EP0006390B1 - Procédé de préparation d'une feuille fibreuse par voie papetière en vue d'améliorer les liaisons et la rétention, feuille obtenue selon ce procédé et son application notamment dans le domaine du remplacement de l'amiante et des supports d'impression-écriture - Google Patents

Procédé de préparation d'une feuille fibreuse par voie papetière en vue d'améliorer les liaisons et la rétention, feuille obtenue selon ce procédé et son application notamment dans le domaine du remplacement de l'amiante et des supports d'impression-écriture Download PDF

Info

Publication number
EP0006390B1
EP0006390B1 EP79400405A EP79400405A EP0006390B1 EP 0006390 B1 EP0006390 B1 EP 0006390B1 EP 79400405 A EP79400405 A EP 79400405A EP 79400405 A EP79400405 A EP 79400405A EP 0006390 B1 EP0006390 B1 EP 0006390B1
Authority
EP
European Patent Office
Prior art keywords
fibers
weight
sheet
parts
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400405A
Other languages
German (de)
English (en)
Other versions
EP0006390A1 (fr
Inventor
Daniel Gomez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arjomari Prioux SA
Original Assignee
Arjomari Prioux SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7818447A external-priority patent/FR2429293A1/fr
Priority claimed from FR7901833A external-priority patent/FR2447420A2/fr
Priority claimed from FR7910386A external-priority patent/FR2455121B1/fr
Application filed by Arjomari Prioux SA filed Critical Arjomari Prioux SA
Priority to AT79400405T priority Critical patent/ATE39006T1/de
Publication of EP0006390A1 publication Critical patent/EP0006390A1/fr
Application granted granted Critical
Publication of EP0006390B1 publication Critical patent/EP0006390B1/fr
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/34Ignifugeants

Definitions

  • the present invention relates to a new process for the preparation of a fibrous sheet by the papermaking process, including the precipitation of binder and fillers, in order to improve the bonds, the mechanical properties, the retention of fillers and thus allow the reduction of material losses and water pollution. It also relates to the fibrous sheet obtained according to this process and its application in particular in the field of coatings to replace asbestos and in the field of print-write supports.
  • paper and cardboard mainly consist of noble cellulosic fibers (that is to say originating in particular from softwood pulp and / or hardwood) in association, where appropriate, with a mineral filler (in particular the talc, kaolin, calcium carbonate, magnesium carbonate) and a binder, and that they may also contain auxiliary agents such as in particular bonding agents, retention agents, anti-siime agents and brighteners optical.
  • a mineral filler in particular the talc, kaolin, calcium carbonate, magnesium carbonate
  • auxiliary agents such as in particular bonding agents, retention agents, anti-siime agents and brighteners optical.
  • 3,184,373 which consists in preparing a print-write medium from fibers, a mineral filler and a mixture of retention agents, is unsatisfactory in the sense that the flocs formed by the fibers and the mineral filler are weakly linked due to the absence of a binding agent: moreover, said flocs are unstable and do not withstand turbulence in the head circuits of the paper machine, as indicated in said American patent, column 7 lines 37 et seq.
  • a new technical solution including the precipitation of a binder and a mineral filler, and which is based on the use of an agent flocculant before and after the introduction of the binder and which is directly usable when we want to increase the mineral filler content to have a high mineral filler-fibers weight ratio between 2 and 9, or when we want to improve the mechanical properties of papers existing, or finally when it is desired to increase the rate of remaining mineral filler of a paper having a mineral filler-fibers weight ratio of between 0 and 2 without affecting its mechanical properties.
  • One of the aims of the invention is to propose a unique process making it possible to prepare (a) a fibrous sheet intended to replace asbestos in the field of covering panels, in particular floor covering panels, and (b) a sheet fiber intended for use in the field of print-write media and special papers.
  • Another object of the invention is to provide a sheet product which is rot-proof and / or non-flammable and which has good dimensional stability in the dry state, in the wet state and under heat, and good properties of thermal and acoustic insulation, so that asbestos can be replaced, as we know that the use of the latter involves (i) the use of complicated installations entailing significant investment and operating costs and (ii) the compliance with very strict safety and hygiene rules, to avoid any risk of absorption or inhalation of asbestos fibers and dust.
  • Another object of the invention is to improve the mechanical properties of fibrous sheets useful in particular in the field of printing-writing and more precisely the two important properties of internal cohesion and rigidity.
  • it is proposed to improve the mechanical properties of existing papers, without modifying the content of non-binding mineral filler, and, on an economic level, it is proposed to increase the content of non-binding mineral filler on papers and to overcome the drawbacks of the reduction in all of the mechanical properties, in particular the cohesion internal, the rigidity and the tear that the increase in said mineral filler content generates.
  • fibrous sheet or even sheet substrate here is meant a composite material prepared by the papermaking process and comprising fibers, an organic binder and at least one flocculant; this composite material can, where appropriate, also comprise a non-binding mineral filler and one or more conventional additives in stationery.
  • mineral sheet here is meant a particular fibrous sheet prepared by the papermaking route and comprising fibers, a binder and a mineral filler, and in which the quantity of mineral filler is relatively large compared to that of the fibers.
  • base mixture here is meant a mixture constituted by the fibers and the non-binding mineral filler.
  • improvement of the mechanical properties is meant here the improvement of the mechanical properties of the existing fibrous sheets, on the one hand, and the maintenance of the mechanical properties when the content of non-binding mineral filler in the said sheets is increased, on the other hand .
  • the weight ratio of non-binder mineral filler to fibers has been designated by the letter R.
  • the additional treatment in stage 2 depends on the application envisaged, since the sheet obtained in stage 1 can be used as a basic support for any type of surface treatment (mechanical treatment, such as smoothing, calendering or graining; or chemical treatment such as surfacing or coating on a machine or outside a paper machine).
  • mechanical treatment such as smoothing, calendering or graining
  • chemical treatment such as surfacing or coating on a machine or outside a paper machine.
  • stage 1 it is preferred to use stage 1 then stage 2.
  • All the fibers are suitable for the preparation of the mineral sheet according to the invention, with the exclusion, of course, of asbestos fibers because of the difficulties mentioned above even if their use does not raise any technical problem.
  • the fibers that are recommended mention may in particular be made of natural organic fibers (such as cellulosic fibers, leather fibers, vegetable fibers) and synthetic fibers (such as polyamide, polyalkylene and polyester fibers), and mineral fibers (such as glass, ceramic, calcium sulfate and carbon fibers). It is of course possible to use mixtures of these fibers as well as the recovery fibers from waste paper and textiles.
  • the fibers that can be used are 0.1 to 8 mm in length (for example: 0.2-3 mm for cellulose fibers, 3-6 mm for glass fibers and 0.1-0.3 mm for rock wool fibers ).
  • the use of calcium sulphate fibers and in particular acicular gypsum fibers first requires saturation of the dilution waters with calcium sulphate (2 to 3 g / 1) so as not to dissolve said fibers in the suspension of the mixture. basic.
  • the preferred fibers are cellulose fibers because, although relatively expensive, they are still less expensive than other fibers. According to a preferred embodiment, it is recommended to use cellularosic fibers in combination with polyalkylene fibers (in particular polyethylene and polypropylene).
  • polyalkylene fibers in particular polyethylene and polypropylene.
  • the use of polyalkylene fibers makes it possible to reinforce the solidity of the whole (internal cohesion in particular) and the dimensional stability.
  • these fibers which melt or soften at 120-200 ° C make it possible to reinforce the mechanical characteristics (adhesion in the dry state and in the wet state, dimensional stability), to confer on the paper a certain thickness (which , for a given thickness and grammage, reduces material costs), to reduce the quantity of binder and, if necessary, the quantity of glass fibers to be used, in particular in the production of covering panels, to promote drainage (higher speed, better production cost) during the formation of the sheet, and to reduce linting (in particular to avoid hard spots and surface irregularities).
  • the hot treatment (at approximately 120-200 ° C for approximately 4 to 2 minutes) of the mineral sheets containing polyalkylene fibers can be carried out on the paper machine, or at the user's place (for example during the drying of the vinyl coating for 3 minutes at 180 ° C) outside the paper machine.
  • mixtures of fibers containing polyalkylene fibers it is advantageous to make use of mixtures of cellulosic fibers-polyethylene fibers (75:25) by weight and (16: 9) by weight, of the mixture of cellulosic fibers-polyethylene fibers-fibers of glass (16 9: 2) by weight, and a mixture of cellulosic fibers-polyethylene fibers-rock wool fibers (16 8: 3) by weight.
  • the binder to be used in stage 1 is an organic binder of natural or synthetic origin since mineral binders and cements have the drawback of having a long setting time.
  • the organic binder bonds the constituents of the fibrous sheet to one another, can strengthen the physical properties of the fibrous sheet and acts as a stiffening agent.
  • binders which are suitable, mention may in particular be made of those in Table III below.
  • binder 2 to 15 parts by weight of binder will be used, per 100 parts by weight of the base mixture.
  • starch which is a product consisting of a straight chain polymeric substance, amylose, and a three-dimensional polymeric substance, amylopectin, and more particularly starch containing 50 to 6,000 anhydroglucose units (in the linear polymer) per molecule, such as native starch (especially obtained from potato) and native corn starch, which contain 100 to 6000 anhydroglucose units (in the linear polymer) per molecule, and starches modified by chemical or enzymatic route (phosphoric esters of carboxymethylated starch, and enzymatically degraded starch) which contain from 50 to 3000 anhydroglucose units per molecule.
  • native starch especially obtained from potato
  • native corn starch which contain 100 to 6000 anhydroglucose units (in the linear polymer) per molecule
  • starches modified by chemical or enzymatic route phosphoric esters of carboxymethylated starch, and enzymatically degraded starch
  • These starches react, either with aluminum
  • Starch having 50 to 6,000 anhydroglucose units (in the linear polymer) per molecule is the preferred binder in the sense that (i) it surprisingly contributes to obtaining rigidity, "slamming and" striking paper (it acts as a stiffening agent which is important because we know that the increase in the load introduced into the support interferes, among other things, with the stiffness of the paper: a paper that is too soft "does not pass well rapid offset) (ii) it advantageously replaces the latexes which are expensive binders, and (iii) facilitates the repulping of broken parts.
  • the preferred binders are starch as indicated above, and especially latexes, in particular acrylic latexes such as L9 and L10 and styrene-butadiene latexes such as L12 and L13 (see Table III).
  • the flocculant is introduced before and after the addition of the binder.
  • the binder Before adding the binder, it allows (i) the cationization of the fibers and, when a non-binding mineral filler is present, the precipitation of said filler on the fibers, and (ii) the flocculation of the binder when it is incorporated to the mixture constituted by the fibers and the flocculant or by the fibers, the filler and the flocculant.
  • After the addition of the binder it completes the flocculation thereof, strengthens the cohesion of the flocs, improves the overall retention and promotes drainage.
  • the preferred flocculant according to the invention is poly aluminum chloride which is a substance also known under the name of aluminum hydroxychloride, having the general formula (HO) y Al x Cl z ⁇ y ⁇ x and which is in particular marketed by the Péchiney-Ugine-Kuhlmann Company under the brand name of "WAC".
  • the non-binding mineral fillers which are introduced, if necessary, in stage 1 according to the invention are those which are commonly used in the paper industry and have a particle diameter less than or equal to 80 ⁇ m.
  • the mineral fillers given in Table II below are particularly suitable after.
  • the preferred filler consists here of calcium carbonate, talc, kaolin and their mixtures, the diameter of the particles being advantageously between 2 and 50 ⁇ m.
  • the amount of non-binding mineral filler may depend on the application envisaged.
  • a fibrous sheet having a grammage in particular between 350 and 800 g / m 2 intended to be used in the field of coatings to replace asbestos where R is between 2 and 9 and advantageously 3 and 9 .
  • water-repellent agents also called bonding agents
  • antibiotic agents such as for example, antibiotic agents, lubricating agents, anti-foaming agents or foam-breaking agents , optical brighteners, shading dyes.
  • auxiliary agents such as the substances A7 (optical brightener) and A10 (anti-foam) in Table VII.
  • the water-repelling agent is introduced in stage 1 after the organic binder and before 2 * fraction of flocculant.
  • the amount of water repellent may be between 0.05 and 10 parts, advantageously between 0.05 and 5, and preferably between 0.1 and 3 parts by dry weight per 100 parts by weight of the base mixture, the agents preferred water repellents being substances H1 and H4 in Table V.
  • At stage 1 at the same time as or after the water-repellent agent, is introduced at least one auxiliary agent chosen in particular from the group consisting of resistance agents in the wet state (0.1 to 5 parts by weight per 100 parts by weight of the base mixture), anti-foaming agents (0.05 to 0.2 parts by weight per 100 parts by weight of the base mixture), optical brighteners (0.1 to 0.3 parts by weight per 100 parts by weight of the base mixture), the shading dyes (in sufficient quantity) and, where appropriate, the lubricating agents (0.2 to 5 parts by weight per 100 parts by weight of the basic mixture: for example 0.2 to 3 parts by weight if R is low, and 1 to 5 parts by weight if R is relatively higher).
  • the lubricating agents 0.2 to 5 parts by weight per 100 parts by weight of the basic mixture: for example 0.2 to 3 parts by weight if R is low, and 1 to 5 parts by weight if R is relatively higher.
  • the means to be used are in particular the size-press or sizing press, the roll coater, the roll coater, the metal coater, air coater or the coater scrapes.
  • stage 2 is characterized in that at least one substance is chosen chosen from the group consisting of mineral fillers, organic binders and conventional adjuvants in stationery such as in particular sizing agents, dispersing agents, pigments, fluorescent agents, shading dyes, lubricating agents, viscosity modifying agents, anti-foaming agents, insolubilizing agents and antibiotics.
  • substance chosen from the group consisting of mineral fillers, organic binders and conventional adjuvants in stationery such as in particular sizing agents, dispersing agents, pigments, fluorescent agents, shading dyes, lubricating agents, viscosity modifying agents, anti-foaming agents, insolubilizing agents and antibiotics.
  • stage 2 is implemented according to the objectives sought.
  • the aim is in particular the surface uniformity and the quality of the printability.
  • certain properties are targeted such as fireproofing, rot-proofing, resistance to oils, hydrophobicity, heat-sealability, non-sticking, coloring, conductivity and resistivity. resistance to chemical and physical eradication, barrier effect against solvents, waxes and paraffins.
  • the replacement of asbestos the reduction in absorbency vis-à-vis water, solvents and plasticizers, dimensional stability, rot-proofing and, where appropriate, fireproofing are sought.
  • At least one binder will be used in stage 2, in particular a binder from Table VI given below, and, where appropriate, at least one substance chosen from non-binding mineral fillers (as described above in stage 1) auxiliary agents (such as those given in table VII below), and special adjuvants (such as those given in table VIII below).
  • stage 2 among the products which are suitable for improving the printability qualities of the fibrous sheet, mention may be made for surfacing or sizing, in particular cellulose derivatives such as starches, carboxymethylcellulose, ethylcellulose, alginates, natural or synthetic binders, such as polyvinyl alcohol, gelatin, casein, dextrins, polymers or copolymers in emulsion.
  • cellulose derivatives such as starches, carboxymethylcellulose, ethylcellulose, alginates, natural or synthetic binders, such as polyvinyl alcohol, gelatin, casein, dextrins, polymers or copolymers in emulsion.
  • stationery products can be combined with a conventional sizing agent for stationery products such as dimeric alkyl ketenes, wax and / or paraffin emulsions, styrene, acrylic, vinyl dispersions, acrylonitriles, styrene-butadiene complexes, trivalent chromium of stearic acid or saturated fatty acids, organo-polysiloxannes.
  • a conventional sizing agent for stationery products such as dimeric alkyl ketenes, wax and / or paraffin emulsions, styrene, acrylic, vinyl dispersions, acrylonitriles, styrene-butadiene complexes, trivalent chromium of stearic acid or saturated fatty acids, organo-polysiloxannes.
  • the fibrous sheet can be, in stage 2, coated one or more times, on one or two sides with a pigmented layer.
  • a pigmented layer e.g., a pigmented layer.
  • conventional fillers of the stationery industry such as those of the base mixture.
  • the particles must be finer: pigments with 70 to 95% of particles less than or equal to 5 ⁇ m are preferably used.
  • These fillers are generally previously dispersed with mineral dispersants (sodium polyphosphates) and / or organic dispersants (in particular polyacrylates), and must be combined with one or more natural or synthetic binders.
  • the amount of dry matter deposited in stage 2 can be variable, and in particular between 1 and 150 g / m 2 , taking into account the different coating means that can be used and the final properties required.
  • 1 to 10 g / m 2 of dry matter may be applied.
  • pigmented coating with a Champion doctor blade you can apply between 3 and 30 g / m 2 of dry matter on one side in a single pass.
  • On an air knife we can apply 5 to 40 g / m 2 of dry matter on one side in a single pass.
  • the products which are suitable for improving the flammability properties by promoting the contact with the flame the formation of a carbon structure mention may in particular be made of nitrogen compounds (in particular urea-formaldehyde and melamine-formaldehyde resins), derivatives of boron (in particular, ammonium borate, boric acid and its metal salts) ammonium sulfamate and antimony derivatives.
  • nitrogen compounds in particular urea-formaldehyde and melamine-formaldehyde resins
  • derivatives of boron in particular, ammonium borate, boric acid and its metal salts
  • ammonium sulfamate ammonium sulfamate and antimony derivatives.
  • the flame retardant reinforces, if necessary, the fire resistance properties which are imparted by the mineral filler introduced in stage 1, and, if necessary, by the mineral filler introduced in stage 2.
  • organopolysiloxannes trivalent chromium complexes of stearic acid or saturated fatty acid and waxes.
  • non-stick agent 0.1 to 5 g will be used per m 2 of fibrous sheet to be treated.
  • ammonium phosphate bis- (N-ethyl-2-perfluoroalkyl-ethyl sulfonamide) (trade name: Scotch-ban).
  • 0.5 to 1% by weight of such an agent will be used relative to the weight of the fibrous sheet to be treated.
  • the barrier and / or heat-sealable properties of the fibrous sheet can be obtained by coating 1 or 2 faces with emulsion polymers or copolymers and in particular with ethylene-vinyl acetate copolymers, acrylic copolymers, vinylidene chloride copolymers.
  • Resistance to the development of molds and fungi can be obtained by additional surface treatment with a conventional bactericide and / or fungicide agent from the paper mill.
  • the fibers are suspended at 10-50 g / l and in particular at 30-50 g / l in water [if cellulosic fibers are used these will have been previously defibrated and refined to a degree SR of 15 to 65] (for example an SR from 15 to 60) and advantageously from 15-15.5 to 40-45 when R is between 2 and 9 if calcium sulphate fibers are used these will be suspended in water saturated with calcium sulphate (2 to 3 g / I) and all dilution water will also be saturated with calcium sulphate; if fibers of another nature are used (mineral fibers and synthetic organic fibers), these will either be defibrated separately, or dispersed with vigorous stirring in a vat containing the refined cellulosic fibers; for certain applications where the S.R.
  • the mineral filler under vigorous stirring is suspended in water at 300-600 g / l in a second tank then mixed with the fibers in a load-fiber weight ratio of between 2 and 9 (part of the mineral filler can if necessary, from the reinsertion of already loaded papers such as old paper and broken machine). The basic mixture is thus obtained.
  • the generally cationic mineral or synthetic flocculant is diluted in water from 1 to 10 times, then is introduced into the mixture consisting of fibers and the non-binding mineral filler, at a dose of 0.01 to 4, in particular 0, 01 to 3 parts as is per 100 parts by weight of the base mixture.
  • an inorganic flocculant and preferably aluminum polychloride will be used.
  • the binder preferably native starch for the printing-writing application, after having been previously baked at 80-90 ° C, or a latex in aqueous emulsion, is then incorporated into the mixture with stirring, at a concentration of between 15 and 100 g / I either batchwise or preferably continuously in the head circuits before the other additives.
  • the flocculating agent is again incorporated before the headbox (at a dose of 0.01 to 6, in particular from 0.01 to 5 parts by weight, per 100 parts by weight of the basic mixture) which, generally at this stage is still a mineral flocculant, in particular polychloride of aluminum which has an important role on flocculation, retention and drainage.
  • a mineral flocculant in particular polychloride of aluminum which has an important role on flocculation, retention and drainage.
  • wet strength agents and antibiotics are preferably introduced into the base mixture before the binder.
  • the resulting suspension is spun on a canvas of a paper machine.
  • the nature of the canvas will have an important role on retention depending on the grammage of the mineral sheet and the speed of manufacture.
  • spinning can be carried out under a low linear load of 0.5 to 35 kg / cm.
  • a conventional pressing is carried out in the wet part by means of one or more coating presses, rising presses, offset presses or multiple presses, the presses being dressed or naked, then drying.
  • the fibrous sheet obtained in stage 1 can have a variable grammage depending on the desired applications. We can thus have a grammage between 40 and 800 g / m 2 . It is observed that the fibrous sheet of stage 1 is dried much faster than a sheet of conventional cellulosic paper. Indeed, it is possible to gain, from the first dryers, more than 20 dryness points. This advantage is very appreciable and allows a substantial gain in production and a reduction in energy consumption.
  • the sheet obtained in stage 1 is subjected to one or more treatments on a paper machine or outside of a paper machine.
  • a suspension of acicular gypsum fibers of 1.5 mm of average length is prepared at a concentration of 10 to 50 g / I in water saturated with CaS0 4 (approximately 2 to 3 g / I) and of cellulose fibers ( pulped and refined for a fattening level of 15 to 35 degrees SR).
  • a basic mixture comprising 2 to 9 parts by weight of mineral filler (kaolin) and 1 part by weight of fibers (55 to 90% by weight of acicular gypsum fibers and 45 to 10% in weight of cellulosic fibers)] successively the following additives are introduced to make a sheet on a paper machine:
  • the bactericide and fungicide is preferably incorporated to the base mixture before the flocculant (1st fraction) and the binder ..
  • the sheet thus obtained is impregnated by means of an aqueous bath comprising 200 to 400 g / l of the following formulation: flame retardant [ammonium sulfamate-ammonium phosphate-ammonium borate
  • the desired recovery is 20 to 50 g / m 2 after drying.
  • the material thus obtained can, if necessary, be slightly smoothed.
  • a mineral sheet is obtained having flame retardant properties and useful in the field of asbestos replacement.
  • the sheet thus obtained is impregnated by means of an aqueous bath comprising 300 to 500 g / l of the following formulation:
  • the desired recovery is 10 to 50 g / m 2 (in dry matter).
  • An asbestos replacement product is obtained with flame retardant properties.
  • the sheet obtained in stage 1 of Example 2 is treated using an aqueous impregnation bath containing 200 to 400 g / l of the following formulation:
  • the recovery required after drying is 20 to 40 g / m 2 .
  • Talc 500 g / l of water is dispersed with vigorous stirring, then it is incorporated into a dispersion of cellulosic fibers refined to a degree SR of between 15 and 35.
  • a mixture of base comprising 2 to 9 parts by weight of talc and 1 part by weight of cellulosic fibers
  • the following additives are successively introduced to make a sheet on a paper machine:
  • a sheet of 350 to 800 g / m 2 is produced after draining, pressing, then drying, which is smoothed, if necessary, at the end of the paper machine.
  • a non-flame retardant asbestos replacement product is obtained.
  • Example 4 The sheet obtained in Example 4 is subjected to a finishing treatment according to the operating methods described respectively in Example 1 (stage 2), in Example 2 (stage 2) and in Example 3, thus obtaining three impregnated mineral sheets which are good substitutes for asbestos.
  • Example 4 The procedure is as indicated in Example 4 starting from a basic mixture comprising kaolin (3 to 9 parts by weight) and slightly refined cellulosic fibers (1 part by weight) (SR degree between 15 and 35), a mineral sheet with properties similar to that of Example 4 is obtained.
  • Example 4 The procedure is as indicated in Example 4, starting from a basic mixture comprising talc (2 to 9 parts by weight) and a mixture of F22 fibers (1 part by weight) consisting of cellulose fibers (95% by weight). and glass fibers (5% by weight). A mineral sheet is obtained which can be impregnated according to the methods described in Example 5 for the replacement of asbestos.
  • a mineral sheet is prepared according to the method described in Example 4 from 100 parts by weight of a basic mixture [talc-cellulosic fibers (85:15) by weight] with the difference that the 10 parts by weight of binder L10 of example 4 are replaced by 5 parts by weight of binder L1 (total amount of L1: 7 parts by weight). This sheet is impregnated as indicated in Example 5. A replacement product for asbestos is obtained.
  • a mineral sheet is prepared according to the method of example 4 from 100 parts by weight of a basic mixture [kaolin-cellulosic fibers (80:20) by weight] with the difference that the binder L10 of the example 4 is replaced by an equivalent amount of polychloroprene.
  • This sheet has better flame resistance than that of the material of Example 4. Of course, it is impregnated as indicated in Example 5. A replacement product for asbestos is obtained.
  • the product of Example 10 is a sheet which has excellent mechanical properties in the dry state and in the wet state.
  • the sheet of Example 10 leads to an improvement in internal cohesion by (40%), in tensile strength (by 15%) and in dimensional stability (by 30 to 40%).
  • a sheet (A) of 400 g / m 2 and 0.6 mm thick prepared according to the method of Example 4 (from a base mixture of talc - cellulosic fibers (85:15) by weight) with an asbestos sheet (B) 400 g / m 2 and 0.6 mm thick.
  • the results relate to sheets A and B and the materials obtained by laminating A or B on several supports (drywall, fiber cement and wood agglomerate), and are expressed in decibels (dB) as a function of the frequency (Hz) of the source. sound.
  • the sheets according to Examples 1 to 16 can be used in particular for floor and wall coverings.
  • the flame retardant sheets, if necessary, can be laminated, in particular on plasterboard panels, in order to create safety ceilings.
  • Example 4 a sheet of 80 g / m 2 is prepared which is smoothed, if necessary, at the end of the paper machine. This sheet can be used as a basic support for printing-writing.
  • Example 17 The sheet obtained in Example 17 is subjected to a complementary treatment according to the methods of Example 1 (stage 2), of Example 2 (stage 2) and respectively of Example 3; three mineral sheets are obtained which can be used in the field of printing-writing.
  • Example 4 The procedure is as indicated in Example 4 by preparing a sheet of 80 g / m 2 from a basic mixture comprising kaolin (3 to 9 parts by weight) and weakly refined cellulosic fibers (degree SR between 15 and 35). A mineral sheet is obtained having properties similar to those of Example 17 and which can be subjected to one of the complementary treatments of Examples 18 to 20.
  • a sheet of 80 g / m 2 is prepared according to the methods given in Example 7 from a base mixture comprising 2 to 9 parts by weight of talc and one part by weight of fiber F 22.
  • a sheet is obtained mineral which can be treated according to the methods of Examples 18 to 20.
  • a mineral sheet of 80-120 g / m 2 is prepared according to example 4. This sheet is coated in size-press with an aqueous starch bath at 100 g / I for a recovery (in dry matter) of 2 to 4 g / m 2 . A coating is then carried out on one or both sides of this sheet by means of a pigmented bath containing 400 to 500 g / l of the following formulation:
  • the recovery in dry matter is 10 to 20 g / m 2 per side (if necessary, the bath may include one or more shading dyes).
  • the resulting material is, after drying, smoothed and then calendered. It has a good aptitude for offest printing. If necessary, it can be coated again outside the paper machine, in particular by means of an air knife, a trailing blade or a roll coater.
  • Example 8 The procedure is as indicated in Example 8 to prepare a sheet of 80-120 g / m 2 . This sheet is then treated according to the methods of one of examples 18 to 20 to give a print-write support.
  • a sheet of 40-200 g / m 2 is prepared according to the methods described in Example 9. This sheet is then treated according to the methods of one of Examples 18 to 20 to give a print-write support.
  • a mineral sheet of 93 g / m 2 is prepared according to example 4 from a basic mixture [talc - cellulosic fibers (85:15) by weight]. This sheet is coated in size-press with an aqueous starch bath (100 g / I) containing an optical brightener and a blue shading dye (in sufficient quantity) for a recovery in dry matter of 2 g / M 2 . After smoothing, a sheet of paper for printing-writing having the following properties is obtained:
  • stage 1 By implementing stage 1 from the quantities given in table XIII, supports are obtained having very good dimensional stability (high ash rate), good flatness, and an opacity of 83 to 85 for variable grammages. between 65 to 70 g / m 2 . These layer supports are very acceptable for printing-writing and have a lower cost than conventional supports in this field.
  • the amounts of the base mixture are expressed in parts by weight, and the amounts of all the other ingredients are expressed in percentage by weight relative to the weight of the base mixture.
  • the sheet of Example 37 is perfectly suited as a basic support for wall covering.
  • the size-press treatments give the mineral leaf good resistance to IGT tearing. Helio-tests are also good.
  • the mineral sheet of Example 46 has in the AFNOR text (alcohol flame) a charred surface ⁇ 60 cm 2 (classification M1). There is no flame, nor points of ignition on the sheet.
  • This support can be used for example as an advertising poster in places receiving the public.
  • the mineral sheet of Example 47 coated on one side has good printability and good resistance to oils (turpentine-test> 1,800 seconds).
  • Type of use labels for oil bottles, especially as the sheet has a good flatness, and does not fold in contact with water.
  • the mineral support of Example 50 of good dimensional stability, melamine in size-press, can be used as an abrasive support. Its advantage is independently of the lower cost of the base support, a reduction in the resumption of resin for the total impregnation (less cellulosic fibers, talc is hydrophobic).
  • the mineral support of Example 51 is heat sealable and can be used in the packaging field.
  • the mineral sheet of Example 52 non-stick on one side can be used as transfer paper for coating of polyvinyl chloride or polyurethane.
  • the PVDC coating (2 layers) gives the mineral sheet of Example 53 a good impermeability to water vapor.
  • the product obtained is useful in the field of food packaging.
  • Example 54 essentially has good flexibility, good resistance to washing (plynometer> 500 rubs), good aptitude for gravure printing.
  • the presence of polyethylene fibers in its composition promotes deep embossing (better permanence after washing).
  • This support can be used as a wall covering.
  • the sheet of Example 55 has mainly good resistance to water, and can be used as a diazo support.
  • Example 10 The procedure is as indicated in Example 10 (see Table IX) to obtain a mineral sheet having a basis weight of 80-120 g / m 2 , and which has excellent mechanical properties in the dry and wet state due to the presence of polyethylene fibers.
  • This sheet can be processed according to the methods described in Table XIV.

Description

  • La présente invention a trait à un nouveau procédé de préparation d'une feuille fibreuse par voie papetière incluant la précipitation de liant et de charges, pour améliorer les liaisons, les propriétés mécaniques, la rétention des charges et permettre ainsi la diminution des pertes matières et la pollution des eaux. Elle concerne également la feuille fibreuse obtenue selon ce procédé et son application notamment dans le domaine des revêtements en remplacement de l'amiante et dans le domaine des supports d'impression-écriture.
  • On sait que les papiers et cartons sont principalement constitués de fibres cellulosiques nobles (c'est-à-dire provenant notamment des pâtes de bois résineux et/ou de bois feuillus) en association, le cas échéant, avec une charge minérale (notamment le talc, le kaolin, le carbonate de calcium, le carbonate de magnésium) et un liant, et qu'ils peuvent également renfermer des agents auxiliaires tels que notamment les agents de collage, les agents de rétention, les agents anti-siime et les azurants optiques.
  • Dans le domaine du remplacement de l'amiante, on sait que l'on a proposé, dans la demande de brevet français publiée n° 2 357 676, un procédé de préparation d'une feuille fibreuse à partir de fibres végétales ou animales, d'une charge minérale et d'un liant. Or ce procédé présente de nombreux inconvénients (mauvaise rétention et faibles propriétés mécaniques du produit final, notamment) et n'a pas pu être exploité industriellement.
  • Par ailleurs on sait que dans le passé on a préconisé des solutions techniques faisant appel à des agents de rétention particuliers pour résoudre le problème de la rétention, voir à cet effet les brevets britanniques n° 1 407 100, 1 338 759, 1 372 146 et 1 338 513, et américains n° 2 657 991 et 3 184 373.
  • On sait aussi que les prix de plus en plus élevés des fibres cellulosiques nobles ont conduit l'industrie papetière à rechercher des produits et matières premières de remplacement. Parmi les solutions techniques qui ont été envisagées, on peut mentionner celles qui consistent à augmenter la teneur en charge minérale introduite dans la masse pour diminuer la consommation en fibres. Or, il se trouve que ces solutions engendrent (i) une diminution sensible des propriétés mécaniques du substrat en feuille (notamment la résistance à la traction, la résistance à l'éclatement, et, surtout, la cohésion interne et la rigidité) et (ii) des difficultés au niveau de la fabrication puis de l'utilisation (car la fragilité du substrat en feuille peut être à l'origine d'une réduction des cadences de production afin d'éviter les casses sur machine et par suite les déchets).
  • Ainsi, la solution technique proposée par le brevet français n° 1 033 298, qui consiste à préparer un papier épais à partir de fibres et d'une charge minérale, ne convient pas notamment dans le domaine des supports d'impression-écriture, car elle conduit à un produit final mou. Par ailleurs, la solution technique proposée parle brevet américain précité n° 3 184 373, qui consiste à préparer un support d'impression-écriture à partir de fibres, d'une charge minérale et d'un mélange d'agents de rétention, est insatisfaisante en ce sens que les flocs constitués par les fibres et la charge minérale sont faiblement liés en raison de l'absence d'un agent liant : de plus, lesdits flocs sont instables et ne supportent pas les turbulences dans les circuits de tête de la machine à papier, comme indiqué dans ledit brevet américain, colonne 7 lignes 37 et suivantes.
  • Selon l'invention on préconise pour résoudre le problème de l'amélioration des liaisons et de la rétention, une nouvelle solution technique incluant la précipitation d'un liant et d'une charge minérale, et qui repose sur l'utilisation d'un agent floculant avant et après l'introduction du liant et qui est directement utilisable quand on veut augmenter la teneur en charge minérale pour avoir un rapport pondéral charge minérale-fibres élevées compris entre 2 et 9, ou encore quand on veut améliorer les propriétés mécaniques des papiers existants, ou enfin quand on souhaite augmenter le taux de charge minérale restante d'un papier ayant un rapport pondéral charge minérale-fibres compris entre 0 et 2 sans affecter ses propriétés mécaniques.
  • Un des buts de l'invention est de proposer un procédé unique permettant de préparer (a) une feuille fibreuse destinée à remplacer l'amiante dans le domaine des panneaux de revêtement, notamment les panneaux de revêtement de sol, et (b) une feuille fibreuse destinée à être utilisée dans le domaine des supports d'impression-écriture et des papiers spéciaux.
  • Un autre but de l'invention est de proposer un produit en feuille qui soit imputrescible et/ou ininflammable et qui présente une bonne stabilité dimensionnelle à l'état sec, à l'état humide et à la chaleur, et de bonnes propriétés d'isolation thermique et acoustique, de façon à pouvoir remplacer l'amiante, car l'on sait que l'utilisation de cette dernière implique (i) le recours à des installations compliquées entraînant des investissements et des frais de fonctionnement importants et (ii) le respect de règles de sécurité et d'hygiène très strictes, pour éviter tout risque d'absorption ou d'inhalation de fibres et poussières d'amiante.
  • Un autre but de l'invention est d'améliorer les propriétés mécaniques des feuilles fibreuses utiles notamment dans le domaine de l'impression-écriture et plus précisément les deux propriétés importantes que sont la cohésion interne et la rigidité. Sur le plan technique, on se propose d'améliorer les propriétés mécaniques des papiers existants, sans modifier la teneur en charge minérale non liante, et, sur le plan économique, on se propose d'augmenter la teneur en charge minérale non liante des papiers et de pallier les inconvénients de la diminution de l'ensemble des propriétés mécaniques, notamment la cohésion interne, la rigidité et la déchirure qu'engendre l'augmentation de ladite teneur en charge minérale.
  • Parmi les avantages de l'invention on peut notamment mentionner les économies de matière et d'énergie (siccité plus élevée à l'entrée en sécherie des papiers chargés, d'où séchage plus rapide), et, en outre, une augmentation de la vitesse de production (notamment dans la fabrication des roto-offsets).
  • Parmi les applications du procédé de l'invention on peut notamment mentionner :
    • a) les applications visant le domaine des revêtements en remplacement notamment de l'amiante, à partir d'une feuille fibreuse ayant un rapport pondéral charge minérale non liante-fibres compris entre 2 et 9, et avantageusement compris entre 3 et 9 ;
    • b) les applications visant le domaine des supports d'impression-écriture et de papiers spéciaux à partir d'une feuille fibreuse ayant un rapport pondéral charge minérale non liante-fibres compris entre 2 et 9, et utilisable en tant que support pour héliogravure, offset, flexographie, typographie, impression taille-douce, photocopie, papier chèque, étiquette, couché classique, couché moderne, édition, affiches publicitaires (ignifugées ou non ignifugées), journaux, annuaires, écriture (manuscrite ou avec machine à écrire), cahiers, cartonnettes, couvertures, ou encore support pour reprographie, pour papier diazo, support abrasif, anti-adhérent ou stratifié.
  • Par « feuille fibreuse ou encore « substrat en feuille on entend ici un matériau composite préparé par voie papetière et comprenant des fibres, un liant organique et au moins un floculant ; ce matériau composite pouvant, le cas échéant, comprendre en outre une charge minérale non liante et un ou plusieurs adjuvants classiques en papeterie.
  • Par « feuille minérale » on entend ici une feuille fibreuse particulière préparée par voie papetière et comprenant des fibres, un liant et une charge minérale, et dans laquelle la quantité de charge minérale est relativement importante par rapport à celle des fibres.
  • Par « mélange de base » on entend ici un mélange constitué par les fibres et la charge minérale non liante.
  • Par « amélioration des propriétés mécaniques » on entend ici l'amélioration des propriétés mécaniques des feuilles fibreuses existantes, d'une part, et le maintien des propriétés mécaniques quand on augmente la teneur en charge minérale non liante dans lesdites feuilles, d'autre part.
  • Dans ce qui suit, le rapport pondéral charge minérale non liante-fibres a été désigné par la lettre R.
  • Le procédé de préparation selon l'invention d'une feuille fibreuse en vue d'améliorer les liaisons, la rétention, dans lequel on forme une feuille par voie humide à partir d'une suspension aqueuse renfermant des fibres, un liant organique, un floculant et une charge minérale non liante, ledit procédé, dans lequel le floculant est introduit dans la suspension aqueuse renfermant le mélange de base étant caractérisé en ce que successivement :
    • a) on prépare une suspension aqueuse renfermant 100 parties en poids sec d'un mélange de base ayant un rapport pondéral charge minérale non liante-fibres R compris entre 2 et 9 ;
    • b) on introduit dans cette suspension 0,01 à 4 parties en poids sec de floculant ;
    • c) on introduit dans le mélange résultant 0,2 à 30 parties en poids sec de liant organique ;
    • d) on introduit dans le mélange résultant 0,01 à 6 parties en poids sec de floculant ; et
    • e) on forme une feuille fibreuse à partir de la suspension aqueuse résultante selon une technique papetière puis essore et sèche ladite feuille.
  • Selon un mode avantageux de mise en oeuvre, on opère en deux stades :
    • au stade 1, on prépare une suspension aqueuse en introduisant successivement 100 parties en poids de mélange de base, 0,01 à 4 parties en poids de floculant, le liant organique et 0,01 à 6 parties en poids de floculant, puis forme une feuille que l'on essore et sèche ;
    • au stade 2, on soumet, si nécessaire, la feuille ainsi obtenue à au moins un traitement complémentaire.
  • D'une manière générale, le traitement complémentaire du stade 2 est fonction de l'application envisagée, puisque la feuille obtenue au stade 1 peut être utilisée comme support de base pour tout type de traitement de surface (traitement mécanique, tel que lissage, calandrage ou grainage ; ou traitement chimique tel que surfaçage ou couchage sur machine ou hors machine à papier).
  • Du point de vue pratique pour préparer notamment un support d'impression-écriture et un produit destiné au remplacement de l'amiante, il est préféré de mettre en oeuvre le stade 1 puis le stade 2.
  • Toutes les fibres conviennent pour l'élaboration de la feuille minérale selon l'invention, à l'exclusion, bien entendu, des fibres d'amiante en raison des difficultés mentionnées plus haut même si leur utilisation ne soulève aucun problème technique. Parmi les fibres que l'on préconise, on peut notamment citer les fibres organiques naturelles (telles que les fibres cellulosiques, les fibres de cuir, les fibres végétales) et synthétiques (telles que les fibres de polyamides, de polyalkylènes et de polyesters), et les fibres minérales (telles que les fibres de verre, de céramique, de sulfate de calcium et de carbone). On peut bien entendu utiliser des mélanges de ces fibres ainsi que les fibres de récupération de vieux papiers et de textiles. Les fibres utilisables ont 0,1 à 8 mm de longueur (par exemple : 0.2-3 mm pour les fibres cellulosiques, 3-6 mm pour les fibres de verre et 0,1-0,3 mm pour les fibres de laine de roche). L'utilisation de fibres de sulfate de calcium et en particulier de fibres de gypse aciculaire demande au préalable une saturation des eaux de dilution en sulfate de calcium (2 à 3 g/1) afin de ne pas dissoudre lesdites fibres dans la suspension du mélange de base.
  • A titre d'illustration un certain nombre de fibres utilisables a été donné dans le tableau 1. Les fibres cellulosiques utilisées seules ou en association avec d'autres fibres auront un degré Schopper-Riegler (S.R.) compris entre 15 et 65.
  • Les fibres préférées sont les fibres cellulosiques, car, bien que relativement onéreuses, elles sont encore moins chères que les autres fibres. Selon un mode préféré de réalisation on préconise d'utiliser des fibres celulosiques en association avec des fibres de polyalkylène (notamment polyéthylène et polypropylène). L'utilisation de fibres de polyalkylène permet de renforcer la solidité de l'ensemble (cohésion interne notamment) et la stabilité dimensionnelle. En effet, ces fibres qui fondent ou se ramollissent à 120-200 °C permettent de renforcer les caractéristiques mécaniques (adhésion à l'état sec et à l'état humide, stabilité dimensionnelle), de conférer au papier un certaine épaisseur (ce qui, pour une épaisseur et un grammage donnés, réduit les coûts matières), de diminuer la quantité de liant et, le cas échéant, la quantité de fibres de verre à utiliser, notamment dans la réalisation de panneaux de revêtement, de favoriser l'égouttage (plus grande vitesse, meilleur coût de production) lors de la formation de la feuille, et de diminuer le peluchage (notamment pour éviter les points durs et les irrégularités de surface). Le traitement à chaud (à 120-200 °C environ pendant 4 à 2 minutes environ) des feuilles minérales renfermant des fibres de polyalkylène peut être effectué sur la machine à papier, ou chez l'utilisateur (par exemple pendant le séchage de l'enduction vinylique de 3 minutes à 180 °C) hors machine à papier.
  • Parmi les mélanges de fibres renfermant des fibres de polyalkylène on pourra avantageusement faire appel aux mélanges fibres cellulosiques-fibres de polyéthylène (75 : 25) en poids et (16 : 9) en poids, au mélange fibres cellulosiques-fibres de polyéthylène-fibres de verre (16 9 : 2) en poids, et au mélange fibres cellulosiques-fibres de polyéthylène-fibres de laine de roche (16 8 : 3) en poids.
  • Le liant à utiliser au stade 1 est un liant organique d'origine naturelle ou synthétique car les liants minéraux et les ciments présentent l'inconvénient d'avoir une durée de prise longue. Le liant organique assure la liaison des constituants de la feuille fibreuse entre eux, peut renforcer les propriétés physiques de la feuille fibreuse et joue le rôle d'agent de rigidification. Parmi les liants qui conviennent on peut notamment citer ceux du tableau III ci-après.
  • De façon avantageuse on utilisera, pour 100 parties en poids du mélange de base, 2 à 15 parties en poids de liant.
  • Dans le domaine des supports d'impression-écriture et des papiers spéciaux, le liant le plus intéressant est l'amidon qui est un produit constitué d'une substance polymère à chaîne linéaire, l'amylose, et d'une substance polymère tridimensionnelle, l'amylopectine, et plus particulièrement l'amidon renfermant 50 à 6 000 motifs anhydroglucose (dans le polymère linéaire) par molécule, tel que la fécule native (notamment obtenue à partir de la pomme de terre) et l'amidon de maïs natif, qui renferment 100 à 6 000 motifs anhydroglucose (dans le polymère linéaire) par molécule, et les amidons modifiés par voie chimique ou enzymatique (esters phosphoriques d'amidon carboxyméthylé, et amidon dégradé enzymatiquement) qui renferment de 50 à 3000 motifs anhydroglucose par molécule. Ces amidons réagissent, soit avec les ions aluminium, soit avec les floculants cationiques synthétiques mentionnés ci-après, pour former un complexe qui a une bonne affinité pour la fibre et la charge. On peut également utiliser des amidons modifiés ioniquement.
  • L'amidon ayant 50 à 6 000 motifs anhydroglucose (dans le polymère linéaire) par molécule, est le liant préféré en ce sens que (i) il contribue de façon surprenante à l'obtention de la rigidité, du « claquant et du « sonnant du papier (il joue le rôle d'agent de rigidification ce qui est important car l'on sait que l'augmentation de la charge introduite dans le support nuit entre autres choses à la rigidité du papier : un papier trop mou « passe mal sur une offset rapide) (ii) il remplace avantageusement les latex qui sont des liants chers, et (iii) facilite le repulpage des cassés.
  • Dans le domaine des revêtements les liants préférés sont l'amidon comme indiqué ci-dessus, et surtout les latex, notamment les latex acryliques tels que L9 et L10 et les latex styrène-butadiène tels que L12 et L13 (voir tableau III).
  • Il est essentiel que, lors de la mise en oeuvre du stade 1, le floculant soit introduit avant et après l'ajout du liant. Avant l'ajout de liant, il permet (i) la cationisation des fibres et, quand une charge minérale non liante est présente, la précipitation de ladite charge sur les fibres, et (ii) la floculation du liant quand celui-ci est incorporé au mélange constitué par les fibres et le floculant ou par les fibres, la charge et le floculant. Après l'ajout du liant, il complète la floculation de celui-ci, renforce la cohésion des flocs, améliore la rétention globale et favorise l'égouttage.
  • Bien entendu, on peut utiliser, soit le même agent floculant avant et après l'ajout de liant, soit encore des agents floculants différents, soit enfin des mélanges d'agents floculants.
  • Parmi les floculants qui conviennent, on peut notamment mentionner les sels métalliques tels que notamment les sels d'aluminium, de fer (II) de fer (III), de zinc et de chrome tels que les halogénures, sulfates et phosphates, et les autres substances indiquées dans le tableau IV ci-après. Le floculant préféré selon l'invention est le polychlorure d'aluminium qui est une substance également connue sous le nom d'hydroxychlorure d'aluminium, ayant pour formule générale (HO)yAlxClz―y―x et qui est notamment commercialisé par la Société Péchiney-Ugine-Kuhlmann sous le nom de marque de « WAC ».
  • Les charges minérales non liantes qui sont introduites, le cas échéant, au stade 1 selon l'invention, sont celles qui sont couramment utilisées dans l'industrie papetière et ont un diamètre de particules inférieur ou égal à 80 µm. Conviennent notamment les charges minérales données dans le tableau Il ci-après. La charge préférée est constituée ici par le carbonate de calcium, le talc, le kaolin et leurs mélanges, le diamètre des particules étant avantageusement compris entre 2 et 50 ¡.Lm. Sans sortir du cadre de l'invention, on peut utiliser une charge enrobée au moyen d'une substance polymère améliorant la rétention de ladite charge ; à cet effet, on peut utiliser des charges enrobées et prêtes à l'emploi, ou encore procéder à l'enrobage des charges avant leur incorporation dans la suspension aqueuse des fibres.
  • Comme indiqué plus haut la quantité de charge minérale non liante pourra être fonction de l'application envisagée.
  • Par exemple on pourra obtenir une feuille fibreuse ayant un grammage notamment compris entre 350 et 800 g/m2, destinée à être utilisée dans le domaine des revêtements en remplacement de l'amiante où R est compris entre 2 et 9 et avantageusement 3 et 9.
  • Par exemple également on pourra obtenir une feuille fibreuse ayant un grammage compris entre 40 et 400 g/m2, notamment 40-200 g/m2, destinée à être utilisée dans le domaine des supports d'impression-écriture et des papiers spéciaux, quand R est compris entre 0,2 et 9. Sont inclus dans ce cas les papiers très chargés ayant un R compris entre 2 et 9 et avantageusement 3 et 9 pour lesquels, selon l'invention, on a remplacé une grande partie des fibres par une charge moins chère que lesdites fibres tout en réglant favorablement le problème technique de la rigidité.
  • D'autres adjuvants classiques en papeteries peuvent intervenir, le cas échéant, au stade 1, tels que par exemple les agents hydrofugeants (également appelés agents de collage), les agents antibiotiques, les agents lubrifiants, les agents anti-mousse ou brise-mousse, les azurants optiques, les colorants de nuançage. Parmi les adjuvants qui conviennent on peut notamment citer les agents hydrofugeants du tableau V et les agents auxiliaires tels que les substances A7 (azurant optique) et A10 (anti-mousse) du tableau VII.
  • Selon une caractéristique de l'invention, l'agent hydrofugeant est introduit au stade 1 après le liant organique et avant la 2* fraction du floculant. La quantité d'agent hydrofugeant peut être comprise entre 0,05 et 10 parties, avantageusement entre 0,05 et 5, et de préférence entre 0,1 et 3 parties en poids sec pour 100 parties en poids du mélange de base, les agents hydrofugeants préférés étant les substances H1 et H4 du tableau V.
  • Si nécessaire, on introduit au stade 1, en même temps que l'agent hydrofugeant ou après celui-ci, au moins un agent auxiliaire choisi notamment parmi l'ensemble constitué par les agents de résistance à l'état humide (0,1 à 5 parties en poids pour 100 parties en poids du mélange de base), les agents anti-mousse (0,05 à 0,2 partie en poids pour 100 parties en poids du mélange de base), les azurants optiques (0,1 à 0,3 partie en poids pour 100 parties en poids du mélange de base), les colorants de nuançage (en quantité suffisante) et, le cas échéant, les agents lubrifiants (0,2 à 5 parties en poids pour 100 parties en poids du mélange de base : par exemple 0,2 à 3 parties en poids si R est faible, et 1 à 5 parties en poids si R est relativement plus élevé).
  • La feuille obtenue au stade 1 est soumise, si nécessaire, à un ou plusieurs traitements complémentaires. sur machine à papier ou hors machines à papier, pour notamment :
    • A) améliorer l'aspect, l'uni de surface, augmeter (le cas échéant) la résistance superficielle et uniformiser les propriétés porométriques de la feuille pour une meilleure aptitude à l'impression ;
    • B) diminuer le pouvoir absorbant vis-à-vis de l'eau, et éventuellement des solvants et des plastifiants ;
    • C) obtenir une blancheur et/ou une opacité et/ou une brillance plus élevée ;
    • D) renforcer les propriétés mécaniques à l'état sec et/ou humide ;
    • E) augmenter la rigidité ; et
    • F) obtenir les propriétés particulières telles qu'ignifugation, anti-adhérence, ingraissabilité, thermoscellabilité, et des effets spéciaux tels que effets barrières et imputrescibilité (résistances aux champignons et aux bactéries).
  • Les moyens à mettre en oeuvre, dans ce but, sont notamment la size-press ou presse encoleuse, les coucheuses à rouleaux (roll coater, reverse roll), les coucheuses à lame métallique, à lame d'air, ou encore les coucheuses à racle. A ces moyens, s'ajoutent les moyens de transformation de l'aspect de surface (lissage, calandage et/ou grainage).
  • D'une manière générale le stade 2 est caractérisé en ce que l'on apporte au moins une substance choisie parmi l'ensemble constitué par les charges minérales, les liants organiques et les adjuvants classiques en papeteries tels que notamment les agents d'encollage, les agents dispersants, les pigments, les agents fluorescents, les colorants de nuançage, les agents lubrifiants, les agents modificateurs de viscosité, les agents anti-mousse, les agents insolubilisants et les antibiotiques.
  • Bien entendu le stade 2 est mis en oeuvre en fonction des objectifs recherchés. Pour l'impression-écriture on vise en particulier l'uni de surface et la qualité de l'imprimabilité. Pour la fabrication de papiers spéciaux on vise certaines propriétés telles qu'ignifugation, imputrescibilité, résistance aux huiles, hydrophobie, thermoscellabilité, anti-adhérence, colorations, conductivité et résistivité. résistance à l'éradication chimique et physique, effet barrière vis-à-vis des solvants, des cires et des paraffines. Pour le remplacement de l'amiante on recherche notamment la diminution du pouvoir absorbant vis-à-vis de l'eau, des solvants et des plastifiants, la stabilité dimensionnelle, l'imputrescibilité et, le cas échéant, l'ignifugation.
  • Du point de vue pratique on utilisera au stade 2 au moins un liant notamment un liant du tableau VI donné ci-après, et, le cas échéant, au moins une substance choisie parmi les charges minérales non liantes (telles que décrites ci-dessus au stade 1) les agents auxiliaires (tels que ceux donnés dans le tableau VII ci-après), et les adjuvants spéciaux (tels que ceux donnés dans le tableau VIII ci-après).
  • Au stade 2, parmi les produits qui conviennent pour améliorer les qualités d'imprimabilité de la feuille fibreuse, on peut citer pour le surfaçage ou l'encollage, notamment les dérivés cellulosiques comme les amidons, la carboxyméthylcellulose, l'éthylcellulose, les alginates, les liants naturels ou synthétiques, tels que l'alcool polyvinylique, la gélatine, la caséine, les dextrines, les polymères ou copolymères en émulsion. Ces produits peuvent être combinés à un agent d'encollage classique de la papeterie comme les alkylcétènes dimères, les émulsions de cires et/ou de paraffine, les dispersions de matières plastiques styréniques, acryliques, vinyliques, acrylonitriles, styrène-butadiène, les complexes de chrome trivalent d'acide stéarique ou acides gras saturés, les organo-polysiloxannes.
  • La feuille fibreuse peut être, au stade 2, enduite une ou plusieurs fois, sur une ou deux faces avec une couche pigmentée. Parmi les produits qui conviennent pour la réalisation du bain de couchage, on peut notamment citer : les charges classiques de la papeterie comme celles du mélange de base. Pour cet usage, les particules doivent être plus fines : on utilisera de préférence des pigments avec 70 à 95 % de particules inférieures ou égales à 5 µm. Ces charges sont généralement préalablement dispersées avec des dispersants minéraux (polyphosphates de sodium) et/ou des dispersants organiques (polyacrylates notamment), et doivent être associées à un ou plusieurs liants naturels ou synthétiques.
  • La quantité de matière sèche déposée au stade 2 peut être variable, et comprise notamment entre 1 et 150 g/m2, compte tenu des différents moyens d'enduction utilisables et des propriétés finales requises. A titre indicatif, en size-press non pigmentée, on pourra appliquer 1 à 10 g/m2 de matières sèches. Par couchage pigmenté avec une racle Champion on pourra appliquer entre 3 et 30 g/m2 de matières sèches sur une face en un seul passage. Sur une lame d'air on pourr appliquer 5 à 40 g/m2 de matières sèches sur une face en un seul passage.
  • En lame traînante rigide ou souple, on pourra appliquer 5 à 40 g/m2 de matières sèches sur une face en un seul passage.
  • Parmi les produits qui conviennent pour diminuer le pouvoir absorbant vis-à-vis de l'eau, et éventuellement des solvants et des plastifiants, on peut notamment utiliser les agents d'encollage classiques de la papeterie déjà mentionnés ci-dessus.
  • Parmi les produits qui conviennent pour renforcer les caractéristiques physiques à l'état sec et/ou humide on peut notamment utiliser les liants naturels ou synthétiques, et les agents de résistance à l'état humide déjà mentionnés ci-dessus.
  • Parmi les produits qui conviennent pour améliorer les propriétés d'ininflammabilité en favorisant au contact de la flamme la formation d'une structure charbonneuse, on peut notamment citer les composés azotés (en particulier les résines urée-formol et mélamine-formol) les dérivés du bore (en particulier, le borate d'ammonium, l'acide borique et ses sels métalliques) le sulfamate d'ammonium et les dérivés d'antimoine. Bien entendu, l'agent d'ignifugation renforce, si nécessaire, les propriétés de résistance au feu qui sont conférées par la charge minérale introduite au stade 1, et, le cas échéant, par la charge minérale introduite au stade 2. De façon avantageuse, on utilisera 2 à 15 parties en poids d'agent d'ignifugation pour 100 parties en poids de feuille fibreuse à traiter.
  • Parmi les produits qui conviennent pour améliorer l'anti-adhérence, on peut notamment citer les organo-polysiloxannes, les complexes de chrome trivalent d'acide stéarique ou acide gras saturés et les cires. De façon avantageuse, on utilisera 0,1 à 5 g d'agent anti-adhérent par m2 de feuille fibreuse à traiter.
  • Parmi les produits qui conviennent pour améliorer l'ingraissabilité, on citera notamment le phosphate d'ammonium bis-(N-éthyl-2-perfluoroalkyl-sulfonamide d'éthyle) (nom commercial : Scotch- ban). De façon avantageuse, on utilisera 0,5 à 1 % en poids d'un tel agent par rapport au poids de la feuille fibreuse à traiter.
  • Les propriétés barrières et/ou thermoscellables de la feuille fibreuse peuvent être obtenues par enduction 1 ou 2 faces avec des polymères ou copolymères en émulsion et notamment avec les copolymères éthylène-acétate de vinyle, les copolymères acryliques, les copolymères de chlorure de vinylidène.
  • La résistance au développement des moisissures et des champignons peut être obtenue par un traitement complémentaire en surface avec un agent bactéricide et/ou fongicide classique de la papeterie.
  • Grâce au stade 1, on obtient par voie papetière une feuille fibreuse à partir de fibres..d'un floculant, d'un liant, et d'une charge minérale, caractérisée en ce qu'elle renferme :
    • - 100 parties en poids d'un mélange de base choisi constitué par les fibres et la charge minérale non liante ;
    • - 0,02 à 10 parties en poids d'agent floculant ;
    • - 2 à 30 parties en poids de liant ; et le cas échéant,
    • - 0,05 à 10 et avantageusement 0,05 à 5 parties en poids d'agent hydrofugeant ; et en ce que le rapport pondéral (R) charge minérale non liante-fibres est compris entre 2 et 9.
    • Après le stade 2, on obtient une feuille fibreuse à laquelle on a notamment apporté par enduction, imprégnation au moins un liant et, le cas échéant, au moins une substance choisie parmi les charges minérales non liantes, les agents auxiliaires et les adjuvants spéciaux.
  • Le meilleur mode de mise en oeuvre du procédé de l'invention a été décrit ci-après.
  • Stade 1
  • On met les fibres en suspension à 10-50 g/1 et en particulier à 30-50 g/I dans de l'eau [si on utilise des fibres cellulosiques celles-ci auront été préalablement défibrées et raffinées à un degré S.R. de 15 à 65] (par exemple un S.R. de 15 à 60) et avantageusement de 15-15,5 à 40-45 quand R est compris entre 2 et 9 si on utilise des fibres de sulfate de calcium celles-ci seront mises en suspension dans de l'eau saturée en sulfate de calcium (2 à 3 g/I) et toutes les eaux de dilution seront également saturées en sulfate de calcium ; si on utilise des fibres d'une autre nature (fibres minérales et fibres organiques synthétiques), celles-ci seront soit défibrées séparément, soit dispersées sous forte agitation dans un cuvier renfermant les fibres cellulosiques raffinées ; pour certaines applications où le degré S.R. n'est pas très élevé (S.R. inférieur à 35) il peut être avantageux de raffiner ensemble les fibres cellulosiques et les fibres organiques synthétiques. La charge minérale sous forte agitation est mise en suspension dans l'eau à 300-600 g/I dans une deuxième cuve puis mélangée avec les fibres dans un rapport pondéral charge-fibres compris entre 2 et 9 (une partie de la charge minérale peut provenir, le cas échéant, de la réinsertion de papiers déjà chargés tels que les vieux papiers et les cassés machine). On obtient ainsi le mélange de base.
  • Le floculant minéral ou synthétique généralement cationique est dilué dans de l'eau de 1 à 10 fois, puis est introduit dans le mélange constitué par les fibres et la charge minérale non liante, à la dose de 0,01 à 4, notamment 0,01 à 3 parties en l'état pour 100 parties en poids du mélange de base. On utilisera avantageusement un floculant minéral et de préférence le polychlorure d'aluminium.
  • Le liant, de préférence l'amidon natif pour l'application impression-écriture, après avoir été préalablement cuit à 80-90 °C, ou un latex en émulsion aqueuse, est alors incorporé dans le mélange sous agitation, à une concentration comprise entre 15 et 100 g/I soit en discontinu, soit de préférence, en continu, dans les circuits de tête avant les autres adjuvants. Peuvent être alors incorporés, soit en discontinu dans un cuvier de mélange, soit en continu dans les circuits de tête : un agent d'hydrofugation, un agent d'azurage, un ou des colorants de nuançage, un agent anti-mousse, ou brise-mousse, et éventuellement le lubrifiant.
  • On incorpore de nouveau avant la caisse de tête, l'agent floculant (à la dose de 0,01 à 6, notamment de 0,01 à 5 parties en poids, pour 100 parties en poids du mélange de base) qui, généralement à ce stade, est encore un floculant minéral, notamment le polychlorure d'aluminium qui a un rôle important sur la floculation, la rétention et l'égouttage. Ces deux dernières propriétés peuvent être, le cas échéant, améliorées en ajoutant également un agent de rétention classique de la papeterie.
  • Les additifs suivants : agents de résistance à l'état humide et antibiotiques (bactéricides et/ou fongicides) sont préférentiellement introduits dans le mélange de base avant le liant.
  • La suspension résultante est essorée sur une toile d'une machine à papier. La nature de la toile aura un rôle important sur la rétention en fonction du grammage de la feuille minérale et de la vitesse de fabrication. On peut par exemple utiliser des toiles avec des armatures tissu uni, tricot, retors simple. On pourra utiliser par exemple des toiles de tissu uni 28 x 22 cm, 28 x 24 cm, 32 x 26 cm, 36 x 32 cm, ou des toiles maillon 26 x 25 cm, 28 x 27 cm. Pour le remplacement de l'amiante et pour des épaisseurs de matériaux supérieures à 400 µm, l'essorage pourra être effectué sous une charge linéaire faible de 0,5 à 35 kg/cm.
  • Après formation de la feuille, on procède à un pressage classique en partie humide au moyen d'une ou plusieurs presses coucheuses, presses montantes, presses offset ou presses multiples, les presses étant habillées ou nues, puis au séchage.
  • La feuille fibreuse obtenue au stade 1 peut avoir un grammage variable en fonction des applications recherchées. On pourra avoir ainsi un grammage compris entre 40 et 800 g/m2. On observe que la feuille fibreuse du stade 1 est séchée beaucoup plus rapidement qu'une feuille de papier cellulosique classique. En effet, il est possible de gagner, dès les premiers sécheurs, plus de 20 points de siccité. Cet avantage est très appréciable et permet un gain substantiel de production et une diminution de la consommation d'énergie.
  • Stade 2
  • On soumet la feuille obtenue au stade 1 à un ou plusieurs traitements sur machine à papier ou hors machine à papier.
  • Les quantités de matières déposées sur la feuille fibreuse au cours de ces traitements de surface sont très variables et dépendent évidemment des objectifs recherchés et des moyens de fabrication mis en oeuvre. Dans les applications traditionnelles d'impression-écriture, ces traitements de surface peuvent être du type de ceux couramment employés sur les supports cellulosiques. Pour les applications spéciales, leur nature sera fonction des propriétés souhaitées. En général, on utilisera des bains aqueux de 10 à 600 g/I.
  • D'autres avantages et caractéristiques seront mieux compris à la lecture qui va suivre d'exemples non limitatifs mais donnés à titre d'illustration.
  • Exemple 1 Stade 1
  • On prépare une suspension de fibres de gypse aciculaire de 1,5 mm de longueur moyenne à une concentration de 10 à 50 g/I dans de l'eau saturée en CaS04 (environ 2 à 3 g/I) et de fibres cellulosiques (pulpées et raffinées pour un niveau d'engraissement de 15 à 35 degrés S.R.). Pour 100 parties en poids d'un mélange de base [comprenant 2 à 9 parties en poids de charge minérale (kaolin) et 1 partie en poids de fibres (55 à 90 % en poids de fibres de gypse aciculaire et 45 à 10 % en poids de fibres cellulosiques)] on introduit successivement les additifs suivants pour fabriquer une feuille sur machine à papier :
    Figure imgb0001
  • Remarque : le bactéricide et le fongicide sont incorporés de préférence au mélange de base avant le floculant (1re fraction) et le liant..
  • On essore faiblement en partie humide puis sèche. On fabrique ainsi une feuille souple de 350 à 800 g/m2.
  • Stade 2
  • La feuille ainsi obtenue est imprégnée au moyen d'un bain aqueux comprenant 200 à 400 g/I de la formulation suivante : agent ignifugeant [sulfamate d'ammonium-phosphate d'ammonium-borate d'ammonium
  • Figure imgb0002
  • La reprise souhaitée est de 20 à 50 g/m2 après séchage. Le matériau ainsi obtenu peut être, le cas échéant, légèrement lissé. On obtient une feuille minérale ayant des propriétés ignifuges et utile dans le domaine du remplacement de l'amiante.
  • Exemple 2 Stade 1
  • A partir de 100 parties en poids du mélange de base [talc-fibres cellulosiques dans le rapport pondéral (3 : 1) à (9 : 1)] et des additifs suivants :
    Figure imgb0003
    Figure imgb0004
  • Stade 2
  • La feuille ainsi obtenue est imprégnée au moyen d'un bain aqueux comprenant 300 à 500 g/I de la formulation suivante :
    Figure imgb0005
  • La reprise souhaitée est de 10 à 50 g/m2 (en matière sèche). On obtient un produit de remplacement de l'amiante ayant des propriétés ignifuges.
  • Exemple 3
  • La feuille obtenue au stade 1 de l'exemple 2 est traitée au moyen d'un bain d'imprégnation aqueux renfermant 200 à 400 g/I de la formulation suivante :
    Figure imgb0006
  • La reprise souhaitée après séchage est de 20 à 40 g/m2. On obtient un produit utile pour le remplacement de l'amiante et non ignifugé.
  • Exemple 4
  • On disperse du talc (500 g/l) de l'eau sous forte agitation, puis on l'incorpore dans une dispersion de fibres cellulosiques raffinées à un degré S.R. compris entre 15 et 35. Pour 100 parties en poids d'un mélange de base [comprenant 2 à 9 parties en poids de talc et 1 partie en poids de fibres cellulosiques] on introduit successivement les additifs suivants pour fabriquer une feuille sur machine à papier :
    Figure imgb0007
  • On fabrique après égouttage, pressage, puis séchage une feuille de 350 à 800 g/m2 qu'on lisse, le cas échéant, en bout de machine à papier. On obtient un produit de remplacement de l'amiante non ignifugé.
  • Exemple 5
  • La feuille obtenue à l'exemple 4 est soumise à un traitement de finition selon les modalités opératoires décrites respectivement à l'exemple 1 (stade 2), à l'exemple 2 (stade 2) et à l'exemple 3, on obtient ainsi trois feuilles minérales imprégnées constituant de bons produits de remplacement de l'amiante.
  • Exemple 6
  • On procède comme indiqué à l'exemple 4 à partir d'un mélange de base comprenant du kaolin (3 à 9 parties en poids) et des fibres cellulosiques (1 partie en poids) faiblement raffinées (degré S.R. compris entre 15 et 35), on obtient une feuille minérale de propriétés analogues à celle de l'exemple 4.
  • La finition de cette feuille est réalisée par imprégnation comme indiqué à l'exemple 5. On obtient un produit de remplacement de l'amiante.
  • Exemple 7
  • On procède comme indiqué à l'exemple 4 à partir d'un mélange de base comprenant du talc (2 à 9 parties en poids) et un mélange de fibres F22 (1 partie en poids) constitué de fibres cellulosiques (95 % en poids) et de fibres de verre (5 % en poids). On obtient une feuille minérale que l'on peut imprégner selon les modalités décrites à l'exemple 5 pour le remplacement de l'amiante.
  • Exemple 8
  • On prépare une feuille minérale selon le procédé décrit à l'exemple 4 à partir de 100 parties en poids d'un mélange de base [talc-fibres cellulosiques (85 : 15) en poids] à la différence que les 10 parties en poids de liant L10 de l'exemple 4 sont remplacées par 5 parties en poids de liant L1 (quantité totale de L1 : 7 parties en poids). Cette feuille est imprégnée comme indiqué à l'exemple 5. On obtient un produit de remplacement de l'amiante.
  • Exemple 9
  • On prépare une feuille minérale selon le procédé de l'exemple 4 à partir de 100 parties en poids d'un mélange de base [kaolin-fibres cellulosiques (80:20) en poids] à la différence que le liant L10 de l'exemple 4 est remplacée par une quantité équivalente de polychloroprène.
  • Cette feuille présente une meilleure résistance à la flamme que celle du matériau de l'exemple 4. Bien entendu, elle est imprégnée comme indiqué à l'exemple 5. On obtient un produit de remplacement de l'amiante.
  • Exemples 10 à 16
  • Plusieurs feuilles minérales destinées au remplacement de l'amiante ont été préparées à partir des mélanges de base et des autres ingrédients donnés dans le tableau IX où ont été également consignés les produits de comparaisons (CP 1-CP 4).
  • Le produit de l'exemple 10 est une feuille qui présente d'excellentes propriétés mécaniques à l'état sec et à l'état humide. Par rapport à une feuille selon l'invention préparée avec les mêmes ingrédients mais sans fibres de polyéthylène (le mélange F 21 comprenant 16 parties en poids de F 1 et 9 parties en poids de F 11, étant remplacé par 25 parties en poids de F 1), la feuille de l'exemple 10 conduit à une amélioration de la cohésion interne de (40 %), de la résistance à la traction (de 15 %) et de la stabilité dimentionnelle (de 30 à 40 %).
  • Des essais ont été entrepris pour étudier l'importance de l'utilisation du floculant avant et après le liant. Des formettes (sans lubrifiant) ont été préparées pour comparer les feuilles selon l'invention avec des feuilles préparées avec les mêmes ingrédients mais en incorporant tout le floculant avant ou respectivement après le liant. Les résultats du tableau X ci-après montrent que pour obtenir le même grammage que exemple 11 et respectivement exemple 15, CP 1 et CP 2 et respectivement CP 3 et CP 4 conduisent à des pertes sous toile importantes. De plus, la préparation de CP 1 et CP 2 entraîne un ralentissement de l'égouttage de 30 à 70 % (pour CP 1) et de 10 à 15 % (pour CP 2) par rapport à exemple 11.
  • Dans le tableau XI ci-après on a comparé les propriétés physiques et mécaniques de feuilles minérales selon l'invention avec une feuille d'amiante, ici les exemples 1-4 ayant été obtenus à partir d'un mélange de base de rapport R (85 : 15), et l'exemple 12 d'un rapport R (83 : 27).
  • Dans le tableau XII ci-après on a comparé, en ce qui concerne l'isolation acoustique, une feuille (A) de 400 g/m2 et de 0,6 mm d'épaisseur préparée selon le procédé de l'exemple 4 (à partir d'un mélange de base talc -fibres cellulosiques (85 : 15) en poids) avec une feuille d'amiante (B) de 400 g/m2 et de 0,6 mm d'épaisseur. Les résultats concernent les feuilles A et B et les matériaux obtenus par contrecollage de A ou B sur plusieurs supports (placoplâtre, fibrociment et aggloméré de bois), et sont exprimés en décibels (dB) en fonction de la fréquence (Hz) de la source sonore.
  • Enfin, l'isolation thermique a été déterminée selon la technique suivante : une plaque chauffante est disposée entre deux échantillons identiques dont on veut mesurer la conductibilité thermique ; l'ensemble est pressé entre deux plaques métalliques maintenues à température constante ; des thermocouples mesurent en permanence la différence de température entre la plaque chauffante et chacune des plaques externes ; la plaque chauffante est alimentée en puissance constante puis lorsque le régime permanent est atteint, la distribution de température est linéaire à l'intérieur du matériau à étudier, et la conductibilité thermique s'exprime par la relation.
    Figure imgb0008
    • Q est la puissance dissipée (en calorie/seconde),
    • S est la surface de l'échantillon (en cm2),
    • e est l'épaisseur de l'échantillon (en cm), et
    • Δt est le gradient de température en °C
  • Du point de vue de l'isolation thermique, la feuille A selon l'invention (λ = 13,8 x 10.5 cal/cm - s - °C) est beaucoup plus intéressante que la feuille d'amiante B (λ = 26,5 x 10.5 cal/cm · s · °C).
  • L'ensemble de ces résultats et de ceux des tableaux XI et XII permet de conclure que les feuilles minérales selon l'invention ont des propriétés supérieures ou égales à celles de l'amiante.
  • Du point de vue pratique, les feuilles selon les exemples 1 à 16 sont utilisables notamment pour revêtements de sols et muraux. Les feuilles ignifugées le cas échéant, peuvent être contrecollées notamment sur des panneaux de placoplâtre en vue de la réalisation de plafonds de sécurité.
  • Exemple 17
  • En procédant comme indiqué à l'exemple 4, on prépare une feuille de 80 g/m2 qu'on lisse, le cas échéant, en bout de machine à papier. Cette feuille est utilisable comme support de base pour impression-écriture.
  • Exemples 18-20
  • La feuille obtenue à l'exemple 17 est soumise à un traitement complémentaire selon les modalités de l'exemple 1 (stade 2), de l'exemple 2 (stade 2) et respectivement de l'exemple 3 ; on obtient trois feuilles minérales utilisables dans le domaine de l'impression-écriture.
  • Exemple 21
  • On procède comme indiqué à l'exemple 4 en préparant une feuille de 80 g/m2 à partir d'un mélange de base comprenant du kaolin (3 à 9 parties en poids) et des fibres cellulosiques faiblement raffinées (degré S.R. compris entre 15 et 35). On obtient une feuille minérale ayant des propriétés analogues à celles de l'exemple 17 et qui peut être soumise à un des traitements complémentaires des exemples 18 à 20.
  • Exemple 22
  • On prépare une feuille de 80 g/m2 selon les modalités données à l'exemple 7 à partir d'un mélange de base comprenant 2 à 9 parties en poids de talc et une partie en poids de fibre F 22. On obtient une feuille minérale que l'on peut traiter selon les modalités des exemples 18 à 20.
  • Exemple 23
  • On prépare selon l'exemple 4 une feuille minérale de 80-120 g/m2. Cette feuille est enduite en size-press avec un bain aqueux d'amidon à 100 g/I pour une reprise (en matière sèche) de 2 à 4 g/m2. On procède ensuite à un couchage sur une face ou les 2 faces de cette feuille au moyen d'un bain pigmenté renfermant 400 à 500 g/I de la formulation suivante :
    Figure imgb0009
    Figure imgb0010
  • La reprise en matière sèche est de 10 à 20 g/m2 par face (le cas échéant, le bain peut comporter un ou plusieurs colorants de nuançage).
  • Le matériau résultant est, après séchage, lissé puis calandré. Il présente une bonne aptitude à l'impression offest. Le cas échéant, il peut être à nouveau couché hors machine à papier, notamment au moyen d'une lame d'air, d'un trailing blade ou d'un roll coater.
  • Exemple 24
  • On procède comme indiqué à l'exemple 8 pour préparer une feuille de 80-120 g/m2. Cette feuille est ensuite traitée selon les modalités d'un des exemples 18 à 20 pour donner un support d'impression-écriture.
  • Exemple 25
  • On prépare une feuille de 40-200 g/m2 selon les modalités décrites à l'exemple 9. Cette feuille est ensuite traitée selon les modalités d'un des exemples 18 à 20 donner un support d'impression-écriture.
  • Exemple 26
  • On prépare selon l'exemple 4 une feuille minérale de 93 g/m2 à partir d'un mélange de base [talc - fibres cellulosiques (85: 15) en poids]. Cette feuille est enduite en size-press avec un bain aqueux d'amidon (100 g/I) renfermant un azurant optique et un colorant bleu de nuançage (en quantité suffisante) pour une reprise en matière sèche de 2 g/M 2. On obtient après lissage une feuille de papier pour impression - écriture ayant les propriétés suivantes :
    Figure imgb0011
  • Exemples 27 à 37
  • En mettant en oeuvre le stade 1 à partir des quantités données dans le tableau XIII, on obtient des supports ayant une très bonne stabilité dimentionnelle (taux de cendres élevé), un bon à plat, et une opacité de 83 à 85 pour des grammages variables entre 65 à 70 g/m2. Ces supports de couche sont très acceptables pour l'impression-écriture et ont un coût inférieur à celui des supports classiques dans ce domaine.
  • Dans le tableau XIII, les quantités du mélange de base (charge minérale et fibres) sont exprimées en parties en poids, et les quantités de tous les autres ingrédients sont exprimées en pourcentage en poids par rapport au poids du mélange de base.
  • La feuille de l'exemple 37 convient parfaitement comme support de base pour revêtement mural.
  • Exemples 38 à 57
  • A partir des exemples 27 à 37, en mettant en oeuvre le stade 2 selon les modalités du tableau XIV (où la concentration et la composition du bain de traitement ont été consignées), on obtient les feuilles minérales des exemples 38 à 57 du tableau XV.
  • Les traitements size-press confèrent à la feuille minérale une bonne tenue à l'arrachage IGT. Les hélio-tests sont également bons.
  • Parmi les applications particulières, on cite ce qui suit :
  • La feuille minérale de l'exemple 46 a au texte AFNOR (flamme alcool) une surface charbonnée < 60 cm2 (classement M1). Il n'y a pas de flamme, ni de points en ignition sur la feuille. Ce support peut être utilisé par exemple comme affiche publicitaire dans les lieux recevant le public.
  • La feuille minérale de l'exemple 47 couchée sur une face a une bonne imprimabilité et une bonne résistance aux huiles (turpentine-test > 1 800 secondes). Type d'utilisation : étiquettes pour bouteilles d'huile d'autant plus que la feuille a un bon à plat, et ne se replie pas au contact de l'eau.
  • Les exemples 48 et 49 concernant un couché 1 face ou 2 faces pour les magazines (offset, hélio) et un couché 1 face pour étiquettes (de bouteille de bière notamment).
  • Le support minéral de l'exemple 50, de bonne stabilité dimensionnelle, mélaminé en size-press, peut être utilisé comme support abrasif. Son avantage est indépendamment du coût inférieur du support de base, une réduction de la reprise de résine pour l'imprégnation totale (moins de fibres cellulosiques, le talc est hydrophobe).
  • Le support minéral de l'exemple 51 est thermoscellable et peut être utilisé dans le domaine de l'emballage.
  • La feuille minérale de l'exemple 52 anti-adhérente sur une face peut être utilisée comme papier transfert pour enduction de chlorure de polyvinyle ou de polyuréthane.
  • L'enduction PVDC (2 couches) confère à la feuille minérale de l'exemple 53 une bonne imperméabilité à la vapeur d'eau. Le produit obtenu est utile dans le domaine des emballages alimentaires.
  • Le produit de l'exemple 54 présente essentiellement une bonne souplesse, une bonne résistance aux lavages (plynomètre > 500 frottements), une bonne aptitude à l'impression hélio. La présence de fibres de polyéthylène dans sa composition favorise le gaufrage profond (meilleure permanence après lavage). Ce support peut être utilisé comme revêtement mural.
  • La feuille de l'exemple 55 présente principalement une bonne résistance à l'eau, et est utilisable comme support diazo.
  • Dans le tableau XVI ont été indiquées les propriétés de feuilles minérales obtenues au stade 1 (exemples 27, 28 et 32).
  • Dans le tableau XVII on a comparé un certain nombre de feuilles obtenues au stade 2 (exemples 38, 39, 46 et 48) avec des produits de comparaison CP 5 et CP 6 (obtenus à partir d'un support cellulosique standard ayant été soumis à une size-press avec de l'amidon) et CP 7 (un couché magazine cellulosique classique). Dans cette comparaison on a constaté que « l'imprimabilité IGT » est bonne, que le classement ignifugation selon la norme AFNOR est « M 1 pour le produit de l'exemple 46 et que l'hélio- test est « bon pour l'exemple 48 et CP 7.
  • Exemple 58
  • On procède comme indiqué à l'exemple 10 (cf tableau IX) pour obtenir une feuille minérale ayant un grammage de 80-120 g/m2, et qui présente d'excellentes propriétés mécaniques à l'état sec et humide en raison de la présence de fibres de polyéthylène. Cette feuille peut être traitée selon les modalités décrites dans le tableau XIV.
  • Exemple 59
  • Des essais ont été entrepris pour étudier l'importance de l'utilisation du floculant avant et après le liant dans le domaine de l'impression-écriture pour un papier chargé (exemple 59 ; R > 2). Des formettes ont été préparées selon les indications du tableau XXII où les quantités sont données en partie en poids (stade 1 seulement), les quantités totales de floculant étant identiques pour Ex. 59, CP 13 et CP 14. Les résultats, en ce qui concerne les pertes sous toiles, données dans le tableau XXIII confirment ceux du tableau X relatif au remplacement de l'amiante.
  • (Voir Tableaux pages 14-34)
  • Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037

Claims (12)

1. Procédé de préparation d'une feuille fibreuse par voie papetière en vue d'améliorer les liaisons et/ou rétention, dans lequel on forme une feuille par voie humide à partir d'une suspension aqueuse renfermant des fibres autres que l'amiante, ce dernier étant exclu, un liant organique, un floculant et une charge minérale non liante, dans lequel le floculant est introduit dans la suspension aqueuse renfermant le mélange de base constitué par les fibres et la charge minérale non liante, ledit procédé réalisé sur des machines à papier industrielles fabriquant en continu étant caractérisé en ce que successivement :
a) on prépare une suspension aqueuse renfermant 100 parties en poids sec d'un mélange de base ayant un rapport pondéral charge minérale non liante-fibres R compris entre 2 et 9 ;
b) on introduit dans cette suspension 0,01 à 4 parties en poids sec de floculant ;
c) on introduit dans le mélange résultant 2 à 30 parties en poids sec de liant organique ;
d) on introduit dans le mélange résultant 0,01 à 6 parties en poids sec de floculant ; et
e) on forme une feuille fibreuse à partir de la suspension aqueuse résultante selon une technique papetière puis essore et sèche ladite feuille.
2. Procédé selon la revendication 1, caractérisé en ce que l'on soumet la feuille sèche ainsi obtenue à un traitement de surface.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que, après l'addition du liant à l'étape c) et avant l'addition du floculant à l'étape d), on introduit dans la suspension aqueuse un agent hydrofugeant.
4. Procédé selon la revendication 3, caractérisé en ce que l'on utilise 0,05 à 5 parties en poids sec d'agent hydrofugeant pour 100 parties en poids de mélange de base.
5. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le liant organique est un amidon renfermant dans sa partie polymère linéaire amylose 50 à 6 000 motifs anhydroglucose par molécule.
6. Procédé selon la revendication 5, caractérisé en ce que l'amidon est la fécule native de pomme de terre, ou l'amidon de maïs natif.
7. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le liant organique de l'étape c) est un amidon préalablement cuit à 80-90 °C et renfermant 6 000 motifs anhydroglucose par molécule.
8. Procédé selon la revendication 2, caractérisé en ce que le stade 2 comprend au moins un traitement choisi parmi l'ensemble constitué par les traitements de surface mécaniques et les traitements chimiques de surfaçage et couchage.
9. Procédé selon la revendication 8, caractérisé en ce que le traitement du stade 2 comporte l'apport d'un liant au moyen d'un bain aqueux dudit liant de 10 à 600 g/I, renfermant, le cas échéant, au moins une substance choisie parmi l'ensemble constitué par les charges minérales non liantes, les agents auxiliaires, les agents d'ignifugation, les antibiotiques et les agents anti-adhérents.
10. Feuille fibreuse, caractérisée en ce qu'elle est préparée selon le procédé de l'une quelconque des revendications 1 à 9, et en ce qu'elle a un grammage de 40 à 400 g/m2.
11. Feuille fibreuse utile notamment dans le domaine des revêtements en remplacement de l'amiante, caractérisée en ce qu'elle est préparée selon le procédé de l'une quelconque des revendications 1 à 9 et en ce qu'elle a un grammage de 350 à 800 g/m2.
12. Feuille fibreuse selon la revendication 10 ou 11, caractérisée en ce qu'elle a été soumise à un traitement de surface par voie chimique de façon à avoir une reprise en matière sèche de 1 à 150 g/m2.
EP79400405A 1978-06-20 1979-06-19 Procédé de préparation d'une feuille fibreuse par voie papetière en vue d'améliorer les liaisons et la rétention, feuille obtenue selon ce procédé et son application notamment dans le domaine du remplacement de l'amiante et des supports d'impression-écriture Expired EP0006390B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400405T ATE39006T1 (de) 1978-06-20 1979-06-19 Verfahren zur herstellung einer faserbahn nach einer papierherstellungsmethode im hinblick auf eine verbesserung der bindung und der retention, eine nach diesem verfahren hergestellte bahn und ihre verwendung als ersatzmaterial fuer asbestprodukte und als druck- oder schreibunterlage.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR7818447 1978-06-20
FR7818447A FR2429293A1 (fr) 1978-06-20 1978-06-20 Feuille minerale, son procede de preparation et son utilisation notamment dans le domaine des revetements et des supports d'impression-ecriture
FR7901833 1979-01-24
FR7901833A FR2447420A2 (fr) 1979-01-24 1979-01-24 Feuille minerale, son procede de preparation et son utilisation, notamment dans le domaine des revetements et des supports d'impression-ecriture
FR7910386A FR2455121B1 (fr) 1979-04-24 1979-04-24 Procede de preparation par voie papetiere d'une feuille fibreuse ayant des proprietes mecaniques ameliorees, feuille fibreuse obtenue selon ce procede et application notamment dans le domaine des supports d'impression-ecriture
FR7910386 1979-04-24

Publications (2)

Publication Number Publication Date
EP0006390A1 EP0006390A1 (fr) 1980-01-09
EP0006390B1 true EP0006390B1 (fr) 1988-11-30

Family

ID=27250838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400405A Expired EP0006390B1 (fr) 1978-06-20 1979-06-19 Procédé de préparation d'une feuille fibreuse par voie papetière en vue d'améliorer les liaisons et la rétention, feuille obtenue selon ce procédé et son application notamment dans le domaine du remplacement de l'amiante et des supports d'impression-écriture

Country Status (10)

Country Link
US (1) US4487657A (fr)
EP (1) EP0006390B1 (fr)
BR (1) BR7903893A (fr)
CA (1) CA1135460A (fr)
DE (1) DE2967683D1 (fr)
DK (1) DK156589C (fr)
ES (1) ES481726A1 (fr)
FI (1) FI65294C (fr)
GR (1) GR65316B (fr)
PT (1) PT69780A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506046A (en) 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5709827A (en) 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5830305A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2481707B1 (fr) * 1980-04-30 1985-07-26 Arjomari Prioux Nouveau materiau sous forme de feuille comportant des fibres de renforcement et un materiau thermoplastique en poudre, et son procede de preparation
SE432951B (sv) * 1980-05-28 1984-04-30 Eka Ab Pappersprodukt innehallande cellulosafibrer och ett bindemedelssystem som omfattar kolloidal kiselsyra och katjonisk sterkelse samt forfarande for framstellning av pappersprodukten
AU546999B2 (en) * 1980-05-28 1985-10-03 Eka A.B. Adding binder to paper making stock
US4445970A (en) * 1980-10-22 1984-05-01 Penntech Papers, Inc. High mineral composite fine paper
FR2519663B2 (fr) * 1981-05-12 1985-08-16 Jeandheurs Papeteries Perfectionnements apportes au procede de fabrication en milieu aqueux de feuilles en matieres fibreuses contenant du latex ou analogue et/ou des phenoplastes ou aminoplastes, nouvelles feuilles ainsi obtenues et leur eventuelle reutilisation
US4548676A (en) * 1981-05-13 1985-10-22 United States Gypsum Company Paper having calcium sulfate mineral filler for use in the production of gypsum wallboard
US4612251A (en) * 1982-07-30 1986-09-16 Arjomari-Prioux Paper sheet having a very high proportion of latex, process for preparing same and applications thereof particularly as a substitution product for impregnated glass webs
FR2531114B1 (fr) * 1982-07-30 1987-05-29 Arjomari Prioux Feuille papetiere a tres fort taux de latex, son procede de preparation et ses applications notamment comme produit de substitution des voiles de verre impregnes
FR2535751A2 (fr) * 1982-11-05 1984-05-11 Arjomari Prioux Feuille papetiere a tres fort taux de latex, son procede de preparation et ses applications notamment comme produit de substitution des voiles de verre impregnes
US4707221A (en) * 1982-12-23 1987-11-17 The Dow Chemical Company Sheets having improved stiffness from fiber, latex and coalescing agent
FR2540152B1 (fr) * 1983-01-31 1986-11-21 Gascogne Papeteries Procede de preparation d'une feuille de papier ayant des proprietes mecaniques ameliorees, utile dans le domaine de l'emballage et notamment celui des sacs, et feuille de papier obtenue selon ce procede
FR2553121B1 (fr) * 1983-10-06 1986-02-21 Arjomari Prioux Feuille papetiere, son procede de preparation et ses applications notamment comme produit de substitution des voiles de verre impregnes
US4543158A (en) * 1984-04-02 1985-09-24 Gaf Corporation Sheet type felt
US4609431A (en) * 1984-07-26 1986-09-02 Congoleum Corporation Non-woven fibrous composite materials and method for the preparation thereof
US4806205A (en) * 1984-12-24 1989-02-21 Monsanto Company Process for preparing sheet composites containing crystalline phosphate fibers
SE455318B (sv) * 1985-01-15 1988-07-04 Mo Och Domsjoe Ab Sett for framstellning av papper innehallande lera eller andra fyllmedel
FR2576333B1 (fr) * 1985-01-18 1987-09-25 Arjomari Prioux Traitement d'une feuille fibreuse obtenue par voie papetiere en vue d'ameliorer sa stabilite dimensionnelle et application notamment dans le domaine des revetements de sol ou muraux
GB8531558D0 (en) * 1985-12-21 1986-02-05 Wiggins Teape Group Ltd Loaded paper
SE8700058L (sv) * 1987-01-09 1988-07-10 Skogsindustriens Tekniska Fors Papperstillverkning
FR2612213B1 (fr) * 1987-03-13 1989-06-30 Roquette Freres Procede de fabrication du papier
US5112612A (en) * 1987-06-05 1992-05-12 Unilever Patent Holdings B.V. Spheroidal silica
DE68916967T2 (de) * 1988-09-30 1994-12-15 Arjo Wiggins Sa Basiszusammensetzung zur Herstellung eines biegsamen und porösen Blatterzeugnisses wesentlich bestehend aus Elastomerpulver, sowie das erhaltene Erzeugnis und Verfahren zur Herstellung.
FR2639001B1 (fr) * 1988-10-26 1991-04-12 Arjomari Prioux Composition de base pour la fabrication d'un produit en feuille, flexible et poreux a base de poudre d'elastomere, produit en feuille et son procede de preparation
CA2025265C (fr) * 1989-10-05 2000-03-14 Lanxide Technology Company, Lp Methode de preparation de materiaux ceramiques
CA2016325A1 (fr) * 1989-11-03 1991-05-03 Terry C. Neubert Matelas de papier
US5512135A (en) * 1991-07-02 1996-04-30 Eka Nobel Ab Process for the production of paper
EP0554820B1 (fr) * 1992-02-03 1998-07-08 Lanxide Technology Company, Lp Procédé de fabrication de feuilles céramiques
FR2689530B1 (fr) * 1992-04-07 1996-12-13 Aussedat Rey Nouveau produit complexe a base de fibres et de charges, et procede de fabrication d'un tel nouveau produit.
US5658603A (en) 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5508072A (en) 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5830548A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5580624A (en) 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5851634A (en) 1992-08-11 1998-12-22 E. Khashoggi Industries Hinges for highly inorganically filled composite materials
US5928741A (en) 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5800647A (en) 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5545450A (en) 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5401588A (en) * 1992-12-23 1995-03-28 Georgia-Pacific Resins Inc. Gypsum microfiber sheet material
DK169728B1 (da) 1993-02-02 1995-01-23 Stein Gaasland Fremgangsmåde til frigørelse af cellulosebaserede fibre fra hinanden i vand og støbemasse til plastisk formning af celluloseholdige fiberprodukter
US5738921A (en) 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US5663004A (en) * 1994-02-15 1997-09-02 Xerox Corporation Recording sheets containing mildew preventing agents
DE4407878C2 (de) * 1994-03-09 1996-07-04 Bernhard Dettling Aroma- und dampfsperrendes(r), beschichtetes(r) Papier oder Karton
US6001218A (en) 1994-06-29 1999-12-14 Kimberly-Clark Worldwide, Inc. Production of soft paper products from old newspaper
US6074527A (en) 1994-06-29 2000-06-13 Kimberly-Clark Worldwide, Inc. Production of soft paper products from coarse cellulosic fibers
US5582681A (en) 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
IT1271003B (it) * 1994-09-08 1997-05-26 Ausimont Spa Processo per la produzione di carta e cartone ad elevata resistenza meccanica
US5639348A (en) * 1995-01-30 1997-06-17 Vinings Industries, Inc. Bleaching compositions comprising sulfamates and borates or gluconates and processes
US5858487A (en) * 1995-02-27 1999-01-12 Joseph J. Funicelli Non-stick microwaveable food wrap
US5804308A (en) * 1995-08-04 1998-09-08 Mcallister; Richard C. Heat lag media
FR2751996B1 (fr) * 1996-07-30 1998-12-24 Arjo Wiggins Sa Papier ignifuge, notamment papier d'impression-ecriture et papier pour affiches
US6296736B1 (en) 1997-10-30 2001-10-02 Kimberly-Clark Worldwide, Inc. Process for modifying pulp from recycled newspapers
AU3787199A (en) 1998-05-05 1999-11-23 Weyerhaeuser Company Coating for wood based panels to reduce corrosion of attached metallic member
US6387210B1 (en) 1998-09-30 2002-05-14 Kimberly-Clark Worldwide, Inc. Method of making sanitary paper product from coarse fibers
DE60025265T2 (de) * 1999-10-15 2006-08-03 Cargill, Inc., Minneapolis Fasern aus pflanzensamen und verwendung
FR2811978B1 (fr) * 2000-07-18 2002-10-11 Lafarge Platres Enduit de jointement pour element de construction, son procede de preparation et procede de realisation d'un ouvrage
ZA200105884B (en) * 2000-08-04 2002-05-13 Armstrong World Ind Inc Fibrous sheet enhancement.
US20030194584A1 (en) * 2000-12-05 2003-10-16 Arne Clausen Mould resistant decorative panel
US6716310B2 (en) 2001-12-31 2004-04-06 Kimberly-Clark Worldwide, Inc. Process for manufacturing a cellulosic paper product exhibiting reduced malodor
US7189308B2 (en) * 2002-11-08 2007-03-13 Wausau Paper Corp. Treated paper product
FR2853333B1 (fr) * 2003-04-01 2006-01-13 Arjo Wiggins Voile de verre imprimable
FI20045132A (fi) * 2004-04-14 2005-10-15 M Real Oyj Paperin valmistusprosessi
US8252144B2 (en) * 2004-05-27 2012-08-28 Wausau Paper Mills, Llc Flame resistant paper product and method for manufacturing
US7601375B2 (en) 2005-05-23 2009-10-13 Wausau Paper Specialty Products, Llc Food interleaver, method for imparting flavor to food product, and combination food product and food interleaver
JP5015336B1 (ja) * 2011-03-31 2012-08-29 ニチアス株式会社 無機繊維質ペーパー及びその製造方法
US8940134B2 (en) * 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
DE102017118930A1 (de) * 2017-07-03 2019-01-03 Weber Maschinenbau Gmbh Breidenbach Bereitstellen von bahnförmigem Zwischenblattmaterial an einem Schneidbereich
US11828027B1 (en) * 2022-08-31 2023-11-28 Packaging And Crating Technologies, Llc Fire resistant retail product packaging materials and method of manufacturing same
CN115805630A (zh) * 2022-12-14 2023-03-17 优优新材料股份有限公司 一种提高人造板用秸秆纤维的胶合强度的处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3184373A (en) * 1961-07-05 1965-05-18 Mead Corp Filled paper containing a mixture of resin and mucilaginous material as a retention aid and process for producing said paper
GB1338759A (en) * 1970-01-20 1973-11-28 Int Synthetic Rubber Fibre treatment process

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA619559A (en) * 1961-05-02 B. Holly Richard Sheets containing inorganic mineral filler
US2133694A (en) * 1935-08-08 1938-10-18 Carey Philip Mfg Co Method of making fibrous material
US2601597A (en) * 1946-09-06 1952-06-24 American Cyanamid Co Application of dispersed coating materials to cellulosic fibers
US2635045A (en) * 1948-04-21 1953-04-14 Riegel Paper Corp Making elastomer containing paper
US2843479A (en) * 1955-03-16 1958-07-15 Armstrong Cork Co Method of making rubber-bound fibrous products and the like
DE1239932B (de) * 1963-06-27 1967-05-03 Giulini Gmbh Geb Verfahren zur Herstellung von ungewebten Faserbahnen aus pflanzlichen, tierischen oder mineralischen Fasern
US3300372A (en) * 1963-08-23 1967-01-24 Kaiser Gypsum Company Inc Fire-resistant building board and process
US3549485A (en) * 1968-03-04 1970-12-22 Armstrong Cork Co Flocculation-deflocculation steps in mineral wool-clay board formation
US3549489A (en) * 1968-10-22 1970-12-22 Atomic Energy Commission System for detecting sodium boiling in a reactor
GB1375405A (fr) * 1972-02-07 1974-11-27
US4011130A (en) * 1974-09-09 1977-03-08 Minnesota Mining And Manufacturing Company Leather-like waterlaid sheets containing particulate fillers
US4121966A (en) * 1975-02-13 1978-10-24 Mitsubishi Paper Mills, Ltd. Method for producing fibrous sheet
FR2410084A1 (fr) * 1977-11-23 1979-06-22 Arjomari Prioux Produit cellulosique, son procede de preparation et son application, notamment dans le domaine des panneaux de revetement en remplacement de l'amiante
US4225383A (en) * 1978-02-02 1980-09-30 The Dow Chemical Company Highly filled sheets and method of preparation thereof
US4245689A (en) * 1978-05-02 1981-01-20 Georgia Bonded Fibers, Inc. Dimensionally stable cellulosic backing web

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3184373A (en) * 1961-07-05 1965-05-18 Mead Corp Filled paper containing a mixture of resin and mucilaginous material as a retention aid and process for producing said paper
GB1338759A (en) * 1970-01-20 1973-11-28 Int Synthetic Rubber Fibre treatment process

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CASEY "Pulp and Paper" 1952 Interscience Pub.,New York Chapitre IX "Filling and loading" p. 469, 470, 472 *
G. MARTIN "Le Papier" Coll. Que sais-je ? 3e éd. 1976 Presses Universitaires de France. p. 84, 85 *
PAPIER CARTON et CELLULOSE, Nov. 1980, p. 50 *
PULP AND PAPER MANUFACTURE ; vol. 3; Mc Graw Hill.1953 p. 274 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506046A (en) 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5709827A (en) 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5830305A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix

Also Published As

Publication number Publication date
PT69780A (fr) 1979-07-01
DK156589C (da) 1990-02-05
DE2967683D1 (en) 1989-01-05
DK156589B (da) 1989-09-11
EP0006390A1 (fr) 1980-01-09
GR65316B (en) 1980-08-02
FI791966A (fi) 1979-12-21
CA1135460A (fr) 1982-11-16
US4487657A (en) 1984-12-11
FI65294C (fi) 1984-04-10
BR7903893A (pt) 1980-02-20
DK256479A (da) 1979-12-21
FI65294B (fi) 1983-12-30
ES481726A1 (es) 1980-06-16

Similar Documents

Publication Publication Date Title
EP0006390B1 (fr) Procédé de préparation d&#39;une feuille fibreuse par voie papetière en vue d&#39;améliorer les liaisons et la rétention, feuille obtenue selon ce procédé et son application notamment dans le domaine du remplacement de l&#39;amiante et des supports d&#39;impression-écriture
US5961782A (en) Crosslinkable creping adhesive formulations
CN101389727B (zh) 处理衬底的方法
EP1278912B1 (fr) Polymeres d&#39;hydroxy-phenoxyether utilises dans la fabrication du papier
US5916420A (en) Thin printing paper and a process for manufacturing said paper
JP5798182B2 (ja) 塗工紙およびその製造方法
JP2002020993A (ja) 修飾された高アミロース澱粉およびポリビニルアルコールの混合物を含む紙塗被用組成物
US4861427A (en) Bacterial cellulose as surface treatment for fibrous web
US6815497B1 (en) Crosslinkable creping adhesive formulations
RU2630093C2 (ru) Бумага со стабильным размером и способ ее промышленного получения
JPH0544192A (ja) 軽量顔料塗工紙の製造方法
WO2021074879A1 (fr) Composition de mfc avec des fibres de cellulose phosphorylées
JP2018162551A (ja) 塗工紙およびその製造方法
JP6389367B2 (ja) 塗工紙およびその製造方法
EP0031760A1 (fr) Nouveaux papiers contenant du ciment, leur procédé de préparation et leurs applications
JP3744115B2 (ja) オフセット輪転印刷用塗被紙の製造方法
AU1718388A (en) Bacterial cellulose as surface treatment for fibrous web
JP2014208936A (ja) 塗工紙
JPH03260196A (ja) 不燃紙及びその製造方法
JPWO2018163795A1 (ja) 塗工紙
WO2023199203A1 (fr) Composition de pâte de cellulose hautement raffinée avec pâte de cellulose raffinée par compression
JPH0952477A (ja) 裏カーボン複写用紙
WO2023210709A1 (fr) Papier couché
JPWO2021024917A1 (ja) 塗工紙およびその製造方法
JP2004346435A (ja) 印刷用嵩高塗工紙

Legal Events

Date Code Title Description
AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARJOMARI-PRIOUX

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: MARCHI & MITTLER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 39006

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2967683

Country of ref document: DE

Date of ref document: 19890105

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ARJOMARI EUROPE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

NLS Nl: assignments of ep-patents

Owner name: ARJOMARI EUROPE TE PARIJS, FRANKRIJK.

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;ARJOMARI EUROPE S.A.

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ARJO WIGGINS S.A.

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;ARJO WIGGINS S.A.

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ARJO WIGGINS S.A. TE PARIJS, FRANKRIJK.

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 79400405.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980617

Year of fee payment: 20

Ref country code: DE

Payment date: 19980617

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980619

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980701

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980709

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 19990619 *ARJOMARI EUROPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990618

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990619

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990619

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990619

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19990618

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 19990619

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO