EP0160143A1 - Aromatic solvent upgrading using membranes - Google Patents

Aromatic solvent upgrading using membranes Download PDF

Info

Publication number
EP0160143A1
EP0160143A1 EP84303220A EP84303220A EP0160143A1 EP 0160143 A1 EP0160143 A1 EP 0160143A1 EP 84303220 A EP84303220 A EP 84303220A EP 84303220 A EP84303220 A EP 84303220A EP 0160143 A1 EP0160143 A1 EP 0160143A1
Authority
EP
European Patent Office
Prior art keywords
solvent
membrane
feed
aromatics
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84303220A
Other languages
German (de)
French (fr)
Other versions
EP0160143B1 (en
Inventor
Georges Adriaens
Laura Elizabeth Black
Peter George Miasek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of EP0160143A1 publication Critical patent/EP0160143A1/en
Application granted granted Critical
Publication of EP0160143B1 publication Critical patent/EP0160143B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/11Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents

Abstract

The present invention is directed to a process for producing high quality aromatic solvents in the middle distillate range containing 95+% aromatics by contacting the liquid feed with a perm selective membrane under pressure thereby selectively permeating the aromatic components as the high quality solvents. This separation can be performed by contacting the feed stream in combination with a low boiling light polar aromatics extraction solvent (such as acetonitrile) with the membrane. The middle distillate feed has a molecular weight range of about 120 to 250 g/mole and an aromatic content of 75 to 90 volume percent aromatics and preferably 80 to 90 volume percent aromatics. The membranes which can be employed to effect this separation are selected from the group of regenerated cellulose, cellulose acetate and polyimide membranes, preferably the polyimide membranes.

Description

  • A process is disclosed for the production of high aromatic content solvents containing at least about 90% and preferably 95%+ aromatics from lower aromatic content middle distillates, preferably extracted middle distillates, by selective permeation of the aromatic components through a selective porous membrane. The separation of the aromatic components of the distillate is accomplished by contacting the distillate in combination with (i.e. diluted with) a low boiling light solvent with a permselective porous membrane under pressure.
  • The distillate feed stock is typically a middle distillate which contains a lower amount of aromatic hydrocarbon components, boiling in the kerosene range and is preferably that distillate-fraction characterized as having a molecular weight range of about 120 to 250 g/mole.
  • Suitable feed middle distillates would be those from cracking units such as cokers, catalytic crackers or steam crackers and containing 75 to 90% aromatics and preferably 80 to 90 volume .% aromatics. Alternatively, the aromatic extract from a middle distillate solvent extraction unit would be a suitable feedstock. In that cas.e, the middle distillate fraction would be solvent extracted to recover an aromatic rich fraction using a low boiling, light, polar aromatics extraction solvent such as S02, acetonitrile, nitroethane, etc. Solvent extraction recovers an extract stream rich in aromatic hydrocarbons and a raffinate stream lean in aromatic hydrocarbons. The extract stream which usually contains 75-90% aromatics is still a low grade heavy aromatic solvent. It can be then effectively concentrated to >95% aromatics and thus upgraded to a more valuable solvent by use of the membrane separation procedure. The membrane process allows a richer aromatic stream (>95%) to be recovered than is presently possible using solvent extraction by itself (75-90% aromatics).
  • The middle distillate, or preferably the solvent extracted portion (extract portion) of the middle distillate (either as such or preferably after removal of the extraction solvent) is contacted with the selective membrane under reverse osmosis conditions, that is, under a pressure sufficient to overcome the osmotic pressure, the pressure typically being about 300 to 1000 psi, preferably about 300-800 psi.
  • The feed stream is contacted with the membrane as is or preferably mixed with a portion of light polar solvent to enhance the permeability of the aromatic components through the membrane. The light polar solvent boils at a different temperature than the aromatics components so as to facilitate separation of the solvent from the aromatics, preferably boiling at a temperature lower than the boiling point of the aromatics. While high boiling polar solvents, such as NMP, are extraction solvents they are not desirable or preferred in the present process since they boil at about the same temperatures as the aromatics and are, therefore, difficult to separate from the aromatic permeate.
  • The solvents of choice are described for the purposes of this specification and claims as low boiling light polar aromatics extraction solvents.
  • This light polar solvent can be either a deliberately added volume of solvent or in some instances the unrecovered extraction solvent, provided the extraction solvent employed was a low boiling light polar aromatics extraction solvent. The low boiling light polar aromatics extraction solvent is selected from materials such as S02, acetonitrile, nitroethane, etc. These low boiling, light polar aromatics extraction solvent are used as the desired diluents, (flux and selectively enhancers, discussed in detail below) as such or they can be used in combination with minor quantities of non-extractive low boiling light polar solvents such as alcohols, ketones, aldehydes, ethers, esters, ether-alcohols, halogenated compounds, nitro- hydrocarbons, amines, amides, nitriles, sulfur containing compounds, acids and mixtures thereof, provided the components which are mixed are compatible and do not react with each other. These non-extraction low boiling light polar solvents are present in minor quantities, typically in the range of 0 to about 20%, preferably 0 to 10%, most preferably 0%. The preferred solvents will be the more highly polar aromatics extraction solvents such as acetonitrile or a mixture such as acetonitrile/acetone. The addition of a low boiling light polar aromatics extraction solvent to the feed enhances the flux of the middle distillate hydrocarbons through the membrane and also enhances the aromatic content of the middle distillate hydrocarbons in the permeate. The flux increases as the percentage of polar solvent in the feed increases. However, for the highest aromatic content of the middle distillate in the permeate, an optimum percentage of polar solvent in the feed must be used. Feeds containing higher or lower amounts of polar solvent will give rise to a lower aromatic content of the middle distillate in the permeate. To obtain permeates containing greater than 90% aromatic content and preferably greater than 95% aromatic content in a single pass through the membrane at high flux, feeds containing 75% or more aromatic content must be employed and, it is necessary to keep the percentage of low boiling, light, polar aromatics extraction solvent in the feed being contacted with the membrane at between from about 10 to 50 volume percent, and more preferably from about 15 to 35 volume percent more preferably about 20-30 volume percent. In order to maintain the desired solvent content in the feed it will be necessary to continuously add makeup solvent.
  • The membrane used must be compatible with the feed stream. It must preferentially permeate the aromatic components of the feed stream at an adequate and sustainable rate. Membranes which have been found to satisfy these requirements include those made from regenerated cellulose, cellulose esters and polyimide, preferably from cellulose acetate and polyimide, most preferably polyimide. Membranes which are polar or hydrophilic in nature allow interaction of the aromatic hydrocarbons with the membrane. Membranes made from cellulose acetate have higher selectivity toward aromatics than do the polyimide membranes. However, membranes made from polyimide demonstrate higher flux. For cellulose acetate membranes it has been discovered that highest selectivity to aromatic permeation is demonstrated by cellulose acetate membranes which exhibit 97% NaCI rejection when evaluated for water desalination. Membranes which exhibit higher rejection (smaller pores), as well as lower rejection (larger pore) have both been shown to have lower selectivity for aromatics permeation. Asymmetric membranes such as polyimide and cellulose acetate are preferred over symmetric membranes such as regenerated cellulose as they exhibit higher permeation rates.
  • The membrane is usually pretreated. Soaking the membrane in successive baths of solvent of decreasing polarity is an effective pretreatment procedure. Soaking in successive baths of water, methanol, toluene and the middle distillate feed has been employed.
  • Polyimide membranes can be produced from a number of polyimide polymer sources. The identity of such polymers, the fabrication of membranes therefrom, and the use of such membranes to effect various types of separations are presented in numerous patents. See, for example, U. S. Patent No. 4,307,135, U. S. Patent No. 3,708,458, U. S. Patent No. 3,789,079, U. S. Patent No..3,546,175, U. S. Patent No. 3,179,632, U. S. Patent No. 3,179,633, U. S. Patent No. 3,925,211, U. S. Patent No. 4,113,628, U. S. Patent No. 3,816,303, U. S. Patent No.-4,240,914, U. S. Patent No. 3,822,202, U. S. Patent No. 3,853,754, G. B. Patent No. 1,434,629. In copending application U. S. Serial No. 494,543, filed May 13, 1983 and its CIP, U. S. Serial No. 564,302, filed December 22, 1983, a process for producing an asymmetric polyimide polymer membrane from an undegraded fully imidized, highly aromatic polyimide copolymer, and the use of such membrane for the separation of mixtures of organic liquids is described. The asymmetric polyimide membrane described therein is the membrane of choice for use in the present process. As recited in U. S. Serial No. 494,543 and U. S. Serial No. 564,302, the polyimide polymer starting material is undegraded polymer (i.e. polymer which was not in contact with water for too long a time after production and prior to drying and granulation) and is preferably recovered using a non-aqueous solvent from commercially available solutions of the polymer-in solvent. Upjohn 2080 DHV, which contains about 25% polymer in DMF solvent, is a suitable source. The polymer itself is the subject of U. S. Patent No. 3,708,458 and is the cocondensation product of benzophenone 3,3',4,4'-tetracarboxylic acid dianhydride (BTDA) and a mixture of di(4-aminophenyl) methane and toluene diamine, or their corresponding diisocyanates, 4,4'-methylenebis(-phenyl isocyanate) and toluene diisocyanate. As described in U. S. Serial No. 494,543 and U. S. Serial No. 564,302, for example, one liter of Upjohn 2080 DHV is transferred to a blender and three successive 300 ml portions of acetone are added with 5 min. mixing at low speed between each addition. Subsequently, the blender contents are emptied into a container and permitted to settle. The liquid is decanted and 1.5 liters of acetone added and the mixture stirred thoroughly. The mixture is filtered through a course filter (Whatman #4). The polymer is washed by remixing with another 2 liters of acetone. After filtering, the polymer is dried in vacuum (15 inches Hg) at 45-60oC for 3 hours. The polymer powder is ready for use.
  • A suitable membrane can be cast from this polymer using a casting solution comprising about 14-30 weight percent preferably about 16-25 weight percent, more preferably 18-22 weight percent polymer in dioxane:DMF solvent (1:1 to 10:1 D/DMF, preferably about 7:1 to 3:1). This solution is spread on a moving casting belt at a casting speed of about 3-5 ft/min. and the film allowed to partially evaporate in dry air, preferably for about 2-120 seconds more preferably about 2-30 seconds, before gelation in a gelation bath, which is preferably water (neutral pH). The gelation water is preferably replaced with glycerin to retard membrane deterioration (hydrolysis).
  • In practicing this upgrading permeation process, the membrane can be employed as an element in any convenient form. Membranes in the form of tubes or fibers can be bundled, potted and manifolded, much in the manner described in U.S. Patent 3,228,877. Similarly, membranes in the form of sheets can be employed in plate and frame configuration or in the form of spiral wound elements some designs of which are in U.S. Patents 3,417,870, USP 3,173,867, USP 3,367,504, USP 3,386.,583, USP 3,397,790 to list just a few. The choice of glues and materials of construction will depend on the kind of solvent and feed stream as well as operating conditions.
  • The spiral wound element will typically comprise layers of membrane wound around a central tube (metal or solvent resistant plastic) containing holes for the permeate, the membrane layers being separated by alternate layers of a permeate carrier, such as knitted Simplex (Dacron, with melamine formaldehyde stiffener), and a feed spacer made of Vexar (a polypropylene mesh). Membrane layers are typically sealed using an epoxy adhesive to sandwich the permeate cloth into a closed envelope in fluid communication with the perforated central tube leaving the perforations in the central tube as the only permeate outlet. The preferred epoxy adhesive will generally comprise resin formulation such as one comprising (1) Epon 828, which is a reaction product of bisphenol-A and epichlorohydrin; (2) Cabosil M5; (3) Versamid 140 (a polyamide curing agent); (4) Estane 5707F-1 (a polyurethane from B. F. Goodrich); and (5) DMF solvent wherein the components 1/2/3/4/5 are present in typical relationship based on parts by weight of about 100/10/60/4/12, which cures at about 250C over a 21 day period. This adhesive system is described and claimed in copending application U. S. Serial No. 494,409, filed May 13, 1983. The layers of-membrane, permeate carrier, and feed spacer are wound around the central tube in a fashion consistent with preparing a spiral wound element. After the element is cured, the ends of the element are trimmed, a nylon seal carrier and a nylon anti-telescoping device are then added. The element is then covered on the outside with an epoxy reinforced fiberglass outer wrap. Elements of any size can be prepared, but typical elements are about 8 inches in diameter and about 40 inches long, and have about 225 square feet of membrane area and can be used at feed flow rates of about 30-50 gallons per minute at a 5-15 psi pressure drop.
  • The aromatics content of the middle distillate type stream used for the feed has a large impact on membrane performance and permeate quality. With a feed containing 80.5 percent aromatics, direct permeation through a polyimide membrane yields a permeate containing 86 percent aromatics while permeation in the presence of acetonitrile yields permeates of 95% aromatic content. Starting with a middle distillate (extract) containing 88:9 percent aromatics, direct permeation through a cellulose acetate membrane can yield a permeate with approximately 95% aromatics. Permeation of this feed mixed with acetonitrile would be expected to yield 95+% aromatic permeates. Feed streams containing between 80 and 90% aromatics are thus the preferred feeds for use in the process of the present invention.
  • DESCRIPTION OF THE FIGURES:
    • Figure 1 is a schematic of the use of the present membrane process to upgrade low value middle distillate.
    • Figure 2 is a schematic of the integration of the present membrane process with extraction and the permeation of feed with the extraction solvent.
    • Figure 3 is a schematic of the integration of the present membrane process with extraction and the permeation of feed with a separate solvent.
    • Figure 4 is a schematic of a solvent assisted membrane unit.
  • A scheme for the use of this process to directly upgrade a low value middle distillate stream is shown in Figure 1. The feed would be a stream such as a cat cracker or coker middle distillate. These contain high levels of aromatics (preferably about 80+%) as well as sulphur and olefin impurities. The high level of aromatics makes the stream undesirable as a middle distillate fuel. Following hydrotreating to remove sulphur and olefins, the stream is mixed with a low boiling light polar aromatics extraction solvent and passed to a membrane unit which produces a more highly aromatic product(l) which is sent to solvent fractionation and a product (2) which can be otherwise used. The membrane upgrading step is less expensive than liquid/liquid extraction and allows utilization of this inexpensive feed for heavy aromatic solvents.
  • The possible integration of the memorane process with a liquid/liquid extraction process is shown in Figure 2 and 3.
  • As shown in Figure 2, a middle distillate feed is introduced via line 1 into an extraction tower 2. A low boiling extraction solvent is introduced via line 3. The raffinate is removed via line 4. The aromatic extract plus solvent is removed via line 5 and is introduced to a flash tower 6, where solvent is removed via line 8 and bottoms via line 7.
  • The solvent free bottoms can be used as a lower (75-90%) aromatic content product. To upgrade the aromaticity of this product a suitable portion is combined with the low boiling light extraction solvent and introduced to a membrane unit 11 via line 10. Alternatively, if no lower aromatic content product is desired, the extract in tower 6 can be only partially flashed and the entire bottoms stream introduced to the membrane unit via line 10. The permeate from the membrane containing a more concentrated aromatics product plus extraction solvent is removed via line 13 and introduced to a distillation tower where the solvent is removed via line 15 and recycled in the extraction process and the aromatic product is removed via line 16. The rententate containing residual solvent (line 12) is recycled back to the extractor. The advantage of integration lies in the use of the low boiling, light polar aromatic extraction solvent as the membrane permeation assisting solvent.
  • A slightly different solvent assisted process is shown in Figure 3. In this Figure, a different solvent from the extraction solvent is used for the solvent assisted membrane process. The aromatic extract in line 5 is introduced to distillation tower 6. The extraction solvent is recycled back to the extraction tower via line 3. To the solvent free extract in line 7 is added the low boiling light polar aromatics extraction solvent via line 8. The mixed feed is introduced via line 9 into the membrane unit 10. The aromatic rich permeate in line 11 is introduced to distillation tower 13. The solvent goes overhead via -line 15 and the high aromatic content product exits via line 17. The aromatic poor retentate in line 12 is introduced to distillation tower 14. The solvent goes overhead via line 16 and the lower aromatic content produce exits via line 18.
  • A schematic of the membrane test unit is shown in Figure 4. Feed is introduced via line 1 and the appropriate amount of solvent from line 3 is added. The mixed feed in line 4 is introduced to membrane unit 5. The permeate exits line 6 and the retentate exits line 7. To the retentate is added additional solvent from line 8 to bring the amount of solvent back into the desired range. This mixed feed is introduced to membrane unit 10. This process sequence repeats until the desired amount of permeate is collected.
  • The following examples illustrate specific embodiments of the present invention. In the examples, the membranes employed were in the form of films. Commercially available and laboratory produced membranes were tested.
  • Example 1
  • Tests were conducted for the purpose of determining the steady state permeation rates and membrane selectivity towards aromatic permeation using a solvent free middle distillate extract for a feed. Membranes investigated included commercially available cellulose acetate membranes and membranes prepared in the laboratory from precipitated Upjohn 2080 polymer prepared from casting solutions containing the polymer in a 5/1 dioxane/DMF solution. The cellulose acetate membranes ranged in salt rejection from 92 percent to 99 percent. The higher the salt rejection corresponds to smaller pore size. The polyimide membrane was prepared from casting dopes containing 23, 24 or 25 percent undegraded polymer (i.e. polymer which was not in contact with water for too long a time after production prior to drying and granulations) and the films were allowed to dry for 2 seconds before quenching in room temperature water. The higher concentration dopes yield membranes with smaller equivalent pores. The membranes were pretreated by successively soaking them in the following solvents, water, methanol, toluene and a S02 extracted middle distillate containing 88.9 percent aromatics. This feed was permeated through these membranes at 30°C and 800 psig. The permeation rates and aromatic content of the permeate are shown in the table.
  • The results show that the aromatics content of the permeate increases as the pore size of the membrane decreases to a certain point. If the pore size further decreases, the aromatic content of the permeate declines. The cellulose acetate membranes yielded a more aromatic content permeate than did the polyimide. Although the desired permeate quality was achieved, the rate of permeation is very low.
    Figure imgb0001
  • Example 2
  • From Example 1 it is seen that when selectivities approached the desired level of 95+% the rate of permeation (flux) tended to be very low. Therefore, tests were conducted for the purpose of determining the performance of a membrane (in this case a polyimide membrane) with a feed composed of a solvent free middle distillate S02 extract containing 88.9 percent aromatic hydrocarbons and various amounts of acetonitrile. This level of aromaticity (75-90%) is about what is expected from a liquid/liquid extraction step (such as shown in Figure 2) or from cracked middle distillates. The polyimide membrane was prepared from a casting dope containing 24 percent polymer in 5/1 dioxane/DMF and the film was allowed to evaporate for 10 seconds before quenching in room temperature water. The membrane was pretreated as in Example 1. The feed containing the middle distillate and various amounts of acetonitrile was permeated through this membrane at 300C and 800 psig. The percent acetonitrile in the feed, the permeation rate, and the aromatic content of the distillate in the permeate are shown in the table.
  • The results show that, surprisingly, not only is flux improved but the aromatic content of the distillate in the permeate increases as the acetonitrile content in the feed increases to 30 percent. This is surprising since an increase in flux is usually accompanied by a decrease in selectivity. However, as the acetonitrile content increases further, while the flux continues to increase the aromatic content of the distillate in the permeate decreases. Thus it is seen that a solvent dilution range exists within which both flux and selectivity are improved.
    Figure imgb0002
  • Example 3
  • Tests were conducted for the purpose of determining the performance of a polyimide membrane with a feed composed of a middle distillate S02 extract containing 80.5 percent aromatic hydrocarbons and various amounts of either acetonitrile or a mixture of 80/20 acetonitrile/acetone. The membrane was the same as in Example 2 and was pretreated in the same manner. The feed containing middle distillate and various amounts of solvent was permeated through this membrane at 30°C and 800 psig. The solvent used, the percent solvent in the feed, the permeation rate, and the aromatic content of the distillate are shown in the table.
  • The results from Examples 2 and 3 show that, overall, the aromatic content of the permeate distillate decreases as a lower aromatic content middle distillate is used for a feed. As the percent solvent increases up to a point, the permeate distillate aromatic content increases. As the percent solvent increases further, the aromatic content decreases. The 80/20 acetonitrile/acetone solvent overall yielded permeates with a lower aromatic content than did acetonitrile.
    Figure imgb0003
  • Therefore, from Examples 2 and 3, it is seen that a membrane adjunct to a liquid/liquid extraction process can act as a "polishing step" and yield an aromatic solvent of higher aromatic content. The data of Example 1 also shows that a membrane can act in a similar capacity on low value aromatic distillates as described in Figure 1.
  • Example 4
  • Tests were conducted with S02 extracted middle distillate streams containing 50 to 70 volume percent aromatics. The polyimide membrane was the same as in Example 2 and was pretreated in the same manner. Acetonitrile was the solvent employed. The feed containing various amounts of solvent was permeated through the membrane at 30°C and 800 psig. The permeation rates and aromatic content of the permeate are shown in the table. The results show that the aromaticity of feeds with 50 to 70% aromatics can be increased by the solvent-assisted process, however, more than one membrane separation stage will be required to reach the quality targets for high aromatic content solvents.
    Figure imgb0004
  • Example 5
  • Tests were conducted with middle distillates stream containing 21 volume percent aromatics. This is typical of a virgin distillate. The membrane used in this example was a regenerated cellulose membrane, RC 1,000, commercially available from Spectrum Medical Industries, Inc. This membrane has a molecular weight cut off of approximately 1,000 as determined using aqueous stream sizing procedure. The membrane was pretreated by successively soaking it in the following solvents; water, methanol end acetone. The feed containing the middle distillate and various amounts of acetone was permeated through this membrane at 30°C and 400 PSIG. The percent acetone in the feed, the permeation rate and the aromatic content of the distillate in the permeate are shown in the table. The results show that the aromaticity of feeds containing about 20 percent aromatics can be increased by the solvent-assisted process.
    Figure imgb0005
  • However, more than one membrane separation stage will be required to reach the quality targets for high aromatic content solvents.
  • In this patent specification, the following conversions are used:
    Figure imgb0006
  • Copending application U.S. Serial No. 494,543 and its Continuation-in-Part U.S. Serial No. 564,302 referred to herein corresponds to our European patent application No. filed on or about the same date as the present patent application and entitled "Asymmetric Polyimide Reverse Osmosis Membrane, Method for Preparation of Same and use thereof for Organic Liquid Separations" (inventors: H.F. Shuey and W. Wan).
  • Copending application U.S. Serial No. 494,409 referred to herein corresponds to our European patent application No.
    filed on or about the same date as the present patent application and entitled: "Adhesive System for Production of Spiral Wound Membrane Elements for Use in Organic Fluid Mixture" (inventors:
    • King W.M. and Wight W.W.).

Claims (8)

1. A process for producing high quality aromatic solvents in the middle distillate range containing 95+% aromatics comprising contacting a middle distillate feed having a molecular weight range of about 120 to 250 g/mole containing from 75 to 90% aromatics and diluted with a low boiling light polar aromatics extraction solvent wherein the concentration of said solvent in the feed is maintained between about 10 to 50 volume percent with a perm selective membrane selected from regenerated cellulose, cellulose acetate and polyimide membranes under reverse osmosis conditions thereby selectively permeating the aromatic components of the distillate feed as the high quality solvent.
2. The process of claim 1 wherein the feed to the membrane is a straight middle distillate or the extract phase of a solvent extracted middle distillate.
3. The process of claim 1 or 2 wherein the feed to the membrane contains from 80 to 90% aromatics.
4. The process of claim 1, 2, or.3 wherein the permselective membrane is an asymmetric polyimide membrane.
5. The process of claim 1, 2, 3, or 4 wherein the concentration of said low boiling light polar aromatics extraction solvent in the feed is maintained between about 15 and 35 volume percent.
6. The process of any one of claims 1 to 5 wherein the concentration of low boiling light polar aromatics extraction solvent to feed is maintained between about 20 and 30 volume percent.
7. The process of any one of claims 1 to 6 wherein the light polar solvent is selected from SO2, acetonitrile, nitroethane.
8. The process of any one of claims 1 to 7 wherein the polar solvent comprises acetonitrile or acetonitrile and acetone.
EP84303220A 1984-04-27 1984-05-11 Aromatic solvent upgrading using membranes Expired EP0160143B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/603,031 US4532029A (en) 1984-04-27 1984-04-27 Aromatic solvent upgrading using membranes
US603031 1984-04-27

Publications (2)

Publication Number Publication Date
EP0160143A1 true EP0160143A1 (en) 1985-11-06
EP0160143B1 EP0160143B1 (en) 1989-01-25

Family

ID=24413795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84303220A Expired EP0160143B1 (en) 1984-04-27 1984-05-11 Aromatic solvent upgrading using membranes

Country Status (7)

Country Link
US (1) US4532029A (en)
EP (1) EP0160143B1 (en)
JP (1) JPS60235607A (en)
BR (1) BR8402228A (en)
CA (1) CA1227437A (en)
DE (1) DE3476418D1 (en)
NL (1) NL8501214A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802987A (en) * 1984-02-24 1989-02-07 Exxon Research And Engineering Company Selective permeation of aromatic hydrocarbons through polyethylene glycol impregnated regenerated cellulose or cellulose acetate membranes
US4797200A (en) * 1984-05-04 1989-01-10 Exxon Research And Engineering Company Upgrading heavy oils by solvent dissolution and ultrafiltration
GB8619278D0 (en) * 1986-08-07 1986-09-17 Shell Int Research Separating fluid feed mixture
US5055632A (en) * 1987-10-14 1991-10-08 Exxon Research & Engineering Company Highly aromatic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics
US4985138A (en) * 1989-11-08 1991-01-15 Texaco Inc. Process for treating a charge containing dewaxing solvent and dewaxed oil
US4962271A (en) * 1989-12-19 1990-10-09 Exxon Research And Engineering Company Selective separation of multi-ring aromatic hydrocarbons from distillates by perstraction
US5419069A (en) * 1994-07-14 1995-05-30 Mag-Lok, Inc. Firearm locking mechanism
US5749943A (en) * 1995-02-27 1998-05-12 Petroleum Energy Center Method of selectively separating unsaturated hydrocarbon
US6180008B1 (en) 1998-07-30 2001-01-30 W. R. Grace & Co.-Conn. Polyimide membranes for hyperfiltration recovery of aromatic solvents
JP3361755B2 (en) 1998-08-17 2003-01-07 財団法人石油産業活性化センター Method for selective separation of hydrocarbons
US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
US20020139719A1 (en) * 2000-12-28 2002-10-03 Minhas Bhupender S. Removal of thiophenic sulfur from gasoline by membrane separation process
US6702945B2 (en) 2000-12-28 2004-03-09 Exxonmobil Research And Engineering Company Ionic membranes for organic sulfur separation from liquid hydrocarbon solutions
US6649061B2 (en) 2000-12-28 2003-11-18 Exxonmobil Research And Engineering Company Membrane process for separating sulfur compounds from FCC light naphtha
US6622663B2 (en) 2001-03-27 2003-09-23 Exxonmobil Research And Engineering Company Fuel composition supply means for driving cycle conditions in spark ignition engines
US7052597B2 (en) * 2001-03-27 2006-05-30 Exxonmobil Research And Engineering Company Tuning fuel composition for driving cycle conditions in spark ignition engines
US7267761B2 (en) * 2003-09-26 2007-09-11 W.R. Grace & Co.-Conn. Method of reducing sulfur in hydrocarbon feedstock using a membrane separation zone
US20080000836A1 (en) * 2006-06-30 2008-01-03 Hua Wang Transmix refining method
US7642393B2 (en) * 2006-10-05 2010-01-05 General Electric Company Process for removing at least benzene from hydrocarbon streams
EP2819770B8 (en) 2012-03-02 2018-06-06 Saudi Arabian Oil Company Facilitated transport membrane for the separation of aromatics from non-aromatics
US20230295063A1 (en) * 2020-07-31 2023-09-21 Exxonmobil Chemical Patents Inc. Hydrocarbon Extraction and/or Separation Processes Utilizing a Membrane Separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947687A (en) * 1954-10-29 1960-08-02 American Oil Co Separation of hydrocarbons by permeation membrane
US3043891A (en) * 1954-10-29 1962-07-10 Standard Oil Co Separation of hydrocarbons
US3305595A (en) * 1963-06-18 1967-02-21 Sun Oil Co Aromatics separation and purification by dialysis

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958657A (en) * 1954-07-16 1960-11-01 American Oil Co Method of separating hydrocarbons using ethyl cellulose permselective membrane
US2930754A (en) * 1954-07-16 1960-03-29 Pan American Refining Corp Method of separating hydrocarbons
US2923749A (en) * 1955-05-27 1960-02-02 American Oil Co Prevention of membrane rupture in a separatory process for oil soluble organic compounds using a non-porous plastic permeation membrane
US2985588A (en) * 1957-03-28 1961-05-23 Standard Oil Co Separation technique through a permeation membrane
US2981680A (en) * 1957-03-28 1961-04-25 Standard Oil Co Separation of mixtures
US2960462A (en) * 1957-09-30 1960-11-15 American Oil Co Dual film combinations for membrane permeation
US2970106A (en) * 1958-01-31 1961-01-31 American Oil Co Aromatic separation process
US3043892A (en) * 1959-12-28 1962-07-10 Union Oil Co Separation of organic compounds with werner complexes
US3225107A (en) * 1960-08-24 1965-12-21 Standard Oil Co Separation process
US3092571A (en) * 1960-09-02 1963-06-04 Socony Mobil Oil Co Inc Solvent refining lubricating oils with a dual solvent system
BE608328A (en) * 1960-09-19
US3244762A (en) * 1961-09-29 1966-04-05 Union Oil Co Solvent extraction process
US3240256A (en) * 1963-11-19 1966-03-15 Canadian Patents Dev Catalytic heater
US3370102A (en) * 1967-05-05 1968-02-20 Abcor Inc Isothermal-liquid-liquid permeation separation systems
US3556990A (en) * 1967-12-05 1971-01-19 Arnold G Gulko Reverse osmosis purification of hydrocarbon fuels
US3504048A (en) * 1968-04-05 1970-03-31 Universal Oil Prod Co Hydrocarbon separation process
US3556991A (en) * 1968-12-06 1971-01-19 Universal Oil Prod Co Method for the solvent extraction of aromatic hydrocarbons
FR2112632A5 (en) * 1970-11-03 1972-06-23 Anvar
US3853754A (en) * 1972-07-20 1974-12-10 Du Pont Membrane separation of homogeneous catalysts from nitrile solutions
US3789079A (en) * 1972-09-22 1974-01-29 Monsanto Co Process for the separation of diene from organic mixtures
FR2225509B1 (en) * 1973-04-12 1976-05-21 Inst Francais Du Petrole
GB1509543A (en) * 1974-05-16 1978-05-04 Unilever Ltd Purification process
US4113628A (en) * 1974-06-05 1978-09-12 E. I. Du Pont De Nemours And Company Asymmetric polyimide membranes
DE2627629C3 (en) * 1976-06-19 1979-12-20 Bayer Ag, 5090 Leverkusen Process for the separation of aromatic * hydrocarbons from mixtures with other organic compounds with the help of plastic membranes
NL193983C (en) * 1982-03-04 2001-04-03 Shell Int Research Method for separating a liquid mixture.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947687A (en) * 1954-10-29 1960-08-02 American Oil Co Separation of hydrocarbons by permeation membrane
US3043891A (en) * 1954-10-29 1962-07-10 Standard Oil Co Separation of hydrocarbons
US3305595A (en) * 1963-06-18 1967-02-21 Sun Oil Co Aromatics separation and purification by dialysis

Also Published As

Publication number Publication date
NL8501214A (en) 1985-11-18
US4532029A (en) 1985-07-30
JPS60235607A (en) 1985-11-22
DE3476418D1 (en) 1989-03-02
BR8402228A (en) 1985-12-17
CA1227437A (en) 1987-09-29
EP0160143B1 (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US4532029A (en) Aromatic solvent upgrading using membranes
EP0125908B1 (en) Asymmetric polyimide reverse osmosis membrane, method for preparation of same and use thereof for organic liquid separations
EP1102734B1 (en) Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
EP0160140B1 (en) Process for separating alkylaromatics from aromatic solvents and the separation of the alkylaromatic isomers using membranes
US4510047A (en) Selective extraction solvent recovery using regenerated cellulose membrane under reverse osmosis conditions
EP1372829B1 (en) Membrane for solvent exchange process
US4982051A (en) Separation of furfural/middle distillate streams
EP0125907A1 (en) Separation of dewaxing solvent from dewaxed oil in a lube oil dewaxing process using asymmetric polyimide membranes
EP0485077B1 (en) Solvent extraction process involving membrane separation of extract phase and/or intermediate zone phase with pseudo extract/pseudo raffinate recycle
CA2029030A1 (en) Process for treating a charge containing dewaxing solvent and dewaxed oil
EP0160142A1 (en) Combination membrane extraction dewaxing of lube oils
US5430224A (en) Supercritical perstraction process
EP0185813B1 (en) Method for preparing thin regenerated cellulose membranes of high flux and selectivity for organic liquids separations
US4606903A (en) Membrane separation of uncoverted carbon fiber precursors from flux solvent and/or anti-solvent
US5133867A (en) Reverse osmosis process for recovery of C3 -C6 aliphatic hydrocarbon from oil
US5037556A (en) Membrane separation of N-methyl pyrrolidone/middle distillate streams
CA2052982A1 (en) Reverse osmosis process for recovery of c3-c6 aliphatic hydrocarbon from oil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19860424

17Q First examination report despatched

Effective date: 19870811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3476418

Country of ref document: DE

Date of ref document: 19890302

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890323

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890331

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890724

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900531

BERE Be: lapsed

Owner name: EXXON RESEARCH AND ENGINEERING CY

Effective date: 19900531

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST