EP0114656B1 - Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine - Google Patents

Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine Download PDF

Info

Publication number
EP0114656B1
EP0114656B1 EP84100491A EP84100491A EP0114656B1 EP 0114656 B1 EP0114656 B1 EP 0114656B1 EP 84100491 A EP84100491 A EP 84100491A EP 84100491 A EP84100491 A EP 84100491A EP 0114656 B1 EP0114656 B1 EP 0114656B1
Authority
EP
European Patent Office
Prior art keywords
weft
binding
binder
layer
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84100491A
Other languages
English (en)
French (fr)
Other versions
EP0114656A1 (de
Inventor
Georg Dipl.-Ing. Borel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herman Wangner GmbH and Co KG
Original Assignee
Herman Wangner GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herman Wangner GmbH and Co KG filed Critical Herman Wangner GmbH and Co KG
Publication of EP0114656A1 publication Critical patent/EP0114656A1/de
Application granted granted Critical
Publication of EP0114656B1 publication Critical patent/EP0114656B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/0027Screen-cloths
    • D21F1/0036Multi-layer screen-cloths
    • D21F1/0045Triple layer fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/903Paper forming member, e.g. fourdrinier, sheet forming member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]

Definitions

  • the invention relates to a composite fabric as covering for the sheet-forming part of a paper machine with at least two fabric layers bound together by binding threads.
  • Fabrics for the sheet-forming part of a paper machine should on the one hand have the smoothest possible surface (paper side) so that no markings occur in the paper.
  • the underside (running side) should be designed in such a way that the sheet forming screen has a longest possible running time. By using cheaper and more abrasive fillers and increasing the working speed, the running side is exposed to high abrasion.
  • each surface can be given any surface structure that is independent of the other side.
  • Such a fabric as a sheet forming screen is known from DE-A-24 55 184 and 24 55 185. These are round-woven sieves with a binding chain. This means that in the finished sieve, both layers are connected to each other by transverse binding wires.
  • the binding of both layers of fabric with a binding chain has the disadvantage that the chain is already under tension during weaving (weaving tension) and therefore influences the structure of the paper side.
  • a two-layer fabric with a binding chain is woven open and made endless by means of a woven seam, the binding chain runs lengthways in the finished sieve. Since the fabric is lengthened in the heating zone during heat setting, the warp wires are again under a high working tension. Since the weft wires in the lower layer are much thicker and stiffer, the tension of the binding chain affects almost exclusively the finer upper layer. The binding chain pulls the fine weft wires of the upper layer deep down at the binding points, which causes defects in the uniformity of the surface.
  • a certain remedy in this regard is the joining of the two layers with a binding weft, as is known from DE-A-29 17 694.
  • both types of fabric are identical in the finished state - in both the two layers are connected to each other by the additional cross wire - the production is somewhat easier, since e.g. B. in an openly woven and sewn sieve, the connection of the two layers takes place both during weaving and during fixing by a cross wire (weft wire).
  • a uniform surface structure of the upper layer is not achieved either.
  • the additional binding weft pulls the upper chain downwards and causes unwanted indentations in the tissue at the tying points.
  • the tensile stress in the binding weft wire already arises during weaving, when the binding wire, which the shooter initially laid out stretched, is bent when changing the position of the harness.
  • the originally straight binding weft is now cranked and runs in a zigzag pattern alternating between the two relatively far apart upper and lower layers of the composite fabric. Due to this enlargement of its path, the binding wire is stretched during weaving. Since the lower layer consists of relatively thick, unyielding warp and weft wires, the entire tension of the binding weft wire is also transferred to the binding point of the upper layer. Only the finer upper layer can yield in its structure. This means that the structure of the top layer changes at every setting point during weaving.
  • a felt for the press section and the dryer section of a paper machine which consists of two fabric layers which are connected by binding threads which run partly in the warp direction and partly in the weft direction. Each binding thread is bound in both fabric layers, which results in a very firm connection of the fabric layers.
  • the invention has for its object to provide a composite fabric as a covering for the sheet-forming part of a paper machine, which consists of at least two layers of fabric bound together by binding threads and in which the uniformity of the surface structure of the paper side is improved.
  • binding threads form an elastic intermediate layer and each individual binding thread is bound in at most one of the at least two fabric layers.
  • binding threads of the intermediate fabric run partly in the warp direction and partly in the weft direction and are therefore referred to as «binding chain or « binding weft Formula
  • the binding chain is interwoven with the one fabric layer, for example the upper fabric layer, at certain intervals, and the binding weft is interwoven with the other fabric layer, here the lower fabric layer.
  • only the binding chain or only the binding weft is partly bound into the upper and partly into the lower fabric layer, while the other binding threads, i.e. H. the binding weft or the binding chain only act as warp or weft threads of the intermediate fabric, and are not integrated into one of the two fabric layers.
  • the basic idea in each case is that one and the same binding thread is not bound in both fabric layers, as a result of which the intermediate layer formed by the binding threads connects the fabric layers elastically to one another.
  • the individual layers of the composite fabric consist in the usual way of plastic monofilament, in particular of polyester wire.
  • the binding threads are also monofilament or multifilament plastic threads.
  • the binding threads bound into the upper layer are even thinner than the structural warp and weft wires of the upper layer.
  • the structure of the binding threads can that of the running side, i.e. H. absorb stresses from the lower layer and keep them largely away from the upper layer.
  • the uniformity of the surface structure of the paper side is therefore not affected by tensions emanating from the lower layer during weaving or fixing.
  • the intermediate fabric formed from the binding threads thus not only serves to connect the upper fabric layer and the lower fabric layer, but at the same time absorbs the stresses that occur during the production of the composite fabric.
  • Fig. 1 shows a section in the warp direction through a composite fabric, which consists of an upper layer 1 and a lower layer 2.
  • the top layer has a plain weave and is made of relatively fine plastic monofilaments.
  • the lower layer 2 consists of much coarser plastic monofilaments and has a four-shaft binding.
  • the number of weft wires and warp wires per unit length is only half as high as in the top layer 1.
  • Figure 2 shows the same fabric in a section parallel to the weft direction.
  • the upper layer 1 and the lower layer 2 are connected by binding wires, namely by a binding chain 4 and a binding weft 5.
  • the binding chain 4 is tied with every eighth weft wire of the lower layer 2, ie runs under this weft wire.
  • the binding weft 5 is guided from below over every eighth warp wire of the upper layer 1.
  • Binding chain 4 and binding weft 5 are not interwoven and form an intermediate layer 3, which is located in the space between the upper layer 1 and the lower layer 2. Because the binding chain 4 runs between the binding locations with the lower layer 2 above the binding weft 5, however, cohesion results similar to that in a fabric.
  • the intermediate layer 3 is very wide-meshed and therefore has only a very loose cohesion.
  • the binding chain 4 is only integrated into the lower layer 2 after every second binding weft 5.
  • FIG. 3 shows a section similar to that of FIG. 2, but the binding weft 5 is more firmly integrated in the upper layer 1.
  • the binding weft 5 is bound in each case over a distance of three warp threads of the upper layer 1 by being guided over one warp thread, under the next warp thread and again over the next warp thread.
  • a force exerted by the binding weft 5 on the upper layer 1 is thus distributed over a larger area and less disturbs the uniformity of the surface structure of the upper layer 1.
  • FIGS. 4 to 6 show an embodiment in which the binding chain 4 is connected to the upper layer 1 and the binding weft 5 to the lower layer 2.
  • the density of the intermediate layer 3 is twice as high as in the above exemplary embodiment in FIG. 3.
  • the binding chain 4 and the binding weft 5 form a weave, since the binding chain 4 runs alternately above and below a binding weft 5 and, accordingly, the binding weft 5 runs alternately above and below a binding chain 4, the binding chain 4 starting at the places where it runs over a binding weft 5 is bound into the upper layer 1 and, accordingly, the binding weft 5 is bound into the lower layer 2 at the points where it runs under a binding chain 4.
  • FIGS. 4 and 5 show the course of two successive binding chains 4, while FIG. 6 shows the course of a binding weft 5.
  • FIGS. 7 to 10 only every second binding weft 5 is bound into the upper layer 1, while the binding weft 5 in between is not bound into either of the two layers 1, 2 and is only involved in the formation of the intermediate layer 3, s.
  • Figures 7, 8 and 9 show a section parallel to the weft direction, while Figure 10 shows a section parallel to the warp direction and accordingly the course of the binding chain 4. Because only every second binding weft 5 is actually also incorporated into the upper layer 1, a very loose, elastic connection of the two layers 1, 2 is obtained.
  • FIG. 11 and 12 show an embodiment in which the binding weft 5 alternates into the upper layer 1 (FIG. 11) and in the lower layer 2 (FIG. 12), while the binding chain 4 is not integrated in either of the two layers 1, 2 and is only involved in the formation of the intermediate layer 3.
  • This type of connection of the layers does not transmit tensions and distortions in the warp direction from the lower layer 2 to the upper layer 1.
  • Figures 11 and 12 each show a section parallel to the weft wires.
  • the upper fabric layer 1 of a composite fabric consisting of two fabric layers is openly woven with 32 longitudinal threads (warp) per centimeter and 36 transverse threads (weft) per centimeter in plain weave.
  • the longitudinal threads 6 have a diameter of 0.17 mm and consist of a polyester monofilament of medium to low longitudinal stability and medium modulus of elasticity (Trevira 930).
  • the transverse threads 7 also have a diameter of 0.17 mm and consist of a polyester monofilament with a very low modulus of elasticity and low thermal shrinkage (Trevira 900).
  • the lower fabric layer 2 is a four-strand, four-twill weave with weave no.0401 with long floats of the cross threads on the running side and short floats on the top.
  • the lower fabric layer 2 is open-woven with 16 longitudinal threads per centimeter and 18 transverse threads per centimeter at the same time as the top layer 1.
  • the longitudinal threads 8 have a diameter of 0.32 mm and consist of polyester monofilament with a high modulus of elasticity.
  • the transverse threads 9 of the lower fabric layer 2 are made of a particularly abrasion-resistant material and consist alternately of polyester monofilament and polyamide monofilament with a diameter of 0.35 mm.
  • the active, outer fabric layers 1 and 2 are connected by an elastic, tension-compensating intermediate layer 3.
  • Binding weft wires 5 which bind into the upper fabric layer 1 can be monofilament or multifilament plastic threads made of polyester or polyamide.
  • a polyester monofilament with a diameter of 0.15 mm with a low modulus of elasticity was used.
  • Binding weft wires 5, which only bind in the intermediate layer 3 (FIG. 8), are expediently monofilaments with a medium to high modulus of elasticity, and also have a diameter of 0.15 mm.
  • Monofilament or multifilament polyester or polyamide threads can be used as binding warp wires 4 of the intermediate layer 3.
  • monofilament polyester threads with a diameter of 0.18 mm were used.
  • the binding warp wires 4 bind only in the lower fabric . topping 2.

Description

  • Die Erfindung betrifft ein Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine mit mindestens zwei durch Bindefäden aneinandergebundene Gewebelagen.
  • Bespannungen für den Blattbildungsteil einer Papiermaschine sogenannte Blattbildungssiebe oder Papiermaschinensiebe, sollen einerseits eine möglichst glatte Oberseite (Papierseite) besitzen, damit im Papier keine Markierungen entstehen. Andererseits soll die Unterseite (Laufseite) so ausgebildet sein, dass das Blattbildungssieb eine möglichst lange Laufzeit besitzt. Durch den Einsatz billigerer und abrasiverer Füllstoffe und die Erhöhung der Arbeitsgeschwindigkeit ist die Laufseite einem hohen Abrieb ausgesetzt.
  • Bereits bei einlagigen Papiermaschinensieben sind bei den meisten Gewebebindungen die beiden Seiten des Gewebes unterschiedlich ; eine glattere Papierseite, in der vorwiegend Kett- und Schussdrähte monoplan miteinander verflochten sind und eine rauhe Laufseite, welche aus quergerichteten Schussdrahtabkröpfungen besteht (Schussläufersiebe).
  • Bei doppellagigen Papiermaschinensieben ist die Trennung in der Gestaltung beider Seiten des Gewebes noch deutlicher. Gemeinsam sind beiden Seiten nur die Kettdrähte. Da die Schussdrähte in zwei getrennte Schusslagen aufgeteilt sind, können sie sowohl im Material als auch im Drahtdurchmesser den Anforderungen der entsprechenden Siebseite angepasst werden. Ausserdem kann jeder Seite eine beliebige Oberflächenstruktur gegeben werden, die von der der anderen Seite unabhängig ist.
  • Eine völlige Trennung beider Siebseiten wird jedoch erst bei den sogenannten zweilagigen . Sieben erreicht. Es handelt sich um zwei vollkommen unabhängige Gewebelagen, welche durch einen zusätzlichen Bindedraht miteinander verbunden sind.
  • Ein solches Gewebe als Blattbildungssieb ist aus den DE-A-24 55 184 und 24 55 185 bekannt. Es handelt sich hierbei um rundgewobene Siebe mit Bindekette. Dies bedeutet, dass im fertigen Sieb beide Lagen durch querverlaufende Bindedrähte miteinander verbunden sind.
  • Das Abbinden beider Gewebelagen durch eine Bindekette hat den Nachteil, dass die Kette bereits beim Weben unter Spannung steht (Webspannung) und daher die Struktur der Papierseite beeinflusst.
  • Wird ein zweilagiges Gewebe mit Bindekette offen gewebt und mittels einer Webnaht endlos gemacht, so verläuft die Bindekette im fertigen Sieb in Längsrichtung. Da beim Thermofixieren das Gewebe in der Heizzone gelängt wird, stehen die Kettdrähte erneut unter einer hohen Arbeitsspannung. Da die Schussdrähte der unteren Lage wesentlich dicker und steifer sind, wirkt sich der Zug der Bindekette fast ausschliesslich auf die feinere Oberlage aus. Die Bindekette zieht die feinen Schussdrähte der oberen Lage an den Abbindestellen tief herunter, wodurch Störungsstellen in der Gleichmässigkeit der Oberfläche auftreten.
  • Eine gewisse Abhilfe bringt diesbezüglich das Verbinden beider Lagen mit einem Bindeschuss, wie es aus der DE-A-29 17 694 bekannt ist. Zwar sind im fertigen Zustand beide Gewebearten identisch - bei beiden sind die zwei Lagen durch den zusätzlichen Querdraht miteinander verbunden - doch ist die Herstellung etwas erleichtert, da z. B. bei einem offen gewobenen und genahteten Sieb die Verbindung der beiden Lagen sowohl während des Webens wie während des Fixierens durch einen Querdraht (Schussdraht) erfolgt. Eine gleichmässige Oberflächenstruktur der oberen Lage wird jedoch auch dadurch nicht erreicht. An den Abbindestellen zieht nämlich der zusätzlich eingebundene Bindeschuss die obere Kette stark nach unten und verursacht im Gewebe an den Abbindestellen unerwünschte Vertiefungen.
  • Die Zugspannung im Bindeschussdraht entsteht bereits beim Weben, wenn der durch den Schützen zunächst gestreckt eingelegte Bindedraht beim Wechsel der Geschirrahmenlage abgekröpft wird. Der ursprünglich gerade verlaufende Bindeschuss wird nun abgekröpft und verläuft zickzackförmig in dauerndem Wechsel zwischen den zwei relativ weit voneinander entfernten oberen und unteren Lagen des Verbund-Gewebes. Durch diese Vergrösserung seines Weges wird der Bindedraht bereits beim Weben gestreckt. Da die untere Lage aus relativ dicken, unnachgiebigen kett- und Schussdrähten besteht, überträgt sich die gesamte Spannung des Bindeschussdrahtes auch hier auf die Abbindestelle der oberen Lage. Nur die feinere obere Lage kann nämlich in ihrer Struktur nachgeben. Somit entsteht eine Veränderung der Struktur der oberen Lage an jeder Abbindesstelle bereits beim Weben.
  • Während des Fixierens tritt zwischen den Kett-und den Schussdrähten beider Lagen ferner ein Kröpfungswechsel auf. Die Kette der unteren Lage wird gestreckt und verliert an Abkröpfungshöhe. Der Abstand der unteren Abbindung zur oberen Gewebe-Lage wird grösser. Da die untere Kette steif und unnachgiebig ist, wird die obere Lage an der Abbindestelle noch tiefer heruntergezogen.
  • Durch die Einwirkung der Temperatur beim Fixieren werden im Bindeschussdraht eigene Schrumpfkräfte frei. Sie wirken als zusätzliche Zugkraft auf die dünne, obere Kette an der Bindestelle und tragen zur Verschlechterung der Gleichmässigkeit der Oberflächenstruktur bei.
  • Während bei der Herstellung mancher Papiersorten die Unebenheiten der Oberfläche an den Bindungsstellen des Obersiebes nicht störend sind, kommt es dennoch bei bestimmten, auf Siebmarkierung höchstempfindlichen Papiersorten - wie z. B. Tiefdruckpapieren, Offset-und Naturkunstdruckpapieren bei solchen Stellen zu Fehlern im Druck, die sich dann entsprechend dem Webrapport in gegebener Gesetzmässigkeit über die gesamte Fläche der Papierbahn wiederholen.
  • Aus der GB-A-451,752 ist ein Filz für die Pressenpartie und die Trockenpartie einer Papiermaschine bekannt, der aus zwei Gewebelagen besteht, die durch Bindefäden verbunden sind, die teils in Kettrichtung und teils in Schußrichtung verlaufen. Jeder Bindefaden ist dabei in beide Gewebelagen eingebunden, wodurch sich eine sehr feste Verbindung der Gewebelagen ergibt. Bei einer entsprechenden Einbindung der Bindefäden bei einer zweilagigen Bespannung für den Blattbildungsteil einer Papiermaschine würden sich die vorausgehend erwähnten Schwierigkeiten ergeben, insbesondere hinsichtlich der Markierung der Papierbahn.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine zu schaffen, das aus mindestens zwei durch Bindefäden aneinandergebundene Gewebelagen besteht und bei dem die Gleichmäßigkeit der Oberflächenstruktur der Papierseite verbessert ist.
  • Diese Aufgabe wird dadurch gelöst, dass die Bindefäden eine elastische Zwischenlage bilden und jeder einzelne Bindefaden höchstens in eine der mindestens zwei Gewebelagen eingebunden ist.
  • Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Bindefäden des Zwischengewebes verlaufen teils in Kettrichtung und teils in Schussrichtung und werden demgemäss als « Bindekette bzw. « Bindeschuss » bezeichnet. In einer bevorzugten Ausgestaltung der Erfindung ist die Bindekette mit der einen Gewebelage, zum Beispiel der oberen Gewebelage, in bestimmten Abständen verwoben, und ist der Bindeschuss mit der anderen Gewebelage, hier der unteren Gewebelage, verwoben.
  • In einer anderen Ausgestaltung der Erfindung ist nur die Bindekette oder nur der Bindeschuss teils in die obere und teils in die untere Gewebelage eingebunden, während die anderen Bindefäden, d. h. der Bindeschuss bzw. die Bindekette, nur noch als Kett- bzw. Schussfäden des Zwischengewebes fungieren, und nicht in eine der beiden Gewebelagen eingebunden sind.
  • Der Grundgedanke besteht jeweils darin, dass ein und derselbe Bindefaden nicht in beide Gewebelagen eingebunden ist, wodurch die von den Bindefäden gebildete Zwischenlage die Gewebelagen elastisch miteinander verbindet.
  • Die einzelnen Lagen des Verbund-Gewebes bestehen in der üblichen Weise aus Kunststoff-Monofil, insbesondere aus Polyester-Draht. Die Bindefäden sind ebenfalls monofile oder multifile Kunststoffäden. Insbesondere sind die in die obere Lage eingebundenen Bindefäden noch dünner als die strukturellen Kett- und die Schussdrähte der oberen Lage. Die Struktur der Bindefäden kann die von der Laufseite, d. h. von der unteren Lage ausgehenden Spannungen absorbieren und diese weitgehend von der oberen Lage abhalten. Die Gleichmässigkeit der Oberflächenstruktur der Papierseite wird daher weder beim Weben noch beim Fixieren durch Spannungen, die von der unteren Lage ausgehen, beeinträchtigt.
  • Das aus den Bindefäden gebildete Zwischengewebe dient damit nicht nur der Verbindung der oberen Gewebelage und der unteren Gewebelage, sondern absorbiert gleichzeitig die während der Herstellung des Verbund-Gewebes auftretenden Spannungen.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung erläutert. Es zeigen :
    • Figuren 1 und 2 ein Verbund-Gewebe, bei dem die Lagen durch Bindefäden miteinander verbunden sind ;
    • Figur 3 eine Darstellung ähnlich der von Figur 2, wobei der Bindeschuss über eine Strecke von drei Kettfäden in die obere Lage eingewoben ist ;
    • Figur 4 bis 6 ein Verbund-Gewebe, bei dem die Bindekette ausschliesslich in die obere Lage und der Bindeschuss ausschliesslich in die untere Lage eingebunden ist;
    • Figur 7 bis 10 ein Verbund-Gewebe, bei dem ein Teil der Schussfäden der Zwischenlage weder in die untere noch in die obere Lage eingebunden ist, und
    • Figuren 11 und 12 ein Verbund-Gewebe, bei dem die Kettfäden der Zwischenlage weder in die obere Lage noch in die untere Lage eingebunden sind.
  • Fig. 1 zeigt einen Schnitt in Kettrichtung durch ein Verbund-Gewebe, das aus einer oberen Lage 1 und einer unteren Lage 2 besteht. Die obere Lage besitzt Leinwandbindung und ist aus relativ feinen Kunststoff-Monofilen hergestellt. Die untere Lage 2 besteht aus wesentlich gröberen Kunststoff-Monofilen und weist eine vierschäftige Bindung auf. Die Anzahl der Schussdrähte und der Kettdrähte pro Längeneinheit ist nur halb so hoch wie in der oberen Lage 1. Figur 2 zeigt das gleiche Gewebe in einem Schnitt parallel zur Schussrichtung.
  • Die obere Lage 1 und die untere Lage 2 sind durch Bindedrähte verbunden, nämlich durch eine Bindekette 4 und einen Bindeschuss 5. Die Bindekette 4 ist mit jedem achten Schussdraht der unteren Lage 2 abgebunden, d. h. verläuft unter diesem Schussdraht hindurch. Der Bindeschuss 5 ist von unten über jeden achten Kettdraht der oberen Lage 1 geführt. Bindekette 4 und Bindeschuss 5 sind nicht miteinander verwoben und bilden eine Zwischenlage 3, die sich in dem Raum zwischen der oberen Lage 1 und der unteren Lage 2 befindet. Dadurch, dass die Bindekette 4 zwischen den Abbindestellen mit der unteren Lage 2 über dem Bindeschuss 5 verläuft, ergibt sich jedoch ein Zusammenhalt ähnlich wie in einem Gewebe. Die Zwischenlage 3 ist sehr weitmaschig und besitzt dadurch nur einen sehr losen Zusammenhalt. Ihre Dichte ist nur ein Viertel derjenigen der unteren Lage 2 bzw. ein Achtel derjenigen der oberen Lage 1. Aufgrund dieser Weitmaschigkeit der Zwischenlage 3 werden Spannungen und Verzerrungen der unteren Lage 2 nicht oder nur in sehr abgeschwächter Form auf die obere Lage 1 übertragen. Spannungen und Verzerrungen der unteren Lage 2 können von der Zwischenlage 3 dadurch weitgehend aufgenommen werden, dass sich die Bindekette 4 gegenüber dem Bindeschuss 5 innerhalb des lockeren Verbandes der Zwischenlage 3 verschiebt. Die Zwischenlage 3 besitzt daher eine grosse Elastizität.
  • Wie in Figur 1 erkennbar, ist die Bindekette 4 nur nur nach jedem zweiten Bindeschuss 5 in die untere Lage 2 eingebunden.
  • Figur 3 zeigt einen Schnitt ähnlich dem von Figur 2, wobei jedoch der Bindeschuss 5 fester in die obere Lage 1 eingebunden ist. Der Bindeschuss 5 ist jeweils über eine Strecke von drei Kettfäden der oberen Lage 1 eingebunden, indem er über einen Kettfaden, unter dem darauffolgenden und wieder über den nächsten Kettfaden geführt ist. Eine von dem Bindeschuss 5 auf die obere Lage 1 ausgeübte Kraft verteilt sich dadurch auf einen grösseren Bereich und stört die Gleichmässigkeit der Oberflächenstruktur der oberen Lage 1 dadurch weniger.
  • Die Figuren 4 bis 6 zeigen ein Ausführungsbeispiel, bei dem die Bindekette 4 mit der oberen Lage 1 und der Bindeschuss 5 mit der unteren Lage 2 verbunden ist. Die Dichte der Zwischenlage 3 ist doppelt so hoch wie bei dem obigen Ausführungsbeispiel der Figur 3.
  • In dem Ausführungsbeispiel der Figuren 4 bis 6 bilden die Bindekette 4 und der Bindeschuss 5 ein Gewebe, da die Bindekette 4 abwechselnd über und unter einem Bindeschuss 5 verläuft und entsprechend der Bindeschuss 5 abwechselnd über und unter einer Bindekette 4 verläuft, wobei die Bindekette 4 an den Stellen, an denen sie über einem Bindeschuss 5 verläuft in die obere Lage 1 eingebunden ist und entsprechend der Bindeschuss 5 an den Stellen, an denen er unter einer Bindekette 4 verläuft, in die untere Lage 2 eingebunden ist.
  • Die Figuren 4 und 5 zeigen den Verlauf zweier aufeinanderfolgender Bindeketten 4, während Figur 6 den Verlauf eines Bindeschusses 5 zeigt. Bei dem in den Figuren 7 bis 10 gezeigten Ausführungsbeispiel ist nur jeder zweite Bindeschuss 5 in die obere Lage 1 eingebunden, während der dazwischen liegende Bindeschuss 5 in keine der beiden Lagen 1, 2 eingebunden ist und nur an der Bildung der Zwischenlage 3 beteiligt ist, s. Figur 8. Die Figuren 7, 8 und 9 zeigen dabei einen Schnitt parallel zur Schussrichtung, während Figur 10 einen Schnitt parallel zur Kettrichtung und demgemäss den Verlauf der Bindekette 4 zeigt. Dadurch, dass nur jeder zweite Bindeschuss 5 tatsächlich auch in die obere Lage 1 eingebunden ist, erhält man eine sehr lockere, elastische Verbindung der beiden Lagen 1, 2. Die Figuren 11 und 12 zeigen ein Ausführungsbeispiel, bei dem der Bindeschuss 5 abwechselnd in die obere Lage 1 (Figur 11) und in die untere Lage 2 (Figur 12) eingebunden ist, während die Bindekette 4 in keine der beiden Lagen 1, 2 eingebunden ist und nur an der Bildung der Zwischenlage 3 beteiligt ist. Durch diese Art der Verbindung der Lagen werden insbesondere Spannungen und Verzerrungen in Kettrichtung von der unteren Lage 2 nicht auf die obere Lage 1 übertragen.
  • Die Figuren 11 und 12 zeigen jeweils einen Schnitt parallel zu den Schussdrähten.
  • Beispiel
  • Die obere Gewebelage 1 eines Verbund-Gewebes aus zwei Gewebelagen wird mit 32 Längsfäden (Kette) pro Zentimeter und 36 Querfäden (Schuss) pro Zentimeter offen in Leinwandbindung gewebt.
  • Die Längsfäden 6 haben einen Durchmesser von 0,17 mm und bestehen aus einem Polyester-Monofil mittlerer bis geringerer Längsstabilität und mittlerem Elastizitätsmodul (Trevira 930).
  • Die Querfäden 7 haben ebenfalls einen Durchmesser von 0,17 mm und bestehend aus einem Polyester-Monofil mit sehr niedrigem Elastizitätsmodul und geringem Thermoschrumpf (Trevira 900).
  • Die untere Gewebelage 2 ist ein vierschäftiges, Vierköpergewebe der Bindung Nr.0401 mit langen Flottierungen der Querfäden auf der Laufseite und kurzen Flottierungen auf der Oberseite. Die untere Gewebelage 2 ist mit 16 Längsfäden pro Zentimeter und 18 Querfäden pro Zentimeter gleichzeitig mit der Oberlage 1 offengewebt. Die Längsfäden 8 haben einen Durchmesser von 0,32 mm und bestehen aus Polyester-Monofil mit hohem Elastizitätsmodul. Die Querfäden 9 der unteren Gewebelage 2 sind aus besonders abriebfestem Material und bestehen abwechselnd aus Polyester-Monofil und Polyamid-Monofil mit einem Durchmesser von 0,35 mm.
  • Die aktiven, äusseren Gewebelagen 1 und 2 sind durch eine elastische, spannungsausgleichende Zwischenlage 3 verbunden.
  • Nur die Schussdrähte der Zwischenlage 3 sind in die obere Gewebelage 1 eingebunden (Figur 7 und 9), wobei dann diese Bindeschussdrähte drei aufeinander folgende Kettdrähte 6 der oberen Gewebelage 1 einbinden. Zusätzliche Bindeschussdrähte 5 der Zwischenlage 3 binden die obere Gewebelage 1 nicht ab, sondern verlaufen lediglich innerhalb der Zwischenlage 3.
  • Bindeschussdrähte 5, welche in die obere Gewebelage 1 einbinden (Figur 7 und 9), können monofile oder multifile Kunststoffäden aus Polyester oder Polyamid sein. Im vorliegenden Beispiel wurde ein Polyester-Monofil mit einem Durchmesser von 0,15 mm mit niedrigem Elastizitätsmodul verwendet.
  • Bindeschussdrähte 5, welche nur in der Zwischenlage 3 einbinden (Figur 8), sind zweckmässig Monofile mit mittlerem bis höherem Elastizitätsmodul, und haben ebenfalls einen Durchmesser von 0,15 mm.
  • Als Bindekettdrähte 4 der Zwischenlage 3 können monofile oder multifile Polyester- oder Polyamidfäden verwendet werden. Im vorliegenden Beispiel wurden monofile Polyesterfäden mit 0,18 mm Durchmesser verwendet. Die Bindekettdrähte 4 binden lediglich in die untere Gewe- . belage 2 ein.

Claims (6)

1. Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine aus mindestens zwei durch Bindefäden (4, 5) aneinandergebundene Gewebelagen (1, 2), dadurch gekennzeichnet, dass die Bindefäden (4, 5) teils in Kettrichtung und teils in Schussrichtung verlaufen und eine elastische Zwischenlage (3) bilden und dass jeder einzelne Bindefaden (4, 5) höchstens in eine der mindestens zwei Gewebelagen (1, 2) eingebunden ist.
2. Verbund-Gewebe nach Anspruch 1, dadurch gekennzeichnet, dass die in Kettrichtung verlaufenden Bindefäden (Bindekette 4) in die eine Gewebelage (1 oder 2) eingebunden sind und die in Schussrichtung verlaufenden Bindefäden (Bindeschuss 5) in die andere Gewebelage (2 bzw. 1) eingebunden sind.
3. Verbund-Gewebe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in die obere Lage (1) eingebundenen Bindefäden (4 oder 5) unter allen in die untere Lage (2) eingebundenen Bindefäden (5 bzw. 4) hindurchgeführt sind.
4. Verbund-Gewebe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bindekette (4) und der Bindeschuss (5) miteinander verwoben sind.
5. Verbund-Gewebe nach Anspruch 4, dadurch gekennzeichnet, dass eine Anzahl der Bindefäden der Bindekette (4) bzw. des Bindeschusses (5) in die obere Lage (1) und die anderen Bindefäden jeweils der Bindekolle (4) bzw. des Bindeschusses (5) in die untere Lage (2) eingebunden sind, während der nicht eingebundene Bindeschuss (5) bzw. die nicht eingebundene Bindekette (4) nur an der Bildung der Zwischenlage (3) beteiligt ist.
6. Verbund-Gewebe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Bindefäden (4, 5) in der Weise in eine der beiden Gewebelagen (1, 2) eingebunden sind, dass sie mit mehreren Kett- bzw. Schussfäden dieser Gewebelagen (1 bzw. 2) verwoben sind.
EP84100491A 1983-01-20 1984-01-18 Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine Expired EP0114656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3301810A DE3301810C2 (de) 1983-01-20 1983-01-20 Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
DE3301810 1983-01-20

Publications (2)

Publication Number Publication Date
EP0114656A1 EP0114656A1 (de) 1984-08-01
EP0114656B1 true EP0114656B1 (de) 1987-03-04

Family

ID=6188757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84100491A Expired EP0114656B1 (de) 1983-01-20 1984-01-18 Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine

Country Status (3)

