EP0000312B1 - Installation respiratoire et de protection contre l'accélération pour avions de combat - Google Patents

Installation respiratoire et de protection contre l'accélération pour avions de combat Download PDF

Info

Publication number
EP0000312B1
EP0000312B1 EP19780400042 EP78400042A EP0000312B1 EP 0000312 B1 EP0000312 B1 EP 0000312B1 EP 19780400042 EP19780400042 EP 19780400042 EP 78400042 A EP78400042 A EP 78400042A EP 0000312 B1 EP0000312 B1 EP 0000312B1
Authority
EP
European Patent Office
Prior art keywords
pressure
regulator
pockets
acceleration
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780400042
Other languages
German (de)
English (en)
Other versions
EP0000312A1 (fr
Inventor
Raymond Beaussant
Jacques Claude
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aerosystems SAS
Original Assignee
Intertechnique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intertechnique SA filed Critical Intertechnique SA
Publication of EP0000312A1 publication Critical patent/EP0000312A1/fr
Application granted granted Critical
Publication of EP0000312B1 publication Critical patent/EP0000312B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D10/00Flight suits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0655Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane
    • G05D16/0658Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane characterised by the form of the obturator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0753Control by change of position or inertia of system

Definitions

  • the present invention relates to installations intended to supply the respiratory mixture to the members of a combat aircraft crew and to protect them against the effects of acceleration, of the type comprising a respiratory mixture regulator, an anti-g regulator controlling the gas pressure in the pockets of pants for protection against acceleration, the detection member of which consists of a counterweight movable in the direction of acceleration to which the wearer of the pants is sensitive and establishing, in said pockets, a pressure increasing function of the acceleration, and means for establishing in said pockets a pressure increasing function of the altitude.
  • the present invention aims to provide an installation in which the drawbacks of earlier systems are eliminated, at least to a large extent, and 1 ⁇ i individual equipment driver is simplified.
  • the invention provides an installation of the above type in which said means provide altitude information to the anti-g regulator which is designed to establish in said pockets that of pressures, which correspond to the information provided by the flyweight and the other to the information provided by said means, which is the highest.
  • Such an installation comprises a single pressure regulator in the pockets.
  • this single regulator receives information representative of one or the other of two different parameters (altitude or acceleration).
  • the selection of the parameter takes place automatically, advantageously using a shuttle valve.
  • this shuttle does not fulfill the same function as in US Ane It selects the regulator control pressure the picnic among the pressures corresponding to one altitude information, the other information acceleration. It intervenes to control inflation as well as deflation of the pockets. This type of cooperation makes it possible to achieve a much simpler installation than that of the prior art.
  • the means providing altitude information can be constituted by an altimetric capsule associated with a valve; they can also be constituted by a pressure tap on the respiratory oxygen regulator that the installation also includes.
  • the invention further aims to provide an installation comprising a flyweight for detecting improved accelerations and which can be produced in miniaturized form.
  • the counterweight is constituted by a mass suspended by a membrane arranged perpendicular to the axis of the accelerations to be detected, membrane arranged in a plane passing approximately through the center of gravity of the mass.
  • the regulator controlling the gas pressure in the pants pockets is provided with means making it possible to pre-inflate, under limited pressure, the pants pockets as soon as the flight controls are placed in a position which will cause the aircraft to accelerate.
  • the response time is thus considerably reduced and the crew members benefit from protection as soon as they undergo acceleration, which is not the case at present.
  • This arrangement is particularly easy to implement in the case of airplanes which include a system of electric transmission control, often called "fly by wire". Indeed, the signal supplied to the regulator can be directly derived from the command.
  • a correction circuit using for example an amplifier, a timer, possibly a proportional-integral-derivative circuit, can be used to adapt the control to the particular type of aircraft concerned.
  • the protective clothing can be reduced to anti-g pants, the pockets of which are also inflatable to provide the necessary pressurization at high altitude, and to a pressurized jacket, without a binding. pneumatic is necessary between pants and jacket.
  • Figure 1 shows in an extremely schematic and simplified way the part of an installation which is intended to control the pressure in the pants pockets of the protective clothing against accelerations.
  • the installation is supplied by a pipe 10 for supplying pressurized gas.
  • This gas will for example be oxygen from an on-board liquid oxygen converter, or air, under a pressure of a few bars (5 bars for example).
  • the pants pockets are connected to the installation by a flexible pipe 11.
  • the installation shown in Figure 1 (where the scale is not respected) comprises a number of organs which are conventional and will therefore only be briefly described.
  • organs include a main valve 12 constituted by a fixed seat and a membrane. In the rest position, the membrane is applied to the seat and separates the lines 10 and 11.
  • a control chamber 13 delimited by the rear of the membrane and the box in which it is placed, is subjected to pressure reigning in line 10, the membrane is applied to its seat and closes the passage in the seat.
  • pilot valve 15 The pressure prevailing in the chamber 13, connected to the pipe 10 by a calibrated orifice 14, is controlled by a pilot valve 15.
  • This pilot valve comprises a sensitive regulation membrane 16 controlling a closure element 17 which cooperates with a seat fixed to put the chamber 13 in communication with the pipe 11.
  • the pressure prevailing at the rear of the sensitive membrane 16 is in turn determined by control and safety valves.
  • a valve 19 allows the air contained in the pockets to escape the atmosphere, in the direction indicated by the arrow F ', when the pressure applied to the rear of the membrane 16 decreases.
  • the control valve as a function of the acceleration is actuated by a flyweight improved compared to those previously known.
  • This feeder has a mass 20 of a few tens of grams contained in a chamber 21 formed in a fixed housing and connected to the atmosphere.
  • the mass 20 is carried by a membrane 22, the periphery of which is fixed to the housing.
  • This membrane is arranged transversely to the direction A of the accelerations to be detected. Its internal part is fixed permanently to the periphery of the mass 20, so that, at rest, the plane of the membrane passes approximately through the center of gravity of the mass 20.
  • a face 23 provided with a flat seal and intended to be applied sealingly against a fixed seat 24 which delimits a calibrated hole of small diameter.
  • a return spring 25 spreads the bearing face of the seat 24.
  • the face 23 comes to apply on the seat 24 and closes the calibrated orifice as shown in the figure 2. It should be noted in passing that the housing limits the movements of the mass 20 from the seat 24 to a length which is very slightly greater than the lift required.
  • the membrane may be made of molded silicone and be fixed to the mass either by overmolding or by fitting.
  • the orifice delimited by the seat will generally have a very small diameter, from 2 to 3 mm for example. We see that the entire housing can be miniaturized, especially if we constitute the seat 24 by a sapphire which can be pierced with a hole of very small diameter.
  • the stiffness of the spring may be such that the mass 20 only applies to the seat 24 from an acceleration of approximately 2 g.
  • the pressure behind the membrane 16 of the pilot valve is also modifiable according to the altitude.
  • the installation comprises a sealed altimetric capsule 26, subjected to the pressure prevailing in the cabin, one end of which is carried by a fixed housing and the other end of which carries a closure element 27 provided with a extender 28.
  • the shutter member 27 releases an opening in the housing.
  • the capsule 26 expands and the member 27 tends to separate the interior of the housing from a relay chamber 29.
  • the passage in the seat 24 communicates with the rear of the diaphragm 16 of the pilot valve only via this relay chamber.
  • the relay chamber 29 contains a double valve 30 which an elastic return blade 31 maintains at rest in a position where it separates the relay chamber from the capsule housing and, on the other hand, connects the relay chamber 29 to the passage in the seat 24 ( Figure 1).
  • the extension pusher 28 pushes the double valve 30 and separates the relay chamber 29 from the passage formed in the seat 24.
  • the operating surface on the shutter 27 of the pressure prevailing in the relay chamber 29 is chosen so that the pressure in this chamber is established at a value which is a function of the pressure in the cabin, therefore of the altitude.
  • the installation also includes a calibrated leak orifice 32 connecting the line 10 to the relay chamber and to the rear of the membrane 16.
  • the gas flow admitted by the valve 12 is not sent directly into the pockets of the protective pants.
  • This gas is used as driving fluid in an ejector 34 supplied with air coming from the cabin via a non-return valve 35.
  • the primary flow is considerably lower than the flow to be supplied to the pants, which makes it possible to miniaturize the installation and in particular its moving parts.
  • the consumption of gas from line 10 is considerably reduced, which is particularly important in the case where this gas consists of oxygen which also supplies the respiratory device: the ratio of the flow rates of entrained air and entrainment gas can be from 8 to 1.
  • the flow peaks are considerably reduced and become compatible with the possibilities of liquid oxygen converters.
  • FIG. 1 in dashes, means for pre-inflating the pockets of the protective pants even before the weight is subjected to acceleration.
  • These means comprise a solenoid valve 36 and an electrical control circuit 37.
  • This provision is particularly convenient to implement if the airplane is provided with a control system with electric transmission of orders. In this case, in fact, it suffices to take the electrical signal from the transmission and to process it.
  • the processing mode used will depend on the one hand, on the aerodynamic and control characteristics of the aircraft, on the other hand, on situation parameters, such as for example the speed, the altitude, etc.
  • the electrical circuit will in general essentially comprise a timer which, on reception of a signal indicating that the steering position will cause acceleration in direction A, will apply to the solenoid valve 36 an opening signal for a duration predetermined, corresponding to the establishment of an appropriate pressure (typically 3 seconds).
  • FIG. 3 shows the variation in the volume V of these pockets as a function of the pressure Ap with respect to the atmosphere.
  • Pre-inflation can be carried out, as shown in Figure 1, using a timer system which indirectly limits the pressure reached. It is also possible to use a calibrated valve associated with the solenoid valve 36, closing the supply as soon as the pressure reaches the value indicated by point 39, which can for example correspond to a pressure of the order of two-thirds of the pressure definitive.
  • the electric control will be provided to intervene only if the steering locks indicate an acceleration greater than the threshold normally provided for conventional anti-g valves, of the order of 2 g in general.
  • FIG. 1 is susceptible of numerous variants.
  • the one shown in Figure 4 (where only the elements belonging to a circuit different from that of FIG. 1 have been shown. do not have a double-acting valve.
  • Point 38 to which the safety valve 18, the rear chamber of the pilot valve 15, the return valve 19 and the throttled orifice 32 are connected, is connected directly to the seat 24.
  • the chamber 21 is not connected to the atmosphere, but to the chamber occupied by the capsule 26. This latter chamber is in turn connected to the atmosphere.
  • FIG. 4 a conventional pre-flight verification assembly, with which the device of FIG. 1 can also be fitted.
  • This verification device is placed between the outlet 39. of the chamber occupied by the altimetric capsule 26 and the 'atmosphere. In the case of Figure 1, it would be placed between the chamber 21 and the atmosphere. It includes a push button 40 pushed by a spring in a position where it lets the outlet 39 communicate with the atmosphere. By pressing this button, the operator separates the outlet 39 from the atmosphere, the pressure increases behind the membrane 16 of the pilot valve and the pockets of the protective pants inflate to a pressure level fixed by the check valve 41.
  • the device comprises a first calibrated orifice 43 connecting the normal supply line 10 to the passage formed in the seat 24 of the counterweight and a second calibrated orifice 44 connecting the emergency line 42 to the passage connecting the chamber occupied by the capsule 26 and the double valve 30.
  • the latter is not provided with a return spring.
  • the main valve 12 is supplied from the normal pipe 10.
  • the normal pipe 10 is generally supplied by a liquid oxygen converter 46 carried by the aircraft.
  • the emergency line 42 is provided with a compressed gas cylinder 47, provided with a pressure reducer 48, carried by the seat.
  • a non-return valve 49 allows the converter 46 to also supply the emergency line 42, except in the event of ejection.
  • the converter 46 feeds the pants pockets (anti-g function). It also supplies the pilot's mask or helmet and the jacket pockets (respiratory functions and pressurization).
  • the pants pockets are already inflated; the anti-function. g can no longer be filled, the seat 24 of the counterweight 20 losing its power; the valve 49 closes, isolating the pipe 42 which continues to supply the compartment of the capsule 26. This will, as the descent by parachute, reduce the pressure in the pockets of the pants by reducing the pressure which reigns behind the valve 19.
  • the altimeter capsule 26 can be replaced by a pressure tap from the demand regulator which supplies breathing gas to the wearer of the pants.
  • the intake can be made on the high pressure stage of the regulator, with intermediate pressure reduction. It can also be done on exit from use.
  • the double valve 30 avoids any action of the counterweight 20 on the pressure of the respiratory mixture.
  • the regulator is for example of the type described in patent FR 74 34826, published under the number 2 288 346.
  • the control of the pressure in the pockets of the pants has hitherto been mainly described to fulfill the functions of anti-g protection and pressurization.
  • the breathing mixture regulator of the installation is advantageously designed to cooperate with the anti-g regulator for protection against acceleration.
  • FIG. 6 shows the jacket 50 and the pants 51 which constitute the pilot's protective clothing, moreover provided with a pressurization helmet 52.
  • the anti-g regulator 53 for example of the type illustrated in FIG. 5, is powered by the converter 46 or by another source, such as the compressor of a turbojet engine (as shown in dashes).
  • the respiratory mixture regulator 54 is normally supplied by the converter 46 and back-up by the bottle 47. It supplies the jacket 50 and the helmet 52.
  • a dashed line separates the organs carried by the seat from those carried by the structure of the aircraft, for greater clarity.
  • the respiratory regulator 54 is advantageously designed to create an overpressure in the event of acceleration. For this, one can either add a weight to the regulator 54, or send it a signal from the regulator 53. In the second case, it will suffice to take the pressure between the seat 24 and the double valve 30 (FIG. 1) or else at the outlet of the regulator 54 and bring it to the regulator 53 via a pressure divider 55, as shown diagrammatically in FIG. 6. In the first case, the arrangement shown diagrammatically in FIG. 7 can be adopted. compartment located behind the request membrane 56 is conventionally connected by a calibrated leak 57 to the oxygen supply and, by a passage controlled by an altimetric capsule 58, to the atmosphere of the cabin.
  • a flyweight 59 is interposed, designed to give an overpressure as a function of the acceleration significantly less increasing than that controlled by the flyweight 20. Because the overpressures controlled by the flyweight 59 will always remain weak, there is little inconvenience in adding the orders of the counterweight and the capsule. However, a mixture of orders by double valve assembly comparable to that of FIGS. 1 and 5 is possible.

Description

  • La présente invention concerne les installations destinées à fournir le mélange respiratoire aux membres d'équipage d'avion de combat et à les protéger contre les effets de l'accélération, du type comprenant un régulateur de mélange respiratoire, un régulateur anti-g commandant la pression de gaz dans les poches d'un pantalon de protection contre les accélérations, dont l'organe de détection est constitué par une masselotte déplaçable suivant la direction d'accélération à laquelle est sensible le porteur du pantalon et établissant, dans lesdites poches, une pression fonction croissante de l'accélération, et des moyens destinés à établir dans lesdites poches une pression fonction croissante de l'altitude.
  • Le brevet US 3 672 384 décrit une installation de ce type, qui vise à remplir plusieurs fonctions:
    • -fournir aux membres de l'équipage du gaz respiratoire dont la composition et la pression s'adaptent automatiquement aux variations de l'altitude qui, sur certains avions en cours d'étude, approche de 30 000 m, ce qui implique, à défaut d'un scaphandre, l'emploi d'un casque sous pression;
    • - proteger ces membres d'équipage contre les effets de l'accélération par gonflage de poches prévues dans le pantalon lorsqu'une accélération élevée est détectée, en particulier en cas de ressource ou de virage serré.
      • Pour remplir correctement cette dernière fonction, le temps de réponse (c'est-à-dire le laps de temps qui s'écoule entre la réception de l'ordre de gonflage des poches et l'instant où la pression qui règne dans les poches s'est établie à une valeur suffisante) doit être faible: ce résultat est atteint en maintenant dans les poches une pression fonction croissante de l'altitude en l'absence d'accélération.
      • Pour atteindre ce résultat, l'installation décrite dans le brevet US 3 672 384 fait appel à deux régulateurs distincts de la pression dans les poches d'un pantalon de protection:
    • - un régulateur anti-g classique.
    • - un régulateur supplémentaire commandé exclusivement par lar pression respiratoire. La pression dans les poches s'établit à la plus élevée des deux valeurs fournies par les régulateurs, qui sera celle fournie par le régulateur anti-g en cas d'accélération. Lorsque l'accélération cease, il est nécessaire que la pression ne redescende qu'à la valeur la plus élevée de celles fournies par les régulateurs. Ce résultat est obtenu grâce à une vanne navette qui relie l'entrée de commande d'une vanne de dégonflage à la plus haute des pressions de masque et de vanne anti-g.
  • L'installation ainsi réalisé semble relativement simple lorsqu'on se borne à considérer un schéma. Dans la réalité, elle est très complexe du fait de la multiplication des régulateurs de pression dans les poches.
  • La présente invention vise à fournir une installation dans laquelle les inconvénients des installations antérieures sont éliminés, au moins dans une large mesure, et 1'<iquipement individuel du pilote est simplifié.
  • Dans ce but, l'invention propose une installation du type ci-dessus dans laquelle lesdits moyens fournissent une information d'altitude au régulateur anti-g qui est réalisé pour établir dans lesdites poches celle des pressions, qui correspondent l'une à l'information fournie par la masselotte et l'autre à l'information fournie par lesdits moyens, qui est la plus élevée.
  • Une telle installation comporte un seul régulateur de pression dans les poches. Mais ce régulateur unique reçoit une information représentative de l'un ou de l'autre de deux paramètres différents (l'altitude ou l'accélération). La sélection du paramètre s'effectue automatiquement, avantageusement à l'aide d'une vanne navette. Mais cette navette ne remplit pas la même fonction que dans le brevet U.S. Elle sélectionne Ane pression de commande du régulateur l nique parmi les pressions correspondant l'une à l'information d'altitude, l'autre à l'information d'accélération. Elle intervient pour commander le gonflage aussi bien que le dégonflage des poches. Ce type de coopération permet de réaliser une installation beaucoup plus simple que celle de l'art antérieur.
  • Les moyens fournissant une information d'altitude peuvent être constitués par une capsule altimétrique associée à une soupape; ils peuvent également être constitués par une prise de pression sur le régulateur d'oxygène respiratoire que comporte également l'installation.
  • L'invention vise de plus à fournir une installation comportant une masselote de détection des accélérations perfectionnée et pouvant être réalisée sous forme miniaturisée.
  • Pour cela, la masselotte est constituée par une masse suspendue par une membrane disposée perpendiculairement à l'axe des accélérations à détecter, membrane disposée dans un plan passant approximativement par le centre de gravité de la masse.
  • Suivant un autre aspect encore de l'invention, le régulateur commandant la pression de gaz dans les poches du pantalon est muni de moyens permettant de prégonfler, sous une pression limitée, les poches du pantalon dès que les commandes de vol sont placées dans une position qui va provoquer une accélération de l'avion. Le temps de réponse est ainsi considérablement réduit et les membres de l'équipage bénéficient d'une protection dès qu'ils subissent l'accélération, ce qui n'est pas le cas à l'heure actuelle. Cette disposition est particulièrement aisée à mettre en oeuvre dans le cas des avions qui comportant un système de commande à transmission électrique, fré- quemment dénommé "fly by wire". En effet, le signal fourni au régulateur peut être directement dérivé de la commande. Un circuit correcteur, utilisant par exemple un amplificateur, un temporisateur, éventuellement un circuit proportionnel-intégral-dérivée, peut être utilisé pour adapter la commande au type particulier d'avion concerné.
  • Quelle que soit la solution adoptée, on voit que le vêtement de protection peut se réduire à un pantalon anti-g, dont les poches sont également gonflables pour assurer la pressurisation nécessaire à haute altitude, et à un blouson pressurisé, sans qu'une liaison pneumatique soit nécessaire entre pantalon et blouson.
  • L'invention sera mieux comprise à la lecture de la description qui suit de dispositifs qui en constituent des modes particulieurs de réalisation, donnés à titre d'exemples non limitatifs. La description se réfère aux dessins qui l'accompagnent, dans lesquels:
    • - la figure 1 est un schéma de principe de la partie anti-g de l'installation suivant l'invention;
    • - la figure 2 est une vue schématique en coupe de la masselotte de l'installation de la figure 1, dans la position qu'elle occupe en cas d'accélération;
    • - la figure 3 montre schématiquement la variation du volume V des poches de protection en fonction de la pression Ap par rapport à l'ambiance;
    • - les figures 4 et 5 montrent des régulateurs anti-g constituant des variantes de celui de la figure 1;
    • - la figure 6 est un diagramme par blocs montrant les principaux composants d'une installation;
    • - la figure 7 montre, de façon simplifiée, un régulateur respiratoire utilisable dans l'installation de la figure 6.
  • La figure 1 montre de façon extrêmement schématique et simplifiée la partie d'une installation qui est destinée à commander la pression dans les poches de pantalon du vêtement de protection contre les accélérations.
  • L'installation est alimentée par une conduite 10 d'amenée de gaz sous pression. Ce gaz sera par exemple de l'oxygène provenant d'un convertisseur d'oxygène liquide embarqué, ou de l'air, sous une pression de quelques bars (5 bars par exemple). Les poches du pantalon sont reliées à l'installation par une conduite souple 11.
  • L'installation représentée en figure 1 (où l'échelle n'est pas respectée) comporte un certain nombre d'organes qui sont classiques et ne seront en conséquence que brièvement décrits. Ces organes comprennent une soupape principale 12 constituée par un siège fixe et une membrane. En position de repos, la membrane est appliquée sur le siège et sépare les conduites 10 et 11. Lorsqu'une chambre de commande 13, délimitée par l'arrière de la membrane et le boîtier dans lequel elle est placée, est soumise à la pression régnant dans la conduite 10, la membrane est appliquée sur son siège et ferme le passage dans la siège.
  • La pression qui règne dans la chambre 13, reliée à la conduite 10 par un orifice calibré 14, est commandée par un clapet pilote 15. Ce clapet pilote comporte une membrane sensible de régulation 16 commandant un élément d'obturation 17 qui coopère avec un siège fixe pour mettre en communication la chambre 13 avec la conduite 11.
  • La pression qui règne à l'arrière de la membrane sensible 16 est à son tour déterminée par des clapets de commande et de sécurité. De façon classique, un clapet de sécurité 18, taré par exemple à 470 mbars, évite l'apparition d'une surpression excessive à l'arrière de la membrane 16. Une soupape 19 permet à l'air contenu dans les poches de s'échapper à l'atmosphère, dans la direction indiquée par la flèche F', lorsque la pression appliquée à l'arrière de la membrane 16 diminue.
  • Le clapet de commande en fonction de l'accélération est actionné par une masselotte perfectionnée par rapport à celles antérieurement connues.
  • Cette masselote (figure 2) comporte une masse 20 de quelques dizaines de grammes contenue dans une chambre 21 ménagée dans un boîtier fixe et reliée à l'atmosphère. La masse 20 est portée par une membrane 22 dont la périphérie est fixée au boîtiér. Cette membrane est disposée transversalement au sens A des accélérations à détecter. Sa partie interne est fixée à demeure sur le pourtour de la masse 20, de telle façon que, au repos, le plan de la membrane passe approximativement par le centre de gravité de la masse 20. Dans la masse 20 est ménagée, dans un plan perpendiculaire à la direction A et passant approximativement par le centre de gravité de la masse, une face 23 munie d'un joint plat et destinée à s'appliquer de façon étanche contre un siège fixe 24 qui délimite un trou calibré de faible diamètre. Au repos, un ressort de rappel 25 écarte la face d'appui du siège 24. En cas d'accélération suivant la direction A, la face 23 vient s'appliquer sur le siège 24 et ferme l'orifice calibré comme indiqué sur la figure 2. Il faut noter au passage que le boîtier limite les déplacements de la masse 20 à partir du siège 24 à une longueur qui est très légèrement supérieure à la levée nécessaire.
  • La membrane pourra être en silicone moulé et être fixée à la masse soit par surmoulage, soit par emboîtage. L'orifice délimité par le siège aura généralement un diamètre très faible, de 2 à 3 mm par exemple. On voit que le boîtier tout entier pourra être miniaturisé, surtout si l'on constitue le siège 24 par un saphir qui peut être percé d'un trou de très faible diamètre.
  • La raideur du ressort pourra être telle que la masse 20 ne s'applique sur le siège 24 qu'à partir d'une accélération de 2 g environ.
  • La pression qui règne derrière la membrane 16 du clapet pilote est également modifiable en fonction de l'altitude.
  • Dans ce but, l'installation comprend une capsule altimétrique 26 scellée, soumise à la pression qui règne dans la cabine, dont une extrémité est portée par un boîtier fixe et dont l'autre extrémité porte un élément d'obturation 27 muni d'un prolongateur 28. Lorsque la pression atmosphérique est proche de sa valeur au niveau de la mer, l'organe d'obturation 27 dégage une ouverture du boîtier. Au contraire, lorsque la pression dans la cabine descend à une valeur qui est par exemple inférieure à 200 mbars absolus, la capsule 26 se dilate et l'organe 27 tend à séparer l'intérieur du boîtier d'une chambre relais 29. Le passage dans le siège 24 ne communique avec l'arrière de la membrane 16 du clapet pilote que par l'intermédiaire de cette chambre relais. Pour éviter une interférence intempestive entre l'action de la masselotte et celle de la capsule altimétrique 26, la chambre relais 29 contient un clapet double 30 qu'une lame élastique de rappel 31 maintient au repos dans une position où il sépare la chambre relais du boîtier de la capsule et, par contre, relie la chambre relais 29 au passage dans le siège 24 (figure 1). Par contre, lorsque l'organe d'obturation 27 est appliqué sur son siège, le poussoir prolongateur 28 repousse le clapet double 30 et sépare la chambre relais 29 du passage ménagé dans le siège 24.
  • La surface d'action sur l'obturateur 27 de la pression qui règne dans la chambre relais 29 est choisie de façon que la pression dans cette chambre s'établisse à une valeur fonction de la pression dans la cabine, donc de l'altitude.
  • L'installation comporte également un orifice de fuite calibré 32 reliant la conduite 10 à la chambre relais et à l'arrière de la membrane 16.
  • Dans l'installation représentée, le débit gazeux admis par la soupape 12 n'est pas envoyé directement dans les poches du pantalon de protection. Ce gaz est utilisé comme fluide d'entraînement dans un éjecteur 34 alimenté en air en provenance de la cabine par l'intermédiaire d'un clapet anti-retour 35.
  • Cette disposition présente plusieurs avantages. Le débit primaire est considérablement plus faible que le débit à fournir au pantalon, ce qui permet de miniaturiser l'installation et notamment ses organes mobiles. On réduit de façon considérable la consommation de gaz provenant de la conduite 10, ce qui est particulièrement important dans le cas où ce gaz est constitué par de l'oxygène qui alimente également le dispositif respiratoire: le rapport des débits d'air entraîné et de gaz d'entraînement peut être de 8 à 1. Enfin, les pointes de débit sont considérablement réduites et deviennent compatibles avec les possibilités des convertisseurs d'oxygène liquide.
  • On a montré sur la figure 1, en tirets, des moyens permettant de prégonfler les poches du pantalon de protection avant même que la masselotte soit soumise à une accélération. Ces moyens comportent une électrovanne 36 et un circuit électrique 37 de commande. Cette disposition est particulièrement commode à mettre en oeuvre si l'avion est muni d'un système de gouverne à transmission d'ordres par voie électrique. Dans ce cas en effet, il suffit de prélever le signal électrique sur la transmission et de le traiter. Le mode de traitement utilisé dépendra d'une part, des caractéristiques aérodynamiques et de commande de l'avion, d'autre part, de paramètres de situation, tels que par exemple la vitesse, l'altitude, etc.
  • Dans la pratique, le circuit électrique comportera en général essentiellement un temporisateur qui, à réception d'un signal indiquant que la position de gouverne va provoquer une accélération suivant la direction A, appliquera à l'électrovanne 36 un signal d'ouverture pendant une durée prédéterminée, correspondant à l'établissement d'une pression appropriée (typiquement 3 secondes).
  • L'intérêt du prégonflage des poches du pantalon de protection contre les accélérations apparaît immédiatement si l'on se reporte à la figure 3, qui montre la variation du volume V de ces poches en fonction de la pression Ap par rapport à l'ambiance. Lorsqu'on admet du gaz sous pression dans les poches, à partir d'une conduite dont le débit est forcément limité, dans une première etape le volume des poches augmente. Puis, une fois les poches complètement dilatées, le volume ne change plus et la pression augmente jusqu'à atteindre la valeur qui règne dans la conduite d'alimentation.
  • Le pilote n'est évidemment protégé qu'à partir du moment où la pression dans les poches est proche de la valeur définitive. Or, l'établissement de cette valeur peut nécessiter un temps de l'ordre de la seconde, suffisant pour que le pilote ait subi l'action des accélérations à un point tel que ses facultés s'en ressentent temporairement. Un prégonflage amenant, avant que les accélérations ne soient subies, le point représentatif de l'état des poches en 39, sur la figure 3, permet d'écarter les insuffisances des systèmes antérieurs.
  • Le prégonflage peut être effectué, comme indiqué sur la figure 1, à l'aide d'un système temporisateur qui limite indirectement la pression atteinte. On peut aussi utiliser un clapet taré associé à l'électrovanne 36, fermant l'alimentation dès que la pression arrive à la valeur indiquée par le point 39, qui peut par exemple correspondre à une pression de l'ordre des deux tiers de la pression définitive.
  • La commande électrique sera prévue pour n'intervenir que si le braquage des gouvernes annonce une accélération supérieure au seuil normalement prévu pour les valves anti-g classiques, de l'ordre de 2 g en général.
  • Le mode de réalisation de la figure 1 est susceptible de nombreuses variantes. A titre d'exemple, celui schématisé sur la figure 4 (où seuls ont été représentés les éléments appartenant à un circuit différent de celui de la figure 1 ) ne comporte pas de clapet à double effet. Le point 38, auquel se raccordent le clapet de sécurité 18, la chambre arrière du clapet pilote 15, le clapet de retour 19 et l'orifice étranglé 32, est relié directement au siège 24. Mais la chambre 21 n'est pas reliée à l'atmosphère, mais à la chambre occupée par la capsule 26. Cette dernière chambre est de son côté reliée à l'atmosphère.
  • Ce mode de réalisation est plus simple que celui de la figure 1. Mais, en contrepartie, les effets du régulateur à masselotte et de la capsule altimétrique se cumulent. En d'autres termes, la surpression qui sera créée à la sortie de la soupape 12 sera la somme de la surpression fonction de l'accélération provoquée par le régulateur et de la surpression provoquée par la capsule altimétrique. Cette solution reste cependant fiable dans la plupart des cas. En effet, la surpression reste limitée à la valeur de tarage du clapet de sécurité 18 (470 mbars par exemple).
  • On. a également indiquée sur la figure 4 un montage classique de vérification avant le vol, dont peut également être équipé le dispositif de la figure 1. Ce dispositif de vérification est placé entre la sortie 39. de la chambre occupée par la capsule altimétrique 26 et l'atmosphère. Dans le cas de la figure 1, il serait placé entre la chambre 21 et l'atmosphère. Il comprend un bouton-poussoir 40 repoussé par un ressort dans une position où il laisse communiquer la sortie 39 et l'atmosphère. En pressant sur ce bouton, l'opérateur sépare la sortie 39 de l'atmosphère, la pression augmente derrière la membrane 16 du clapet pilote et les poches du pantalon de protection se gonflent jusqu'à un niveau de pression fixé par le clapet de vérification 41.
  • Dans la variante de réalisation montrée schématiquement en figure 5, comme dans le cas de la figure 1, il n'y a pas addition des ordres, mais prépondérance de calui qui fixe la surpression la plus élevée. Le dispositif est alimenté, d'une part, par la conduite d'alimenta- . tion normale 10 en oxygène, d'autre part, par la conduite d'alimentation de secours 42 portée par le siège éjectable. Sur la figure 5, les elé- ments correspondant à ceux déjà figure 1 portent le même numéro de référence. On retrouve la masselotte 20 et ses systèmes annexes ainsi que la capsule altimétrique 26. Au lieu de pré- . voir un orifice calibré 32 alimentant le point 38, le dispositif comporte un premier orifice calibré 43 reliant la conduite d'alimentation normale 10 au passage ménagé dans le siège 24 de la masselotte et un second orifice calibré 44 reliant la conduite de secours 42 au passage de liaison entre la chambre occupée par la capsule 26 et le clapet double 30. Celui-ci n'est pas muni de ressort de rappel. Le clapet principal 12 est alimenté à partir de la conduite normale 10.
  • Cette disposition permet, en cas d'éjection, de réserver l'alimentation de secours, de capacité limitée, aux fonctions indispensables, comme on va le voir maintenant.
  • La conduite normale 10 est généralement alimentée par un convertisseur d'oxygène liquide 46 porté par l'avion. La conduite de secours 42 est munie d'une bouteille de gaz comprimé 47, munie d'un détendeur 48, portée par le siège. Un clapet anti-retour 49 permet au convertisseur 46 d'alimenter également la conduite de secours 42, sauf en cas d'éjection.
  • En fonctionnement normal, le convertisseur 46 alimente les poches du pantalon (fonction anti-g). Il alimente également le masque ou le casque du pilote et les poches du blouson (fonctions respiratoires et pressurisation).
  • En cas d'éjection à haute altitude, les poches du pantalon sont déjà gonflées; la fonction anti- . g ne peut plus être remplie, le siège 24 de la masselotte 20 perdant son alimentation; le clapet 49 se ferme, isolant la conduite 42 qui continue à alimenter la compartiment de la capsule 26. Celle-ci va, au fur et à mesure de la descente en parachute, diminuer la pression dans les poches du pantalon en diminuant la pression qui règne derrière le clapet 19.
  • En montant plusieurs clapets doubles tels que 30 en cascade, on peut mélanger un nombre d'ordres supérieur à deux, en donnant prépondérance à celui qui est le plus fort.
  • On peut remplacer la capsule altimétrique 26 par une prise de pression à partir du régulateur à la demande qui fournit du gaz respiratoire au porteur du pantalon. La prise peut être faite sur l'étage haute pression du régulateur, avec réduction intermédiaire de pression. Elle peut aussi être faite sur la sortie d'utilisation. Le clapet double 30 évite dans le cas des figures 1 et 5 toute action de la masselotte 20 sur la pression du mélange respiratoire. Le régulateur est par exemple du type décrit dans le brevet FR 74 34826, publié sous le n° 2 288 346.
  • On a jusqu'ici décrit essentiellement la commande de la pression dans les poches du pantalon pour remplir les fonctions de protection anti-g et de pressurisation. Comme on l'a indiqué plus haut, le régulateur de mélange respiratoire de l'installation est avantageusement prévu pour coopérer avec le régulateur anti-g à la protection contre les accélérations.
  • Pour mieux faire apparaître cette coopération, on a représenté sur la figure 6 un diagramme par blocs d'un exemple de réalisation. La figure 6 montre le blouson 50 et le pantalon 51 qui constituent le vêtement de protection du pilote, muni par ailleurs d'un casque de pressurisation 52. Le régulateur anti-g 53, par exemple du type illustré en figure 5, est alimenté par le convertisseur 46 ou par une autre source, telle que le compresseur d'un turboréacteur (comme représenté en tirets). Le régulateur de mélange respiratoire 54 est alimenté normalement par le convertisseur 46 et en secours par la bouteille 47. Il alimente le blouson 50 et le casque 52. Sur la figure, un trait mixte sépare les organes portés par le siège de ceux portés par la structure de l'avion, pour plus de clarté.
  • Le régulateur respiratoire 54 est avantageusement prévu pour créer une surpression en cas d'accélération. Pour cela, on peut soit ajouter au régulateur 54 une masselotte, soit lui faire parvenir un signal provenant du régulateur 53. Dans la second cas, il suffira de prélever la pression entre le siège 24 et le clapet double 30 (figure 1 ) ou bien à la sortie du régulateur 54 et de l'amener au régulateur 53 par l'intermédiaire d'un diviseur de pression 55, comme schématisé sur la figure 6. Dans le premier cas, on peut adopter la disposition schématisée sur la figure 7. Le compartiment situé en arrière de la membrane de demande 56 est relié de façon classique par une fuite calibrée 57 à l'alimentation en oxygène et, par un passage commandé par une capsule altimétrique 58, à l'atmosphère de la cabine. Mais, sur le trajet entre la capsule et l'atmosphère, est interposée une masselotte 59, prévue pour donner une surpression en fonction de l'accélération nettement moins croissante que celle commandée par la masselotte 20. Du fait que les surpressions commandées par la masselotte 59 resteront toujours faibles, il y a peu d'inconvénient à additionner les ordres de la masselotte et de la capsule. Cependant, un montage à mélange des ordres par clapet double comparable à celui des figures 1 et 5 est possible.
  • La mise du mélange respiratoire sous une surpression qui augmente en fonction de l'accélération évite l'écrasement des alvéoles pulmonaires. Une surpression de 5 à 10 mbars/g est suffisante. On voit donc qu'elle est beaucoup plus faible que la pression Ap de gonflage des poches.
  • Quel que soit le mode de réalisation utilisé, on voit qu'il est possible de simplifier de façon importante le vêtement de protection: en effet, un seul et même jeu de poches de pantalon permet d'assurer la protection contre les effets de l'accélération et contre la dépression en altitude, y compris en cas de bris de verrière ou d'éjection.

Claims (10)

1. Installation destinée à fournir le mélange respiratoire aux membres d'équipage d'avion de combat et à les protéger contre les effets de l'accélération, comprenant un régulateur de mélange respiratoire, un régulateur anti-g commandant la pression de gaz dans les poches d'un pantalon de protection contre les accélérations, dont l'organe de détection est constitué par une masselotte déplaçable suivant la direction d'accélération à laquelle est sensible le porteur du pantalon et établissant, dans lesdites poches, une pression fonction croissante de l'accélération et des moyens destinés à établir dans lesdites poches une pression fonction croissante de l'altitude, caractérisée en ce que lesdits moyens fournissent une information d'altitude au régulateur anti-g qui est réalisé pour établir dans lesdites poches de pantalon (51) celle des pressions qui correspondent l'une à l'information fournie par la masselotte (20) et l'autre à l'information fournie par lesdits moyens (26) qui est la plus élevée.
2. Installation suivant la revendication 1, caractérisée en ce que les moyens destinés à fournir au régulateur anti-g une information d'altitude sont constitués par une capsule altimétrique (26) associée à une soupape (27) ou par une prise de pression sur le régulateur de mélange respiratoire.
3. Installation suivant la revendication 1 ou 2, caractérisée en ce que la masselotte (20) est constituée par une masse suspendue par une membrane (22) placée perpendiculairement à l'axe des accélérations à détecter et dans un plan passant approximativement par le centre de gravité de la masse qui comporte une surface située perpendiculairement à la direction des accélérations à détecter, passant par le centre de gravité de la masse et destinée à s'appliquer contre un siège fixe (24) sous l'action desdites accélération, contre l'effort de moyens élastiques de ra>pel (25).
4. !nsta! ` ~tion suivant l'une quelconque des revendications précedentes, alimentée par de l'oxygène sous pression, caractérisée en ce que ledit régulateur anti-g comporte un éjecteur à venturi (34) de dilution du débit d'oxygène par de l'air en provenance de la cabine.
5. Installation suivant l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un régulateur de mélange respiratoire muni d'un système (55 ou 59) mettant ce mélange en surpression en réponse à une accélération.
6. Installation suivant la revendication 5, caractérisée en ce que la surpression est commandée soit par une masselotte additionnelle (59) prévue pour provoquer, à accélération égale, une surpression inférieure à celle commandée par la masselotte du régulateur anti-g, soit par un ordre provenant du régulateur anti-g avec interposition d'un diviseur de pression (55).
7. Installation suivant l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte au moins un clapet à double effet (30) de mélange d'ordres provenant d'organes de régulation différents, tels que l'organe (20) de détection des accélérations et l'élément (26, 27) sensible à l'altitude, pour déterminer la pression dans les poches du pantalon de protection (51) en réponse à celui des ordres qui correspond à la pression la plus élevée.
8. Installation suivant la revendication 1, 2 our 3, caractérisée en ce que le régulateur anti-g comprend une soupape principale (12) interposée entre une alimentation en gaz sous pression et lesdites poches, dont l'organe mobile est constitué par une membrane soumise à une pression réglée par un clapet pilote (15) commandé par la pression qui règne dans une chambre alimentée par une prise de pression à partir du régulateur de mélange respiratoire et par la sortie d'un clapet commandé par la masselotte et contenant un clapet à double effet automatique (30) qui sépare la chambre de l'alimentation à la pression la moins élevée.
9. Installation suivant l'une quelconque des revendications précédentes, caractérisée en ce que ledit regulateur anti-g comporte, en plus de l'organe de détection constitué par une masselotte (20), des moyens (36, 37) permettant de prégonfler, sous une pression limitée, les poches du pantalon à partir d'un ordre électrique provenant des commandes de vol lorsque celles-ci sont placées dans une position qui provoquera une accélération.
10. Installation suivant l'une quelconque des revendications précédentes, comprenant une source d'alimentation normale en oxygène, telle qu'un convertisseur d'oxygène liquide (46), et une source de secours (47), liée au siège éjectable du membre d'équipage, caractérisée par des moyens (49) pour interdire la commande de l'alimentation des poches du pantalon par la masselotte du régulateur anti-g en cas d'éjection.
EP19780400042 1977-07-01 1978-06-29 Installation respiratoire et de protection contre l'accélération pour avions de combat Expired EP0000312B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7720345 1977-07-01
FR7720345A FR2395890A1 (fr) 1977-07-01 1977-07-01 Installation respiratoire et de protection contre l'acceleration pour avions de combat

Publications (2)

Publication Number Publication Date
EP0000312A1 EP0000312A1 (fr) 1979-01-10
EP0000312B1 true EP0000312B1 (fr) 1982-07-14

Family

ID=9192874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780400042 Expired EP0000312B1 (fr) 1977-07-01 1978-06-29 Installation respiratoire et de protection contre l'accélération pour avions de combat

Country Status (4)

Country Link
US (1) US4230097A (fr)
EP (1) EP0000312B1 (fr)
DE (1) DE2861948D1 (fr)
FR (1) FR2395890A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455765A1 (fr) * 1979-05-02 1980-11-28 Intertechnique Sa Dispositif regulateur d'alimentation en gaz d'un organe recepteur
FR2551421B1 (fr) * 1983-08-31 1985-12-13 Intertechnique Sa Dispositif de protection contre les accelerations
US4638791A (en) * 1985-07-22 1987-01-27 The Boeing Company Apparatus and methods for providing rapid protection from accelerative forces experienced by aircraft crew members
US4736731A (en) * 1986-02-24 1988-04-12 The United States Of America As Represented By The Secretary Of The Air Force Rapid acting electro-pneumatic anti-G suit control valve
US4799476A (en) * 1986-09-29 1989-01-24 The Boeing Company Universal life support system
FR2614208B1 (fr) * 1987-04-22 1989-09-08 Intertechnique Sa Harnais de masque respiratoire et masque en comportant application.
US6039045A (en) * 1987-04-22 2000-03-21 Intertechnique Head harness for respiratory mask
US4915106A (en) * 1988-02-26 1990-04-10 Puritan-Bennett Corporation Crew oxygen mask with pneumatic comfort adjustment
FR2650248A1 (fr) * 1989-07-26 1991-02-01 Intertechnique Sa Dispositif de protection de membre d'equipage d'aeronef contre l'acceleration
US5127896A (en) * 1989-09-05 1992-07-07 Mcdonnell Douglas Corporation Anthropomorphic tank suit
GB8921344D0 (en) * 1989-09-21 1989-11-08 Normalair Garrett Ltd Aircraft aircrew life support apparatus
DE3941684C1 (fr) * 1989-12-18 1991-07-18 Dornier Luftfahrt Gmbh, 8031 Wessling, De
GB9005562D0 (en) * 1990-03-13 1990-05-09 Normalair Garrett Ltd Aircraft aircrew life support apparatus
US5050240A (en) * 1990-05-14 1991-09-24 Kaiser Aerospace And Electronics Corporation Air cushion helmet support and ventilation system with air pressure regulator
GB9013630D0 (en) * 1990-06-19 1990-08-08 Normalair Garrett Ltd Aircraft aircrew life support apparatus
US5153938A (en) * 1991-06-19 1992-10-13 Mcdonnell Douglas Corporation Acceleration protection ensemble and method
US5277693A (en) * 1993-01-04 1994-01-11 The United States Of America As Represented By The Secretary Of The Air Force Flight activated anti-G valve (FAAGV)
US5704073A (en) 1995-08-01 1998-01-06 Figgie International Inc. Quick donning goggles for use with breathing mask
US5816244A (en) * 1996-05-14 1998-10-06 Nellcor Puritan Bennett Incorporated Modular structural system for personal service and oxygen dispensing system modules for use in transport aircraft with improved latch and testing capability
US5954052A (en) * 1997-05-21 1999-09-21 Nellcor Puritan-Bennett Safety stowage apparatus for crew oxygen masks
FR2767304B1 (fr) 1997-08-13 1999-10-22 Intertechnique Sa Dispositif de protection contre les accelerations
US6450943B1 (en) 2000-01-18 2002-09-17 Litton Systems, Inc. Apparatus for and method of combating the gravity push-pull effect experienced by an airman wearing a flight suit
US6820616B1 (en) * 2001-08-01 2004-11-23 Scot Incorporated Combined aircrew systems tester (CAST)
US7401787B1 (en) 2004-11-12 2008-07-22 Juan Conte Inflatable combat arena game
EP2007480B1 (fr) * 2006-04-20 2018-11-14 Zodiac Aerotechnics Appareil respiratoire pour membre d'équipage
US9227091B2 (en) * 2010-09-23 2016-01-05 Zodiac Aerotechnics Oxygen regulator to deliver breathing gas in an aircraft
US9016278B2 (en) * 2011-07-25 2015-04-28 Zodiac Aerotechnics Regulation valve for a life support system
CN104399195B (zh) * 2014-11-28 2017-11-17 航宇救生装备有限公司 供氧压力调节装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1249698B (fr) *
GB890623A (en) * 1958-12-29 1962-03-07 Bendix Corp Improvements in or relating to inflatable acceleration-protection garments and pressure controlling valves therefor
US3158149A (en) * 1959-06-29 1964-11-24 Reuben F Gray Acceleration protective apparatus
GB1113235A (en) * 1964-10-08 1968-05-08 Hymatic Eng Co Ltd Improvements relating to acceleration-responsive valve assemblies
FR1520187A (fr) * 1967-04-21 1968-04-05 British Oxygen Co Ltd Régulateur de débit
US3545465A (en) * 1967-11-29 1970-12-08 Vapor Corp Pressure regulator
SE332353B (fr) * 1969-09-18 1971-02-01 I Hellqvist
US3734078A (en) * 1971-05-12 1973-05-22 Bendix Corp Means for anticipating anti-g force in a moving vehicle

Also Published As

Publication number Publication date
FR2395890A1 (fr) 1979-01-26
EP0000312A1 (fr) 1979-01-10
US4230097A (en) 1980-10-28
FR2395890B1 (fr) 1983-07-29
DE2861948D1 (en) 1982-09-02

Similar Documents

Publication Publication Date Title
EP0000312B1 (fr) Installation respiratoire et de protection contre l&#39;accélération pour avions de combat
EP0628325B1 (fr) Equipement de protection respiratoire
EP0136223B1 (fr) Dispositif de protection contre les accélérations
EP0288391B1 (fr) Harnais de masque respiratoire et masque utilisable avec un tel harnais
EP1077743B1 (fr) Equipement de protection respiratoire a mise en place rapide
FR3067612B1 (fr) Equipement respiratoire pour aeronef avec masque et harnais gonflable et son espace de rangement.
CA2361607C (fr) Architecture de systeme hydraulique de freinage d&#39;aeronef
EP2825463B1 (fr) Dispositif d&#39;inertage, réservoir et aéronef munis d&#39;un tel dispositif et procédé correspondant
CA2393078C (fr) Appareil respiratoire et installation de protection contre l&#39;hypoxie en comportant application
WO2003039679A1 (fr) Procede et dispositif de regulation a dilution pour appareil respiratoire
WO2000004956A1 (fr) Regulateur a la demande pour systeme respiratoire
EP0287461B1 (fr) Régulateur à la demande de fourniture de gaz respiratoire
EP3115264B1 (fr) Aeronef equipe d&#39;un dispositif de commande du gonflage d&#39;un ballon gonflable de securite et procede associe de commande du gonflage d&#39;un ballon gonflable de securite
EP1275416B1 (fr) Appareil respiratoire à limiteur de débit
FR2663232A1 (fr) Procede de regulation de la pression de gonflage d&#39;un vetement de protection anti-g pour homme d&#39;equipage d&#39;un avion et equipement de vie pour ce dernier.
EP0475845B1 (fr) Dispositif de protection physiologique des pilotes d&#39;avions
CA2912327C (fr) Cagoule de protection respiratoire
EP0896923B1 (fr) Dispositif de protection contre les accélérations
EP0354123B1 (fr) Dispositif d&#39;alimentation en fluide, à clapet pilote
EP0483020A1 (fr) Equipement respiratoire de protection d&#39;équipage d&#39;aéronef
CZ16514U1 (cs) Autonomní rychloměrný systém vystřelovacího sedadla
FR2651744A1 (fr) Equipement individuel de protection utilisable dans un vehicule spatial.
BE492008A (fr)
FR2761609A1 (fr) Appareil respiratoire de secours
BE379909A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB SE

17P Request for examination filed
R17P Request for examination filed (corrected)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB SE

REF Corresponds to:

Ref document number: 2861948

Country of ref document: DE

Date of ref document: 19820902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930515

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930622

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930629

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940630

EUG Se: european patent has lapsed

Ref document number: 78400042.4

Effective date: 19950110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 78400042.4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT