EP0000933A1 - Hydrophobic polyurethane foams, process for their manufacture and their use to absorb oil and halogenated hydrophobic compounds, which may be halogenated, from water - Google Patents

Hydrophobic polyurethane foams, process for their manufacture and their use to absorb oil and halogenated hydrophobic compounds, which may be halogenated, from water Download PDF

Info

Publication number
EP0000933A1
EP0000933A1 EP78100702A EP78100702A EP0000933A1 EP 0000933 A1 EP0000933 A1 EP 0000933A1 EP 78100702 A EP78100702 A EP 78100702A EP 78100702 A EP78100702 A EP 78100702A EP 0000933 A1 EP0000933 A1 EP 0000933A1
Authority
EP
European Patent Office
Prior art keywords
polyurethane foams
hydrophobic
water
compounds
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100702A
Other languages
German (de)
French (fr)
Other versions
EP0000933B1 (en
Inventor
Wolfgang Dr. Jarre
Rolf Dr. Wurmb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000933A1 publication Critical patent/EP0000933A1/en
Application granted granted Critical
Publication of EP0000933B1 publication Critical patent/EP0000933B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/281Monocarboxylic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3823Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/3825Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/905Hydrophilic or hydrophobic cellular product

Definitions

  • the invention relates to polyurethane foams having densities of from 8 to '25 g / liter, the hydrophobic virtue of their nature and their content of closed and open cells especially for the absorption of oil and optionally halogen-containing hydrophobic compounds in water are suitable.
  • polyurethane foams from polyisocyanates, polyhydroxy compounds, optionally chain extenders, auxiliaries and additives is known from numerous patent and literature publications. For example, we would like to refer to the monographs by J.H. Saunders and K.C. Frisch, High Polymers, Volume XVI "Polyurethanes” Parts I and II (Interscience Publishers, New York) and R. Vieweg and A. Höchtlen, Plastics Manual, Volume VII, Polyurethane, Carl Hanser Verlag, Kunststoff.
  • open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces.
  • No. 3,779,908 a dispersion of crude oil in water is allowed to flow through a flexible, open-cell foam for oil absorption.
  • Oleophilic semi-hard to hard foams are further distributed according to US Pat. No. 3,886,067 on oil-containing water surfaces and, after oil absorption on the foam, collected and removed again.
  • the object of the present invention was to develop polyurethane foams which do not have these disadvantages.
  • the polyurethane foams should be quickly produced on site from polyurethane systems that are space-saving in liquid form and therefore inexpensive to transport.
  • polyurethane foams are particularly suitable for absorbing oil and halogen-containing hydrophobic solvents from water if they are hydrophobic and at the same time have closed and open cells in certain proportions.
  • the present invention thus relates to hydrophobic polyurethane foams, which are characterized in that they have a density of 8 to 25 g / liter, preferably 10 to 20 g / liter, and the number of closed cells 3 to 30%, preferably 10 to 20% and the open cells 97 to 70%, preferably 90 to 80%, based on the total number of cells.
  • hydrophobic polyurethane foams according to the invention are made both from the prepolymer process and preferably from the one-shot process from organic polyisocyanates, polyhydroxy compounds, blowing agents, catalysts, optionally chain extenders, auxiliaries and additives with the additional use of lipophilic compounds, preferably based on fatty acids and / or Fatty acid derivatives, advantageously produced on site.
  • Linear and / or branched hydroxyl-containing polyethers having molecular weights of about 300 to about 10,000, preferably from about 1,000 to about 6,000 and hydroxyl numbers from about 700 to about 20, preferably from 200 to 40, are expediently used as the polyhydroxy compounds.
  • the hydroxyl-containing polyethers are prepared by reacting one or more, optionally substituted, alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains at least two active hydrogen atoms bonded.
  • alkylene oxides are: tetrahydrofuran, 1,2- and 2,3-butylene oxide and preferably Propylene oxide. Mixtures of propylene oxide and ethylene oxide with an ethylene oxide content preferably less than 20% by weight, based on the total weight of the mixture, can also be used.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • starter molecules are: water, aliphatic and aromatic dicarboxylic acids, such as adipic acid and terephthalic acid, and preferably dihydric and polyhydric alcohols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • dihydric and polyhydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • the preferred polyhydroxy compounds are di- and trifunctional hydroxyl-containing polypropylene oxides with molecular weights of 2,000 to. 6,000 used.
  • Suitable lipophilic compounds are, for example, optionally substituted, saturated and / or unsaturated aliphatic fatty acids with 10 to 25, preferably 12 to 20 carbon atoms in the molecule and their derivatives, preferably their esters with 2 to 20 carbon atoms in the alcohol radical and amides. Lipophilic fatty acid esters and amides which contain isocyanate-reactive groups and are thus incorporated into the polyurethane foam structure are particularly preferred.
  • Examples include: fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acid; Fatty acid esters, such as castor oil, tall oil and adducts from the fatty acids mentioned and propylene and / or ethylene oxide and fatty acid amides, such as oleic acid mono- and diethanolamide, ricinoleic mono- and diethanolamide and their N, N-dialkylamides, such as ricinoleic acid dimethylaminopropylamide.
  • fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acid
  • Fatty acid esters such as castor oil, tall oil and
  • the above-mentioned polyhydroxy compounds and lipophilic compounds are used in molar proportions of 1: 3 to 1:20, preferably from 1: 6 to. 1:15 and in particular about 1:10.
  • chain extenders in addition to the higher molecular weight polyhydroxy compounds.
  • the chain extenders have molecular weights less than 300, preferably from 80 to 200, and preferably have two active hydrogen atoms.
  • the polyurethane foams according to the invention are preferably produced without the use of chain extenders.
  • Water is used as the blowing agent, which reacts with isocyanate groups to form carbon dioxide. If the hydrophobic polyurethane foams according to the invention are produced by the prepolymer process, it has proven to be advantageous to foam the prepolymer having NCO end groups under water, that is to say in the presence of a large excess of water.
  • the quantitative ratio of water molecule to NCO group of the prepolymer can accordingly be as large as desired, but the value should not be less than about 5: 1. For example, molar ratios of water to NCO group in the prepolymer from 8: 1 to 1,000: 1 and larger have proven successful.
  • hydrophobic polyurethane foams according to the invention are produced by the one-shot process, it may be advantageous, depending on the type of polyhydroxy compounds and lipophilic compounds used, to mix the water used as blowing agent with a solubilizer.
  • Suitable solubilizers are all organic solvents with boiling points of 20 ° to 110 ° C., preferably 30 ° to 70 ° C., which are infinitely miscible with water and inert to isocyanate groups under the reaction conditions. Examples include acetone, methyl ethyl ketone, dioxane and tetrahydrofuran; acetone is preferably used.
  • the water is mixed with the solubilizer in such amounts that the weight ratio of water to solubilizer is 1: 1 to 10: 1, preferably 2: 1 to 4: 1.
  • the polyurethane foams according to the invention can be produced directly on site in the water. In these cases it has proven advantageous to accelerate the reaction between the polyhydroxy compounds, the water, optionally chain extenders and the lipophilic compounds, provided that these Zerewitinoff contain active groups bound in the molecule, and the highly reactive catalysts known to the organic polyisocanates, for example tertiary ones Amines, such as dimethylbenzylamine, N-methyl- or N-ethylmorpholine, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo- (3,3,0) -oetane and preferably triethylenediamine and metal salts, such as tin dioctoate, lead octoate and tin diethylhexoate and preferably tin (II) salts and dibutyltin dilaurate and preferably mixtures of tertiary amines and organic tin salts.
  • Amines such as dimethylbenzyl
  • the amount to be used is determined empirically.
  • Polyurethane foams according to the invention by the one-shot process produced locally the catalysts must and quantities selected so that the start times at reaction temperatures of 0 ° to 35 0 C for about 2 to 10 S e-customer, preferably 2 to 5 Seconds.
  • the start time (cream time) is to be understood here as the time of the trouble-free pourability of the foamable mixture, ie the time available from mixing to the start of a visible reaction, in which mixing of the starting materials, discharge from the mixing element and spraying of the reaction mass is carried out Need to become.
  • polyurethane block foams are produced from the starting components mentioned above using conventional catalysts for the production of block foam, which as such are spread out on the oil-containing water surface, can be collected and pressed out after the absorption of oil, or can be comminuted and used as filler material for absorption columns can.
  • Auxiliaries and additives can also be incorporated into the reaction mixture. Examples include stabilizers, hydrolysis protection agents, pore regulators and surface-active substances.
  • surface-active substances are considered which serve to support the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure of the foams.
  • examples include siloxane-oxyalklene copolymers and other organopolysiloxanes, oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil or castor oil esters and Vietnamese red oil, in quantities of 0.2 to 6 parts by weight per 100 parts by weight of polyisocyanate are used.
  • the polyurethane foams according to the invention can be produced by the prepolymer and preferably by the one-shot process.
  • a mixture of polybydroxy compound, lipophilic compound, water and optionally chain extender with the organic polyisocyanate is usually used in the presence of auxiliaries and additives at temperatures from 0 to 35 ° C., preferably 15 ° to 25 ° C implemented in such amounts that the ratio of Zerewitinoff active hydrogen atoms of the polyhydroxy compounds, lipophilic compounds and optionally chain extenders to the NCO group of the polyisocyanate is 0.7 to 1.3: 1, preferably about 1: 1 and the ratio all Zerewitinoff active hydrogen atoms - bonded to polyhydroxy compound, lipophilic compound, optionally chain extender and water to the NCO group of the polyisocyanate is approximately 1.3 to 5: 1, preferably 1.5 to 3: 1.
  • the starting components can be fed individually and mixed intensively in the mixing chamber.
  • catalysts, auxiliaries and additive fen to component A and to use the organic polyisocyanates as component B.
  • auxiliaries and additive fen to component A and to use the organic polyisocyanates as component B.
  • hydrophobic polyurethane foams according to the invention on water and the separation of those containing oil and / or halogen; Polyurethane foams impregnated with hydrophobic solvents from the water surface are made using known devices which are expediently installed on ships or in aircraft.
  • the prepolymers containing NCO groups are advantageously atomized under water.
  • the solvent By varying the solvent, the sinking, climbing or floating behavior can be varied within certain limits via the density of the prepolymer solution.
  • Suitable solvents are preferably those. which are readily miscible with the prepolymers containing NCO groups and the oil to be absorbed. Mention may be made, for example, of methylene chloride, toluene, cyclohexane, hexane and others.
  • the time of the conversion to polyurethanes can be influenced by the choice of catalyst.
  • the foamable prepolymer mixture is expanded with simultaneous foaming due to the carbon dioxide formed during the reaction of the prepolymers containing NCO groups with water.
  • the expanding and already expanded material rises to the water surface and absorbs the overlying oil or solvent layer from below.
  • the polyurethanes impregnated with oil and optionally halogen-containing, hydrophobic solvents can then be removed from the water using known methods surface to be separated.
  • the prepolymers containing NCO groups the polyisocyanates and mixtures of polyhydroxy compounds and lipophilic compounds already mentioned are reacted in the presence of any auxiliaries and additives in amounts such that the ratio of NCO groups to total hydroxyl of the mixture is 50: 1 to 2: 1, preferably 15: 1 to 5: 1.
  • the hydrophobic polyurethane foams according to the invention have a high absorption capacity for oil, for example crude, heating and diesel oil, and for optionally halogen-containing hydrophobic compounds, for example solvents such as hexane, benzene, toluene, Aniline, chloroform, carbon tetrachloride, dichloroethane and hexachlorocyclopentadiene.
  • oil for example crude, heating and diesel oil
  • halogen-containing hydrophobic compounds for example solvents such as hexane, benzene, toluene, Aniline, chloroform, carbon tetrachloride, dichloroethane and hexachlorocyclopentadiene.
  • the prepolymer solution containing NCO groups is then atomized under water.
  • the specific weight of the prepolymer containing NCO groups is 1.3546 g / cm 3 without solvent.
  • the density of the prepolymer solution can be varied from 0.922 to 1.333 g / cm 3 by mixing the prepolymer with organic solvents.
  • the tests show the very high oil absorption capacity of the foams according to the invention in comparison to conventional rigid and flexible foams.

Abstract

Hydrophobe Polyurethanschaumstoffe mit Dichten von 8 bis 25 g/Liter, bei denen die Zahl der geschlossenen Zellen 3 bis 30% und der offenen Zellen 97 bis 70%, bezogen auf die Gesamtzahl der Zellen, beträgt, werden erhalten aus üblichen Ausgangskomponenten für Polyurethanschaumstoffe unter zusätzlicher Mitverwendung von lipophilen Verbindungen, insbesondere gegebenenfalls substituierten gesättigten und/oder ungesättigten aliphatischen Fettsäuren mit 10 bis 25 Kohlenstoffatomen sowie deren Ester und Amide in bestimmten Mengenverhältnissen. Die hydrophoben Polyurethanschaumstoffe eignen sich vorzüglich zur Absorption von Öl und/oder gegebenenfalls halogenhaltigen, hydrophoben Lösungsmitteln aus Wasser.Hydrophobic polyurethane foams with densities of 8 to 25 g / liter, in which the number of closed cells 3 to 30% and the open cells 97 to 70%, based on the total number of cells, are obtained from conventional starting components for polyurethane foams with additional Use of lipophilic compounds, in particular optionally substituted saturated and / or unsaturated aliphatic fatty acids with 10 to 25 carbon atoms and their esters and amides in certain proportions. The hydrophobic polyurethane foams are particularly suitable for the absorption of oil and / or optionally halogen-containing, hydrophobic solvents from water.

Description

Die Erfindung betrifft Polyurethanschaumstoffe mit Dichten von 8 bis' 25 g/Liter, die aufgrund ihres hydrophoben Charakters und ihres Gehalts an geschlossenen und offenen Zellen vorzüglich zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen in Gewässern geeignet sind.The invention relates to polyurethane foams having densities of from 8 to '25 g / liter, the hydrophobic virtue of their nature and their content of closed and open cells especially for the absorption of oil and optionally halogen-containing hydrophobic compounds in water are suitable.

Die Herstellung von Polyurethanschaumstoffen aus Polyisocyanaten, Polyhydroxyverbindungen, gegebenenfalls Kettenverlängerungsmitteln, Hilfs- und Zusatzstoffen ist aus zahlreichen Patent- und Literaturveröffentlichungen bekannt. Verweisen möchten wir beispielsweise auf die Monographien von J.H. Saunders und K.C. Frisch, High Polymers, Band XVI "Polyurethanes" Teil I und II (Verlag Interscience Publishers, New York) und R. Vieweg und A. Höchtlen, Kunststoff-Handbuch, Band VII, Polyurethane, Carl Hanser Verlag, München.The production of polyurethane foams from polyisocyanates, polyhydroxy compounds, optionally chain extenders, auxiliaries and additives is known from numerous patent and literature publications. For example, we would like to refer to the monographs by J.H. Saunders and K.C. Frisch, High Polymers, Volume XVI "Polyurethanes" Parts I and II (Interscience Publishers, New York) and R. Vieweg and A. Höchtlen, Plastics Manual, Volume VII, Polyurethane, Carl Hanser Verlag, Munich.

Es ist ferner vorgeschlagen worden, zur Ölabsorption von Wasseroberflächen offenzellige Schaumstoffe aus Polyurethanen, Harnstoff-Formaldehydkondensaten, Polystyrol, Celluloseacetat u.a. zu verwenden. Nach Angaben der US-PS 3 779 908 läßt man zur Ölabsorption eine Dispersion von Rohöl in Wasser durch einen flexiblen, offenzelligen Schaumstoff fließen. Oleophile halbharte bis harte Schaumstoffe werden ferner gemäß US-PS 3 886 067 auf ölhaltigen Wasseroberflächen verteilt und nach erfolgter ölabsorption an den Schaumstoff wieder gesammelt und entfernt.It has also been proposed to use open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces. According to the No. 3,779,908, a dispersion of crude oil in water is allowed to flow through a flexible, open-cell foam for oil absorption. Oleophilic semi-hard to hard foams are further distributed according to US Pat. No. 3,886,067 on oil-containing water surfaces and, after oil absorption on the foam, collected and removed again.

Nachteilig an den beschriebenen Verfahren ist, daß sie auf offener See, insbesondere bei rauhem Seegang, nicht angewandt werden können, der Transport der voluminösen Schaumstoffpartikel an den Einsatzort kostspielig ist und die Ölaufnahme gering ist, da offenzellige Schaumstoffpartikel in Wasser rasch absinken und geschlossenzellige eine zu geringe Oberfläche aufweisen.The disadvantages of the described methods are that they cannot be used on the open sea, especially in rough seas, the transport of the voluminous foam particles to the place of use is expensive and the oil absorption is low, since open-cell foam particles sink rapidly in water and closed-celled ones too have a small surface area.

Aufgabe der vorliegenden Erfindung war es, Polyurethanschaumstoffe zu entwickeln, die diese Nachteile nicht aufweisen. Die Polyurethanschaumstoffe sollten am Einsatzort aus Poly- urethansystemen,die in flüssiger Form raumsparend und daher preisgünstig transportabel sind, schnell hergestellt werden.The object of the present invention was to develop polyurethane foams which do not have these disadvantages. The polyurethane foams should be quickly produced on site from polyurethane systems that are space-saving in liquid form and therefore inexpensive to transport.

Überraschenderweise wurde gefunden, daß Polyurethanschaumstoffe zur Absorption von Öl und halogenhaltigen hydrophoben Lösungsmitteln aus Wasser besonders dann geeignet sind, wenn sie hydrophob sind und gleichzeitig geschlossene und offene Zellen in bestimmten Verhältnissen besitzen.Surprisingly, it has been found that polyurethane foams are particularly suitable for absorbing oil and halogen-containing hydrophobic solvents from water if they are hydrophobic and at the same time have closed and open cells in certain proportions.

Gegenstand der vorliegenden Erfindung sind somit hydrophobe Polyurethanschaumstoffe, die dadurch gekennzeichnet sind, daß sie eine Dichte von 8 bis 25 g/Liter, vorzugsweise von 10 bis 20 g/Liter, besitzen und die Zahl der geschlossenen Zellen 3 bis 30 %, vorzugsweise 10 bis 20 % und der offenen Zellen 97 bis 70 %, vorzugsweise 90 bis 80 %, bezogen auf die Gesamtzahl der Zellen, beträgt.The present invention thus relates to hydrophobic polyurethane foams, which are characterized in that they have a density of 8 to 25 g / liter, preferably 10 to 20 g / liter, and the number of closed cells 3 to 30%, preferably 10 to 20% and the open cells 97 to 70%, preferably 90 to 80%, based on the total number of cells.

Die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe werden sowohl nach dem Präpolymerverfahren als auch vorzugsweise nach dem one shot-Verfahren aus organischen Polyisocyanaten, Polyhydroxyverbindungen, Treibmitteln, Katalysatoren, gegebenenfalls Kettenverlängerungsmitteln, Hilfs-und Zusatzmitteln unter zusätzlicher Mitverwendung von lipophilen Verbindungen, vorzugsweise auf Basis von Fettsäuren und/oder Fettsäurederivaten, vorteilhafterweise am Einsatzort, hergestellt.The hydrophobic polyurethane foams according to the invention are made both from the prepolymer process and preferably from the one-shot process from organic polyisocyanates, polyhydroxy compounds, blowing agents, catalysts, optionally chain extenders, auxiliaries and additives with the additional use of lipophilic compounds, preferably based on fatty acids and / or Fatty acid derivatives, advantageously produced on site.

Zu den zur Herstellung der hydrophoben Polyurethanschaumstoffe verwendbaren Aufbaukomponenten ist folgendes auszuführen:

  • Als organische Polyisocyanate kommen vorzugsweise aromatische Di- und Polyisocyanate in Frage. Im einzelnen seien z. B. genannt: 2,4- und 2,6-Toluylen-diisocyanat, 2,4'-, 4,4'-und 2,2'-Diphenylmethan-diisocyanat sowie deren Isomerengemische und Mischungen aus Toluylendiisocyanaten und Diphenylmethandiisocyanaten. Vorzugsweise verwendet werden jedoch technische Mischungen aus Diphenylmethan-diisocyanaten und Polyphenylpolymethylen-Polyisocyanaten (Roh-MDJ).
The following is to be stated about the structural components that can be used to produce the hydrophobic polyurethane foams:
  • Aromatic di- and polyisocyanates are preferred as organic polyisocyanates. In particular, for. B. called: 2,4- and 2,6-tolylene diisocyanate, 2,4'-, 4,4'-and 2,2'-diphenylmethane diisocyanate and their mixtures of isomers and mixtures of tolylene diisocyanates and diphenylmethane diisocyanates. However, technical mixtures of diphenylmethane diisocyanates and polyphenylpolymethylene polyisocyanates (raw MDJ) are preferably used.

Als Polyhydroxyverbindungen werden zweckmäßigerweise lineare und/oder verzweigte hydroxylgruppenhaltige Polyäther mit Molekulargewichten von ungefähr 300 bis ungefähr 10 000, vorzugsweise von ungefähr 1 000 bis ungefähr 6 000 und Hydroxylzahlen von ungefähr 700 bis ungefähr 20, vorzugsweise von 200 bis 40 verwendet. Die hydroxylgruppenhaltigen Polyäther werden durch Umsetzung von einem oder mehreren, gegebenenfalls substituierten Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen im Alkylenrest mit einem Startermolekül, das mindestens zwei aktive Wasserstoffatome gebunden enhält, hergestellt. Als Alkylenoxide seien beispielhaft genannt: Tetrahydrofuran, 1,2- und 2,3-Butylenoxid und vorzugsweise Propylenoxid. Verwendet werden können ferner Mischungen aus Propylenoxid und Äthylenoxid mit einem Äthylenoxidgehalt vorzugsweise kleiner als 20 Gew.%, bezogen auf das Gesamtgewicht der Mischung. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden.Linear and / or branched hydroxyl-containing polyethers having molecular weights of about 300 to about 10,000, preferably from about 1,000 to about 6,000 and hydroxyl numbers from about 700 to about 20, preferably from 200 to 40, are expediently used as the polyhydroxy compounds. The hydroxyl-containing polyethers are prepared by reacting one or more, optionally substituted, alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains at least two active hydrogen atoms bonded. Examples of alkylene oxides are: tetrahydrofuran, 1,2- and 2,3-butylene oxide and preferably Propylene oxide. Mixtures of propylene oxide and ethylene oxide with an ethylene oxide content preferably less than 20% by weight, based on the total weight of the mixture, can also be used. The alkylene oxides can be used individually, alternately in succession or as mixtures.

Als Startermoleküle kommen beispielsweise in Betracht: Wasser, aliphatische und aromatische Dicarbonsäuren, wie Adipinsäure und Terephthalsäure und vorzugsweise zwei- und mehrwertige Alkohole, wie Äthylenglykol, Propandiol-1,2, Propandiol-1,3, Butandiol-1,4, Hexandiol-1,6, Glycerin, Trimethylolpropan, Hexantriol-2,4,6, Pentaerythrit, Sorbit und Saccharose.Examples of suitable starter molecules are: water, aliphatic and aromatic dicarboxylic acids, such as adipic acid and terephthalic acid, and preferably dihydric and polyhydric alcohols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.

Als Polyhydroxyverbindungen werden vorzugsweise di- und trifunktionelle hydroxylgruppenhaltige Polypropylenoxide mit Molekulargewichten von 2 000 bis. 6 000 verwendet.The preferred polyhydroxy compounds are di- and trifunctional hydroxyl-containing polypropylene oxides with molecular weights of 2,000 to. 6,000 used.

Geeignete lipophile Verbindungen sind beispielsweise gegebenenfalls substituierte, gesättigte und/oder ungesättigte aliphatische Fettsäuren mit 10 bis 25, vorzugsweise 12 bis 20 Kohlenstoffatomen im Molekül sowie deren Derivate, vorzugsweise deren Ester mit 2 bis 20 Kohlenstoffatomen im Alkoholrest und Amide. Besonders bevorzugt sind solche lipophilen Fettsäureester und -amide, die mit Isocyanat reagierende Gruppen gebunden enthalten und so ins Polyurethanschaumstoffgerüst eingebaut werden. Im einzelnen seien beispielhaft genannt: Fettsäuren, wie Caprin-, Laurin-, Myristin-, Palmitin-, Stearin-, Arachin-, Lignocerin-, Palmitin-, Öl-, Ricinolein-, Linolsäure und Linolensäure; Fettsäureester, wie Ricinusöl, Tallöl und Addukte aus den genannten Fettsäuren und Propylen- und/oder Äthylenoxid und Fettsäureamide, wie Ölsäuremono- und -diäthanolamid, Ricinolsäuremono- und -diäthanolamid sowie deren N,N-Dialkylamide, wie Ricinolsäure-dimethylaminopropylamid.Suitable lipophilic compounds are, for example, optionally substituted, saturated and / or unsaturated aliphatic fatty acids with 10 to 25, preferably 12 to 20 carbon atoms in the molecule and their derivatives, preferably their esters with 2 to 20 carbon atoms in the alcohol radical and amides. Lipophilic fatty acid esters and amides which contain isocyanate-reactive groups and are thus incorporated into the polyurethane foam structure are particularly preferred. Examples include: fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acid; Fatty acid esters, such as castor oil, tall oil and adducts from the fatty acids mentioned and propylene and / or ethylene oxide and fatty acid amides, such as oleic acid mono- and diethanolamide, ricinoleic mono- and diethanolamide and their N, N-dialkylamides, such as ricinoleic acid dimethylaminopropylamide.

Zur Herstellung der erfindungsgemäßen hydrophoben Polyurethanschaumstoffe werden die obengenannten Polyhydroxyverbindungen und lipophilen Verbindungen in molaren Mengenverhältnissen von 1 : 3 bis 1 : 20, vorzugsweise von 1 : 6 bis .1 : 15 und insbesondere von ungefähr 1 : 10 verwendet.For the production of the hydrophobic polyurethane foams according to the invention, the above-mentioned polyhydroxy compounds and lipophilic compounds are used in molar proportions of 1: 3 to 1:20, preferably from 1: 6 to. 1:15 and in particular about 1:10.

Gegebenenfalls kann es zweckmäßig sein, neben den höhermolekularen Polyhydroxyverbindungen zusätzlich Kettenverlängerungsmittel zu verwenden. Die Kettenverlängerungsmittel besitzen Molekulargewichte kleiner als 300, vorzugsweise von 80 bis 200, und weisen vorzugsweise zwei aktive Wasserstoffatome auf. In Betracht kommen beispielsweise aliphatische und/oder aromatische Diole mit 2 bis 14, vorzugsweise 4 bis 10 Kohlenstoffatomen, wie Äthylenglykol, Propandiol, Decandlol-1,10 und vorzugsweise Butandiol-1,4, Hexandiol-1,6 und Bis-(2-hydroxyäthyl)-hydrochinon. Die erfindungsgemäßen Polyurethanschaumstoffe werden jedoch vorzugsweise ohne Mitverwendung von Kettenverlängerungsmitteln hergestellt.It may be appropriate to use chain extenders in addition to the higher molecular weight polyhydroxy compounds. The chain extenders have molecular weights less than 300, preferably from 80 to 200, and preferably have two active hydrogen atoms. For example, aliphatic and / or aromatic diols with 2 to 14, preferably 4 to 10 carbon atoms, such as ethylene glycol, propanediol, decanedol-1.10 and preferably 1,4-butanediol, 1,6-hexanediol and bis- (2- hydroxyethyl) hydroquinone. However, the polyurethane foams according to the invention are preferably produced without the use of chain extenders.

Als Treibmittel wird Wasser verwendet, das mit Isocyanatgruppen unter Bildung von Kohlendioxid reagiert. Werden die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe nach dem Präpolymerverfahren hergestellt, so hat es sich als vorteilhaft erwiesen, das NCO-Endgruppen aufweisende Präpolymere unter Wasser, das heißt in Gegenwart eines großen Wasserüberschusses zu verschäumen. Das Mengenverhältnis von Wassermolekül zu NCO-Gruppe des Präpolymeren kann demnach beliebig groß sein, wobei der Wert von ungefähr 5 : 1 jedoch zweckmäßigerweise nicht unterschritten werden sollte. Gut bewährt haben sich beispielsweise molare Mengenverhältnisse von Wasser zu NCO-Gruppe im Präpolymeren von 8 : 1 bis 1 000 : 1 und größer.Water is used as the blowing agent, which reacts with isocyanate groups to form carbon dioxide. If the hydrophobic polyurethane foams according to the invention are produced by the prepolymer process, it has proven to be advantageous to foam the prepolymer having NCO end groups under water, that is to say in the presence of a large excess of water. The quantitative ratio of water molecule to NCO group of the prepolymer can accordingly be as large as desired, but the value should not be less than about 5: 1. For example, molar ratios of water to NCO group in the prepolymer from 8: 1 to 1,000: 1 and larger have proven successful.

Werden die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe jedoch nach dem one shot-Verfahren hergestellt, so kann es je nach Art der verwendeten Polyhydroxyverbindungen und lipophilen Verbindungen gegebenenfalls vorteilhaft sein, das als Treibmittel dienende Wasser mit einem Lösungsvermittler zu vermischen. Als Lösungsvermittler sind alle organischen Lösungsmittel mit Siedepunkten von 20° bis 110°C, vorzugsweise 30° bis 70°C geeignet, die unbegrenzt mit Wasser mischbar und unter den Reaktionsbedingungen gegenüber Isocyanatgruppen inert sind. Genannt seien beispielsweise Aceton, Methyläthylketon, Dioxan und Tetrahydrofuran, vorzugsweise verwendet wird Aceton. Das Wasser wird hierzu mit dem Lösungsvermittler in solchen Mengen gemischt, daß das Gewichtsverhältnis von Wasser zu Lösungsvermittler 1 : 1 bis 10 : 1, vorzugsweise 2 : 1 bis 4 : 1 beträgt.However, if the hydrophobic polyurethane foams according to the invention are produced by the one-shot process, it may be advantageous, depending on the type of polyhydroxy compounds and lipophilic compounds used, to mix the water used as blowing agent with a solubilizer. Suitable solubilizers are all organic solvents with boiling points of 20 ° to 110 ° C., preferably 30 ° to 70 ° C., which are infinitely miscible with water and inert to isocyanate groups under the reaction conditions. Examples include acetone, methyl ethyl ketone, dioxane and tetrahydrofuran; acetone is preferably used. For this purpose, the water is mixed with the solubilizer in such amounts that the weight ratio of water to solubilizer is 1: 1 to 10: 1, preferably 2: 1 to 4: 1.

Die erfindungsgemäßen Polyurethanschaumstoffe können direkt vor-Ort in den Gewässern hergestellt werden. In diesen Fällen hat es sich als vorteilhaft erwiesen, der Reaktionsmischung zur Beschleunigung der Umsetzung zwischen den Polyhydroxyverbindungen, dem Wasser, gegebenenfalls Kettenverlängerungsmitteln und den lipophilen Verbindungen, sofern diese Zerewitinoff aktive Gruppen im Molekül gebunden enthalten, und den organischen Polyisocanaten bekannte hochreaktive Katalysatoren,beispielsweise tertiäre Amine, wie Dimethylbenzylamin, N-Methyl- bzw. N-Äthylmorpholin, Dimethylpiperazin, 1,2-Dimethylimidazol, 1-Aza-bicyclo-(3,3,0)-oetan und vorzugsweise Triäthlendiamin und Metallsalze, wie Zinn-dioctoat, Bleioctoat und Zinn-diäthylhexoat und vorzugsweise Zinn-II-salze und Dibutylzinndilaurat sowie vorzugsweise Mischungen aus tertiären Aminen und organischen Zinnsalzen hinzuzufügen. Zur Erzielung von verschäumungstechnisch günstigen Reaktionszeiten wird in Abhängigkeit von der durch Konstitution bestimmten Reaktivität des gewählten Katalysators bzw. des Katalysatorgemisches die einzusetzende Menge empirisch ermittelt. Werden die erfindungsgemäßen Polyurethanschaumstoffe nach dem one shot-Verfahren vor Ort hergestellt, so müssen die Katalysatoren und -mengen so ausgewählt werden, daß die Startzeiten bei Reaktionstemperaturen von 0° bis 350C ungefähr 2 bis 10 Se-kunden, vorzugsweise 2 bis 5 Sekunden betragen. Als Startzeit (cream-time) ist hierbei die Zeit der störungsfreien Vergießbarkeit der schaumfähigen Mischung zu verstehen, d.h. der zur Verfügung stehende Zeitabschnitt vom Vermischen bis zum Beginn einer sichtbaren Reaktion, in welchem Vermischen der Ausgangstoffe, Austrag aus dem Mischorgan und Versprühen der Reaktionsmasse durchgeführt werden müssen.The polyurethane foams according to the invention can be produced directly on site in the water. In these cases it has proven advantageous to accelerate the reaction between the polyhydroxy compounds, the water, optionally chain extenders and the lipophilic compounds, provided that these Zerewitinoff contain active groups bound in the molecule, and the highly reactive catalysts known to the organic polyisocanates, for example tertiary ones Amines, such as dimethylbenzylamine, N-methyl- or N-ethylmorpholine, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo- (3,3,0) -oetane and preferably triethylenediamine and metal salts, such as tin dioctoate, lead octoate and tin diethylhexoate and preferably tin (II) salts and dibutyltin dilaurate and preferably mixtures of tertiary amines and organic tin salts. In order to achieve reaction times which are favorable in terms of foaming, depending on the reactivity of the chosen catalyst or the catalyst mixture determined by constitution the amount to be used is determined empirically. Polyurethane foams according to the invention by the one-shot process produced locally, the catalysts must and quantities selected so that the start times at reaction temperatures of 0 ° to 35 0 C for about 2 to 10 S e-customer, preferably 2 to 5 Seconds. The start time (cream time) is to be understood here as the time of the trouble-free pourability of the foamable mixture, ie the time available from mixing to the start of a visible reaction, in which mixing of the starting materials, discharge from the mixing element and spraying of the reaction mass is carried out Need to become.

Nach einer anderen Verfahrensvariante werden aus den obengenannten Ausgangskomponenten unter Verwendung von üblichen Katalysatoren zur Blockschaumherstellung Polyurethan-Blockschaumstoffe hergestellt, die als solche auf der ölhaltigen Wasseroberfläche ausgebreitet, nach der Absorption von Öl eingesammelt und ausgepreßt werden können oder die zerkleinert und als Füllmaterial für Absorptionssäulen Anwendung finden können.According to another process variant, polyurethane block foams are produced from the starting components mentioned above using conventional catalysts for the production of block foam, which as such are spread out on the oil-containing water surface, can be collected and pressed out after the absorption of oil, or can be comminuted and used as filler material for absorption columns can.

Der Reaktionsmischung können auch noch Hilfsmittel und Zusatzstoffe einverleibt werden. Genannt seien beispielsweise Stabilisatoren, Hydrolysenschutzmittel, Porenregler und oberflächenaktive Stoffe.Auxiliaries and additives can also be incorporated into the reaction mixture. Examples include stabilizers, hydrolysis protection agents, pore regulators and surface-active substances.

In Betracht kommen beispielsweise oberflächenaktive Substanzen, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur der Schaumstoffe zu regulieren. Genannt seien beispielhaft Siloxan-Oxyalklen-Mischpolymerisate und andere Organopolysiloxane, oxäthylierte Alkylphenole, oxäthylierte Fettalkohole, Paraffinöle, Rizinusöl- bzw. Rizinolsäureester und Türkischrotöl, die in Mengen von 0,2 bis 6 Gewichtsteilen pro 100 Gewichtsteile Polyisocyanat angewandt werden.For example, surface-active substances are considered which serve to support the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure of the foams. Examples include siloxane-oxyalklene copolymers and other organopolysiloxanes, oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil or castor oil esters and Turkish red oil, in quantities of 0.2 to 6 parts by weight per 100 parts by weight of polyisocyanate are used.

Nähere Angaben über die obengenannten üblichen Zusatz- und Hilfsstoffe sind der Fachliteratur, beispielsweise der Monographie von Saunders und Frisch "High Polymers" Band XVI, "Polyurethanes", Teil 1 und 2, 1967 zu entnehmen.Further information on the above-mentioned customary additives and auxiliaries can be found in the specialist literature, for example the monograph by Saunders and Frisch "High Polymers" Volume XVI, "Polyurethanes", Parts 1 and 2, 1967.

Wie bereits dargelegt wurde, können die erfindungsgemäßen Polyurethanschaumstoffe nach dem Präpolymer- und vorzugsweise nach dem one shot-Verfahren hergestellt werden.As already explained, the polyurethane foams according to the invention can be produced by the prepolymer and preferably by the one-shot process.

Erfolgt die Polyurethansehaumstoffherstellung nach dem one shot-Verfahren, so wird üblicherweise eine Mischung aus Polybydroxyverbindung, lipophiler Verbindung, Wasser und gegebenenfalls Kettenverlängerungsmittel mit dem organischen Polyisocyanat in Gegenwart von Hilfs- und Zusatzstoffen bei Temperaturen von 00 bis 35°C, vorzugsweise 15° bis 25°C in solchen Mengen zur Umsetzung gebracht, daß das Verhältnis von Zerewitinoff aktiven Wasserstoffatomen der Polyhydroxyverbindungen, lipophilen Verbindungen und gegebenenfalls Kettenverlängerungsmitteln zu NCO-Gruppe des Polyisocyanats 0,7 bis 1,3 : 1, vorzugsweise ungefähr 1 : 1 beträgt und das Verhältnis sämtlicher Zerewitinoff aktiver Wasserstoffatome - gebunden an Polyhdroxyverbindung, lipophile Verbindung, gegebenenfalls Kettenverlängerungsmittel und Wasser zu NCO-Gruppe des Polyisocyanats ungefähr 1,3 bis 5 : 1, vorzugsweise von 1,5 bis 3 : 1 ist. Bei Verwendung einer Mischkammer mit mehreren Zulaufdüsen können die Ausgangskomponenten einzeln zugeführt und in der Mischkammer intensiv vermischt werden. Als besonders zweckmäßig hat es sich jedoch erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten und die Mischung aus Polyhydroxyverbindung, lipophiler Verbindung, gegebenenfalls Kettenverlängerungsmittel und Wasser sowie Katalysatoren, Hilfsmitteln und Zusatzstoffen zu der Komponente A zu vereinigen und als Komponente B die organischen Polyisocyanate zu verwenden. Vorteilhaft ist hierbei nicht nur, daß die Komponenten A und B getrennt beschränkte Zeit gelagert und raumsparend transportiert werden können, sondern vorteilhaft ist insbesondere., daß die Komponenten zur Herstellung der Polyurethanschaumstoffe vor Ort nur intensiv gemischt werden müssen. Die Verteilung der erfindungsgemäßen hydrophoben Polyurethanschaumstoffe auf Gewässern sowie die Abtrennung der mit Öl und/oder halogenhaltigen; hydrophoben Lösungsmitteln getränkten Polyurethanschaumstoffe von der Wasseroberfläche erfolgt mit Hilfe bekannter Vorrichtungen, die zweckmäßigerweise auf Schiffen oder in Flugzeugen installiert sind.If the polyurethane foam is produced by the one shot process, a mixture of polybydroxy compound, lipophilic compound, water and optionally chain extender with the organic polyisocyanate is usually used in the presence of auxiliaries and additives at temperatures from 0 to 35 ° C., preferably 15 ° to 25 ° C implemented in such amounts that the ratio of Zerewitinoff active hydrogen atoms of the polyhydroxy compounds, lipophilic compounds and optionally chain extenders to the NCO group of the polyisocyanate is 0.7 to 1.3: 1, preferably about 1: 1 and the ratio all Zerewitinoff active hydrogen atoms - bonded to polyhydroxy compound, lipophilic compound, optionally chain extender and water to the NCO group of the polyisocyanate is approximately 1.3 to 5: 1, preferably 1.5 to 3: 1. When using a mixing chamber with several inlet nozzles, the starting components can be fed individually and mixed intensively in the mixing chamber. However, it has proven particularly expedient to work according to the two-component process and the mixture of polyhydroxy compound, lipophilic compound, optionally chain extender and water, as well as catalysts, auxiliaries and additive fen to component A and to use the organic polyisocyanates as component B. It is advantageous here not only that components A and B can be stored separately for limited time and transported in a space-saving manner, but it is particularly advantageous that the components for producing the polyurethane foams only have to be mixed intensively on site. The distribution of the hydrophobic polyurethane foams according to the invention on water and the separation of those containing oil and / or halogen; Polyurethane foams impregnated with hydrophobic solvents from the water surface are made using known devices which are expediently installed on ships or in aircraft.

Werden die Polyurethanschaumstoffe nach dem Präpolymerverfahren hergestellt, so werden die NCO-Gruppen aufweisende Präpolymeren, vorzugsweise in Form von Lösungen in organischen Lösungsmitteln, vorteilhafterweise unter Wasser verdüst. Durch Variation des Lösungsmittels kann das Sink-, Steig-oder Schwebeverhalten über die Dichte der Präpolymerlösung in gewissen Grenzen variiert werden. Als geeignete Lösungsmittel kommen vorzugsweise solche in Betracht,. die mit dem NCO-Gruppen aufweisenden Präpolymeren und dem zu absorbierenden Öl gut mischbar sind. Genannt seien beispielsweise Methylenchlorid, Toluol, Cylclohexan, Hexan u.a. Durch Wahl des Katalysators kann der Zeitpunkt der Umsetzung zu Polyurethanen beeinflußt werden. Durch das bei der Reaktion der NCO-Gruppen haltigen Präpolymeren mit Wasser gebildete Kohlendioxid wird die schaumfähige Präpolymermischung unter gleichzeitigem Aufschäumen aufgetrieben. Das expandierende und bereits expandierte Material steigt an die Wasseroberfläche und absorbiert von unten die aufliegende Öl- bzw. Lösungsmittelschicht. Die mit Öl und gegebenenfalls halogenhaltigen, hydrophoben Lösungsmittel getränkten Polyurethane können danach mit bekannten Methoden von der Wasseroberfläche abgetrennt werden. Zur Herstellung der NCO-Gruppen haltigen Präpolymeren werden die bereits genannten Polyisocyanate und Mischungen aus Polyhydroxyverbindungen und lipophilen Verbindungen in Gegenwart von gegebenenfalls Hilfs- und Zusatzstoffen in solchen Mengen zur Umsetzung gebracht, daß das Verhältnis von NCO-Gruppen zu Gesamthydroxyl der Mischung 50 : 1 bis 2 : 1, vorzugsweise 15 : 1 bis 5 : 1 beträgt.If the polyurethane foams are produced by the prepolymer process, the prepolymers containing NCO groups, preferably in the form of solutions in organic solvents, are advantageously atomized under water. By varying the solvent, the sinking, climbing or floating behavior can be varied within certain limits via the density of the prepolymer solution. Suitable solvents are preferably those. which are readily miscible with the prepolymers containing NCO groups and the oil to be absorbed. Mention may be made, for example, of methylene chloride, toluene, cyclohexane, hexane and others. The time of the conversion to polyurethanes can be influenced by the choice of catalyst. The foamable prepolymer mixture is expanded with simultaneous foaming due to the carbon dioxide formed during the reaction of the prepolymers containing NCO groups with water. The expanding and already expanded material rises to the water surface and absorbs the overlying oil or solvent layer from below. The polyurethanes impregnated with oil and optionally halogen-containing, hydrophobic solvents can then be removed from the water using known methods surface to be separated. To prepare the prepolymers containing NCO groups, the polyisocyanates and mixtures of polyhydroxy compounds and lipophilic compounds already mentioned are reacted in the presence of any auxiliaries and additives in amounts such that the ratio of NCO groups to total hydroxyl of the mixture is 50: 1 to 2: 1, preferably 15: 1 to 5: 1.

Die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe besitzen aufgrund ihres chemischen Aufbaus, ihrer Dichte und des Verhältnisses von offenen zu geschlossenen Zellen ein hohes Absorptionsvermögen für Öl, beispielsweise Roh-, Heiz- und Dieselöl sowie für gegebenenfalls halogenhaltige hydrophobe Verbindungen, beispielsweise Lösungsmittel wie Hexan, Benzol, Toluol, Anilin, Chloroform, Tetrachlorkohlenstoff, Dichloräthan und Hexachlorcyclopentadien.Because of their chemical structure, their density and the ratio of open to closed cells, the hydrophobic polyurethane foams according to the invention have a high absorption capacity for oil, for example crude, heating and diesel oil, and for optionally halogen-containing hydrophobic compounds, for example solvents such as hexane, benzene, toluene, Aniline, chloroform, carbon tetrachloride, dichloroethane and hexachlorocyclopentadiene.

Die in den Beispielen genannten Teile beziehen sich auf das Gewicht.The parts mentioned in the examples relate to the weight.

Beispiel 1example 1

Zur Herstellung des Polyurethanschaumstoffes wird eine Mischung aus

Figure imgb0001
Figure imgb0002
A mixture of is used to produce the polyurethane foam
Figure imgb0001
Figure imgb0002

Vergleichsbeispiel AComparative Example A

Eine Mischung aus

Figure imgb0003
A mix of
Figure imgb0003

Vergleichsbeispiel BComparative Example B

Man verfährt analog den Angaben von Vergleichsbeispiel A, verwendet jedoch anstelle von Rizinusöl 20 Teile TalölThe procedure is analogous to that of Comparative Example A, but 20 parts of valley oil are used instead of castor oil

Vergleichsbeispiel CComparative Example C

Man verfährt analog den Angaben von Vergleichsbeispiel B, verwendet jedoch anstelle von Toluylendiisocyanat 200 Teile Roh-MDJ.The procedure is analogous to that of Comparative Example B, however, uses 200 parts of raw MDJ instead of tolylene diisocyanate.

Beispiel 2 bis 5Examples 2 to 5

Zur Herstellung von Polyurethanschaumstoffen werden Mischungen aus den in Tabelle 1 zusammengefaßten Komponenten bei Raumtemperatur (250C) mit 200 Teilen einer Mischung aus Diphenylmethan-diisocyanaten und Polyphenyl-polymethylen-polyisocyanaten (Roh-MDJ) umgesetzt.For the production of polyurethane foams are mixtures of diphenylmethane diisocyanates from the results summarized in Table 1 components at room temperature (25 0 C) with 200 parts of a mixture of and polyphenyl-polymethylene polyisocyanates reacted (crude MDJ).

Die erhaltenen Kenndaten und das Ölaufnahmevermögen der Schaumstoffe gemäß Beispiele 2 bis 5 und Vergleichsbeispiele A bis C sind in Tabelle 2 zusammengefaßt.

Figure imgb0004
Figure imgb0005
The characteristic data obtained and the oil absorption capacity of the foams according to Examples 2 to 5 and Comparative Examples A to C are summarized in Table 2.
Figure imgb0004
Figure imgb0005

Beispiel 6Example 6

25 Teile einer Mischung, bestehend aus

Figure imgb0006
25 parts of a mixture consisting of
Figure imgb0006

werden mit 25 bis 75 Teilen eines organischen Lösungsmittels verdünnt und anschließend mit 100 Teilen Roh-MDJ zu einem Isocyanatgruppen haltigen Präpolymeren umgesetzt.are diluted with 25 to 75 parts of an organic solvent and then reacted with 100 parts of crude MDJ to form a prepolymer containing isocyanate groups.

Die NCO-Gruppen haltige Präpolymerlösung wird anschließend unter Wasser verdüst.The prepolymer solution containing NCO groups is then atomized under water.

Die Art und Menge der organischen Lösungsmittel sowie die verwendeten Katalysatorkonzentrationen sind in Tabelle 3 zusammengefaßt.The type and amount of the organic solvents and the catalyst concentrations used are summarized in Table 3.

Das spezifische Gewicht des NCO-Gruppen haltigen Präpolymeren beträgt lösungsmittelfrei 1,3546 g/cm3.The specific weight of the prepolymer containing NCO groups is 1.3546 g / cm 3 without solvent.

Wie Tabelle 3 zeigt, kann durch Mischen des Präpolymeren mit organischen Lösungsmitteln die Dichte der Präpolymerlösung von 0,922 bis 1,333 g/cm3 variiert werden.

Figure imgb0007
Beispiele 7 bis 19 und Vergleichsbeispiele D und EAs shown in Table 3, the density of the prepolymer solution can be varied from 0.922 to 1.333 g / cm 3 by mixing the prepolymer with organic solvents.
Figure imgb0007
Examples 7 to 19 and Comparative Examples D and E

Analog den Angaben von Beispiel 1 werden aus den in Tabelle 4 zusammengefaßten Ausgangskomponenten erfindungsgemäße Polyurethanschaumstoffe und gemäß Tabelle 5 zum Stand der Technik gehörende Vergleichsprodukte hergestellt.Analogous to the information in Example 1, polyurethane foams according to the invention and table 5 comparative products according to the prior art are produced from the starting components summarized in Table 4.

Als Katalysator zur Herstellung der erfindungsgemäßen Schaumstoffe wird eine Mischung aus

Figure imgb0008
Figure imgb0009
Figure imgb0010
Das Ölaufnahmevermögen der erfindungsgemäß hergestellten Schaumstoffe und Vergleichschaumstoffe wurde auf folgende Weise ermittelt:

  • Eine Wasseroberfläche von 1200 cm2 wurde mit 250 g der in Tabelle 6 genannten unpolaren Flüssigkeiten überschichtet. Auf die verunreinigte Oberfläche wurde eine 5 mm dicke Schaumstoffplatte 15 Minuten aufgelegt. Die Ölaufnahme wurde durch Auswiegen der Schaumplatte als das Vielfache des Schaumstoffgewichts nach folgender Gleichung bestimmt:
    Figure imgb0011
A mixture of is used as a catalyst for producing the foams according to the invention
Figure imgb0008
Figure imgb0009
Figure imgb0010
The oil absorption capacity of the foams and comparative foams produced according to the invention was determined in the following way:
  • A water surface of 1200 cm 2 was covered with 250 g of the non-polar liquids listed in Table 6. A 5 mm thick foam sheet was placed on the contaminated surface for 15 minutes. The oil absorption was determined by weighing the foam sheet as a multiple of the foam weight according to the following equation:
    Figure imgb0011

Die erhaltenen ölaufnahmefaktoren sind in Tabelle 6 zusammengefaßt.

Figure imgb0012
The oil absorption factors obtained are summarized in Table 6.
Figure imgb0012

Die Versuche zeigen das sehr hohe Ölaufnahmevermögen der erfindungsgemäßen Schaumstoffe im Vergleich zu konventionellen Hart- und Weichschaumstoffen.The tests show the very high oil absorption capacity of the foams according to the invention in comparison to conventional rigid and flexible foams.

Säulentrennung: Eine Glas-Säule wurde mit Schaumstoffschnitzeln gefüllt und mit einer Mischung aus Wasser und unpolaren Flüssigkeiten bis zur Sättigung der Schaumstoffschnitzel beschickt. Die erhaltenen ölaufnahmefaktoren sind in Tabelle 7 zusammengefaßt.

Figure imgb0013
Column separation: A glass column was filled with foam chips and charged with a mixture of water and non-polar liquids until the foam chips were saturated. The oil absorption factors obtained are summarized in Table 7.
Figure imgb0013

Claims (4)

1. Hydrophobe Polyurethanschaumstoffe, dadurch gekennzeichnet, daß die Polyurethanschaumstoffe eine Dichte von 8 bis 25 g/Liter besitzen und die Zahl der geschlossenen Zellen 3 bis 30 % und der offenen Zellen 97 bis 70 %, bezogen auf die Gesamtzahl an Zellen, beträgt.1. Hydrophobic polyurethane foams, characterized in that the polyurethane foams have a density of 8 to 25 g / liter and the number of closed cells 3 to 30% and the open cells 97 to 70%, based on the total number of cells. 2. Verfahren zur Herstellung von hydrophoben Polyurethanschaumstoffen aus organischen Polyisocyanaten, Polyhydroxyverbindungen, lipophilen Verbindungen, Treibmitteln, Katalysatoren, gegebenenfalls Kettenverlängerungsmitteln, Hilfsmitteln und Zusatzstoffen gemäß Anspruch 1, dadurch gekennzeichnet, daß man als lipophile Verbindungen gegebenenfalls substituierte, gesättigte und/oder ungesättigte, aliphatische Fettsäuren mit 10 bis 25 Kohlenstoffatomen sowie deren Ester und Amide verwendet.2. A process for the preparation of hydrophobic polyurethane foams from organic polyisocyanates, polyhydroxy compounds, lipophilic compounds, blowing agents, catalysts, optionally chain extenders, auxiliaries and additives according to claim 1, characterized in that optionally substituted, saturated and / or unsaturated, aliphatic fatty acids are used as lipophilic compounds with 10 to 25 carbon atoms and their esters and amides. 3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß das molare Mengenverhältnis von Polyhydrdxyverbindung zu lipophilen Verbindungen 1 : 3 bis 1 : 20 ist.3. The method according to claim 2, characterized in that the molar ratio of polyhydric compound to lipophilic compounds is 1: 3 to 1:20. 4. Hydrophobe Polyurethanschaumstoffe gemäß Anspruch 1 zur Absorption von Öl und/oder gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser.4. Hydrophobic polyurethane foams according to claim 1 for the absorption of oil and / or optionally halogen-containing, hydrophobic compounds from water.
EP78100702A 1977-08-25 1978-08-18 Hydrophobic polyurethane foams, process for their manufacture and their use to absorb oil and halogenated hydrophobic compounds, which may be halogenated, from water Expired EP0000933B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2738268 1977-08-25
DE19772738268 DE2738268A1 (en) 1977-08-25 1977-08-25 HYDROPHOBIC POLYURETHANE FOAM FOR OIL ABSORPTION

Publications (2)

Publication Number Publication Date
EP0000933A1 true EP0000933A1 (en) 1979-03-07
EP0000933B1 EP0000933B1 (en) 1983-03-30

Family

ID=6017233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100702A Expired EP0000933B1 (en) 1977-08-25 1978-08-18 Hydrophobic polyurethane foams, process for their manufacture and their use to absorb oil and halogenated hydrophobic compounds, which may be halogenated, from water

Country Status (4)

Country Link
US (1) US4237237A (en)
EP (1) EP0000933B1 (en)
JP (1) JPS5450099A (en)
DE (2) DE2738268A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013412A2 (en) * 1979-01-15 1980-07-23 BASF Aktiengesellschaft Process for separating organic hydrophobic liquids from water
EP0044566A2 (en) * 1980-07-23 1982-01-27 Champion International Corporation Apparatus and method for removing suspended solids from a stream
US4522953A (en) * 1981-03-11 1985-06-11 Lever Brothers Company Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids
EP0714929A1 (en) * 1994-11-30 1996-06-05 Inoac Corporation Waterproof plastic foam
GB2324798A (en) * 1997-05-01 1998-11-04 Ici Plc Open-celled cellular polyurethane products
WO1999005066A1 (en) * 1997-07-23 1999-02-04 Huntsman Ici Chemicals Llc Foam for absorbing hydrophobic liquids
US6353037B1 (en) 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6495611B1 (en) 1999-06-23 2002-12-17 Basf Aktiengesellschaft Polyisocyanate polyaddition products
US6573305B1 (en) 1999-09-17 2003-06-03 3M Innovative Properties Company Foams made by photopolymerization of emulsions
DE102009000578A1 (en) * 2009-02-03 2010-08-12 Alexander Noskow Polyurethane adsorbent, useful for purifying or removing hydrocarbons from aqueous environments or solid surfaces and an anti-scratch material, comprises a polyol compound, an aromatic isocyanate compound and water

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764282A (en) * 1986-09-26 1988-08-16 The Uniroyal Goodrich Tire Company Disposal of toxic and polymeric wastes
DE3711416A1 (en) * 1987-04-04 1988-05-19 Stuermer & Schuele Ohg Process for purifying water and apparatus therefor
DE3718856A1 (en) * 1987-06-05 1988-12-22 Heinz Schnieders Water treatment plant for water contaminated with environmentally harmful organic substances, such as chlorinated hydrocarbons
US4929359A (en) * 1988-01-26 1990-05-29 The United States Of America As Represented By The United States Department Of Energy Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction
US5074709A (en) * 1990-01-29 1991-12-24 Stensland Gary E Device and method for containing fluid spills
US5114272A (en) * 1990-07-02 1992-05-19 Brunhoff Frederic P Detachable boom and method for its use
US5248436A (en) * 1991-02-25 1993-09-28 Kovaletz Mark P Method for dispensing a fluidic media for treatment of waterborne spilled petroleum
ATE170091T1 (en) * 1992-03-20 1998-09-15 Monsanto Co EXTRACTION OF ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS
US5507949A (en) * 1992-03-20 1996-04-16 Monsanto Company Supported liquid membrane and separation process employing same
US6764603B2 (en) 1992-08-07 2004-07-20 Akzo Nobel Nv Material for extracting hydrophobic components dissolved in water
EP0583234A3 (en) * 1992-08-11 1994-11-23 Monsanto Co Solid poly-amphiphilic polymer having use in a separation process.
US6100363A (en) * 1998-03-13 2000-08-08 Basf Corporation Energy absorbing elastomers
US6747068B2 (en) 2001-02-15 2004-06-08 Wm. T. Burnett & Co. Hydrophobic polyurethane foam
WO2002088213A1 (en) * 2001-05-01 2002-11-07 Atlas Roofing Corporation Closed-cell thermosetting plastic foams & methods of producing thereof using acetone and water as blowing agents
US7138436B2 (en) 2001-06-13 2006-11-21 3M Innovative Properties Company Uncrosslinked foams made from emulsions
US7169318B1 (en) * 2003-03-18 2007-01-30 Hall Richard H Imbibed organic liquids, especially halogenated organics
DE102004013827A1 (en) * 2004-03-16 2005-10-06 Bulling, Walter Method for producing an element made of flexible PU foam plastic and subsequently produced element
US20050256214A1 (en) * 2004-05-13 2005-11-17 Smart Robert P Poly (p-pheneylene 2-6 benzobisoxazole) foams
RU2441034C2 (en) * 2006-03-14 2012-01-27 Хантсмэн Интернэшнл Ллс Composition prepared from diisocyanate and monoamine, and preparation method thereof
DE102007020910A1 (en) 2007-04-27 2008-11-06 Erich Kumpf Preparing contamination material e.g. oil in the form of e.g. cube, comprises immersing polyurethane-foam plastic-molded pieces into a plasticizer-free dispersion, filling interior open cells and hardening the cell wall sided open cells
US8313527B2 (en) 2007-11-05 2012-11-20 Allergan, Inc. Soft prosthesis shell texturing method
US8506627B2 (en) 2008-08-13 2013-08-13 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
EP2320831B1 (en) * 2008-08-13 2020-08-19 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US9050184B2 (en) 2008-08-13 2015-06-09 Allergan, Inc. Dual plane breast implant
US20110093069A1 (en) 2009-10-16 2011-04-21 Allergan, Inc. Implants and methdos for manufacturing same
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
EP2390275A1 (en) 2010-05-27 2011-11-30 Basf Se Oil absorbent polyurethane sponges with good mechanical characteristics
US9023908B2 (en) 2010-05-27 2015-05-05 Basf Se Oil-absorbent polyurethane sponges with good mechanical properties
US8616272B2 (en) 2010-08-20 2013-12-31 Baker Hughes Incorporated Downhole water-oil separation arrangement and method
EP2605723A1 (en) * 2010-08-20 2013-06-26 Allergan, Inc. Implantable materials
US9115580B2 (en) 2010-08-20 2015-08-25 Baker Hughes Incorporated Cellular pump
DE102011007479A1 (en) * 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Composition containing specific amides and organomodified siloxanes, suitable for the production of polyurethane foams
BRPI1103089A2 (en) * 2011-06-02 2012-07-10 Laurencio Cuevas Perlaza absorbent material for use in oily effluent removal and process for producing absorbent material for use in oily effluent removal
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
CN102786647B (en) * 2012-06-01 2014-05-07 江苏瑞丰科技实业有限公司 Biodegradable polyurethane oil-absorbing material and preparation method thereof
EP2677030A1 (en) 2012-06-21 2013-12-25 Latvijas Valsts Koksnes kimijas instituts Polyurethane rigid and flexible foams as composite obtained from wood origin raw materials and used as support for immobilization of microorganisms that produce ligninolytic enzymes
AU2013359158B2 (en) 2012-12-13 2018-08-02 Allergan, Inc. Device and method for making a variable surface breast implant
WO2014127179A1 (en) 2013-02-14 2014-08-21 The Research Foundation For The State University Of New York Modified hydrophobic sponges
WO2015066665A2 (en) 2013-11-04 2015-05-07 The Research Foundation For The State University Of New York Modified hydrophobic sponges
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
AU2015258842B2 (en) 2014-05-16 2020-01-02 Allergan, Inc. Soft filled prosthesis shell with variable texture
CN104163934A (en) * 2014-07-29 2014-11-26 江苏大学 Preparation method of porous hydrophobic oleophylic sponge
WO2018098570A1 (en) * 2016-11-29 2018-06-07 Diloreto Salvatore A Spray foam building insulation for exterior applications
CN107892759A (en) * 2017-10-19 2018-04-10 苏州无为环境科技有限公司 A kind of preparation method of the super hydrophobic polyurethane foam oil absorption material of fatty acid modifying
CN108192322A (en) * 2017-12-04 2018-06-22 张芸 A kind of preparation method of hydrophobic oleophilic oil type polyurethane sponge
CN108587122A (en) * 2018-03-23 2018-09-28 长沙小新新能源科技有限公司 A kind of high recovery sponge of high oil absorption and preparation method thereof
WO2021150174A1 (en) * 2020-01-20 2021-07-29 Özerden Plasti̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Low density polyurethane foam using functionalized castor oil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960855C (en) * 1954-08-20 1957-03-28 Bayer Ag Process for the production of foams containing urethane groups
US3165483A (en) * 1961-02-23 1965-01-12 Mobay Chemical Corp Skeletal polyurethane foam and method of making same
DE1944679A1 (en) * 1969-09-03 1971-03-04 Collo Rheincollodium Koeln Gmb Clearing oil pollution with foam material - binding the oil
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
FR2250779A1 (en) * 1973-11-14 1975-06-06 Tenneco Chem
CA996037A (en) * 1972-02-22 1976-08-31 John Jay Plastic foam filter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505250A (en) * 1966-09-08 1970-04-07 Mobay Chemical Corp Polyurethane plastics
US3476933A (en) * 1966-10-21 1969-11-04 Westinghouse Electric Corp Large-celled polyurethane foam
US3487927A (en) 1967-10-02 1970-01-06 Standard Oil Co Method and apparatus for separating water and oil
US3567663A (en) * 1968-01-05 1971-03-02 Scott Paper Co Low permeability polyurethane foam and process for the manufacture thereof
US3617551A (en) * 1970-03-18 1971-11-02 Standard Oil Co Apparatus and process for purifying oil-contaminated water
US3681237A (en) * 1971-03-26 1972-08-01 Membrionics Corp Oil spillage control process
GB1319747A (en) 1971-04-06 1973-06-06 Monsanto Res Corp Porous resinous bodies
US3779908A (en) * 1972-03-17 1973-12-18 Continental Oil Co Coalescence of water and oleophilic liquid dispersions by passage through a permeable, oleophilic liquid equilibrated, foam of polyurethane
AT313206B (en) * 1972-03-20 1974-02-11 Peter Jakubek Dipl Ing Dr Tech Method for cleaning liquids contaminated with specifically lighter liquids and device for carrying out the method
US3959191A (en) * 1973-01-11 1976-05-25 W. R. Grace & Co. Novel hydrophobic polyurethane foams
US3953406A (en) * 1973-01-26 1976-04-27 California Institute Of Technology Water-insoluble, swellable polyurethanes
US3888766A (en) * 1973-03-09 1975-06-10 Uniroyal Inc Oil sorption material
US3917528A (en) * 1973-05-29 1975-11-04 Sorbent Sciences Corp Foraminous composition for removal of oleophilic material from the surface of water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960855C (en) * 1954-08-20 1957-03-28 Bayer Ag Process for the production of foams containing urethane groups
US3165483A (en) * 1961-02-23 1965-01-12 Mobay Chemical Corp Skeletal polyurethane foam and method of making same
DE1944679A1 (en) * 1969-09-03 1971-03-04 Collo Rheincollodium Koeln Gmb Clearing oil pollution with foam material - binding the oil
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
CA996037A (en) * 1972-02-22 1976-08-31 John Jay Plastic foam filter
FR2250779A1 (en) * 1973-11-14 1975-06-06 Tenneco Chem

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013412A3 (en) * 1979-01-15 1981-08-05 Basf Aktiengesellschaft Process for separating organic hydrophobic liquids from water
EP0013412A2 (en) * 1979-01-15 1980-07-23 BASF Aktiengesellschaft Process for separating organic hydrophobic liquids from water
EP0044566A2 (en) * 1980-07-23 1982-01-27 Champion International Corporation Apparatus and method for removing suspended solids from a stream
EP0044566A3 (en) * 1980-07-23 1982-02-03 Champion International Corporation Apparatus and method for removing suspended solids from a stream
US4522953A (en) * 1981-03-11 1985-06-11 Lever Brothers Company Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids
EP0060138B1 (en) * 1981-03-11 1986-09-03 Unilever Plc Low density porous cross-linked polymeric materials and their preparation
EP0714929A1 (en) * 1994-11-30 1996-06-05 Inoac Corporation Waterproof plastic foam
US6001890A (en) * 1997-05-01 1999-12-14 Imperial Chemical Industries Plc Open celled cellular polyurethane products
GB2324798A (en) * 1997-05-01 1998-11-04 Ici Plc Open-celled cellular polyurethane products
GB2324798B (en) * 1997-05-01 1999-08-18 Ici Plc Open celled cellular polyurethane products
WO1999005066A1 (en) * 1997-07-23 1999-02-04 Huntsman Ici Chemicals Llc Foam for absorbing hydrophobic liquids
US6495611B1 (en) 1999-06-23 2002-12-17 Basf Aktiengesellschaft Polyisocyanate polyaddition products
US6794421B2 (en) 1999-06-23 2004-09-21 Basf Aktiengesellschaft Polyisocyanate polyaddition products
US6573305B1 (en) 1999-09-17 2003-06-03 3M Innovative Properties Company Foams made by photopolymerization of emulsions
US6353037B1 (en) 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6462100B1 (en) 2000-07-12 2002-10-08 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
DE102009000578A1 (en) * 2009-02-03 2010-08-12 Alexander Noskow Polyurethane adsorbent, useful for purifying or removing hydrocarbons from aqueous environments or solid surfaces and an anti-scratch material, comprises a polyol compound, an aromatic isocyanate compound and water

Also Published As

Publication number Publication date
US4237237A (en) 1980-12-02
EP0000933B1 (en) 1983-03-30
DE2862213D1 (en) 1983-05-05
JPS5450099A (en) 1979-04-19
DE2738268A1 (en) 1979-03-08

Similar Documents

Publication Publication Date Title
EP0000933B1 (en) Hydrophobic polyurethane foams, process for their manufacture and their use to absorb oil and halogenated hydrophobic compounds, which may be halogenated, from water
EP0296449B1 (en) Process for the preparation of room-temperature curing soft polyurethene foams
EP0176013B1 (en) Process for the preparation of foamed polyurethanes that are fitted with or covered by another material
DE4303556C1 (en) Hard polyurethanes or polyurethane foams
EP0013412B1 (en) Process for separating organic hydrophobic liquids from water
DE2523633C2 (en) Process for the production of polyurethane foams and catalysts for carrying out the process
DE3818769A1 (en) LIQUID POLYISOCYANATE MIXTURES, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF POLYURETHANE SOFT FOAMS
DE3035677A1 (en) Cellular polymer
WO1995014730A1 (en) Process for producing hard polyurethane foams
EP0004879B1 (en) Process for preparing flexible polyurethane foams by the use as a polyisocyanate of an urethane-modified mixture of diphenylmethane diisocyanates and polyphenylpolymethylene polyisocyanates containing from 55 to 85 percent by weight of diphenylmethane diisocyanate isomers
EP0004617B1 (en) Process for preparing flexible polyurethane foams with high load-bearing and shock-absorbing properties on the basis of raw-mdi containing from 55 to 85 per cent by weight of diphenylmethane diisocyanate and polyesterols
DE1719291A1 (en) Process for the production of polyurethane-polyurea foams and molded parts
EP0624619B1 (en) Rigid hydrophobic polyurethanes
DE2644956A1 (en) TERNAERE MIXTURES AND THEIR USE
DE1078322B (en) Process for the production of foams containing urethane groups
EP0550901B1 (en) Liquid, low-colour polyisocyanate compositions, process for their preparation and their use in the production of low-colour rigid polyurethane foams
DE1924302A1 (en) Process for the production of plastics containing urethane groups and biuret groups
EP0903360B1 (en) Hydrophile polyester-polyurethane foams, a process for their preparation and their use as humidity absorbing products
EP0000761B1 (en) Process for the preparation of polyurethane foams
DE102020131581A1 (en) Process for degrading polyurethane
DE10111823A1 (en) Preparation of soft polyurethane foam, useful e.g. in mattresses and furniture, using block polyoxypropylene-polyoxyethylene polyol with specific hydroxy number
EP0625997B2 (en) Aminocarbonate compounds and their use as catalysts
DE1047420B (en) Process for the production of elastic, open-pore polyurethane foams based on polyether
DE3910102C1 (en)
EP0358075B1 (en) Process for the preparation of hot-curing soft polyurethane foam mouldings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 2862213

Country of ref document: DE

Date of ref document: 19830505

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880901

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT