EP0021205B1 - Hybrid compression-absorption method for operating heat pumps or refrigeration machines - Google Patents

Hybrid compression-absorption method for operating heat pumps or refrigeration machines Download PDF

Info

Publication number
EP0021205B1
EP0021205B1 EP80103173A EP80103173A EP0021205B1 EP 0021205 B1 EP0021205 B1 EP 0021205B1 EP 80103173 A EP80103173 A EP 80103173A EP 80103173 A EP80103173 A EP 80103173A EP 0021205 B1 EP0021205 B1 EP 0021205B1
Authority
EP
European Patent Office
Prior art keywords
heat
working medium
refrigerant
absorber
exchange action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103173A
Other languages
German (de)
French (fr)
Other versions
EP0021205A3 (en
EP0021205A2 (en
Inventor
Géza Dipl.-Ing. Hivessy
Péter Dipl.-Ing. Pecz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energiagazdalkodasi Intezet
Original Assignee
Energiagazdalkodasi Intezet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energiagazdalkodasi Intezet filed Critical Energiagazdalkodasi Intezet
Priority to AT80103173T priority Critical patent/ATE6387T1/en
Priority to AT83101481T priority patent/ATE22490T1/en
Priority to DE8383101481T priority patent/DE3071785D1/en
Publication of EP0021205A2 publication Critical patent/EP0021205A2/en
Publication of EP0021205A3 publication Critical patent/EP0021205A3/en
Application granted granted Critical
Publication of EP0021205B1 publication Critical patent/EP0021205B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the invention relates to a hybrid compression absorption method for operating heat pumps or refrigerators, with a working medium consisting of a solvent and a refrigerant soluble therein, in which in a first heat exchange process the refrigerant is dissolved in the solvent with heat removal and after expansion as a liquid phase the solvent and the refrigerant dissolved therein from the first heat exchange process, the working medium which is supplied with heat in a second heat exchange process, and thereby the refrigerant dissolved in the solvent at least partially as.
  • Vapor phase is expelled, and the vapor phase of the working medium drawn off from the second heat exchange process is compressed in a compression process, the concentration of the refrigerant in the liquid phase of the working medium being continuously changed along the path of the working medium by the second heat exchange process, preferably also by the first heat exchange process.
  • the invention further relates to a hybrid refrigerator or heat pump for carrying out the method.
  • the possible uses of heat pumps and the increase in their effectiveness are being explored with increased intensity everywhere in the world due to the energy crisis.
  • the heat pump is actually a reversed chiller that transfers the energy from the environment into a functionally closed space.
  • a medium with a variable temperature (a cooling medium) is to be cooled and the extracted energy is also to be transferred to a medium with a variable temperature (e.g. cooling water).
  • the conventional compression refrigeration machines have the major disadvantage that the evaporation and condensation temperatures of the refrigeration machine on the side of the heat exhaust are below the lowest temperature of the medium to be cooled, and on the side of the heat output the highest temperature of the heat-absorbing medium must, and that - which is closely related - the pressures of the heat exchanger vessels must be determined with an unnecessarily large deviation. So the value of the pressure ratio, which basically determines the operation of the compressor, becomes rather unfavorable. The same problem also occurs with heat pumps.
  • Compression processes are also known (DE-B-1 241 468), in which a mixture of two refrigerants with different boiling points is used, the higher-boiling component being liquefied by partial condensation from the compressed refrigerant-vapor mixture, separated from the lower-boiling vaporous component and is relaxed and evaporated to liquefy the lower-boiling component, whereas the liquefied lower-boiling component is expanded and evaporated and mixed with the relaxed higher-boiling component again before evaporation, after which the vaporous higher-boiling component and the vaporous lower-boiling component mixed with it are compressed again together.
  • the absorber which is designed as a flooded standing tube bundle heat exchanger with an overhead common inlet for the vapor phase of the refrigerant and the liquid solvent
  • the remaining refrigerant portion is separated from the refrigerant-enriched solution and in a degasser, which is the standing one Tube boiler with inlet below for the solution enriched with refrigerant in the absorber after its relaxation, brought into the heat exchange with the rich solution and partially condensed so that the refrigerant is expelled from the solution by the evaporation heat released.
  • the working medium used is e.g. Amoniak and water used.
  • the refrigerant expelled from the liquid solvent in the second heat exchange process is separated from the solvent, the vapor phase consisting of the separated refrigerant is returned to the first heat exchange process after compression, while the liquid phase consisting of the separated, low-refrigerant solution is pumped an inner heat exchanger, in which the liquid phase in countercurrent to the solution, which is drawn from the second heat exchange process and is rich in absorbed refrigerant, is heated before being released from the latter, is returned to the first heat exchange process and is brought back together with the compressed refrigerant vapor there.
  • This known method shows that.
  • the efficiency can be significantly increased if both in the first heat exchange process for the absorption of the compressed refrigerant in the solvent, and in the second heat exchange process for expelling the refrigerant from the solvent, the solvent in countercurrent to the heat to be supplied in the heat exchange processes or laxative external heat transfer medium is performed.
  • the countercurrent principle it can be achieved that the temperature of the heat transfer medium changes continuously over the heat exchange surface and that the temperature of the solution on the other side of the heat exchange surface follows, so that in the solution of the solvent and the absorbed refrigerant in both Degassing process as well as in the absorption process, a state of equilibrium of the solution concentration and temperature which is continuously changed from the beginning to the end thereof.
  • DE-C-84084 In another known combined compression-absorption method (DE-C-84084), after the separation of the vapor phase from the liquid phase of the working medium drawn off from the degasser. the vapor phase is compressed and recombined with the liquid phase after it has been heated in an internal countercurrent heat exchanger by the refrigerant-rich solution drawn off from the absorber while cooling, before entering the absorber.
  • the degasser which can also be understood as an evaporator, the working medium is led through a coil and thereby extracts heat from a room to be cooled.
  • Pipe coil evaporators of this type in which a course for the working medium is brought about by the course of the pipe coil, are also referred to as dry evaporators in contrast to flood evaporators, in which the wetting of the heat exchange surface with the liquid phase is increased.
  • dry evaporators in contrast to flood evaporators, in which the wetting of the heat exchange surface with the liquid phase is increased.
  • the invention solves the problem of designing a hybrid compression absorption method of the type mentioned at the beginning and a hybrid refrigeration machine or heat pump for carrying out the method in such a way that a higher energy efficiency can be achieved while avoiding the disadvantages of the known methods mentioned.
  • the solvent is partially evaporated by the heat supply in the second heat exchange process, that along the path of the working medium through the second heat exchange process, preferably also through the first heat exchange process, the concentration of the refrigerant also in the steam phase of the working medium is changed simultaneously and together with that of the liquid phase, and that the compression process is subjected to the vapor phase and the liquid phase of the working medium, which are drawn off from the second heat exchange process, simultaneously and together.
  • a hybrid refrigeration machine or heat pump with a working medium circuit which contains an absorber, a degasser connected downstream thereof via an expansion valve and a mechanical compressor connected downstream thereof, the absorber and the degasser being designed as such heat exchangers that Due to their construction between their inlet and outlet a common path for the working medium, which is formed by guiding elements, is brought about between the liquid phase and the vapor phase of the working medium, that an internal countercurrent heat exchanger is connected between the absorber and the expansion valve on the one hand and between the degasser and the compressor on the other hand is, and that the output of the degasser is connected to the compressor without branching via the internal heat exchanger.
  • At least one of the heat exchangers that enables heat exchange with the environment is a so-called "dry" one that suitably consists of pipes or plates. Construction by means of which continuously changing concentration ratios and / or clearly assigned, continuously changing temperature ratios between the initial and final states are guaranteed both with respect to the liquid phase and the vapor phase of the working medium.
  • the vapor phase which also contains a portion of solvent vapor
  • the liquid phase of the working medium are present simultaneously and together in the compressor work space, so that the mixing of the vapor and liquid phases and the dissolving of the steam run in parallel with the pressure increase during compression, so that the regularities of the thermodynamics of the solutions are also used in the compression process.
  • the system in the thermodynamic system of which a working medium consisting of a solvent and a refrigerant soluble therein is circulated, has an absorber 1 and a degasser 4 as a heat exchanger.
  • An internal heat exchanger 2 temperature changer
  • a pressure-reducing expansion valve 3 expediently a throttle valve
  • the operation of the system is as follows:
  • the solution emerging from the absorber 1 flows through one side of the inner heat exchanger 2 and through the expansion valve 3.
  • a solution of low pressure passes into the degasser 4 removes heat from the medium to be cooled. Due to the amount of heat qq extracted from the medium to be cooled, refrigerant and solvent are transferred to the vapor phase of the working medium, which means that this amount of heat drives the refrigerant out of the solution and evaporates the solvent portion and provides the necessary heat of solution and evaporation.
  • the constructive design of the degasser 4 as a so-called "dry" construction which is characterized by the formation of a forced path for the working medium between the inlet and the outlet of the working medium, which is brought about by guide elements such as pipes or plates Heat exchanger, the proportion of the vapor phase along the heat exchanger surface gradually defined-increases.
  • the temperature of the flowing system increases according to the laws of the solutions.
  • the two-phase mixture emerging from the degasser 4 passes through the other side of the internal heat exchanger 2 into the compressor 8, which q is the two-phase working medium through the use of mechanical work . compressed to the higher pressure level of the absorber 1.
  • the high-pressure liquid-vapor mixture flows back into the absorber 1, where the heat of vaporization and the heat of solution of the refrigerant, ie the amount of heat q o , change with a change Temperature sequence is withdrawn or used for heating purposes.
  • the heat exchange surface of the absorber can also be uniquely assigned a temperature field that changes along the same; the heat given off can therefore really be used with changing temperature parameters.
  • the use of the internal heat exchanger 2 improves the thermal efficiency of the system.
  • the phases of the two-phase working medium emerging from the degasifier 4 are not separated, but instead pass after passing through the internal heat exchanger 2. together and at the same time in the working space of the compressor 8, where, in addition to the compression, the physical processes determined by the thermodynamics of the solutions also take place.
  • the liquid can even be present in two different forms.
  • the liquid phase can occur in its specifically liquid form.
  • it can also be present in the form of aerosol in the steam.
  • a suitable pump and also an atomizer are of course also required for the latter embodiment.
  • the final temperature of the compression also decreases, which is of crucial importance with regard to the design features of the compressor and the materials that can be used.
  • the pressure ratio of the single-stage compression can be increased significantly, whereby the goal can be achieved with simpler and cheaper means.
  • this embodiment can achieve significant advantages.
  • the embodiment according to FIG. 2 has the advantage that it combines the good properties of the working medium circuit discussed in FIG. 1 and the absorption machines as the drive circuit, since this embodiment from FIG. 2 functions without external mechanical energy expenditure by introducing thermal energy.
  • this embodiment compared to the absorption chiller serving as the starting point is that it can be used to bridge a very large temperature difference between the heat exchangers, or, given the same external environmental conditions, this system according to the invention has almost twice the performance figure ⁇ :
  • the liquid working medium flows from the absorber 1 in the already known manner over one side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the degasser 4, in which the working medium from the environment thermal energy q . withdrawn, as a result, part of the working medium evaporates.
  • the working medium is pressed by the compressor 8 into the absorber 19 of the drive circuit.
  • the vapor phase of the working medium is condensed and the refrigerant is dissolved in a poor solution coming from a boiler 18, the working medium giving off its heat of evaporation and solution q o2 .
  • the rich solution flows with the aid of a solution pump 6 via one side of an inner heat exchanger 12 of the drive circuit into the boiler 18, in which the rich refrigerant vapor is expelled from this rich solution with the help of an external amount of energy q k high temperature levels becomes.
  • the poor solution flows back over the other side of the inner heat exchanger 12 and the pressure-reducing expansion valve 3 into the drive-side absorber 19.
  • the steam leaving the boiler 18 flows into a mechanical expansion machine 17, in which a part of the enthalpy of the steam in mechanical energy is converted.
  • the compressor 8 is driven by this mechanical energy.
  • the working medium emerging from the compressor 8 could also be conducted into the absorber 1, the steam emerging from the expansion machine 17 having to be conducted into the drive-side absorber 19. This could thermodynamically separate the working side and the drive side. This way of switching is less interesting because it means no further advantages in terms of function; it even results in a certain deterioration of the specific parameters because in the. in the former case, higher temperatures can be achieved by appropriately selecting the concentration ratios on the drive side in the absorber 19, as a result of which a larger proportion of the energy expended can be obtained at a higher temperature level.
  • the heat pump according to the invention has a very wide field of application, because from the deep-freezing tasks to the heating purposes, it guarantees more energy-efficient operation than the previous systems.
  • Another advantage of the system according to the invention is that it can be adapted very flexibly to the task to be solved, depending on the concentration ratios of the solution used, and in this way its operating characteristics can be optimized.

Description

Die Erfindung betrifft ein hybrides Kompressions-Absorptionsverfahren für das Betreiben von Wärmepumpen oder Kältemaschinen, mit einem Arbeitsmedium aus einem Lösungsmittel und einem darin löslichen Kältemittel, bei welchem in einem ersten Wärmeaustauschvorgang das Kältemittel in dem Lösungsmittel unter Wärmeentzug gelöst wird und nach Expansion des als Flüssigkeitsphase aus dem Lösungsmittel und dem darin gelösten Kältemittel aus dem ersten Wärmeaustauschvorgang abgeführten Arbeitsmedium diesem in einem zweiten Wärmeaustauschvorgang Wärme zugeführt wird und dadurch das in dem Lösungsmittel gelöste Kältemittel wenigstens teilweise als. Dampfphase ausgetrieben wird, und in einem Verdichtungsvorgang die aus dem zweiten Wärmeaustauschvorgang abgezogene Dampfphase des Arbeitsmediums verdichtet wird, wobei entlang des Weges des Arbeitsmediums durch den zweiten Wärmeaustauschvorgang, vorzugsweise auch durch den ersten Wärmeaustauschvorgang die Konzentration des Kältemittels in der Flüssigkeitsphase des Arbeitsmediums kontinuierlich geändert wird.The invention relates to a hybrid compression absorption method for operating heat pumps or refrigerators, with a working medium consisting of a solvent and a refrigerant soluble therein, in which in a first heat exchange process the refrigerant is dissolved in the solvent with heat removal and after expansion as a liquid phase the solvent and the refrigerant dissolved therein from the first heat exchange process, the working medium which is supplied with heat in a second heat exchange process, and thereby the refrigerant dissolved in the solvent at least partially as. Vapor phase is expelled, and the vapor phase of the working medium drawn off from the second heat exchange process is compressed in a compression process, the concentration of the refrigerant in the liquid phase of the working medium being continuously changed along the path of the working medium by the second heat exchange process, preferably also by the first heat exchange process.

Ferner betrifft die Erfindung eine hybride Kältemaschine oder Wärmepumpe zur Durchführung des Verfahrens.The invention further relates to a hybrid refrigerator or heat pump for carrying out the method.

Die Anwendungsmöglichkeiten der Wärmepumpen und die Erhöhung ihrer Effektivität werden infolge der Energiekrise uberall in der Welt mit erhölter Intensität undersucht. Die Wärmepumpe ist eigentlich eine umgekehrt betriebene Kältemaschine, welche die Energie der Umgebung in einen funktionell geschlossenen Raum überführt.The possible uses of heat pumps and the increase in their effectiveness are being explored with increased intensity everywhere in the world due to the energy crisis. The heat pump is actually a reversed chiller that transfers the energy from the environment into a functionally closed space.

Die zur Zeit bekannten Kompressions-Wärmepumpen werden meistens mit in der Kältetechnik allgemein verwendeten Kältemitteln betrieben. Der Trend der Forschungen weist ebenfalls in Richtung der Verfeinerung der in der Kältetechnik schon bewährten Methoden bzw. der Anwendung der Methoden für die Wärmepumpen. Einen wesentlichen Durchbruch kann man allerdings von diesem Entwicklungstrend nicht erwarten.The currently known compression heat pumps are mostly operated with refrigerants commonly used in refrigeration technology. The trend of the research also points towards the refinement of the methods already proven in refrigeration technology and the application of the methods for the heat pumps. However, one cannot expect a significant breakthrough from this development trend.

Es gibt auch solche Kühlungsaufgaben, wo ein Medium mit veränderlicher Temperatur (ein sich abkühlendes Medium) gekühlt werden soll und die abgezogene Energie ebenfalls einem Medium mit veränderlicher Temperatur (z.B. Kühlwasser) übergeben werden soll. In solchen Fällen haben die herkömmlichen Kompressions-Kältemaschinen den großen Nachteil, daß man mit den Verdampfungs- und Kondensationstemperaturen der Kältemaschine an der Seite des Wärmeabzuges unter die tiefste Temperatur des abzukühlenden Mediums, und an der Seite der Wärmeabgabe über die höchste Temperatur des wärmeabziehenden Mediums gehen muß, und daß - was damit eng im Zusammenhang steht - auch die Drücke der Wärmeaustauschergefäße mit einer unnötig großen Abweichung bestimmt werden müssen. So wird der Wert des Druckverhältnisses, das den Betrieb des Verdichters grundsätzlich bestimmt, ziemlich ungünstig. Das gleiche Problem tritt auch bei Wärmepumpen auf.There are also cooling tasks where a medium with a variable temperature (a cooling medium) is to be cooled and the extracted energy is also to be transferred to a medium with a variable temperature (e.g. cooling water). In such cases, the conventional compression refrigeration machines have the major disadvantage that the evaporation and condensation temperatures of the refrigeration machine on the side of the heat exhaust are below the lowest temperature of the medium to be cooled, and on the side of the heat output the highest temperature of the heat-absorbing medium must, and that - which is closely related - the pressures of the heat exchanger vessels must be determined with an unnecessarily large deviation. So the value of the pressure ratio, which basically determines the operation of the compressor, becomes rather unfavorable. The same problem also occurs with heat pumps.

Es sind auch Kompressionsverfahren bekannt (DE - B - 1 241 468), bei welchem mit einem Gemisch aus zwei Kältemitteln unterschiedlicher Siedepunkte gearbeitet wird, wobei aus dem verdichteten Kältemittel-Dampfgemisch durch partielle Kondensation die höhersiedende Komponente verflüssigt, von der tiefersiedenden dampfförmigen Komponente getrennt und zur Verflüssigung der tiefersiedenden Komponente entspannt und verdampft wird, wohingegen die verflüssigte tiefersiedende Komponente entspannt und verdampft und vor der Verdampfung der entspannten höhersiedenden Komponente wieder mit dieser gemischt wird, wonach die dampfförmige höhersiedende Komponente und die mit dieser gemischte dampfförmige tiefersiedende Komponente gemeinsam wieder verdichtet werden.Compression processes are also known (DE-B-1 241 468), in which a mixture of two refrigerants with different boiling points is used, the higher-boiling component being liquefied by partial condensation from the compressed refrigerant-vapor mixture, separated from the lower-boiling vaporous component and is relaxed and evaporated to liquefy the lower-boiling component, whereas the liquefied lower-boiling component is expanded and evaporated and mixed with the relaxed higher-boiling component again before evaporation, after which the vaporous higher-boiling component and the vaporous lower-boiling component mixed with it are compressed again together.

Darüberhinaus ist es jedoch auch bereits bekannt, das Absorptionsverfahren und das Kompressionsverfahren miteinander zu kombinieren. Bei einem derartigen bekannten Verfahren (DE-A-2538730) wird ein Kältemittel, wie ein halogenierter Kohlenwasserstoff, welches im Betriebsbereich des Verfahrens kondensiert werden kann, und ein damit verträgliches Lösungsmittel, wie ein Öl, als Arbeitsmedium verwendet, und das Verfahren ist derart geführt, daß nur ein Teil des Kältemittels, z.B. die Hälfte oder weniger, während des Absorptionsvorganges in dem Lösungsmittel gelöst wird. Der restliche Kältemittelanteil wird nach dem Austritt aus dem Absorber, der als überfluteter stehender Röhrenbündel-Wärmeaustauscher mit oben liegendem gemeinsamen Zulauf für die Dampfphase des Kältemittels und das flüssige Lösungsmittel gestaltet ist, von der mit Kältemittel angereicherten Lösung getrennt und in einem Entgaser, der als stehender Röhrenkessel mit unten liegendem Zulauf für die im Absorber mit Kältemittel angereicherte Lösung nach deren Entspannung gestaltet ist, in den Wärmeaustausch mit der reichen Lösung gebracht und dabei teilweise kondensiert, so daß durch die freiwerdende Verdampfungswärme das Kältemittel aus der Lösung ausgetrieben wird. Das ausgetriebene Kältemittel und das flüssige Lösungsmittel werden aus dem oben liegenden Ablauf des Entgasers in einen Verdichter gesaugt, in welchen auch derjenige Teil des Kältemittels, der im Entgaser zum Austreiben des in dem Lösungsmittel absorbierten Kältemittelanteils verwendet wurde, nach vollständiger Kondensierung und sich daran anschließender Verdampfung eingesaugt wird. Bei diesem bekannten Verfahren wird daher der den Kältemitteldampf verdichtende Verdichter zusätzlich zum Hindurchsaugen des Arbeitsmediums durch den Entgaser und zum Pumpen des flüssigen Lösungsmittels zur Hochdruckseite des Absorbers ausgenutzt, so daß eine zusätzliche Lösungsmittelpumpe entfallen kann. Da außerdem als Lösungsmittel ein ÖI verwendet wird, wird dieses durch das Hindurchführen auch durch den Verdichter, der z.B. ein Schraubenkompressor ist, zusätzlich zu dessen Schmierung ausgenutzt. Da jedoch bei diesem Verfahren mit Überschuß an Kältemittel gearbeitet wird, ist die Verdichtungsarbeit hoch.In addition, however, it is already known to combine the absorption process and the compression process with one another. In such a known method (DE-A-2538730), a refrigerant, such as a halogenated hydrocarbon, which can be condensed in the operating range of the method and a solvent compatible with it, such as an oil, is used as the working medium, and the method is carried out in this way that only part of the refrigerant, for example half or less, is dissolved in the solvent during the absorption process. After leaving the absorber, which is designed as a flooded standing tube bundle heat exchanger with an overhead common inlet for the vapor phase of the refrigerant and the liquid solvent, the remaining refrigerant portion is separated from the refrigerant-enriched solution and in a degasser, which is the standing one Tube boiler with inlet below for the solution enriched with refrigerant in the absorber after its relaxation, brought into the heat exchange with the rich solution and partially condensed so that the refrigerant is expelled from the solution by the evaporation heat released. The expelled refrigerant and the liquid solvent are sucked out of the overhead drain of the degasser into a compressor, in which also that part of the refrigerant that was used in the degasser to expel the refrigerant portion absorbed in the solvent is full constant condensation and subsequent evaporation is sucked in. In this known method, therefore, the compressor compressing the refrigerant vapor is additionally used to suck the working medium through the degasser and to pump the liquid solvent to the high-pressure side of the absorber, so that an additional solvent pump can be dispensed with. Since an oil is also used as a solvent, it is also used for lubrication by passing it through the compressor, which is, for example, a screw compressor. However, since developments in this process with an excess of refrigerant is the Verdichtun g sarbeit high.

Bei einem anderen bekannten hybriden Kompressions-Absorptionsverfahren (DE-A-2617351) der eingangs erwähnten Art wird als Arbeitsmedium z.B. Amoniak und Wasser verwendet. Das in dem zweiten Wärmeaustauschvorgang aus dem flüssigen Lösungsmittel ausgetriebene Kältemittel wird von dem Lösungsmittel getrennt, die aus dem abgetrennen Kältemittel bestehende Dampfphase wird nach ihrer Verdichtung in den ersten Wärmeaustauschvorgang zurückgeführt, während die aus der abgetrennten, an Kältemittel armen Lösung bestehende Flüssigkeitsphase mittels einer Pumpe über einen inneren Wärmetauscher, in welchem die Flüssigkeitsphase im Gegenstrom zu der aus dem zweiten Wärmeaustauschvorgang abgezogenen, an absorbiertem Kältemittel reichen Lösung vor deren Entspannung von dieser erwärmt wird, in den ersten Wärmeaustauschvorgang zurückgeführt und dort mit dem verdichteten Kältemitteldampf wieder zusammengebracht wird. Dieses bekannte Verfahren zeigt, daß. der Wirkungsgrad wesentlich dadurch gesteigert werden kann, wenn sowohl im ersten Wärmeaustauschvorgang für die Absorption des verdichteten Kältemittels in dem Lösungsmittel, wie auch in dem zweiten Wärmeaustauschvorgang für das Austreiben des Kältemittels aus dem Lösungsmittel jeweils das Lösungsmittel im Gegenstrom zu dem in den Wärmeaustauschvorgängen wärmezuführenden bzw. abführenden äußeren Wärmeträgermedium geführt wird. Durch Ausnutzung des Gegenstromprinzips läßt sich nämlich erreichen, daß die Temperatur des Wärmeträgermediums sich über die Wärmeaustauschfläche hin kontinuierlich ändert und dem die Temperatur der Lösung an der anderen Seite der Wärmeaustauschfläche folgt, so daß in der Lösung aus dem Lösungsmittel und dem absorbierten Kältemittel sowohl bei dem Entgasungsvorgang als auch bei dem Absorptionsvorgang ein von deren Beginn bis zu deren Ende kontinuierlich geänderter Gleichgewichtszustand der Lösungskonzentration und Temperatur vorliegt. Dieses Ziel wird bei dem bekannten Verfahren jedoch dadurch beeinträchtigt, daß über den ganzen Flüssigkeitsraum des Absorbers und des Entgasers hin ein Dampfraum für das Kältemittel ausgebildet ist, so daß die Flüssigkeitsphase mit ihren längs des Absorbers bzw. Entgasers unterschiedlichen Temperatur- und Konzentrationszuständen das Gleichgewicht mit der gesamten Gasphase herstellen muß, die über die gesamte Flüssigkeitsphase hin praktisch gleiche Zustandsparameter aufweist.In another known hybrid compression absorption method (DE-A-2617351) of the type mentioned at the beginning, the working medium used is e.g. Amoniak and water used. The refrigerant expelled from the liquid solvent in the second heat exchange process is separated from the solvent, the vapor phase consisting of the separated refrigerant is returned to the first heat exchange process after compression, while the liquid phase consisting of the separated, low-refrigerant solution is pumped an inner heat exchanger, in which the liquid phase in countercurrent to the solution, which is drawn from the second heat exchange process and is rich in absorbed refrigerant, is heated before being released from the latter, is returned to the first heat exchange process and is brought back together with the compressed refrigerant vapor there. This known method shows that. the efficiency can be significantly increased if both in the first heat exchange process for the absorption of the compressed refrigerant in the solvent, and in the second heat exchange process for expelling the refrigerant from the solvent, the solvent in countercurrent to the heat to be supplied in the heat exchange processes or laxative external heat transfer medium is performed. By using the countercurrent principle it can be achieved that the temperature of the heat transfer medium changes continuously over the heat exchange surface and that the temperature of the solution on the other side of the heat exchange surface follows, so that in the solution of the solvent and the absorbed refrigerant in both Degassing process as well as in the absorption process, a state of equilibrium of the solution concentration and temperature which is continuously changed from the beginning to the end thereof. This goal is impaired in the known method, however, in that a vapor space for the refrigerant is formed over the entire liquid space of the absorber and the degasser, so that the liquid phase with its different temperature and concentration states along the absorber or degasser equilibrium of the entire gas phase, which has practically the same state parameters over the entire liquid phase.

Auch bei einem anderen bekannten kombinierten Kompressions-Absorptionsverfahren (DE-C-84084) wird nach der Trennung der Dampfphase von der Flüssigkeitsphase des aus dem Entgaser abgezogenen Arbeitsmediums. die Dampfphase verdichtet und mit der Flüssigkeitsphase, nachdem diese in einem inneren Gegenstrom-Wärmetauscher von der aus dem Absorber abgezogenen, an Kältemittel reichen Lösung unter Abkühlung derselben erwärmt wurde, vor dem Eintritt in den Absorber wieder zusammengeführt. Im Entgaser, der auch als Verdampfer verstanden werden kann, wird das Arbeitsmedium durch eine Rohrschlange geführt und entzieht dabei aus einem abzukühlenden Raum Wärme. Derartige Rohrschlangenverdampfer, bei denen durch den Verlauf der Rohrschlange eine Zwangsbahn für das Arbeitsmedium herbeigeführt wird, werden auch als Trocken-Verdampfer im Gegensatz zu Überflutungs-Verdampfern bezeichnet, bei denen die Benetzung der Wärmeaustauschfläche mit der Flüssigkeitsphase gesteigert ist. Da aber bei diesem bekannten Verfahren die Temperatur auf der abzukühlenden wärmeabgebenden Seite des Entgasers über die ganze Länge der Rohrschlange hin praktisch konstant ist, läßt sich zwischen dem Eintritt und Austritt des Entgasers keine deutliche kontinuierliche Temperaturerhöhung und daher Konzentrationsabnahme des Kältemittels im Lösungsmittel entsprechend des vorstehend beschriebenen anderen bekannten Verfahrens (DE-A-2617351) erhalten, wo dieses Ziel durch Ausnutzung des Gegenstromprinzips erreicht wird.In another known combined compression-absorption method (DE-C-84084), after the separation of the vapor phase from the liquid phase of the working medium drawn off from the degasser. the vapor phase is compressed and recombined with the liquid phase after it has been heated in an internal countercurrent heat exchanger by the refrigerant-rich solution drawn off from the absorber while cooling, before entering the absorber. In the degasser, which can also be understood as an evaporator, the working medium is led through a coil and thereby extracts heat from a room to be cooled. Pipe coil evaporators of this type, in which a course for the working medium is brought about by the course of the pipe coil, are also referred to as dry evaporators in contrast to flood evaporators, in which the wetting of the heat exchange surface with the liquid phase is increased. However, since in this known method the temperature on the heat-emitting side of the degasser to be cooled is practically constant over the entire length of the coil, there is no significant continuous increase in temperature between the entry and exit of the degasser and therefore a decrease in the concentration of the refrigerant in the solvent corresponding to that described above other known method (DE-A-2617351) where this goal is achieved by utilizing the countercurrent principle.

Außerdem ist bei den bekannten Verfahren die Überhitzung des Kältemitteldampfes im Verdichter hoch, wodurch das mögliche Druckverhältnis begrenzt ist.In addition, in the known methods, the superheating of the refrigerant vapor in the compressor is high, which limits the possible pressure ratio.

Durch die Erfindung wird die Aufgabe gelöst, ein hybrides Kompressions-Absorptionsverfahren der eingangs erwähnten Art sowie eine hybride Kältemaschine oder Wärmepumpe zur Durchführung des Verfahrens derart zu gestalten, daß unter Vermeidung der genannten Nachteile der bekannten Verfahren ein energetisch höherer Wirkungsgrad erzielbar ist.The invention solves the problem of designing a hybrid compression absorption method of the type mentioned at the beginning and a hybrid refrigeration machine or heat pump for carrying out the method in such a way that a higher energy efficiency can be achieved while avoiding the disadvantages of the known methods mentioned.

Dies wird gemäß der Erfindung bei dem Verfahren dadurch erreicht, daß durch die Wärmezufuhr in dem zweiten Wärmeaustauschvorgang auch das Lösungsmittel teilweise verdampft wird, daß entlang des Weges des Arbeitsmediums durch den zweiten Wärmeaustauschvorgang, vorzugsweise auch durch den ersten Wärmeaustauschvorgang die Konzentration des Kältemittels auch in der Dampfphase des Arbeitsmediums gleichzeitig und gemeinsam mit der der Flüssigkeitsphase kontinuierlich geändert wird, und daß dem Verdichtungsvorgang die Dampfphase und die Flüssigkeitsphase des Arbeitsmediums, die aus dem zweiten Wärmeaustauschvorgang abgezogen werden, gleichzeitig und gemeinsam unterworfen werden.This is achieved according to the invention in that the solvent is partially evaporated by the heat supply in the second heat exchange process, that along the path of the working medium through the second heat exchange process, preferably also through the first heat exchange process, the concentration of the refrigerant also in the steam phase of the working medium is changed simultaneously and together with that of the liquid phase, and that the compression process is subjected to the vapor phase and the liquid phase of the working medium, which are drawn off from the second heat exchange process, simultaneously and together.

Zur Durchführung des Verfahrens gemäß der Erfindung wird eine hybride Kältemaschine oder Wärmepumpe mit einem Arbeitsmediumkreislauf bevorzugt, der einen Absorber, einen diesem über ein Expansionsventil nachgeschalteten Entgaser und einen diesem nachgeschalteten mechanischen Verdichter enthält, wobei der Absorber und der Entgaser als derartige Wärmetauscher ausgebildet sind, daß durch ihre Konstruktion zwischen ihrem Eingang und Ausgang eine der Flüssigkeitsphase und der Dampfphase des Arbeitsmediums gemeinsame, durch Leitelemente gebildete Zwangsbahn für das Arbeitsmedium herbeigeführt wird, daß zwischen den Absorber und das Expansionsventil einerseits und zwischen den Entgaser und den Verdichter andererseits ein innerer Gegenstrom-Wärmetauscher geschaltet ist, und daß der Ausgang des Entgasers über den inneren Wärmetauscher an den Verdichter ohne Leitungsverzweigung angeschlossen ist.To carry out the method according to the invention, a hybrid refrigeration machine or heat pump with a working medium circuit is preferred, which contains an absorber, a degasser connected downstream thereof via an expansion valve and a mechanical compressor connected downstream thereof, the absorber and the degasser being designed as such heat exchangers that Due to their construction between their inlet and outlet a common path for the working medium, which is formed by guiding elements, is brought about between the liquid phase and the vapor phase of the working medium, that an internal countercurrent heat exchanger is connected between the absorber and the expansion valve on the one hand and between the degasser and the compressor on the other hand is, and that the output of the degasser is connected to the compressor without branching via the internal heat exchanger.

Im Sinne der Erfindung ist in einem als Arbeitsmedium ein Arbeitsstoffpaar aus einem Kältemittel und einem Lösungsmittel umwälzenden, mit einem mechanischen Verdichter versehenen System wenigstens der eine der mit der Umgebung einen Wärmeaustausch ermöglichenden Wärmetauscher eine zweckmäßigerweise aus Rohren oder Platten bestehende, so-genannte "trockene" Konstruktion, durch welche entlang der Wärmeaustauschfläche sowohl bezüglich der Flüssigkeitsphase als auch der Dampfphase des Arbeitsmediums zwischen dem Anfangs- und Endzustand sich kontinuierlich verändernde Konzentrationsverhältnisse bzw. diesen eindeutig zugeordnete, sich kontinuierlich verändernde Temperaturverhältnisse gewährleistet sind. Da außerdem im Arbeitsraum des Verdichters die auch einen Anteil an Lösungsmitteldampf enthaltende Dampfphase und die Flüssigkeitsphase des Arbeitsmediums gleichzeitig und gemeinsam vorhanden sind, laufen während der Verdichtung die Vermischung der Dampf- und der Flüssigkeitsphase und das Inlösunggehen des Dampfes parallel mit der Druckerhöhung ab, so daß bei dem Verdichtungsvorgang zusätzlich auch die Gesetzmäßigkeiten der Thermodynamik der Lösungen ausgenutzt werden.In the sense of the invention, in a working medium consisting of a refrigerant and a solvent circulating system, provided with a mechanical compressor, at least one of the heat exchangers that enables heat exchange with the environment is a so-called "dry" one that suitably consists of pipes or plates. Construction by means of which continuously changing concentration ratios and / or clearly assigned, continuously changing temperature ratios between the initial and final states are guaranteed both with respect to the liquid phase and the vapor phase of the working medium. In addition, since the vapor phase, which also contains a portion of solvent vapor, and the liquid phase of the working medium are present simultaneously and together in the compressor work space, the mixing of the vapor and liquid phases and the dissolving of the steam run in parallel with the pressure increase during compression, so that the regularities of the thermodynamics of the solutions are also used in the compression process.

Die Erfindung wird ausführlicher anhand der Zeichnung erläutert, in welcher mögliche Schaltschemen der erfindungsgemäßen hybriden Kältemaschine bzw. Wärmepumpe dargestellt sind. Es zeigen:

  • Fig. 1 die Grundschaltung der erfindungsgemäßen hybriden Wärmepumpe und
  • Fig. 2 eine weitere zweckmäßige Ausführungsform der erfindungsgemäßen Wärmepumpe.
The invention is explained in more detail with reference to the drawing, in which possible circuit diagrams of the hybrid refrigerator or heat pump according to the invention are shown. Show it:
  • Fig. 1 shows the basic circuit of the hybrid heat pump according to the invention and
  • Fig. 2 shows another useful embodiment of the heat pump according to the invention.

In Fig. 1 ist der Grundtyp der erfindungsgemäßen hybriden Wärmepumpe dargestellt. Wie aus der Fig. ersichtlich, weist die Anlage, in deren thermodynamischen System ein Arbeitsmedium aus einem Lösungsmittel und einem darin löslichen Kältemittel umgewälzt wird, als Wärmetauscher einen Absorber 1 und einen Entgaser 4 auf. Zwischen dem Absorber 1 und dem Entgaser 4 ist ein innerer Wärmetauscher 2 (Temperaturwechsler) und ein druckreduzierendes Expansionsventil 3 (zweckmäßigerweise ein Drosselventil) angeordnet. Hinter dem Entgaser 4 befindet sich ein innerer Wärmetauscher 2, in dem das aus dem Entgaser 4 austretende Arbeitsmedium im Gegenstrom zu der aus dem Absorber 1 austretenden Lösung strömt und aus dem der Weg des Arbeitsmediums zu einem mechanischen Verdichter 8 führt, dessen Ausgang mit dem Absorber 1 verbunden ist.1 shows the basic type of the hybrid heat pump according to the invention. As can be seen from the figure, the system, in the thermodynamic system of which a working medium consisting of a solvent and a refrigerant soluble therein is circulated, has an absorber 1 and a degasser 4 as a heat exchanger. An internal heat exchanger 2 (temperature changer) and a pressure-reducing expansion valve 3 (expediently a throttle valve) are arranged between the absorber 1 and the degasser 4. Behind the degasser 4 there is an inner heat exchanger 2, in which the working medium emerging from the degasser 4 flows in countercurrent to the solution emerging from the absorber 1 and from which the path of the working medium leads to a mechanical compressor 8, the outlet of which with the absorber 1 is connected.

Die Arbeitsweise der Anlage ist wie folgt: Die aus dem Absorber 1 austretende Lösung strömt durch die eine Seite des inneren Wärmetauschers 2 und durch das Expansionsventil 3. Nach dem Durchströmen durch das druckreduzierende Expansionsventil 3 gelangt in den, Entgaser 4 eine Lösung niedrigen Druckes, die aus dem abzukühlenden Medium Wärme entzieht. Durch die aus dem abzukühlenden Medium entzogene Wärmemenge qq wird Kältemittel und Lösungsmittel in die Dampfphase des Arbeitsmediums überführt, wobei also diese Wärmemenge das Kältemittel aus der Lösung austreibt und den Lösungsmittelanteil verdampft und die dazu notwendige Lösungs- und Verdampfungswärme zur Verfügung stellt.The operation of the system is as follows: The solution emerging from the absorber 1 flows through one side of the inner heat exchanger 2 and through the expansion valve 3. After flowing through the pressure-reducing expansion valve 3, a solution of low pressure passes into the degasser 4 removes heat from the medium to be cooled. Due to the amount of heat qq extracted from the medium to be cooled, refrigerant and solvent are transferred to the vapor phase of the working medium, which means that this amount of heat drives the refrigerant out of the solution and evaporates the solvent portion and provides the necessary heat of solution and evaporation.

Im Entgaser 4 entsteht somit eine Zweiphasenströmung, wobei durch die konstruktive Gestaltung des Entgasers 4 als sogenannte "trockene" Konstruktion, die charakterisiert ist durch die Ausbildung einer durch Leitelemente, wie Rohre oder Platten, herbeigeführten Zwangsbahn für das Arbeitsmedium zwischen dem Eingang und dem Ausgang des Wärmetauschers, der Anteil der Dampfphase entlang der Wärmeaustauscherfläche allmählich definiert-zunimmt. In Abhängigkeit davon nimmt die Temperatur des strömenden Systems entsprechend den Gesetzmäßigkeiten der Lösungen zu.In the degasser 4 there is thus a two-phase flow, the constructive design of the degasser 4 as a so-called "dry" construction, which is characterized by the formation of a forced path for the working medium between the inlet and the outlet of the working medium, which is brought about by guide elements such as pipes or plates Heat exchanger, the proportion of the vapor phase along the heat exchanger surface gradually defined-increases. Depending on this, the temperature of the flowing system increases according to the laws of the solutions.

Das aus dem Entgaser 4 austretende zweiphasige Gemisch gelangt über die andere Seite des inneren Wärmeaustauschers 2 in den Verdichter 8, der das zweiphasige Arbeitsmedium durch den Einsatz von mechanischer Arbeit q. auf das höhere Druckniveau des Absorbers 1 komprimiert.The two-phase mixture emerging from the degasser 4 passes through the other side of the internal heat exchanger 2 into the compressor 8, which q is the two-phase working medium through the use of mechanical work . compressed to the higher pressure level of the absorber 1.

Aus dem Verdichter 8 strömt das Flüssigkeits-Dampf-Gemisch hohen Druckes wieder zurück in den Absorber 1, wo die Verdampfungswärme der Dampfphase und die Lösungswärme des Kältemittels, d.h. die Wärmemenge qo, bei einem sich verändernden Temperaturablauf entzogen bzw. für Heizungszwecke verwendet wird.From the compressor 8, the high-pressure liquid-vapor mixture flows back into the absorber 1, where the heat of vaporization and the heat of solution of the refrigerant, ie the amount of heat q o , change with a change Temperature sequence is withdrawn or used for heating purposes.

Nach den gleichen Konstruktionsprinzipien wie- beim Entgaser 4 kann auch hier der Wärmeaustauschfläche des Absorbers eindeutig ein sich entlang derselben definiert veränderndes Temperaturfeld zugeordnet werden; die abgegebene Wärme kann also wirklich bei sich verändernden Temperaturparametern ausgenutzt werden.According to the same design principles as in the degasser 4, the heat exchange surface of the absorber can also be uniquely assigned a temperature field that changes along the same; the heat given off can therefore really be used with changing temperature parameters.

Die Anwendung des inneren Wärmetauschers 2 verbessert den thermischen Wirkungsgrad der Anlage.The use of the internal heat exchanger 2 improves the thermal efficiency of the system.

Bei der erfindungsgemäßen Anlage werden daher die Phasen des aus dem Entgaser 4 austretenden zweiphasigen Arbeitsmediums nicht getrennt, sondern sie gelangen - nach Passieren des inneren Wärmeaustauschers 2 - . zusammen und gleichzeitig in den Arbeitsraum des Verdichters 8, wo sich neben der Verdichtung auch die durch die Thermodynamik der Lösungen bestimmten physikalischen Vorgänge abspielen.In the system according to the invention, therefore, the phases of the two-phase working medium emerging from the degasifier 4 are not separated, but instead pass after passing through the internal heat exchanger 2. together and at the same time in the working space of the compressor 8, where, in addition to the compression, the physical processes determined by the thermodynamics of the solutions also take place.

Neben der Dampfphase kann die Flüssigkeit hier sogar in zwei voneinander verschiedenen Formen anwesend sein. Einerseits kann nach dem einen Lösungsweg die-Flüssigkeitsphase in ihrer spezifisch flüssigen Form vorkommen. Andererseits kann sie jedoch auch in Form von Aerosol im Dampf anwesend sein. Zur letzteren Ausführungsform sind natürlich auch eine geeignete Pumpe sowie auch ein Zerstäuber erforderlich.In addition to the vapor phase, the liquid can even be present in two different forms. On the one hand, according to one solution, the liquid phase can occur in its specifically liquid form. On the other hand, however, it can also be present in the form of aerosol in the steam. A suitable pump and also an atomizer are of course also required for the latter embodiment.

Ein sehr großer Vorteil dieser "nassen" Verdichtung liegt darin, daß während der Verdichtung die Vermischung der Dampfphase und der Flüssigkeitsphase des Arbeitsmediums und das Inlösunggehen des Dampfes parallel mit der. Druckerhöhung abläuft, wobei die Dampfphase sowie die Flüssigkeitsphase bestrebt sind, in Funktion der Zeit und der Reaktionsgeschwindigkeiten - entsprechend den Gesetzmäßigkeiten der Thermodynamik der Lösungen - ein Gleichgewicht zu erreichen. Die zu diesen Gleichgewichtszuständen gehörenden Temperaturwerte sind aber immer wesentlich niedriger, als die zu einem gegebenen Druck gehörenden Temperaturwerte im Falle einer adiabaten Verdichtung.A very great advantage of this "wet" compression lies in the fact that during the compression the mixing of the vapor phase and the liquid phase of the working medium and the dissolving of the vapor in parallel with the. Pressure increase takes place, whereby the vapor phase and the liquid phase strive to achieve a balance in function of time and reaction rates - according to the laws of the thermodynamics of the solutions. However, the temperature values belonging to these equilibrium states are always significantly lower than the temperature values belonging to a given pressure in the case of adiabatic compression.

Hinsichtlich der Dampfphase kann diese Situation also so bewertet werden, als ob sich parallel mit der Verdichtung auch ein gleichmäßiger und kontinuierlicher Rückkühlungsvorgang abspielen würde. Die energetische Bedeutung dieser Erscheinung ist für einen Fachmann wohlbekannt. Eine weitere, die Verdichtungsarbeit vermindernde Wirkung entsteht dadurch, daß während des Inlösunggehens auch der Massenanteil der Dampfphase abnimmt, und in dieser Weise weniger Dampf verdichtet werden muß.With regard to the vapor phase, this situation can be assessed as if a uniform and continuous recooling process was taking place in parallel with the compression. The energetic meaning of this phenomenon is well known to a person skilled in the art. Another effect which reduces the compression work arises from the fact that the mass fraction of the vapor phase also decreases during the dissolving process, and less vapor has to be compressed in this way.

Über die beschriebenen Erscheinungen hinaus nimmt auch die Endtemperatur der Verdichtung ab, was hinsichtlich der konstruktiven Merkmale des Verdichters sowie der verwendbaren Werkstoffe von entscheidender Bedeutung ist. Das Druckverhältnis der einstufigen Verdichtung kann wesentlich erhöht werden, wodurch das gestellte Ziel mit einfacheren und billigeren Mitteln erreicht werden kann.In addition to the phenomena described, the final temperature of the compression also decreases, which is of crucial importance with regard to the design features of the compressor and the materials that can be used. The pressure ratio of the single-stage compression can be increased significantly, whereby the goal can be achieved with simpler and cheaper means.

Durch die erwähnten Eigenschaften können mit dieser Ausführungsform wesentliche Vorteile erzielt werden.Due to the properties mentioned, this embodiment can achieve significant advantages.

Die Ausführungsform gemäß Fig. 2. hat den Vorteil, daß sie die guten Eigenschaften des zu Fig. 1 behandelten Arbeitsmediumkreislaufs und der Absorptionsmaschinen als Antriebskreislauf vereinigt, da diese Ausführungsform aus Fig. 2 ohne äußeren mechanischen Energieaufwand durch Einführung von Wärmeenergie funktioniert.The embodiment according to FIG. 2 has the advantage that it combines the good properties of the working medium circuit discussed in FIG. 1 and the absorption machines as the drive circuit, since this embodiment from FIG. 2 functions without external mechanical energy expenditure by introducing thermal energy.

Der wesentlichste Vorteil dieser Ausführungsform besteht gegenüber der als Ausgangsbasis dienenden Resorptionskältemaschine darin, daß mit ihrer Hilfe ein ganz großer Temperaturunterschied zwischen den Wärmetauschern überbrückt werden kann, bzw. bei gleichen äußeren Umgebungsverhältnissen diese erfindungsgemäße Anlage nahezu eine doppeltsogroße Leistungsziffer ε aufweist:The most important advantage of this embodiment compared to the absorption chiller serving as the starting point is that it can be used to bridge a very large temperature difference between the heat exchangers, or, given the same external environmental conditions, this system according to the invention has almost twice the performance figure ε:

Das flüssige Arbeitsmedium strömt aus dem Absorber 1 in der schon bekannten Art und Weise über die eine Seite des inneren Wärmetauschers 2 und das druckreduzierende Expansionsventil 3 in den Entgaser 4, in welchem das Arbeitsmedium aus der Umgebung Wärmeenergie q. entzieht, infolgedessen ein Teil des Arbeitsmediums verdampft.The liquid working medium flows from the absorber 1 in the already known manner over one side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the degasser 4, in which the working medium from the environment thermal energy q . withdrawn, as a result, part of the working medium evaporates.

Die restliche Flüssigkeitsphase und die Dampfphase gelangen über die andere Seite des inneren Wärmetauschers 2 in den Verdichter 8, in welchem sich die "nasse" Verdichtung abspielt.The remaining liquid phase and the vapor phase pass through the other side of the inner heat exchanger 2 into the compressor 8, in which the "wet" compression takes place.

Das Arbeitsmedium wird von dem Verdichter 8 in den Absorber 19 des Antriebskreislaufs gedrückt. Hier wird die Dampfphase des Arbeitsmediums kondensiert und das Kältemittel in einer aus einem Kessel 18 kommenden armen Lösung aufgelöst, wobei das Arbeitsmedium seine Verdampfungs- und Lösungswärme qo2 abgibt.The working medium is pressed by the compressor 8 into the absorber 19 of the drive circuit. Here the vapor phase of the working medium is condensed and the refrigerant is dissolved in a poor solution coming from a boiler 18, the working medium giving off its heat of evaporation and solution q o2 .

Aus dem Absorber 19 strömt die reiche Lösung mit Hilfe einer Lösungspumpe 6 über die eine Seite eines inneren Wärmetauschers 12 des Antriebskreislaufs in den Kessel 18, in welchem aus dieser reichen Lösung mit Hilfe einer äußeren Energiemenge qk hohen Temperaturniveaus der an Kältemittel reiche Dampf wieder ausgetrieben wird.From the absorber 19, the rich solution flows with the aid of a solution pump 6 via one side of an inner heat exchanger 12 of the drive circuit into the boiler 18, in which the rich refrigerant vapor is expelled from this rich solution with the help of an external amount of energy q k high temperature levels becomes.

Die arme Lösung strömt über die andere Seite des inneren Wärmeaustauschers 12 und das druckreduzierende Expansionsventil 3 wieder in den antriebsseitigen Absorber 19 zurück.The poor solution flows back over the other side of the inner heat exchanger 12 and the pressure-reducing expansion valve 3 into the drive-side absorber 19.

Der den Kessel 18 verlassende Dampf strömt in eine mechanische Expansionsmaschine 17, in welcher ein Teil der Enthalpie des Dampfes in mechanische Energie umgewandelt wird. Durch diese mechanische Energie wird der Verdichter 8 angetrieben.The steam leaving the boiler 18 flows into a mechanical expansion machine 17, in which a part of the enthalpy of the steam in mechanical energy is converted. The compressor 8 is driven by this mechanical energy.

Der die Expansionsmaschine 17 verlassende Dampf gelangt in den Absorber 1 und damit wird der thermodynamische Kreis geschlossen.The steam leaving the expansion machine 17 reaches the absorber 1 and the thermodynamic circuit is thus closed.

Bei dieser Ausführungsform kann man noch erwähnen, daß das aus dem Verdichter 8 austretende Arbeitsmedium auch in den Absorber 1 geleitet werden könnte, wobei der aus der Expansionsmaschine 17 austretende Dampf in den antriebsseitigen Absorber 19 geleitet werden müßte. Dadurch könnten die Arbeitsseite und die Antriebsseite thermodynamisch getrennt werden. Diese Schaltungsweise ist aber weniger interessant, weil sie hinsichtlich der Funktion keine weiteren Vorteile bedeutet; sie hat sogar eine gewisse Verschlechterung der spezifischen Kennwerte zur Folge, weil im. ersteren Fall durch die zweckmäßige Auswahl der Konzentrationsverhältnisse auf der Antriebsseite im Absorber 19 höhere Temperaturen erzielt werden können, wodurch ein größerer Anteil der aufgewendeten Energie auf einem höheren Temperaturniveau gewonnen werden kann.In this embodiment, it can also be mentioned that the working medium emerging from the compressor 8 could also be conducted into the absorber 1, the steam emerging from the expansion machine 17 having to be conducted into the drive-side absorber 19. This could thermodynamically separate the working side and the drive side. This way of switching is less interesting because it means no further advantages in terms of function; it even results in a certain deterioration of the specific parameters because in the. in the former case, higher temperatures can be achieved by appropriately selecting the concentration ratios on the drive side in the absorber 19, as a result of which a larger proportion of the energy expended can be obtained at a higher temperature level.

Zusammenfassung kann also festgestellt werden, daß die erfindungsgemäße Wärmepumpe ein sehr breites Anwendungsgebiet aufweist, weil sie von den Tiefkühlungsaufgaben bis hin zu den Heizungszwecken überall einen energetisch günstigeren Betrieb gewährleistet als die bisherigen Anlagen.In summary, it can thus be stated that the heat pump according to the invention has a very wide field of application, because from the deep-freezing tasks to the heating purposes, it guarantees more energy-efficient operation than the previous systems.

Ein weiterer Vorteil der erfindungsgemäßen Anlage besteht darin, daß sie in Abhängigkeit von den Konzentrationsverhältnissen der verwendeten Lösung an die zu lösende Aufgabe sehr elastisch angepaßt werden kann und in dieser Weise ihre Betriebskennwerte optimiert werden können.Another advantage of the system according to the invention is that it can be adapted very flexibly to the task to be solved, depending on the concentration ratios of the solution used, and in this way its operating characteristics can be optimized.

Claims (5)

1. Hybrid compression-absorption method for operating heat pumps or refrigeration machines, with a working medium consisting of a solvent and a refrigerant soluble therein, in which in a first heat-exchange action, the refrigerant is dissolved in the solvent, heat being withdrawn, and after expansion of the working medium removed from the first heat-exchange action as liquid phase consisting of the solvent and the refrigerant dissolved therein, heat is supplied to this medium in a second heat-exchange action and thus the refrigerant dissolved in the solvent is at least partially expelled as vapour phase, and in a c0mpressi0n` action the vapour phase of the working medium withdrawn from the second heat-exchange action is compressed, the concentration of the refrigerant in the liquid phase of the working medium being continuously varied along the path of the working medium through the second heat exchange action, characterised in that by the supply of heat in the second heat-exchange action the solvent is also partially evaporated, in that along the path of the working medium through the second heat-exchange action, preferably also through the first heat-exchange action, the concentration of the refrigerant in the vapour phase of the working medium too is varied continuously, simultaneously and in common with that of the liquid phase, and in that the vapour phase and the liquid phase of the working medium, which are withdrawn from the second heat-exchange action, are subjected simultaneously and in common to the compression action.
2. Method according to claim 1, characterised in that the working medium withdrawn form the first heat-exchange action is brought before the compression action in countercurrent into interior heat-exchange with the working medium before the expansion.
3. Method according to claim 1 or 2, characterised in that the working medium withdrawn from the compression action is mixed in a third heat-exchange action, heat being withdrawn, with a solution poor in refrigerant and thus its vapour phase is condensed and the refrigerant thereof is absorbed, in that then in a fourth heat-exchange action by supply of heat the refrigerant is expelled and a part of the solvent is evaporated out of the refrigerant-rich solution withdrawn from the third heat-exchange action, in that the consequent refrigerant-poor solution is brought into heat exchange with the refrigerant-rich solution withdrawn from the third heat-exchange action and thereafter expanded and returned into the third heat-exchange action, and in that the refrigerant and solvent vapour withdrawn from the fourth heat-exchange action is expanded, mechanical energy being generated which is used as drive energy of the compression action, and returned into the first heat-exchange action.
4. Hybrid refrigeration machine or heat pump for carrying out the method according to Claims 1 and 2, having a working medium cycle which contains an absorber (1), a gas extractor (4) connected by way of an expansion valve (3) after the absorber, and a mechanical compressor (8) placed after the gas extractor, characterised in that the absorber (1) and the gas extractor (4) are formed as heat exchangers of such kind that, due to their design, between their entry and exit a constrained path for the working medium formed by guide elements and common to the liquid phase and the vapour phase of the working medium is brought about, in that between the absorber (1) and the expansion valve (3) on the one hand and between the gas extractor (4) and the compressor (8) on the other an inner countercurrent heat exchanger (2) is placed, and in that the exit of the gas extractor (4) is connected by way of the inner heat exchanger (2) to the compressor (8) without conduit branching.
5. Hybrid refrigeration machine or heat pump according to claim 4, for carrying out the method according to claim 3, characterised in that the exit of the compressor (8) is connected to an absorber (19) of a drive cycle which comprises a boiler (18) following its absorber (19), which boiler is connected on the liquid phase side through a second expansion valve (3) to the absorber (19) of the drive cycle and on the vapour side through a mechanical expansion machine (17), which is coupled with the compressor (8) as its drive, to the absorber (1) of the working medium cycle, while an inner heat exchanger (2) is interposed between the boiler (18) and the expansion valve (3) of the drive cycle on the one hand, and its absorber (19) and the boiler (18) on the other hand.
EP80103173A 1979-06-08 1980-06-09 Hybrid compression-absorption method for operating heat pumps or refrigeration machines Expired EP0021205B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT80103173T ATE6387T1 (en) 1979-06-08 1980-06-09 HYBRID COMPRESSION-ABSORPHION PROCESS FOR OPERATING HEAT PUMPS OR REFRIGERATION MACHINES.
AT83101481T ATE22490T1 (en) 1979-06-08 1980-06-09 OPERATING A HEAT PUMP OR CHILLER.
DE8383101481T DE3071785D1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HUPE001086 1979-06-08
HU79PE1086A HU186726B (en) 1979-06-08 1979-06-08 Hybrid heat pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP83101481.6 Division-Into 1980-06-09

Publications (3)

Publication Number Publication Date
EP0021205A2 EP0021205A2 (en) 1981-01-07
EP0021205A3 EP0021205A3 (en) 1981-03-18
EP0021205B1 true EP0021205B1 (en) 1984-02-22

Family

ID=11000504

Family Applications (2)

Application Number Title Priority Date Filing Date
EP80103173A Expired EP0021205B1 (en) 1979-06-08 1980-06-09 Hybrid compression-absorption method for operating heat pumps or refrigeration machines
EP83101481A Expired EP0085994B1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP83101481A Expired EP0085994B1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine

Country Status (5)

Country Link
US (1) US4481783A (en)
EP (2) EP0021205B1 (en)
JP (1) JPS5637471A (en)
DE (1) DE3066679D1 (en)
HU (1) HU186726B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497931A1 (en) * 1981-01-15 1982-07-16 Inst Francais Du Petrole METHOD FOR HEATING AND HEAT CONDITIONING USING A COMPRESSION HEAT PUMP OPERATING WITH A MIXED WORKING FLUID AND APPARATUS FOR CARRYING OUT SAID METHOD
JPS5864470A (en) * 1981-10-13 1983-04-16 工業技術院長 Compression type refrigerator
FR2526136B1 (en) * 1982-04-28 1986-05-30 Rodie Talbere Henri RESORPTION CYCLE PROCESS FOR HEAT PUMPS
US4674297A (en) * 1983-09-29 1987-06-23 Vobach Arnold R Chemically assisted mechanical refrigeration process
CA1233655A (en) * 1983-09-29 1988-03-08 Arnold R. Vobach Chemically assisted mechanical refrigeration process
HU198328B (en) * 1984-12-03 1989-09-28 Energiagazdalkodasi Intezet Method for multiple-stage operating hibrid (compression-absorption) heat pumps or coolers
HU198329B (en) * 1986-05-23 1989-09-28 Energiagazdalkodasi Intezet Method and apparatus for increasing the power factor of compression hybrid refrigerators or heat pumps operating by solution circuit
US4724679A (en) * 1986-07-02 1988-02-16 Reinhard Radermacher Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures
US5600967A (en) * 1995-04-24 1997-02-11 Meckler; Milton Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
KR100385432B1 (en) * 2000-09-19 2003-05-27 주식회사 케이씨텍 Surface cleaning aerosol production system
TWI263384B (en) 2002-12-19 2006-10-01 Fuji Electric Co Ltd Terminal device for electrical equipment
FR2913762A1 (en) * 2007-03-16 2008-09-19 Usifroid Freeze-drying assembly cooling system, has condenser lowering temperature of mixture to value between boiling temperatures so that refrigerant is remained in gaseous state to guide towards derivative detent loop section
US7878236B1 (en) 2009-02-09 2011-02-01 Breen Joseph G Conserving energy in an HVAC system
ITUA20161730A1 (en) 2016-03-16 2017-09-16 Stefano Briola PLANT AND METHOD FOR SUPPLY TO THE USER OF ELECTRIC POWER AND / OR MECHANICAL POWER, THERMAL POWER AND / OR REFRIGERANT POWER
US9453665B1 (en) * 2016-05-13 2016-09-27 Cormac, LLC Heat powered refrigeration system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE84084C (en) *
DE142330C (en) *
DE386863C (en) * 1920-06-17 1923-12-17 Siemens Schuckertwerke G M B H System for raising heat to higher temperatures by means of two interconnected cooling machines
FR537438A (en) * 1920-11-03 1922-05-23 Process and devices for the production of closed cycle refrigeration
DE491065C (en) * 1926-06-12 1930-02-05 Frans Georg Liljenroth Cold generating machine based on the absorption principle
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US2307380A (en) * 1939-12-26 1943-01-05 Carroll W Baker Refrigeration
FR983950A (en) * 1943-09-08 1951-06-29 Cold machine
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
DE953378C (en) * 1950-08-29 1956-11-29 Margarete Altenkirch Geb Schae Method and device for operating a heat pump
US2952139A (en) * 1957-08-16 1960-09-13 Patrick B Kennedy Refrigeration system especially for very low temperature
US3067590A (en) * 1960-07-06 1962-12-11 Jr Charles P Wood Pumping apparatus for refrigerator systems
DE1125956B (en) * 1961-05-25 1962-03-22 Giovanni Novaro Method and device for generating cold with an absorption refrigeration machine and a compressor for the refrigerant between the evaporator and the absorber
DE1241468B (en) * 1962-12-01 1967-06-01 Andrija Fuderer Dr Ing Compression method for generating cold
US3283524A (en) * 1964-03-17 1966-11-08 Byron John Thomson Refrigeration system
DE1426956A1 (en) * 1964-07-17 1969-05-08 Fuderer Michael Procedure for deep freezing
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US3952533A (en) * 1974-09-03 1976-04-27 Kysor Industrial Corporation Multiple valve refrigeration system
US3990264A (en) * 1974-11-14 1976-11-09 Carrier Corporation Refrigeration heat recovery system
US3922873A (en) * 1974-11-14 1975-12-02 Carrier Corp High temperature heat recovery in refrigeration
AU501390B2 (en) * 1974-11-14 1979-06-21 Carrier Corporation Refrigeration heat reclaiming system
SE419479B (en) * 1975-04-28 1981-08-03 Sten Olof Zeilon REFRIGERATION PROCEDURE AND APPARATUS FOR EXTENDING THE PROCEDURE
FR2314456A1 (en) * 1975-06-09 1977-01-07 Inst Francais Du Petrole COLD PRODUCTION PROCESS
JPS5848820B2 (en) * 1976-04-23 1983-10-31 ステン オロフ ザイロン Freezing method and equipment
DE2628007A1 (en) * 1976-06-23 1978-01-05 Heinrich Krieger PROCESS AND SYSTEM FOR GENERATING COLD WITH AT LEAST ONE INCORPORATED CASCADE CIRCUIT
JPS5434159A (en) * 1977-08-08 1979-03-13 Hitachi Ltd Refrigerating device with screw compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system
US7898661B2 (en) 1998-03-06 2011-03-01 Kla-Tencor Corporation Spectroscopic scatterometer system

Also Published As

Publication number Publication date
EP0085994A2 (en) 1983-08-17
JPH0423185B2 (en) 1992-04-21
EP0021205A3 (en) 1981-03-18
EP0085994B1 (en) 1986-09-24
DE3066679D1 (en) 1984-03-29
US4481783A (en) 1984-11-13
JPS5637471A (en) 1981-04-11
EP0085994A3 (en) 1984-10-03
HU186726B (en) 1985-09-30
EP0021205A2 (en) 1981-01-07

Similar Documents

Publication Publication Date Title
EP0021205B1 (en) Hybrid compression-absorption method for operating heat pumps or refrigeration machines
DE2754626C2 (en) Refrigeration system operating with an energy source at a relatively low temperature, in particular solar energy
DE102008005978B4 (en) Low-temperature power plant and method for operating a thermodynamic cycle
DE10194530B4 (en) Multi-stage mixed refrigerant cryogenic system that achieves low temperature by repetition of expansion and evaporation of a mixed refrigerant.
EP0248296B1 (en) Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
DE2810972C2 (en)
WO2006018216A1 (en) Absorption-type refrigerating machine
DE1140957B (en) Absorption refrigeration system and method for operating the same
CH661786A5 (en) METHOD AND DEVICE FOR GENERATING AN ICE CRYSTAL SUSPENSION BY MEANS OF FREEZER EVAPORATION AT THE TRIPLE POINT.
DE69921871T2 (en) Absorption refrigeration system with coupling of condensate and solution
EP3540333B1 (en) Sorption heat pump and sorption circuit process
DE4415199A1 (en) Refrigerating plant using absorption principle
DE3100019A1 (en) Method for carrying out cold-pump and heat-pump processes on the compression principle with solution circulation
DE3129957C2 (en)
DE19533755C2 (en) Device and method for generating heat and cold
DE3536953C1 (en) Resorption-type heat converter installation with two solution circuits
EP0184181B1 (en) Heat pump
EP3058289A1 (en) Absorption refrigerating machine
EP1596141B1 (en) Working method for a sorption apparatus
DE961631C (en) Process for fractionating gas mixtures in a gas fractionating column
DE2837695A1 (en) METHOD AND DEVICE FOR IMPROVING EFFICIENCY IN A REFRIGERATION SYSTEM
DE673984C (en) Continuously acting absorption refrigeration machine
DE102007062343B4 (en) Method and arrangement for refrigeration after a water-lithium bromide absorption cooling process
DE2816972A1 (en) Compact compression cooling drying system for compressed gas - having in single vessel, heat transfer medium flowing between inlet and outlet exchangers with refrigerated element in centre
DE19723566C1 (en) Extraction of solvents from washwater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

ITCL It: translation for ep claims filed

Representative=s name: ING. C. GREGORJ S.P.A.

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810917

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 6387

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3066679

Country of ref document: DE

Date of ref document: 19840329

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920529

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920616

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920708

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920831

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930609

Ref country code: AT

Effective date: 19930609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: ENERGIAGAZDALKODASI INTEZET

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930609

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80103173.3

Effective date: 19940110