Country Link
US (1) US4515853A (de)
EP (1) EP0114656B1 (de)
DE (2) DE3301810C2 (de)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329740C2 (de) * 1983-08-17 1986-07-03 Hermann Wangner Gmbh & Co Kg, 7410 Reutlingen Zwei- oder mehrlagiges Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
FR2560242B1 (fr) * 1984-02-29 1986-07-04 Asten Fabriques Feutres Papete Toile destinee en particulier aux machines a papier, et son procede de preparation
DE3411119A1 (de) * 1984-03-26 1985-10-03 Fa. F. Oberdorfer, 7920 Heidenheim Papiermaschinen-sieb
US4995429A (en) * 1986-02-05 1991-02-26 Albany International Corp. Paper machine fabric
JPS63145496A (ja) * 1986-12-02 1988-06-17 日本フイルコン株式会社 製紙用多層織物
US4759976A (en) * 1987-04-30 1988-07-26 Albany International Corp. Forming fabric structure to resist rewet of the paper sheet
US5052448A (en) * 1989-02-10 1991-10-01 Huyck Corporation Self stitching multilayer papermaking fabric
DE3938159A1 (de) * 1989-11-16 1991-05-23 Oberdorfer Fa F Verbundgewebe fuer papiermaschinensiebe
US5151316A (en) * 1989-12-04 1992-09-29 Asten Group, Inc. Multi-layered papermaker's fabric for thru-dryer application
US5013330A (en) * 1989-12-04 1991-05-07 Asten Group, Inc. Multi-layered papermakers fabric for thru-dryer application
AT393521B (de) * 1990-05-08 1991-11-11 Hutter & Schrantz Ag Gewebe aus kunststoff-monofilamenten fuer den einsatz als entwaesserungssieb einer papiermaschine
USRE35966E (en) * 1990-06-06 1998-11-24 Asten, Inc. Papermakers fabric with orthogonal machine direction yarn seaming loops
US5343896A (en) * 1990-06-06 1994-09-06 Asten Group, Inc. Papermakers fabric having stacked machine direction yarns
US5230371A (en) * 1990-06-06 1993-07-27 Asten Group, Inc. Papermakers fabric having diverse flat machine direction yarn surfaces
US5411062A (en) * 1990-06-06 1995-05-02 Asten Group, Inc. Papermakers fabric with orthogonal machine direction yarn seaming loops
US5238536A (en) * 1991-06-26 1993-08-24 Huyck Licensco, Inc. Multilayer forming fabric
DE4127164C2 (de) * 1991-08-16 1994-02-03 Muehlen Sohn Gmbh & Co Gewebter Spezialgurt für Wellpappenmaschinen
FI89819C (fi) * 1992-02-24 1993-11-25 Tamfelt Oy Ab Torkvira foer pappersmaskin
US5421374A (en) * 1993-10-08 1995-06-06 Asten Group, Inc. Two-ply forming fabric with three or more times as many CMD yarns in the top ply than in the bottom ply
US5437315A (en) * 1994-03-09 1995-08-01 Huyck Licensco, Inc. Multilayer forming fabric
US5709250A (en) * 1994-09-16 1998-01-20 Weavexx Corporation Papermakers' forming fabric having additional fiber support yarns
US5983953A (en) * 1994-09-16 1999-11-16 Weavexx Corporation Paper forming progess
US5518042A (en) * 1994-09-16 1996-05-21 Huyck Licensco, Inc. Papermaker's forming fabric with additional cross machine direction locator and fiber supporting yarns
DE9416520U1 (de) * 1994-10-14 1996-02-15 Wuertt Filztuchfab Preßfilz für die Entwässerung
US5482567A (en) * 1994-12-06 1996-01-09 Huyck Licensco, Inc. Multilayer forming fabric
US5937914A (en) * 1997-02-20 1999-08-17 Weavexx Corporation Papermaker's fabric with auxiliary yarns
US5967195A (en) * 1997-08-01 1999-10-19 Weavexx Corporation Multi-layer forming fabric with stitching yarn pairs integrated into papermaking surface
GB9811089D0 (en) 1998-05-23 1998-07-22 Jwi Ltd Warp-tied composite forming fabric
US6112774A (en) * 1998-06-02 2000-09-05 Weavexx Corporation Double layer papermaker's forming fabric with reduced twinning.
ATE211191T1 (de) 1998-11-18 2002-01-15 Heimbach Gmbh Thomas Josef Textiles flächengebilde
GB2351505A (en) 1999-06-29 2001-01-03 Jwi Ltd Two-layer woven fabric for papermaking machines
US6179013B1 (en) 1999-10-21 2001-01-30 Weavexx Corporation Low caliper multi-layer forming fabrics with machine side cross machine direction yarns having a flattened cross section
US6123116A (en) * 1999-10-21 2000-09-26 Weavexx Corporation Low caliper mechanically stable multi-layer papermaker's fabrics with paired machine side cross machine direction yarns
US6413377B1 (en) 1999-11-09 2002-07-02 Astenjohnson, Inc. Double layer papermaking forming fabric
US6585006B1 (en) 2000-02-10 2003-07-01 Weavexx Corporation Papermaker's forming fabric with companion yarns
US6244306B1 (en) 2000-05-26 2001-06-12 Weavexx Corporation Papermaker's forming fabric
US6253796B1 (en) 2000-07-28 2001-07-03 Weavexx Corporation Papermaker's forming fabric
US6379506B1 (en) 2000-10-05 2002-04-30 Weavexx Corporation Auto-joinable triple layer papermaker's forming fabric
US6745797B2 (en) 2001-06-21 2004-06-08 Weavexx Corporation Papermaker's forming fabric
US6787000B2 (en) 2001-11-02 2004-09-07 Kimberly-Clark Worldwide, Inc. Fabric comprising nonwoven elements for use in the manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements and method thereof
US6821385B2 (en) 2001-11-02 2004-11-23 Kimberly-Clark Worldwide, Inc. Method of manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements using fabrics comprising nonwoven elements
US6706152B2 (en) 2001-11-02 2004-03-16 Kimberly-Clark Worldwide, Inc. Fabric for use in the manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements
US6746570B2 (en) * 2001-11-02 2004-06-08 Kimberly-Clark Worldwide, Inc. Absorbent tissue products having visually discernable background texture
US6790314B2 (en) 2001-11-02 2004-09-14 Kimberly-Clark Worldwide, Inc. Fabric for use in the manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements and method thereof
US6749719B2 (en) * 2001-11-02 2004-06-15 Kimberly-Clark Worldwide, Inc. Method of manufacture tissue products having visually discernable background texture regions bordered by curvilinear decorative elements
US6860969B2 (en) 2003-01-30 2005-03-01 Weavexx Corporation Papermaker's forming fabric
US6837277B2 (en) 2003-01-30 2005-01-04 Weavexx Corporation Papermaker's forming fabric
US20060231154A1 (en) * 2003-03-03 2006-10-19 Hay Stewart L Composite forming fabric
US7059357B2 (en) 2003-03-19 2006-06-13 Weavexx Corporation Warp-stitched multilayer papermaker's fabrics
US6896009B2 (en) * 2003-03-19 2005-05-24 Weavexx Corporation Machine direction yarn stitched triple layer papermaker's forming fabrics
GB0317248D0 (en) * 2003-07-24 2003-08-27 Voith Fabrics Gmbh & Co Kg Fabric
US7243687B2 (en) * 2004-06-07 2007-07-17 Weavexx Corporation Papermaker's forming fabric with twice as many bottom MD yarns as top MD yarns
JP4762513B2 (ja) * 2004-08-23 2011-08-31 日本フイルコン株式会社 工業用二層織物
JP4762530B2 (ja) * 2004-11-30 2011-08-31 日本フイルコン株式会社 工業用二層織物
US7195040B2 (en) * 2005-02-18 2007-03-27 Weavexx Corporation Papermaker's forming fabric with machine direction stitching yarns that form machine side knuckles
US20060219313A1 (en) * 2005-03-31 2006-10-05 Hippolit Gstrein Papermaker's press felt with long machine direction floats in base fabric
US7484538B2 (en) * 2005-09-22 2009-02-03 Weavexx Corporation Papermaker's triple layer forming fabric with non-uniform top CMD floats
US7219701B2 (en) * 2005-09-27 2007-05-22 Weavexx Corporation Papermaker's forming fabric with machine direction stitching yarns that form machine side knuckles
JP2007232208A (ja) * 2006-01-31 2007-09-13 Mitsuboshi Belting Ltd 歯付ベルト及びそれに使用する歯布
US7275566B2 (en) 2006-02-27 2007-10-02 Weavexx Corporation Warped stitched papermaker's forming fabric with fewer effective top MD yarns than bottom MD yarns
DE102006011610A1 (de) * 2006-03-14 2007-09-20 Gottlieb Binder Gmbh & Co. Kg Sitzbefestigungssystem sowie schlauchförmiges Befestigungsband
US7580229B2 (en) 2006-04-27 2009-08-25 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
US7487805B2 (en) * 2007-01-31 2009-02-10 Weavexx Corporation Papermaker's forming fabric with cross-direction yarn stitching and ratio of top machined direction yarns to bottom machine direction yarns of less than 1
US7624766B2 (en) * 2007-03-16 2009-12-01 Weavexx Corporation Warped stitched papermaker's forming fabric
DE102007046113A1 (de) * 2007-09-21 2009-04-02 Voith Patent Gmbh Formiersieb
US20090183795A1 (en) * 2008-01-23 2009-07-23 Kevin John Ward Multi-Layer Papermaker's Forming Fabric With Long Machine Side MD Floats
IT1391327B1 (it) * 2008-08-08 2011-12-05 Feltri Marone S P A Tessuto di fabbricazione della carta, in particolare da utilizzare nella sezione di formazione di una macchina di fabbricazione della carta
US7766053B2 (en) * 2008-10-31 2010-08-03 Weavexx Corporation Multi-layer papermaker's forming fabric with alternating paired and single top CMD yarns
US8251103B2 (en) * 2009-11-04 2012-08-28 Weavexx Corporation Papermaker's forming fabric with engineered drainage channels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB451752A (en) * 1936-01-01 1936-08-11 Thomas Hardman And Sons Ltd An improved felt for use in the manufacture of paper, cardboard and analogous materials
US2180054A (en) * 1937-08-23 1939-11-14 Hindle Thomas Paper maker's drier felt
US3885603A (en) * 1973-11-21 1975-05-27 Creech Evans S Papermaking fabric
DE2455185A1 (de) * 1973-11-21 1975-05-22 Slaughter Philip H Gewebe zur herstellung von papier
SE420852B (sv) * 1978-06-12 1981-11-02 Nordiskafilt Ab Formeringsvira
US4356225A (en) * 1981-05-18 1982-10-26 Ascoe Felts, Inc. Papermarkers interwoven wet press felt
SE430425C (sv) * 1981-06-23 1986-09-19 Nordiskafilt Ab Formeringsvira for pappers-, cellulosa- eller liknande maskiner

Also Published As

Publication number Publication date
US4515853A (en) 1985-05-07
DE3301810C2 (de) 1986-01-09
DE3301810A1 (de) 1984-08-02
DE3462527D1 (en) 1987-04-09
EP0114656A1 (de) 1984-08-01

Similar Documents

Publication Publication Date Title
EP0114656B1 (de) Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
EP0144530B2 (de) Bespannung für Papiermaschinen
EP0116945B1 (de) Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
EP0080686B1 (de) Doppellagiges Gewebe als Bespannung für Papiermaschinen
EP0232715B1 (de) Verwendung einer Papiermaschinenbespannung zur Herstellung von Tissue-Papier oder porösem Vlies und dafür geeignete Papiermaschinenbespannung
EP0432413B1 (de) Verbundgewebe für Papiermaschinensiebe
EP0097966B1 (de) Verbund-Gewebe als Bespannung für Papiermaschinen
EP0048962B2 (de) Doppellagiges Sieb für den Blattbildungsteil einer Papiermaschine
EP0264881B1 (de) Bespannung für den Blattbildungsteil einer Papiermaschine
EP0224276B1 (de) Bespannung für den Blattbildungsteil einer Papiermaschine
DE69727715T2 (de) Papiermachergewebe mit beidseitig alternierenden Bindefäden
EP1311723B1 (de) Verbundgewebe
DE102013108399B3 (de) Papiermaschinensieb, dessen laufseite querfäden mit unterschiedlicher flottierungslänge aufweist
DE2902880A1 (de) Mehrlagiges, endlosgemachtes entwaesserungssieb und verfahren zum endlosmachen eines mehrlagigen entwaesserungssiebes
DE2263476B2 (de) Gewebe für Papiermaschinensiebe
DE3634134A1 (de) Bespannung fuer den blattbildungsteil einer papiermaschine
DE2455185A1 (de) Gewebe zur herstellung von papier
EP1619296A2 (de) Papiermaschinenbespannung
EP1738020B1 (de) Sieb, insbesondere papiermaschinensieb
DE19859582A1 (de) Drei- oder mehrlagiges Papiermaschinensieb in Form eines Verbundgewebes
EP0349779B1 (de) Doppelgewebe als Siebgewebe für die Nasspartie einer Papiermaschine
DE3225599A1 (de) Verbund-gewebe als bespannung fuer den blattbildungsbereich einer papiermaschine
EP2764157B1 (de) Papiermaschinensieb
DE4304758C2 (de) Trockensieb einer Papiermaschine
DE102007058369A1 (de) Gewebeband für eine Maschine zur Herstellung von Bahnmaterial, insbesondere Papier oder Karton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19850121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 3462527

Country of ref document: DE

Date of ref document: 19870409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84100491.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030221

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040117

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed