslichen therapeutisch wirksamen Verbindung werden die Verbindung und ein nichtionisches hydrophiles Polymer, wie etwa Polyvinylpyrrolidon, in einem organischen Lösungsmittel gelöst. Das Lösungsmittel wird durch Verdampfen entfernt, währenddessen die therapeutisch wirksame Verbindung in der hydrophilen Polymermatrix präzipitiert. Siehe H. G. Britain, Physical Characterization of Pharmaceutical Solids, Drugs and the Pharmaceutical Sciences, Band 70 (Marcel Dekker, Inc., N. Y., 1995). Aufgrund der hygroskopen Natur und Solubilität im Wässrigen des Polymers schützt dieser Polymertyp nicht die amorphe Form der therapeutisch wirksamen Verbindung vor Wärme und Feuchtigkeit. Daher bleibt die therapeutisch wirksame Verbindung in der hydrophilen Polymermatrix nicht in amorpher Form und wandelt sich schließlich in eine kristalline Form während der Aufbewahrung um. Daher ist dieser Ansatz ebenfalls nicht praktikabel zum Verbessern der Bioverfügbarkeit schlecht löslicher therapeutisch wirksamer Verbindungen.
  • 3. Selbstemulgierungarzneimittelzuführungssystem (SEDDS): In diesem System wird eine therapeutisch wirksame Verbindung gelöst in einem Gemisch aus einem geeigneten Öl und Emulgiermittel. Die resultierende Lipidformulierung bildet beim Aussetzen unter Gastrointestinalfluide eine sehr feine Emulsion oder Mikroemulsion. Aufgrund der hohen Oberfläche der Ölkügelchen wird die Bioverfügbarkeit einer schlecht löslichen therapeutisch wirksamen Verbindung, die in einem solchen Öl gelöst ist, wesentlich erhöht. Siehe P. P. Constantinides, Pharm. Res. 12(11): 1561–1572 (1995). Die Schlüsselanforderung zur Verwendung dieses Systems ist, dass die therapeutisch wirksame Verbindung in Öl löslich sein muss und wenn sie einmal in Öl gelöst ist, muss sie in stabiler Form in der Lösung bleiben. SEDDS ist daher keine geeignete Alternative für die meisten therapeutisch wirksamen Verbindung aufgrund der begrenzten Solubilität und nicht zufriedenstellenden Stabilität dieser Verbindungen in einer Lösung auf Ölbasis.
  • Wir haben überraschenderweise gefunden, dass, wenn eine wenig lösliche therapeutisch wirksame Verbindung (typischerweise in kristalliner Form) molekular in einem wasserunlöslichen ionischen Polymer mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur gleich oder größer als 50°C gelöst wird, die physikalische Stabilität der Verbindung (nun in amorpher Form) für lange Zeitdauern aufrechterhalten bleibt, selbst unter Hochfeuchtigkeits- und Hochtemperaturaufbewahrungsbedingungen. Aufgrund des hohen Molekulargewichts und der hohen Glasübergangstemperatur des ionischen Polymers als auch seiner relativen Unlöslichkeit in Wasser immobilisiert das ionische Polymer therapeutisch wirksame Verbindung in ihrer amorphen Form, wobei ausgezeichnete Stabilität der Verbindung bereitgestellt wird, welche überragend ist gegenüber derjenigen, die durch derzeit verfügbare Verfahren erreichbar ist. Zusätzlich, aufgrund der erhöhten Solubilität der Verbindung in dem Verbindung/Polymer-Komplex wird ebenfalls die Bioverfügbarkeit der therapeutisch wirksamen Verbindung wesentlich erhöht. Dieses Verfahren ist daher besonders geeignet zum Verbessern der Bioverfügbarkeit schlecht löslicher therapeutisch wirksamer Verbindungen.
  • Die vorliegende Erfindung liefert eine pharmazeutische Zusammensetzung, umfassend einen stabilen, wasserunlöslichen Komplex, bestehend aus einem Trägermakromolekül, das ein wasserunlösliches ionisches Polymer mit einem Molekulargewicht von größer als 80.000 D und mit einer Glasübergangstemperatur gleich oder größer 50°C ist, und einer amorphen therapeutisch wirksamen Verbindung, worin die therapeutisch wirksame Verbindung eingebracht wird in das oder dispergiert wird in dem ionischen Polymer in stabiler amorpher Form, um einen Verbindung/Polymer-Komplex zu ergeben. Ein anderer Aspekt dieser Erfindung ist der wasserunlösliche Verbindung/Polymer-Komplex. Der Komplex der Erfindung wird gebildet durch die Mikropräzipitation der therapeutisch wirksamen Verbindung in dem ionischen Träger.
  • Der Verbindung/Polymer-Komplex der Erfindung kann in der Form eines Feststoffs (z. B. einer Paste, Granalien, eines Pulvers) sein, welcher eingefüllt werden kann in Kapseln oder komprimiert werden kann zu Tabletten. Die pulverförmige Form des Komplexes kann ebenfalls. pulverisiert oder ausreichend mikronisiert werden, um stabile flüssige Suspensionen oder halbfeste Dispersionen zu bilden. Der Komplex der Erfindung kann sterilisiert werden, wie etwa durch Gamma-Bestrahlung oder Elektronenbestrahlung, vor Verabreichung in vivo für parenterale Anwendungen.
  • Diese Erfindung betrifft einen stabilen wasserunlöslichen Komplex, bestehend aus einem wasserunlöslichen ionischen Polymerträger mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C und einer therapeutisch wirksamen Verbindung in stabiler amorpher Form. Diese Erfindung betrifft auch Verfahren zum Herstellen derartiger Komplexe und pharmazeutischer Formulierungen, die solche Komplexe umfassen. Der Vorteil der Komplexe der Erfindung umfasst die Fähigkeit zum wesentlichen Erhöhen der Bioverfügbarkeit relativ unlöslicher therapeutisch wirksamer Verbindungen und die Fähigkeit zum Zuführen derartiger Verbindungen über ausgedehnte Zeitdauern (d. h. eine verzögerte Freisetzung derartiger Verbindungen in den Blutstrom).
  • Wie hier verwendet, werden die folgenden Ausdrücke die folgenden Bedeutungen haben.
  • "Verbindung/Polymer-Komplex" oder "wasserunlöslicher Komplex" betreffen ein physikalisch stabiles Produkt, das bei der gleichzeitigen Präzipitation ("Mikropräzipitation") einer therapeutisch wirksamen Verbindung und eines wasserunlöslichen ionischen Polymers gemäß den hier beschriebenen Verfahren gebildet wird.
  • "Dispergiert" bedeutet statistische Verteilung einer therapeutisch wirksamen Verbindung über ein ionisches Polymer.
  • "Auflösungsrate" bedeutet die Geschwindigkeit, mit welcher sich eine besondere Verbindung in physiologischen Fluiden in vitro löst.
  • "Ionisches Polymer" oder "ionisches Trägerpolymer" umfasst sowohl anionische (negativ geladene) als auch kationische (positiv geladene) Polymere.
  • "Mikropräzipitation" bedeutet jedes Verfahren, durch welches eine Verbindung, im Besonderen eine therapeutisch wirksame Verbindung, molekular in einem Polymer dispergiert wird.
  • "Molekular dispergiert" bedeutet, dass die therapeutisch wirksame(n) Verbindungen) in dem Polymer in einem letztendlichen Zustand der Unterteilung vorliegt (vorliegen). Siehe z. B. M. G. Vachon et al., J. Microencapsulation 14(3): 281–301 (1977); und M. A. Vandelli et al., J. Microencapsulation 10(1): 55–65 (1993).
  • "Patient" betrifft einen Menschen.
  • "Schlecht lösliche therapeutisch wirksame Verbindung" betrifft therapeutisch wirksame Verbindungen (z. B. Arzneimittel) mit einer Löslichkeit im Wässrigen von weniger als 1 mg/ml, häufig weniger als 100 μg/ml.
  • Ein Aspekt der Erfindung betrifft pharmazeutische Zusammensetzungen, umfassend einen stabilen wasserunlöslichen Komplex, bestehend aus einem Trägermakromolekül, das ein ionisches Polymer ist, und einer therapeutisch wirksamen Verbindung, die in ihrer amorphen Form stabil ist. Die Verwendung eines solchen Verbindung/Polymer-Komplexes ist besonders bevorzugt wenn die Verbindung ansonsten schlecht löslich ist, wodurch es schwierig wird, wünschenswerte orale Bioverfügbarkeit der Verbindung zu erhalten.
  • Gemäß der vorliegenden Erfindung wird, wenn eine schlecht lösliche kristalline therapeutisch wirksame Verbindung und ein wasserunlösliches ionisches Polymer mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C mikropräzipitiert werden, die Verbindung molekular in amorpher Form in dem ionischen Polymer dispergiert, wobei ein stabiler, wasserunlöslicher Komplex produziert wird. Mikropräzipitation kann durchgeführt werden z. B. durch eines der folgenden Verfahren, wobei jedes von diesen unten weiter beschrieben ist:
    • a) Sprühtrocknungs- oder Lyophilisierungsverfahren
    • b) Lösungsmittelgesteuerte Präzipitation
    • c) pH-Wert-gesteuerte Präzipitation
    • d) Heißschmelzextrusionsverfahren
    • e) Superkritisches Fluid-Technologie
  • Wenn die therapeutisch wirksame Verbindung so in dem ionischen Polymer dispergiert ist, behält sie ihre amorphe Struktur bei, selbst während Langzeitaufbewahrung, d. h. sie ist "stabil". Zusätzlich schützt das ionische Polymer die Verbindung vor nachteiligen externen Umgebungsfaktoren, wie etwa Feuchtigkeit und Wärme, wobei erhöhte Solubilität und folglich erhöhte Bioverfügbarkeit beibehalten werden.
  • Eine therapeutisch wirksame Verbindung, die in einer komplexen amorphen Form gemäß der Erfindung enthalten ist, weist wesentlich erhöhte Bioverfügbarkeit im Vergleich zu der Verbindung in ihrer kristallinen Form auf und ist sehr stabil über eine ausgedehnte Zeitdauer. Zusätzlich, aufgrund einer kontrollierten Auflösungsrate des Komplexes in den Gastrointestinalfluiden, bewirkt der Komplex Charakteristika verzögerter Freisetzung für die therapeutisch wirksame Verbindung, die in dem Verbindung/Polymer-Komplex dispergiert ist.
  • Diese Erfindung ist geeignet mit jeder therapeutisch wirksamen Verbindung, ist jedoch besonders geeignet für therapeutisch wirksame Verbindungen mit Löslichkeiten im Wässrigen von weniger als 1 mg/ml und insbesondere für Verbindungen mit weniger als 100 μg/ml. Derartige schlecht lösliche therapeutisch wirksame Verbindungen umfassen z. B. Retinoide und Proteaseinhibitoren. Im Besonderen ist diese Erfindung besonders geeignet für die folgenden therapeutischen Verbindungen:
  • Figure 00080001
  • Figure 00090001
  • In ihrer kristallinen Form hat Verbindung I extrem schlechte Löslichkeit im Wässrigen (< 10 μg/ml) und Bioverfügbarkeit.
  • Diese Erfindung ist ebenfalls geeignet zur Verwendung mit der Verbindung Tolcapone (vertrieben von Roche Laboratories Inc. unter dem Markennamen Tasmar®), die Verbindung 1,3-cis-Retinoesäure (kommerziell erhältlich von Roche Laboratories Inc. unter dem Markennamen ACCUTANE®), die Verbindung Saquinavir (vertrieben von Roche Laboratories Inc. als FORTOVASETM) und mit den folgenden Verbindungen:
  • Figure 00100001
  • Die ionischen Polymere, die geeignet sind zur Verwendung gemäß dieser Erfindung sind entweder kationische oder anionische Polymere mit einem Molekulargewicht von über 80.000 D, einer Glasübergangstemperatur gleich oder größer 50°C, sind relativ unlöslich in Wasser und haben vorzugsweise eine pH-Wert-abhängige Löslichkeit. Beispiele derartiger Polymere umfassen Polyacrylate (z. B. Eudragit®, Rohm America), Chitosan, Carbopol® (BF Goodrich), Polyvinylacetatphthalat, Celluloseacetatphthalat, Polycyanoacrylate, Hydroxypropylmethylcellulosephthalat, Celluloseacetatterphthalat, Hydroxypropylmethylcelluloseacetylsuccinat, Carboxymethylcellulose und niedersubstituierte Hydroxypropylcellulose. Die wasserunlöslichen Komplexe gemäß der vorliegenden Erfindung können ebenfalls aus Gemischen von zwei oder mehreren der oben beschriebenen ionischen Polymere bestehen (siehe z. B. die Beispiele 9 und 10).
  • Besonders bevorzugte anionische Polymere umfassen Eudragit® L100-55 (Methacrylsäure und Ethylacrylat-Copolymer) und Eudragit® L100 oder Eudragit® S100 (Methacrylsäure und Methylmethacrylatcopolymer) von welchen alle von Rohm America erhältlich sind. Eudragit® L100-55 ist löslich bei einem pH-Wert über 5,5 und praktisch unlöslich bei einem pH-Wert unter 5,5. Das Molekulargewicht von Eudragit® L100-55 ist ungefähr 250.000 D und die Glasübergangstemperatur ist 110°C. Eudragit® L100 ist löslich bei einem pH-Wert über 6 und praktisch unlöslich bei einem pH-Wert unter 6. Das Molekulargewicht von Eudragit® L100 ist ungefähr 135.000 D und die Glasübergangstemperatur ist etwa 150°C. Eudragit® S100 ist löslich bei einem pH-Wert über 7 und praktisch unlöslich bei einem pH-Wert unter 7. Das Molekulargewicht von Eudragit® S100 ist ungefähr 135.000 D und die Glasübergangstemperatur ist etwa 160°C.
  • Besonders bevorzugte kationische Polymere umfassen Eudragit® E (Rohm America), welches ein Copolymer von Dimethylaminoethylmethacrylat und neutralen Methacrylsäureestern ist. Dieses Polymer ist löslich bis zu einem pH-Wert von 4 und ist praktisch unlöslich bei einem pH-Wert über 4. Das Molekulargewicht von Eudragit® E ist ungefähr 150.000 D und die Glasübergangstemperatur ist etwa 50°C.
  • Pharmazeutische Zusammensetzungen der vorliegenden Erfindung, die die wasserunlöslichen Komplexe der Erfindung umfassen, können auf eine in der Technik bekannte Art hergestellt werden, z. B. mittels herkömmlicher Misch-, Mahl-, Einkapselungs-, Auflösungs-, Kompressions-, Granulierungs- oder Lyophilisierungsverfahren. Zusätzlich zu den wasserunlöslichen Komplexen können diese pharmazeutischen Zusammensetzungen auch therapeutisch inerte anorganische oder organische Träger ("pharmazeutisch verträgliche Träger"), die von dem ionischen Polymer verschieden sind, und/oder Hilfsstoffe enthalten. Pharmazeutisch verträgliche Träger für Tabletten, beschichtete Tabletten, Dragees und harte Gelatinekapseln umfassen Lactose, Maisstärke oder Derivate davon, Talk, Stearinsäure oder ihre Salze. Geeignete Träger für weiche Gelatinekapseln umfassen Pflanzenöle, Wachse, Fette und halbfeste oder flüssige Polyole.
  • Die pharmazeutischen Zusammensetzungen der Erfindung können auch Konservierungsmittel, Solubilisierungsmittel, Stabilisierungsmittel, Benetzungsmittel, Emulgiermittel, süßende Mittel, Färbemittel, Aromamittel, Salze zum Variieren des osmotischen Drucks, Puffer, Beschichtungsmittel oder Antioxidationsmittel enthalten. Diese Zusammensetzungen können auch zusätzliche therapeutisch wirksame Verbindungen oder mehr als einen therapeutisch wirksamen Verbindung/Polymer-Komplex enthalten.
  • Verfahren zur Herstellung
  • In einer Ausführungsform der vorliegenden Erfindung werden wasserunlösliche Komplexe der Erfindung hergestellt unter Verwendung eines der folgenden Verfahren:
    • a) Sprühtrocknungs- oder Lyophilisierungsverfahren: Die therapeutisch wirksame Verbindung und das ionische Polymer werden in einem herkömmlichen Lösungsmittel gelöst, das einen niederen Siedepunkt aufweist, z. B. Ethanol, Methanol, Aceton usw. Mittels Sprühtrocknen oder Lyophilisieren wird das Lösungsmittel verdampft, wobei die therapeutisch wirksame Verbindung mikropräzipitiert in amorpher Form in der ionischen Polymermatrix zurückbleibt. Diese Technik ist nicht bevorzugt für diejenigen therapeutisch wirksamen Verbindungen, die keine geeignete Löslichkeit (> 5%) in den bevorzugten Lösungsmitteln aufweisen.
    • b) Lösungsmittel-gesteuerte Präzipitation: Die therapeutisch wirksame Verbindung und das ionische Polymer werden in einem herkömmlichen Lösungsmittel gelöst, z. B. Dimethylacetamid, Dimethylformamid usw. Die therapeutisch wirksame Verbindung/Polymer-Lösung wird zu kaltem (2°–5°C) Wasser gegeben, das auf einen geeigneten pH-Wert eingestellt ist. Der gewünschte pH-Wert ist abhängig von dem Polymer, das verwendet wird und ist leicht durch den Fachmann bestimmbar. Dies bewirkt, dass die therapeutisch wirksame Verbindung in der Polymermatrix mikropräzipitiert. Das Mikropräzipitat wird mehrfach mit wässrigem Medium gewaschen bis das restliche Lösungsmittel unter eine vertretbare Grenze für dieses Lösungsmittel fällt. Eine "vertretbare Grenze" für jedes Lösungsmittel wird unter Befolgung der International Conference on Harmonization (ICH)-Richtlinien bestimmt.
    • c) pH-Wert-gesteuerte Präzipitation: In diesem Verfahren wird Mikropräzipitation der therapeutisch wirksamen Verbindung in einem ionischen Polymer durch eine drastische Änderung des pH-Werts der Lösung gesteuert. Die therapeutisch wirksame Verbindung und das ionische Polymer werden bei einem hohen pH-Wert (z. B. pH-Wert ~9) gelöst und präzipitiert durch Erniedrigen des pH-Werts der Lösung (z. B. auf ~1) oder umgekehrt. Dieses Verfahren ist besonders geeignet für therapeutisch wirksame Verbindungen, die pH-Wert-abhängige Löslichkeit aufweisen.
    • d) Heißschmelzextrusionsverfahren: Mikropräzipitation einer therapeutisch wirksamen Verbindung in einem ionischen Polymer mit thermoplastischen Charakteristika kann erreicht werden durch ein Heißschmelzextrusionsverfahren. Die kristalline therapeutisch wirksame Verbindung und das Polymer werden in einem geeigneten Mischer gemischt und kontinuierlich einem Temperatur-gesteuerten Extruder zugeführt, wodurch bewirkt wird, dass die therapeutisch wirksame Verbindung wird in dem geschmolzenen ionischen Polymer molekular dispergiert. Die resultierenden Extrudate werden auf Raumtemperatur gekühlt und zu einem feinen Pulver gemahlen.
    • e) Superkritisches Fluid-Technologie: Die therapeutisch wirksame Verbindung und ein ionisches Polymer werden in einem superkritischen Fluid, wie etwa flüssigem Stickstoff oder flüssigem Kohlendioxid, gelöst. Das superkritische Fluid wird dann durch Verdampfen entfernt, wobei die therapeutisch wirksame Verbindung in der Polymermatrix mikropräzipitiert wird. In einem anderen Verfahren wird die therapeutische Verbindung und ein ionisches Polymer in einem geeigneten Lösungsmittel gelöst. Ein mikropräzipitiertes Pulver kann dann gebildet werden durch Sprühen der Lösung in ein superkritisches Fluid, welches als ein Antisolvens wirkt.
  • In einer anderen Ausführungsform der Erfindung können pharmazeutische Formulierungen entsprechend einem der vorhergehenden Schritte hergestellt werden durch Hinzufügen eines abschließenden Schritts während welchem die Verbindung/Polymer-Komplexe der Verbindung formuliert werden durch in der Technik allgemein bekannte Verfahren.
  • In einer bevorzugten Ausführungsform der Erfindung werden die therapeutisch wirksame Verbindung und das ionische Polymer in einem organischen Lösungsmittel gelöst. Hiernach werden die Verbindung und das ionische Polymer relativ gleichzeitig copräzipitiert, vorzugsweise in wässriger Lösung, und bevorzugt bei einem pH-Wert, worin unabhängig weder die Verbindung noch das Polymer löslich sind.
  • Das organische Lösungsmittel, das verwendet wird, um die therapeutisch wirksame Verbindung und das ionische Polymer zu lösen, sollte gute Löslichkeit bereitstellen, sowohl für die schlecht löslichen Verbindungen als auch die Polymere, welche verwendet werden. Diese Lösungsmittel umfassen Ethylalkohol, Methylalkohol, Aceton, Dimethylsulfoxid, Dimethylacetamid, Dimethylformamid, N-Methylpyrrolidon, Transcutol® (Diethylenglykolmonoethylether, Gattefosse, Inc.), Glycofural, Propylencarbonat, Tetrahydrofuran, Polyethylenglykole und Propylenglykole.
  • Der pH-Wert, der ausgewählt wird, um die therapeutisch wirksame Verbindung und das ionische Polymer zu copräzipitieren hängt ab von der Löslichkeit von jedem der spezifischen Polymere und Verbindungen, die zu präzipitieren sind. Der Fachmann in der Technik kann leicht den bevorzugten pH-Wert zur Copräzipitation für jede Kombination von Polymer und therapeutisch wirksamer Verbindung bestimmen. In einer bevorzugten Ausführungsform, worin ein ionisches Polymer, ausgewählt aus Eudragit® L100-55, Eudragit® L100 und Eudragit® S100, verwendet wird, wird die Lösung bei einem pH-Wert von weniger als 4 präzipitiert. In einer anderen bevorzugten Ausführungsform, worin das kationische Polymer Eudragit® E100 verwendet wird, wird die Lösung vorzugsweise bei einem pH-Wert über 4 präzipitiert.
  • Die Mengen therapeutisch wirksamer Verbindungen) und Polymer, die erforderlich sind, um den stabilen, wasserunlöslichen Komplex der Erfindung zu erhalten, können in Abhängigkeit von der speziellen Verbindung und dem (den) ionischen Polymer(en), die verwendet werden, als auch dem (den) speziellen Lösungsmittel(en) und deren Präzipitationsparametern variieren. Beispielsweise kann die Verbindung in dem Komplex mit von 0,1% bis etwa 80% bezüglich des Gewichts vorliegen. Analog liegt das Polymer typischerweise in dem Komplex in nicht weniger als 20% bezüglich des Gewichts vor. Vorzugsweise liegt die Verbindung in dem Komplex mit von 30% bis 70% bezüglich des Gewichts vor, bevorzugter von 40% bis 60% bezüglich des Gewichts. Am bevorzugtesten liegt die Verbindung in dem Komplex mit 50% bezüglich des Gewichts vor. Für einen Komplex, der Verbindung I enthält, liegt die Verbindung in dem Komplex mit etwa 30–70% bezüglich des Gewichts vor, am bevorzugtesten mit 50% bezüglich des Gewichts.
  • Wenn der Verbindung/Polymer-Komplex aus der Lösung präzipitiert, kann der resultierende Komplex aus der Lösung gewonnen werden durch Verfahren, die dem Fachmann in der Technik allgemein bekannt sind, z. B. durch Filtration, Zentrifugation, Waschen usw. Die gewonnene Masse kann dann getrocknet werden (an Luft, in einem Ofen, oder in einem Vakuum) und der resultierende Feststoff kann gemahlen, pulverisiert oder in mikronisiert werden in ein feines Pulver, durch Mittel, die in der Technik bekannt sind. Die Pulverform des Komplexes kann dann in einem Träger dispergiert werden, um eine pharmazeutische Präparation herzustellen.
  • Die pharmazeutischen Präparationen gemäß der Erfindung können einem Patienten über eine beliebige Route verabreicht werden, die geeignet ist zum Erreichen des (der) gewünschten therapeutischen Ergebnisses (Ergebnisse). Bevorzugte Verabreichungsrouten umfassen parenterale und orale Verabreichung.
  • Die pharmazeutischen Formulierungen gemäß der Erfindung umfassen eine therapeutisch wirksame Menge einer therapeutisch wirksamen Verbindung. Eine therapeutisch wirksame Menge bedeutet eine Menge in solchen Dosen und für solche Zeitdauern, die erforderlich sind, um das gewünschte therapeutische Ergebnis zu erreichen. Darüber hinaus muss eine solche Menge eine derartige sein, worin die gesamten therapeutisch vorteilhaften Wirkungen die toxischen oder ungewünschten Nebenwirkungen überwiegen. Eine therapeutisch wirksame Menge einer Verbindung variiert häufig entsprechend dem Krankheitszustand, Alter und Gewicht des zu behandelnden Patienten. Daher werden Therapiedosen typischerweise auf die individuellen Anforderungen in jedem speziellen Fall eingestellt, und sind innerhalb des Fachwissens in der Technik.
  • Beispielsweise ist für obige Verbindung I die geeignete tägliche Dosis zur Verabreichung an einen erwachsenen Menschen, der etwa 70 kg wiegt, von etwa 10 mg bis 10.000 mg, vorzugsweise von 200 mg bis 1000 mg, wenngleich die obere Grenze überschritten werden kann, wenn dies indiziert ist.
  • Die tägliche Dosis der therapeutisch wirksamen Verbindung kann als eine einzelne Dosis, aufgeteilte Dosen verabreicht werden oder kann zur parenteralen Verabreichung als subkutane Injektion gegeben werden.
  • Die Beispiele, welche folgen, beziehen sich auf die anhängigen Zeichnungen, worin
  • 1 ein Pulver-Röntgenstrahl-Diffraktionsmuster des Verbindung/Polymer-Komplexes von Beispiel 4 ist, verglichen mit dem Massenarzneimittel alleine und verglichen mit physikalischem Gemisch aus Arzneimittel und Polymer.
  • 2 ein Pulver-Röntgen-Diffraktionsmuster von Proben des Verbindung/Polymer-Komplexes von Beispiel 4 ist, ausgesetzt beschleunigten Belastungsbedingungen, verglichen mit unbelastetem (Ausgangs) Verbindung/Polymer-Komplex.
  • 3 ein Plasmakonzentrationsprofil in Hunden des Verbindung/Polymer-Komplexes von Beispiel 4 ist.
  • 4 ein Pulver-Röntgenstrahl-Diffraktionsmuster für Verbindung II ist, "wie vorliegend", und als Verbindung/Polymer-Komplex (Beispiel 11) nach Mikropräzipitation gemäß der Erfindung.
  • 5 ein Pulver-Röntgen-Diffraktionsmuster für Verbindung III "wie vorliegend" und als Verbindung/Polymer-Komplex (Beispiel 13) nach Mikropräzipitation gemäß der Erfindung ist.
  • 6 ein Pulver-Röntgenstrahl-Diffraktionsmuster für Verbindung IV "wie vorliegend" und als Verbindung/Polymer-Komplex (Beispiel 15) nach Mikropräzipitation gemäß der Erfindung ist.
  • 7 ein Pulver-Röntgenstrahl-Diffraktionsmuster für Verbindung V "wie vorliegend" und als Verbindung/Polymer-Komplex (Beispiel 16) nach Mikropräzipitation gemäß der Erfindung ist.
  • BEISPIELE
  • Die folgenden Beispiele zeigen Verfahren zum Herstellen der wasserunlöslichen Verbindung/Polymer(e)-Komplexe der vorliegenden Erfindung, als auch pharmazeutischer Präparate, die die Komplexe enthalten.
  • In den hier angegebenen Beispielen waren die getesteten therapeutisch wirksamen Verbindungen die Verbindungen I, II, III, IV und V, wobei die Strukturen für diese oben angegeben sind. Diese Verbindungen sind praktisch unlöslich in Gastrointestinalfluiden. Vor der vorliegenden Erfindung war die kristalline, unlösliche Form von Verbindung I die einzige stabile Form dieser Verbindung, die erhalten werden konnte.
  • Allgemeine Verfahren
  • Verfahren, das anwendbar ist auf Beispiel 1 (mikronisierte Verbindung)
  • Verbindung I wurde mikronisiert unter Verwendung einer Fluidenergiemühle, um eine mittlere Teilchengröße von 10 Mikrometer zu ergeben. Dieses Verfahren änderte die Kristallform der Verbindung nicht.
  • Verfahren, das anwendbar ist auf Beispiel 2 (Verbindung in Nanogröße)
  • Eine 10%-ige Suspension von Verbindung I wurde nass gemahlen in wässrigem Medium, das 5% Klucel EF® (Hydroxypropylcellulose, Aqualon Corp.) als ein Schutzkolloid enthielt, um Aggregation zu verhindern. Das Mahlen wurde im Chargenmodus in einer Dynomill für 24 Stunden fortgesetzt, unter Verwendung von Glaskügelchen mit 0,25 mm als Mahlmedium. Die mittlere Teilchengröße der resultierenden Suspension war 700 nm und der nach dem Trocknen erhaltene Rückstand der Suspension zeigte, dass die Verbindung in kristalliner Form vorlag.
  • Verfahren, das anwendbar ist auf Beispiel 3 (Pluronic F 68-Dispersion)
  • Eine 10%-ige Dispersion von Verbindung I in 90% Pluronic F68 (Polymer) wurde unter Verwendung der Heißschmelztechnik hergestellt. Die Verbindung wurde in geschmolzenes Pluronic F68 bei 60°C gemischt und dann wurde die Dispersion auf 180°C erhitzt, um Verbindung I zu lösen. Die Lösung wurde auf Raumtemperatur gekühlt, um eine feste Masse zu ergeben. Das Pulver-Röntgenstrahl-Diffraktionsmuster ("XRD") der geschmolzenen Dispersion war ähnlich dem für Pluronic F68. Dieses XRD zeigt, dass Verbindung I daher in der festen Dispersion in amorpher Form vorlag. Die durch diese Technik erhaltene feste Dispersion wurde weiter dispergiert in wässrigem Medium vor der Verwendung bei der Dosierung von Lebewesen.
  • Verfahren, das anwendbar ist auf die Beispiele 4–12 und 15–16 (molekulare Dispersion gemäß der Erfindung)
  • Gemäß dem Verfahren der Erfindung wurden die Verbindungen I, II, IV oder V und das spezifische Polymer, das in jedem Fall angegeben ist (z. B. Eudragit® L100-55, Eudragit® L100 oder Eudragit® S100), in Dimethylacetamid gelöst. Die resultierende Lösung wurde dann langsam zu kalter wässriger Lösung (2–10°C) bei einem pH-Wert von 2 gegeben, wodurch bewirkt wurde, dass die Verbindung und das Polymer copräzipitierten als eine unlösliche Matrix, worin die Verbindung molekular in dem Polymer dispergiert war. In jedem Fall wurde das Präzipitat mehrfach mit kalter (2–10°C) wässriger Lösung bei einem pH-Wert von 2 gewaschen bis das restliche Dimethylacetamid unter 0,2% war. Das Präzipitat wurde in einem zwangsbelüfteten Ofen bei 40°C für 24 Stunden auf einen Feuchtigkeitsgehalt unter 2% getrocknet und in die gewünschte Teilchengrößen gemahlen unter Verwendung einer Fitz Mill® (Fitzpatrick) mit niederer Geschwindigkeit, unter Verwendung von Vorwärtsmessern und einem Sieb mit Größe 0. Die gewünschte mittlere Teilchengröße war 90% Teilchen in dem Größenbereich 50–400 μm.
  • Verfahren, das anwendbar ist auf die Beispiele 13–14 (Verbindung III)
  • Gemäß den oben beschriebenen Verfahren wurden die Verbindung III und ein für jeden Fall angegebenes spezifisches Polymer (z. B. Eudragit® L100-55, Eudragit® L100, Hydroxypropylmethylcellulosephthalat (HP-50) oder Eudragit® S100) in Ethanol gelöst. Die resultierende Lösung wurde entweder in einem Vakuumofen bei 40°C für 24 Stunden getrocknet bis der Gewichtsverlust durch Trocknen weniger als 2% war oder alternativ wurde die Lösung sprühgetrocknet. Als ein Ergebnis dieses Verfahrens copräzipitierten die Verbindung und das Polymer als ein unlöslicher Komplex, worin die Verbindung molekular in dem Polymer dispergiert war. Der resultierende getrocknete Film wurde gemahlen mit einem Pistill/Mörser und durch ein Sieb mit Maschenzahl 60 (60 Mesh) gesiebt.
  • Daten
  • Tabelle 1, unten, fasst die Ergebnisse der Beispiele 1–16 zusammen. Tabelle 1 spezifiziert die einzelnen therapeutisch wirksamen Verbindungen und, wo anwendbar, den Verbindung/Polymer-Komplex, der behandelt wurde, das Verfahren zum Herstellen des Verbindung/Polymer-Komplexes und die physikalischen Charakteristika des resultierenden Produkts jedes Beispiels.
  • Tabelle 1: Zusammenfassung der Beispiele 1–14
    Figure 00210001
  • Wie in 1 und in Tabelle 1 gezeigt, nimmt das Pulver-Röntgenstrahl-Diffraktionsmuster (XRD) des Komplexes, der aus Beispiel 4 (Tabelle 1) resultiert, d. h. wenn Verbindung I in einem ionischen Polymer gemäß dem Verfahren der vorliegenden Erfindung enthalten ist, eine amorphe Form an.
  • Tabelle I und die 47 zeigen auch, dass die Verfahren der vorliegenden Erfindung geeignet sind, um die Verbindungen II, III, IV und V in amorphe Form überzuführen.
  • Aufnahme von Verbindung I in dem ionischen Polymer schützt die Verbindung vor externen Umgebungseinwirkungen, wie etwa Feuchtigkeit und Wärme bzw. Hitze. Dieses Ergebnis wird in 2 gezeigt, worin durch Pulver-Röntgenstrahl-Diffraktion gezeigt wird, dass Verbindung I bei Einbettung in das Polymer ihre amorphen Eigenschaften beibehielt, selbst unter beschleunigten Aufbewahrungsbedingungen. Diese Fähigkeit des Komplexes zum Halten von Verbindung I in einer amorphen Form, selbst nach Aufbewahrung bei beschleunigter Belastungsbedingung ist zurückzuführen auf das hohe Molekulargewicht (> 80.000), hohe Glasübergangstemperatur (> 50°C) und Unlöslichkeit in Wasser des (der) Polymer(e).
  • Darüber hinaus, wie in Tabelle 2 unten gezeigt, war die Bioverfügbarkeit in Hunden von Verbindung I, wenn sie molekular in einem ionischen Polymer gemäß der Erfindung dispergiert ist, unerwartet höher als wenn die Verbindung den Tieren in herkömmlichen Formen (z. B. mikronisiert und nass gemahlen) verabreicht wurde. Ebenfalls gezeigt sind in Tabelle 2 die Bioverfügbarkeitsergebnisse, die aus fester Dispersion von Verbindung I, hergestellt durch das Heißschmelzverfahren mit Pluronic F68® (nichtionisches wasserlösliches Polymer, das Polyoxyethylen und Polyoxypropylenketten enthält, BASF) erhalten werden. Während die Bioverfügbarkeit der Verbindung in dieser festen Dispersion besser als wenn die Verbindung mikronisiert wurde oder in Nassmahlsuspension war, war die physikalische Stabilität der festen Dispersion nicht befriedigend für ein pharmazeutisches Produkt, wie ersichtlich ist aus der Reversion der Verbindung in ihre kristalline Form innerhalb eines Monats Aufbewahrung bei Umgebungsbedingungen. Die oben beschriebenen Ergebnisse zeigen die Nichteignung der feste Dispersion-Technik zur Herstellung eines pharmazeutischen Produkts in nichtionischen wasserlöslichen Polymeren.
  • Tabelle 2: Bioverfügbarkeit von Verbindung I in Hunden nach Verabreichung einer einzelnen oralen Dosis (10 mg/kg)* für vier Tiere (2 weibliche und 2 männliche)
    Figure 00230001
  • 3 zeigt das Plasmakonzentrations-Zeitprofil verschiedener Chargen des Verbindung/Polymer-Komplexes, hergestellt gemäß Beispiel 4. Die Ergebnisse dieser Tests (zusammengefasst in 3) zeigen eine Reproduzierbarkeit und Konsistenz von Charge zu Charge. Die Reproduzierbarkeit und Konsistenz von Charge zu Charge ist ein wichtiger Aspekt einer Formulierung, die für die Verabreichung an menschliche Patienten vorgesehen ist.
  • Die 47 zeigen, dass die Verbindungen II, III, IV und V ebenfalls in die amorphe Form unter Verwendung dieser Erfindung übergeführt werden können.
  • Zusammengefasst, wie durch die Daten in Tabelle 1 und 2 oben und in den 1, 2 und 47 gezeigt wird, zeigen die Pulver-Röntgenstrahl-Diffraktionsmuster der Verbindung/Polymer(e)-Komplexe, die in den Beispielen 4–16 erhalten werden, dass molekulares Dispergieren einer schlecht löslichen Verbindung in einem ionischen Polymer (in ionischen Polymeren) gemäß der Erfindung die Verbindung in eine amorphe Form überführt und ausgezeichnete Stabilität der amorphen Verbindung bei Langzeitaufbewahrung beibehält.

Claims (45)

  1. Pharmazeutische Zusammensetzung, umfassend einen wasserunlöslichen Komplex einer therapeutisch wirksamen, stabilen amorphen Verbindung und eines wasserunlösliches ionisches Polymers mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C, und einen Träger.
  2. Pharmazeutische Zusammensetzung nach Anspruch 1, worin die therapeutisch wirksame Verbindung eine Verbindung ist, die in ihrer kristallinen Form geringlöslich ist.
  3. Pharmazeutische Zusammensetzung nach Anspruch 2, worin die geringlösliche therapeutisch wirksame Verbindung in ihrer kristallinen Form eine Löslichkeit von weniger als 1 mg/ml in wässriger Lösung aufweist.
  4. Pharmazeutische Zusammensetzung nach Anspruch 1, worin das ionische Polymer ein kationisches Polymer ist.
  5. Pharmazeutische Zusammensetzung nach Anspruch 4, worin das kationische Polymer ein Copolymer aus Dimethylaminoethylmethacrylat und neutralem Mathacrylester ist.
  6. Pharmazeutische Zusammensetzung nach Anspruch 5, worin das kationische Polymer Eudragit E® ist.
  7. Pharmazeutische Zusammensetzung nach Anspruch 1, worin das ionische Polymer ein anionisches Polymer ist.
  8. Pharmazeutische Zusammensetzung nach Anspruch 7, worin das anionische Polymer ein Copolymer aus Methacrylsäure und Ethylacrylat oder Methacrylsäure und Methylmethacrylat ist.
  9. Pharmazeutische Zusammensetzung nach Anspruch 8, worin das anionische Polymer ausgewählt ist aus der Gruppe, bestehend aus Eudragit L100-55®, Eudragit L-100® und Eudragit S-100®.
  10. Pharmazeutische Zusammensetzung nach Anspruch 7, worin das anionische Polymer ausgewählt ist aus der Gruppe, bestehend aus Polyvinylacetatphthalat, Celluloseacetatphthalat, Hydroxypropylmethylcellulosephthalat, Celluloseacetatterephthalat, Polycyanoacrylat und Hydroxypropylmethylcelluloseacetylsuccinat, Carboxymethylcellulose und niedersubstituierter Hydroxypropylcellulose.
  11. Pharmazeutische Zusammensetzung nach Anspruch 1, worin die Löslichkeit des ionischen Polymers pH-Wert-abhängig ist.
  12. Pharmazeutische Zusammensetzung nach Anspruch 11, worin das ionische Polymer bei einem pH-Wert über 4 unlöslich ist.
  13. Pharmazeutische Zusammensetzung nach Anspruch 1, worin das ionische Polymer und die therapeutisch wirksame Verbindung beide in ihrer kristallinen Form relativ unlöslich sind bei einem pH-Wert über 4.
  14. Pharmazeutische Zusammensetzung nach Anspruch 11, worin das ionische Polymer unlöslich ist bei einem pH-Wert unter 4.
  15. Pharmazeutische Zusammensetzung nach Anspruch 1, worin das ionische Polymer und die therapeutisch wirksame Verbindung in ihrer kristallinen Form relativ unlöslich sind bei einem pH-Wert unter 4.
  16. Pharmazeutische Zusammensetzung nach Anspruch 1, worin die therapeutisch wirksame Verbindung ausgewählt ist aus der Gruppe, bestehend aus den Verbindungen der Formel:
    Figure 00270001
    Figure 00280001
    Figure 00290001
  17. Pharmazeutische Zusammensetzung, umfassend einen wasserunlöslichen Komplex einer Verbindung der Formel I:
    Figure 00290002
    in stabiler amorpher Form und ein wasserunlösliches ionisches Polymer mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C und einen Träger.
  18. Pharmazeutische Zusammensetzung nach Anspruch 1, worin das ionische Polymer in dem wasserunlöslichen Komplex in nicht weniger als 20% bezüglich des Gewichts vorliegt.
  19. Pharmazeutische Zusammensetzung nach Anspruch 18, worin die therapeutisch wirksame Verbindung in dem wasserunlöslichen Komplex in 0,1% bis 80% bezüglich des Gewichts des Komplexes vorliegt.
  20. Pharmazeutische Zusammensetzung nach Anspruch 19, worin die therapeutisch wirksame Verbindung in dem wasserunlöslichen Komplex in 30% bis 70% bezüglich des Gewichts des Komplexes vorliegt.
  21. Pharmazeutische Zusammensetzung nach Anspruch 20, worin das ionische Polymer dem wasserunlöslichen Komplex in 50% und die therapeutisch wirksame Verbindung in 50% bezüglich des Gewichts des Komplexes vorliegt.
  22. Verfahren zum Herstellen einer pharmazeutischen Formulierung, umfassend einen wasserunlöslichen Komplex einer stabilen, amorphen therapeutisch wirksamen Verbindung und eines wasserunlöslichen ionischen Polymers mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C, umfassend: (a) Lösen der therapeutisch wirksamen Verbindung und des ionischen Polymers in einem geeigneten Lösungsmittel; (b) Inkontaktbringen der Lösung von Schritt (a) mit einer wässrigen Lösung bei einem pH-Wert, bei welchem das ionische Polymer geringlöslich ist, unter Mikropräzipitation der therapeutisch wirksamen Verbindung und des ionischen Polymers als ein Verbindung/Polymer-Komplex; (c) Herstellen einer pharmazeutischen Formulierung, die den Verbindung/Polymer-Komplex von obigem Schritt (b) umfasst.
  23. Verfahren nach Anspruch 22, worin in Schritt (a) die therapeutisch wirksame Verbindung und das ionische Polymer in einem Lösungsmittel gelöst werden, ausgewählt aus der Gruppe, bestehend aus Ethylalkohol, Methylalkohol, Dimethylsulfoxid, Dimethylacetamid, Dimethylformamid, N-Methylpyrrolidon, Transcutol® (Diethylenglykolmonoethylether, Gattefosse), Glycofural, Propylencarbonat, Tetrahydrofuran, Polyethylen- und Propylenglykol.
  24. Verfahren nach Anspruch 22, worin in Schritt (b) Micropräzipitation durchgeführt wird durch Entfernen des Lösungsmittels durch Sprühtrocknen oder Lyophilisieren.
  25. Verfahren nach Anspruch 22, worin in Schritt (a) die unlösliche therapeutisch wirksame Verbindung und das ionische Verbindungspolymer durch Einstellen des pH-Wertes gelöst werden.
  26. Verfahren nach Anspruch 22, worin nach Schritt (b) restliches Lösungsmittel entfernt wird.
  27. Verfahren nach Anspruch 26, worin das restliche Lösungsmittel durch Waschen des Verbindung/Polymer-Komplexes entfernt wird.
  28. Verfahren nach Anspruch 26, worin das restliche Lösungsmittel durch Verdampfen oder Trocknen entfernt wird.
  29. Verfahren nach Anspruch 28, worin das restliche Lösungsmittel durch Sprühtrocknen entfernt wird.
  30. Verfahren zum Herstellen einer pharmazeutischen Formulierung, umfassend einen wasserunlöslichen Komplex einer stabilen, amorphen therapeutisch wirksamen Verbindung und eines wasserunlöslichen ionischen Polymers mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C, umfassend: (a) Lösen der therapeutisch wirksamen Verbindung in ihrer kristallinen Form und des ionischen Polymers in einem geeigneten Lösungsmittel; (b) Inkontaktbringen des Produkts aus Schritt (a) mit einer wässrigen Lösung bei einem pH-Wert, bei welchem das ionische Polymer und die therapeutisch wirksame Verbindung als eine Verbindung/Polymer-Matrix präzipitieren werden; (c) Waschen der Verbindung/Polymer-Matrix; (d) Trocknen der Verbindung/Polymer-Matrix; und (e) Herstellen einer pharmazeutischen Formulierung, die die gewaschene und getrocknete Verbindung/Polymer-Matrix von obigem Schritt (d) enthält.
  31. Verfahren nach Anspruch 30, worin die therapeutisch wirksame Verbindung, die in der Verbindung/Polymer-Matrix enthalten ist, vorherrschend in amorpher Form ist.
  32. Verfahren nach Anspruch 31, worin das ionische Polymer ausgewählt wird aus der Gruppe, bestehend aus Eudragit® E100, Eudragit® L100, Eudragit® L100-55 und Eudragit® S100.
  33. Verfahren zum Herstellen eines wasserunlöslichen Komplexes einer stabilen amorphen Verbindung und eines wasserunlöslichen ionischen Polymers mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C, umfassend: (a) Zusammenschmelzen der therapeutisch wirksamen Verbindung und des ionischen Polymers; und (b) Kühlen des aus Schritt (a) resultierenden Gemischs.
  34. Verfahren zum Herstellen einer pharmazeutischen Formulierung, umfassend einen wasserunlöslichen Komplexes einer stabilen amorphen Verbindung und eines wasserunlöslichen ionischen Polymers mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C, umfassend: (a) Lösen der therapeutisch wirksamen Verbindung und des ionischen Polymers in einem superkritischen Fluid; (b) Entfernen des superkritischen Fluids, was zu Mikropräzipitation der therapeutisch wirksamen Verbindung in der Polymermatrix führt; und (c) Herstellen einer pharmazeutischen Formulierung, die das Produkt von obigem Schritt (b) enthält.
  35. Verfahren nach Anspruch 34, worin das in Schritt (a) verwendete superkritische Fluid ausgewählt wird aus der Gruppe, bestehend aus flüssigem Stickstoff und flüssigem Kohlendioxid.
  36. Verfahren nach Anspruch 34, worin das Entfernen des superkritischen Fluids in Schritt (b) durch Verdampfen durchgeführt wird.
  37. Verfahren nach Anspruch 22, 30, 33, 34 oder 35, worin die therapeutisch wirksame Verbindung ausgewählt wird aus der Gruppe, bestehend aus Verbindungen der Formeln
    Figure 00330001
    Figure 00340001
    Figure 00350001
  38. Stabiler, wasserunlöslicher Komplex, hergestellt durch (a) Lösen einer Verbindung der Formel I
    Figure 00360001
    und eines wasserunlöslichen Polymers mit einem Molekulargewicht von größer als 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C in einem geeigneten Lösungsmittel; und (b) Copräzipitieren der Verbindung von Formel I und des ionischen Polymers als ein Verbindung/Polymer-Komplex.
  39. Komplex nach Anspruch 38, worin Präzipitation in Schritt (b) durch Inkontaktbringen der Lösung von Schritt (a) mit einer wässrigen Lösung bei einem pH-Wert, bei welchem das ionische Polymer geringlöslich ist, erfolgt.
  40. Wasserunlöslicher Komplex, umfassend eine stabile, amorphe Verbindung und ein wasserunlösliches ionisches Polymer mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C.
  41. Komplex nach Anspruch 40, worin die amorphe Verbindung in kristalliner Form geringlöslich ist.
  42. Wasserunlöslicher Komplex, umfassend die Verbindung der Formel I
    Figure 00360002
    in stabiler amorpher Form und ein wasserunlösliches ionisches Polymer, mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C.
  43. Verfahren zum Stabilisieren einer amorphen Verbindung, umfassend molekulares Dispergieren der Verbindung in einem wasserunlöslichen ionischen Polymer mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C.
  44. Verfahren zum Überführen einer geringlöslichen, kristallinen Verbindung in eine amorphe Form der Verbindung, umfassend molekulares Dispergieren der Verbindung in einem wasserunlöslichen ionischen Polymer mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C.
  45. Therapeutisch wirksame Verbindung in stabiler amorpher Form, molekular dispergiert in einem wasserunlöslichen ionischen Polymer mit einem Molekulargewicht von größer 80.000 D und einer Glasübergangstemperatur von gleich oder größer 50°C.
DE69916733T 1998-09-22 1999-09-13 Stabile Komplexe schwer löslicher Substanzen Expired - Lifetime DE69916733T3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10133698P 1998-09-22 1998-09-22
US101336P 1998-09-22
US13653199P 1999-05-28 1999-05-28
US136531P 1999-05-28

Publications (3)

Publication Number Publication Date
DE69916733D1 DE69916733D1 (de) 2004-06-03
DE69916733T2 true DE69916733T2 (de) 2005-03-31
DE69916733T3 DE69916733T3 (de) 2009-09-24

Family

ID=26798138

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69916733T Expired - Lifetime DE69916733T3 (de) 1998-09-22 1999-09-13 Stabile Komplexe schwer löslicher Substanzen

Country Status (33)

Country Link
US (1) US6350786B1 (de)
EP (1) EP0988863B2 (de)
JP (5) JP2000095708A (de)
KR (1) KR100362019B1 (de)
CN (1) CN1201821C (de)
AR (2) AR022096A1 (de)
AT (1) ATE265232T1 (de)
AU (1) AU770745B2 (de)
BR (1) BR9904283A (de)
CA (1) CA2282906C (de)
CO (1) CO5140077A1 (de)
CZ (1) CZ300215B6 (de)
DE (1) DE69916733T3 (de)
DK (1) DK0988863T4 (de)
ES (1) ES2218918T5 (de)
HK (1) HK1026632A1 (de)
HR (1) HRP990287B1 (de)
HU (1) HU228341B1 (de)
ID (1) ID24034A (de)
IL (1) IL131957A (de)
MA (1) MA26692A1 (de)
MY (1) MY124377A (de)
NO (1) NO326928B1 (de)
NZ (1) NZ337884A (de)
PE (1) PE20001049A1 (de)
PL (1) PL202757B1 (de)
PT (1) PT988863E (de)
RS (1) RS50193B (de)
RU (1) RU2240827C2 (de)
SG (1) SG97131A1 (de)
SI (1) SI0988863T2 (de)
TR (1) TR199902324A3 (de)
TW (1) TWI234465B (de)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60039379D1 (de) 1999-02-10 2008-08-21 Pfizer Prod Inc Pharmazeutische feste Dispersionen
US6440959B1 (en) 1999-04-21 2002-08-27 Hoffman-La Roche Inc. Pyrazolobenzodiazepines
PE20010659A1 (es) * 1999-10-01 2001-06-20 Hoffmann La Roche Derivados de las pirimidin-2,4,6-trionas como inhibidores de metaloproteasas
US6313143B1 (en) * 1999-12-16 2001-11-06 Hoffmann-La Roche Inc. Substituted pyrroles
WO2001087368A1 (en) * 2000-05-16 2001-11-22 Ortho-Mcneil Pharmaceutical, Inc. Process for coating medical devices using super-critical carbon dioxide
US6482847B2 (en) 2000-10-03 2002-11-19 Hoffmann-La Roche Inc. Amorphous form of cell cycle inhibitor having improved solubility and bioavailability
US6469179B1 (en) 2000-10-03 2002-10-22 Hoffmann-La Roche Inc. Amorphous form of cell cycle inhibitor having improved solubility and bioavailability
US8067032B2 (en) 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US20050048126A1 (en) 2000-12-22 2005-03-03 Barrett Rabinow Formulation to render an antimicrobial drug potent against organisms normally considered to be resistant to the drug
US6548531B2 (en) 2001-02-09 2003-04-15 Hoffmann-La Roche Inc. Method for cancer therapy
US6716845B2 (en) 2001-03-30 2004-04-06 Hoffmann-La Roche Inc. Barbituric acid derivatives
BR0210000A (pt) * 2001-05-30 2004-05-04 Csir Método de encapsular uma substância ativa
US20030044514A1 (en) * 2001-06-13 2003-03-06 Richard Robert E. Using supercritical fluids to infuse therapeutic on a medical device
WO2002102373A1 (en) * 2001-06-15 2002-12-27 F. Hoffmann-La Roche Ag Method for administration of cancer therapeutic
JP2004534812A (ja) 2001-06-22 2004-11-18 ファイザー・プロダクツ・インク 薬物および中性ポリマーの分散物の医薬組成物
MXPA03011933A (es) 2001-06-22 2004-03-26 Pfizer Prod Inc Composiciones farmaceuticas de farmacos y polimeros acidos neutralizados.
CA2461349C (en) 2001-09-26 2011-11-29 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion and solvent or liquid phase removal
US20060003012A9 (en) 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
US20030139373A1 (en) * 2001-11-20 2003-07-24 Breimer Lars Holger Method for cancer therapy
BR0307333A (pt) 2002-02-01 2004-12-07 Pfizer Prod Inc Métodos para a preparação de dispersões homogéneas de fármacos sólidos amorfos atomizados utilizando um sistema de secagem por pulverização
MXPA05000977A (es) 2002-08-12 2005-05-16 Pfizer Prod Inc Composiciones farmaceuticas de farmacos semiordenados y polimeros.
DE10351087A1 (de) * 2003-10-31 2005-05-25 Bayer Technology Services Gmbh Feste Wirkstoff-Formulierung
DK1683524T3 (da) 2003-11-14 2011-03-14 Ajinomoto Kk Dispergering på fast form eller medicinsk præparat på fast form af phenyalaninderivat
WO2005046697A1 (ja) * 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の徐放性経口投与製剤
US20070191404A1 (en) * 2004-04-01 2007-08-16 Pierre Bartsch Pharmaceutical compositions of pyrimidine-2,4,6-triones
AR049915A1 (es) * 2004-06-14 2006-09-13 Anacor Pharmaceuticals Inc Compuestos con contenido de boro y metodos de uso de los mismos
WO2006062980A2 (en) * 2004-12-07 2006-06-15 Nektar Therapeutics Stable non-crystalline formulation comprising tiagabine
WO2006070845A1 (ja) * 2004-12-28 2006-07-06 Eisai R & D Management Co., Ltd. 速崩壊性錠剤及びその製造方法
DK1848430T3 (da) * 2004-12-31 2017-11-06 Dr Reddys Laboratories Ltd Nye benzylamin-derivativer som cetp-inhibitors
US8604055B2 (en) 2004-12-31 2013-12-10 Dr. Reddy's Laboratories Ltd. Substituted benzylamino quinolines as cholesterol ester-transfer protein inhibitors
EP1690528A1 (de) * 2005-02-11 2006-08-16 Abbott GmbH & Co. KG Herstellung von Dosierungsformen mit einer festen Dispersion eines mikrokristallinen Wirkstoffs
CA2608952A1 (en) * 2005-05-19 2006-11-23 Dwayne Thomas Friesen Pharmaceutical compostions comprising an amorphous form of a vegf-r inhibitor
EP1767194A1 (de) * 2005-06-09 2007-03-28 Helm AG Verfahren zur Herstellung von Adsorbaten des Drospirenons
ES2371397T3 (es) * 2005-06-22 2011-12-30 Plexxikon, Inc. Derivados de pirrolo[2,3-b]piridina como inhibidores de proteínas cinasas.
US20080031944A1 (en) * 2006-08-04 2008-02-07 Cima Labs Inc. Stabilization of lorazepam
UY30535A1 (es) * 2006-08-10 2008-03-31 Cipla Ltd Composicion comprendiendo farmacos antirretrovirales y al menos un polimero insoluble en agua, proceso de preparacion y aplicaciones.
US20080107725A1 (en) * 2006-10-13 2008-05-08 Albano Antonio A Pharmaceutical Solid Dosage Forms Comprising Amorphous Compounds Micro-Embedded in Ionic Water-Insoluble Polymers
WO2008063888A2 (en) 2006-11-22 2008-05-29 Plexxikon, Inc. Compounds modulating c-fms and/or c-kit activity and uses therefor
PE20121126A1 (es) * 2006-12-21 2012-08-24 Plexxikon Inc Compuestos pirrolo [2,3-b] piridinas como moduladores de quinasa
WO2008079909A1 (en) * 2006-12-21 2008-07-03 Plexxikon, Inc. Pyrrolo [2,3-b] pyridines as kinase modulators
US20080221047A1 (en) * 2006-12-27 2008-09-11 Astellas Pharma Inc., Aminoakyl methacrylate copolymer E for maintaining solubility of poorly-soluble drug
WO2008138755A2 (en) * 2007-05-11 2008-11-20 F. Hoffmann-La Roche Ag Pharmaceutical compositions for poorly soluble drugs
US8722736B2 (en) 2007-05-22 2014-05-13 Baxter International Inc. Multi-dose concentrate esmolol with benzyl alcohol
US8426467B2 (en) 2007-05-22 2013-04-23 Baxter International Inc. Colored esmolol concentrate
EP1997479A1 (de) * 2007-05-31 2008-12-03 Helm AG Stabilisierte amorphe Candesartancilexetil-haltige Zubereitungen zur oralen Anwendung
AU2008276063B2 (en) 2007-07-17 2013-11-28 Plexxikon Inc. Compounds and methods for kinase modulation, and indications therefor
CN101896161A (zh) * 2007-10-19 2010-11-24 普渡(大学)研究基金 结晶化合物的固体制剂
US8632805B2 (en) * 2008-06-20 2014-01-21 Mutual Pharmaceutical Company, Inc. Controlled-release formulations, method of manufacture, and use thereof
US7794750B2 (en) * 2008-06-20 2010-09-14 Mutual Pharmaceutical Company, Inc. Controlled-release formulations, method of manufacture, and use thereof
WO2010044842A1 (en) * 2008-10-16 2010-04-22 University Of Tennessee Research Foundation Tamper resistant oral dosage forms containing an embolizing agent
KR20100073454A (ko) * 2008-12-23 2010-07-01 국립암센터 트란스글루타미나제 억제제로 사용되는 신규한 피라졸로디아제핀계 화합물, 이의 제조방법 및 이를 포함하는 조성물
AR078033A1 (es) * 2009-04-03 2011-10-12 Plexxikon Inc Una dispersion solida, que contiene al compuesto {3-[5-(4-(cloro-fenil)-1h-pirrolo[2,3-b]piridina-3-carbonil]-2,4-difluor-fenil}-amida del acido propano-1-sulfonico, composiciones y formulaciones que comprenden a dicha dispersion solida; metodos para fabricar dicha dispersion solida, formas 1 y 2 de
US8329724B2 (en) 2009-08-03 2012-12-11 Hoffmann-La Roche Inc. Process for the manufacture of pharmaceutically active compounds
NZ599866A (en) 2009-11-06 2014-09-26 Plexxikon Inc Compounds and methods for kinase modulation, and indications therefor
WO2011152297A1 (ja) * 2010-05-31 2011-12-08 アステラス製薬株式会社 トリアゾール化合物の固体分散体
PE20141360A1 (es) 2011-02-07 2014-10-13 Plexxikon Inc Compuestos y metodos para la modulacion de quinasas e indicaciones para los mismos.
WO2012110469A1 (en) 2011-02-17 2012-08-23 F. Hoffmann-La Roche Ag A process for controlled crystallization of an active pharmaceutical ingredient from supercooled liquid state by hot melt extrusion
TWI558702B (zh) 2011-02-21 2016-11-21 普雷辛肯公司 醫藥活性物質的固態形式
CA2845284C (en) 2011-08-18 2018-03-06 Dr. Reddy's Laboratories Ltd. Substituted heterocyclic amine compounds as cholesteryl ester-transfer protein (cetp) inhibitors
WO2013037396A1 (en) * 2011-09-12 2013-03-21 Bioneer A/S Solution of polymer in api for a solid dosage form
WO2013046045A1 (en) 2011-09-27 2013-04-04 Dr. Reddy's Laboratories, Ltd. 5 - benzylaminomethyl - 6 - aminopyrazolo [3, 4 -b] pyridine derivatives as cholesteryl ester -transfer protein (cetp) inhibitors useful for the treatment of atherosclerosis
WO2013056108A2 (en) * 2011-10-14 2013-04-18 Array Biopharma Inc. Solid dispersion
CA2867723C (en) 2012-03-23 2022-11-08 Array Biopharma Inc. Treatment of brain cancer
US20140128431A1 (en) 2012-04-03 2014-05-08 Hoffmann-Laroche Inc. Pharmaceutical composition with improved bioavailability, safety and tolerability
EP2649989B1 (de) 2012-04-13 2017-10-18 King Saud University Verfahren zur Herstellung einer Feststoffdispersion, damit hergestellte Feststoffdispersion und Verwendung dafür
US9150570B2 (en) 2012-05-31 2015-10-06 Plexxikon Inc. Synthesis of heterocyclic compounds
JO3339B1 (ar) * 2012-09-11 2019-03-13 Shanghai Inst Pharmaceutical Ind شكل مستقر غير متبلور من الأغوميلاتين وعملية تحضيره والتركيبات الدوائية التي تحتوي عليه
BR112015011515A2 (pt) 2012-11-19 2017-08-22 Dr Reddy´S Laboratories Ltd Composições farmacêuticas de inibidores de cetp
RU2015128794A (ru) 2012-12-20 2017-01-25 КАШИВ ФАРМА, ЭлЭлСи Композиция перорально распадающейся таблетки, обеспечивающая повышенную биодоступность
BR112015015758B1 (pt) 2013-01-22 2022-01-04 F. Hoffmann-La Roche Ag Dispersão sólida, formulação sólida de dose unitária, preparação farmacêutica e uso de uma dispersão sólida
TWI615157B (zh) 2013-02-06 2018-02-21 大塚製藥股份有限公司 包括不定形西洛他唑的固體分散劑
US20160213575A1 (en) * 2013-09-11 2016-07-28 3M Innovative Properties Company Coating compositions, dental structures thereof and methods for generating contrast
US20160303102A1 (en) * 2013-12-05 2016-10-20 Alrise Biosystems Gmbh Process for the production of drug formulations for oral administration
PT107846B (pt) * 2014-08-01 2019-03-22 Hovione Farm S A Produção de nano- partículas de dispersões sólidas amorfas por co-precipitação controlada
BR112017025739A2 (pt) * 2015-05-29 2018-08-07 Sun Pharmaceutical Ind Ltd composição farmacêutica oral de isotretinoína que tem biodisponibilidade aumentada, processo para preparar a mesma e método de tratamento
BR112019008295B1 (pt) * 2016-12-13 2024-03-12 TransThera Sciences (Nanjing), Inc Composto inibidor de multiquinase, forma cristalina do composto de fórmula iii, formulação/composição farmacêutica, seus usos, métodos para a preparação da forma cristalina e do composto de fórmula iii e intermediário para a preparação do composto de fórmula iii
CA3060407A1 (en) 2017-04-28 2018-11-01 Seattle Genetics, Inc. Treatment of her2 positive cancers
KR102082775B1 (ko) * 2017-05-02 2020-02-28 주식회사 삼양바이오팜 수용해도 및 생체이용율이 개선된 조성물
RU2725879C2 (ru) * 2018-07-26 2020-07-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский Государственный медицинский университет" Министерства здравоохранения Российской Федерации Интерполимерный носитель для пероральных систем контролируемой доставки активных фармацевтических ингредиентов
US11535600B2 (en) 2018-12-03 2022-12-27 H. Lundbeck A/S Prodrugs of 4-((1R,3S)-6-chloro-3-phenyl-2,3-dihydro-1H-inden-1-yl)-1,2,2-trimethylpiperazine and 4-((1R,3S)-6-chloro-3-(phenyl-d5)-2,3-dihydro-1H-inden-1-yl)-2,2-dimethyl-1-(methyl-d3)piperazine
WO2021150981A1 (en) 2020-01-24 2021-07-29 Nanocopoeia, Llc Amorphous solid dispersions of dasatinib and uses thereof
CA3168680A1 (en) 2020-01-31 2021-08-05 Nanocopoeia, Llc Amorphous nilotinib microparticles and uses thereof
EP4116389A4 (de) 2020-03-03 2024-03-20 Dexerials Corp Verfahren zur herstellung einer bildanzeigevorrichtung
EP4142699A1 (de) 2020-04-30 2023-03-08 Nanocopoeia LLC Im mund zerfallende tablette mit amorpher fester dispersion von nilotinib

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118816A (en) * 1975-04-08 1976-10-19 Meiji Seika Kaisha Ltd A process for stabilizing non-crystalloidal solid
US4344934A (en) * 1978-11-20 1982-08-17 American Home Products Corporation Therapeutic compositions with enhanced bioavailability
DK569786A (da) * 1985-11-27 1987-05-28 Syntex Inc Benzimidazolderivater
CZ280738B6 (cs) * 1988-02-10 1996-04-17 F. Hoffmann - La Roche And Co., Aktiengesellschaft Substituované pyrroly, jejich použití pro výrobu léčiv a léčiva na jejich bázi
JP2528706B2 (ja) 1988-05-30 1996-08-28 ゼリア新薬工業株式会社 ジヒドロピリジン化合物の製剤組成物
USRE36736E (en) 1989-02-06 2000-06-13 Hoffman-La Roche Inc. Substituted pyrroles
JPH0729926B2 (ja) 1989-07-25 1995-04-05 大塚製薬株式会社 易吸収性製剤用組成物
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
ATE159426T1 (de) 1991-04-16 1997-11-15 Nippon Shinyaku Co Ltd Verfahren zur herstellung einer festen dispersion
US5281420A (en) 1992-05-19 1994-01-25 The Procter & Gamble Company Solid dispersion compositions of tebufelone
TW493991B (en) 1995-05-08 2002-07-11 Novartis Ag Pharmaceutical composition for oral administration of active agent having low water solubility and process for preparation of the same
GB9511220D0 (en) 1995-06-02 1995-07-26 Glaxo Group Ltd Solid dispersions
DE69628276T2 (de) * 1995-07-26 2004-04-08 Kyowa Hakko Kogyo Co., Ltd. Zubereitung von xanthinderivaten als feste dispersion
EP0952770A4 (de) 1995-09-07 1999-12-22 Fuisz Technologies Ltd Verfahren um grundsatzliche unlosliche biologische wirksame stoffe biologsich verfugbar zu machen
DE19548624A1 (de) 1995-12-23 1997-06-26 Boehringer Mannheim Gmbh Neue Barbitursäure-Derivate, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel
JPH09208459A (ja) * 1996-02-07 1997-08-12 Eisai Co Ltd 溶解性を改良した製剤
CZ297979B6 (cs) 1996-03-12 2007-05-16 Pg-Txl Company, L. P. Kompozice obsahující protinádorové lécivo konjugované s ve vode rozpustným polymerem, její pouzití pro výrobu léciva a implantovatelná lékarská pomucka
EP0954288B1 (de) * 1996-06-28 2004-08-11 Schering Corporation Feste lösung eines fungizids mit erhöhter bioverfügbarkeit
PE91598A1 (es) 1996-07-29 1998-12-24 Hoffmann La Roche Pirroles sustituidos
US6229011B1 (en) 1997-08-22 2001-05-08 Hoffman-La Roche Inc. N-aroylphenylalanine derivative VCAM-1 inhibitors
IL138247A (en) 1998-03-17 2005-08-31 Hoffmann La Roche Substituted bisindolymaleimides for the inhibition of cell proliferation and pharmaceutical compositions comprising them

Also Published As

Publication number Publication date
MA26692A1 (fr) 2004-12-20
PE20001049A1 (es) 2000-10-17
JP2007224048A (ja) 2007-09-06
EP0988863B1 (de) 2004-04-28
TWI234465B (en) 2005-06-21
JP6253135B2 (ja) 2017-12-27
IL131957A0 (en) 2001-03-19
CA2282906C (en) 2010-07-20
AR080892A2 (es) 2012-05-16
ES2218918T3 (es) 2004-11-16
HU9903189D0 (en) 1999-11-29
DE69916733T3 (de) 2009-09-24
CZ330499A3 (cs) 2000-04-12
IL131957A (en) 2005-06-19
EP0988863B2 (de) 2009-03-18
KR100362019B1 (ko) 2002-11-23
JP6534979B2 (ja) 2019-06-26
CN1201821C (zh) 2005-05-18
CO5140077A1 (es) 2002-03-22
HRP990287A2 (en) 2000-06-30
JP2000095708A (ja) 2000-04-04
HRP990287B1 (en) 2004-12-31
AU4880799A (en) 2000-03-23
HU228341B1 (en) 2013-03-28
BR9904283A (pt) 2000-09-26
CN1251312A (zh) 2000-04-26
DK0988863T4 (da) 2009-06-08
ID24034A (id) 2000-07-06
TR199902324A2 (xx) 2000-04-21
TR199902324A3 (tr) 2000-04-21
YU47399A (de) 2002-08-12
DK0988863T3 (da) 2004-08-30
SI0988863T2 (sl) 2009-08-31
HUP9903189A2 (hu) 2000-06-28
PL202757B1 (pl) 2009-07-31
CZ300215B6 (cs) 2009-03-18
NZ337884A (en) 2001-02-23
US6350786B1 (en) 2002-02-26
PT988863E (pt) 2004-07-30
KR20000023426A (ko) 2000-04-25
HK1026632A1 (en) 2000-12-22
JP2013035875A (ja) 2013-02-21
CA2282906A1 (en) 2000-03-22
SG97131A1 (en) 2003-07-18
NO994583D0 (no) 1999-09-21
PL335592A1 (en) 2000-03-27
AR022096A1 (es) 2002-09-04
MY124377A (en) 2006-06-30
AU770745B2 (en) 2004-03-04
DE69916733D1 (de) 2004-06-03
NO994583L (no) 2000-03-23
RS50193B (sr) 2009-05-06
EP0988863A2 (de) 2000-03-29
EP0988863A3 (de) 2000-08-09
JP2015187170A (ja) 2015-10-29
RU2240827C2 (ru) 2004-11-27
ES2218918T5 (es) 2009-06-23
SI0988863T1 (en) 2004-08-31
HUP9903189A3 (en) 2009-07-28
JP2016196515A (ja) 2016-11-24
NO326928B1 (no) 2009-03-16
ATE265232T1 (de) 2004-05-15

Similar Documents

Publication Publication Date Title
DE69916733T2 (de) Stabile Komplexe schwer löslicher Substanzen
DE69627835T2 (de) Feste pharmazeutische zusammensetzung aus nanopartikeln
EP1073426B1 (de) Pharmazeutische ciclosporin-formulierung mit verbesserten biopharmazeutischen eigenschaften, erhöhter physikalischer qualität &amp; stabilität sowie verfahren zur herstellung
EP0955041B1 (de) Wässrige Dispersion geeignet zur Herstellung von Überzugs- und Bindemitteln für feste orale Arzneiformen
DE60031184T2 (de) Pharmazeutische Zusammensetzung enthaltend Fenofibrat und Verfahren zu deren Herstellung
DE60214012T2 (de) Verfahren zur herstellung kristalliner arzneimittelteilchen durch ausfällung
DE3024858C2 (de) Verfahren zur Herstellung einer anhaltend freigebenden pharmazeutischen Zubereitung eines festen Medikamentenmaterials
DE60210552T2 (de) Prozess zur Herstellung einer festen pharmazeutischen Zubereitung welche einen schwerlöslichen Wirkstoff enthält
EP0272336B1 (de) Gegenüber Lichteinfluss stabilisiertes Nifedipin-Konzentrat und Verfahren zu seiner Herstellung
DE3520184C2 (de) Neue galenische Retardform
DE3720757A1 (de) Dhp-manteltablette
DE10214031A1 (de) Verfahren zur Herstellung und Anwendung von Mikro- und Nanoteilchen durch aufbauende Mikronisation
EP0250648B1 (de) Pharmazeutisches Präparat zur verzögerten Freigabe von Ibuprofen
DE2721603B2 (de) Beschichtete Körnchen aus Alkalimetallsalzen der Polyacrylsäure und Verfahren zu ihrer Herstellung
DE60121574T2 (de) Festes dispersionssystem von pranlukast mit verbesserter auflösung und methode zu dessen herstellung
DE602004006000T2 (de) Verringerung der teilchengrösse von bioaktiven verbindungen
JP2005515224A (ja) テンプレート乳剤からの薬剤ナノ粒子
DE102011053068A1 (de) Darreichungsform mit stabilisierten Wirkstoffpartikeln
DE60312635T2 (de) Zusammensetzung in Form einer festen Dispersion enthaltend Itraconazol und ein hydrophilisches Polymer mit einer verbesserten Bioverfügbarkeit
MXPA99008648A (en) Stable compounds of low solub compounds

Legal Events

Date Code Title Description
8363 Opposition against the patent
8366 Restricted maintained after opposition proceedings