EP0184839A1 - Method and device for the non-chipping production of thin, longish metallic workpieces by means of a laser beam - Google Patents

Method and device for the non-chipping production of thin, longish metallic workpieces by means of a laser beam Download PDF

Info

Publication number
EP0184839A1
EP0184839A1 EP85115810A EP85115810A EP0184839A1 EP 0184839 A1 EP0184839 A1 EP 0184839A1 EP 85115810 A EP85115810 A EP 85115810A EP 85115810 A EP85115810 A EP 85115810A EP 0184839 A1 EP0184839 A1 EP 0184839A1
Authority
EP
European Patent Office
Prior art keywords
laser beam
trough
melt
carrier
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85115810A
Other languages
German (de)
French (fr)
Other versions
EP0184839B1 (en
Inventor
Jürgen Wisotzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0184839A1 publication Critical patent/EP0184839A1/en
Application granted granted Critical
Publication of EP0184839B1 publication Critical patent/EP0184839B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/226Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for the chipless production of very thin or narrow workpieces with transverse dimensions of less than 1 m ⁇ made of metal or alloys by means of a continuous laser beam under vacuum or protective gas.
  • Small electronic components and connections made of metal or alloys e.g. B. heating coils and other small workpieces with a thickness or a diameter in the micro range and a length which is a multiple of the thickness or the diameter, whereby the shape can be straight or curved, e.g. mechanically formed from a wire.
  • the bending of the wire is associated with locally different mechanical strengthening and structural changes, which can cause fractures later in use under mechanical and thermal loads.
  • Electronic components which are produced by vapor deposition of layers or according to known mask technology, have the disadvantage that they adhere firmly to a substrate carrier and only can be used together with this.
  • the invention is therefore based on the object of providing a method and a device for being able to produce very thin or narrow workpieces made of metal or alloys with transverse dimensions of less than 1 mm, but practically of any length and curvature, stress-free and with a homogeneous structure.
  • a layer of metal or alloy powder is applied as melting material to a substantially flat melting material carrier, which has at least one trough-shaped path on its surface corresponding to the shape of the workpiece to be produced, and the laser beam onto the
  • the melt carrier is directed and guided along the channel-shaped path at such a speed that the powdery melt is continuously melted in it and the melt solidifies in a coherent manner.
  • the new manufacturing process is thus a continuous smelting process in which it is melted and shaped by the advancement of the laser beam. In this molding process from the melt, the solidification proceeds uniformly over the length of the workpiece, so that a uniform structure is obtained and no internal stresses occur.
  • the laser beam is set at the point of impact on the melting material essentially to the width of the trough-shaped path there, so that the Powder lying on the melt material carrier in the trough-shaped path is melted at every point of the path over its entire width at the same time and, as the laser beam focal point moves along the trough-shaped path, the melt solidifies over its entire width at the same time.
  • the depth and width of the trough-shaped path can be varied over the length of the workpiece, because by changing the distance of the focal point from the melting material, the cross section of the laser beam can be changed in accordance with the changing width of the trough-shaped path.
  • the path speed of the laser beam can be changed within predetermined limits, if this is e.g. appears appropriate due to local changes in the powdery material to be melted or the depth of the channel-shaped track.
  • the new method is not limited to the production of workpieces from individual pure metals, but can also be used with alloys, the powdered starting material to be melted being a powdered alloy or a mixture of powders of the metals to be alloyed. It is also possible to first melt a first metal powder as the laser beam progresses along the trough-shaped path and then another metal powder from a certain boundary point, the two different melts flowing together and welding at the boundary point.
  • the device according to the invention for carrying out the new method consists of a CW laser, a workpiece carrier for at least one workpiece to be held under protective gas and a control device guiding the laser beam relative to the workpiece carrier along a predetermined path and is characterized in that the workpiece carrier is essentially a is a flat melt material carrier which has at least one trough-shaped path on its surface which corresponds to the shape of a workpiece to be produced and can be coated with a layer of metal or alloy powder as the melt material, the laser beam by means of the control device along with a speed which is sufficiently slow to melt the powdery melt material the channel-shaped track is steerable.
  • the laser beam can be focused on any point along the trough-shaped path by means of optics which can be moved by the control device.
  • the optics required for this are particularly simple when using a movable aspherical mirror, which deflects the laser beam to a point on the channel-shaped path of the melt material carrier and at the same time focuses it.
  • the aspherical mirror is expediently rotatably mounted about at least one pivot axis and / or movably mounted along at least one straight guide.
  • the melting material carrier is arranged in a high vacuum chamber delimited at the top by a window, through which the laser beam directed onto the melting material penetrates.
  • both the laser beam can be moved by means of a controllable optical system and the melting material carrier.
  • the proposed manufacturing process should be carried out as vibration-free as possible. It is therefore advisable to let the entire device rest on air bearings.
  • This shows a device according to the invention, consisting of a frame 10 , which rests on air bearings 12 and carries a CW-CO 2 laser 14. Furthermore, the frame 1o a high vacuum chamber 16 is mounted, which open a lid according to the 18 is accessible from the outside and is bounded on the top by a window 1 0, for example of NaCl.
  • the high vacuum chamber 16 has a vacuum connection 22 and an inlet opening 24 for protective gas.
  • a table 26 is rotatably supported and rotatable by means of a drive motor 28.
  • An interchangeable plate-shaped template 28 rests on the table, which has flat recessed, channel-shaped tracks on the top in the shape of the workpieces to be produced.
  • the width and depth of these trough-shaped tracks are preferably less than about 1 mm, but may also be somewhat larger, if necessary.
  • Metal powder for example made of copper, silver or another metal from which the workpiece is to be produced, is applied in a thin layer 3o to the surface of the template 28, at least in the region of one or more trough-shaped tracks. Such metal powders with a fine grain size of, for example, 1oo ⁇ are available.
  • the thickness of the powder layer 3o and the depth of the trough-shaped tracks depend on the thickness of the workpieces to be produced.
  • An aspherical mirror 34 is mounted and guided several times in a movable manner on a support arm 32 of the frame 10 extending over the high vacuum chamber 16.
  • the support arm 32 itself can be moved vertically in the manner of a slide by means of a servomotor 36 along a vertical guide 38 on the frame 10.
  • a mirror 34 receiving sealed housing 4 0, the bottom of which is formed by a window 42, by means of a servomotor 44 by way of a carriage on a longitudinal guide einlang Support arm 32 are moved.
  • the mirror 34 can be pivoted about two intersecting horizontal axes by means of two servomotors 46 and 48.
  • the support arm 32 of the frame 1o further carries an observation optical system 5 0, which is conveniently connected to a temperature measuring device.
  • the observation optics allow the melting process in the high vacuum chamber to be observed through the window 2o, and the temperature measuring device connected to the observation optics 5o measures the temperature prevailing at the melting point on the basis of the radiation penetrating through the window 2o to the outside.
  • the beam path of the laser beam 52 can also be selected differently than shown. While in the illustrated embodiment the deflecting and focusing optics with the aspherical mirror 34 are essentially perpendicular above the Beam exit of the laser 14 is arranged and the servomotor 44 is only used for the exact positioning of the mirror 34 before starting work, it could also be considered to move the housing 4o with the mirror 34 along the support arm 32 during the work and by means of the laser beam 52 of a controllable beam exit on the laser 14 so that the laser beam is aimed at the mirror 34 at all times.
  • a pure deflecting mirror could also be used in conjunction with a focusing lens.
  • the melting and molding process can be controlled. However, it is also possible to provide a control which uses the temperatures measured by the temperature measuring device in order to guide the focal point of the laser beam 52 along a trough-shaped path of the template 28 at an optimal path speed.
  • the melting process will normally be carried out under a continuous flow of inert gas.
  • the protective gas enters the high-vacuum chamber 16 via the inlet opening 24 and is sucked out of it again through the vacuum connection 22.
  • the speed at which the focal point of the laser beam 52 moves on the surface of the stencil 28 can be between approximately 0.1 mm and approximately 100 mm per hour.

Abstract

1. A method for the non-chipping production of thin or slender workpieces having transverse dimensions of less than 1 mm and consisting of metal or metal alloys, by means of a continuous laser beam (52) in vacuum or under shielding gas, characterized in that a layer of metal or metal alloy powder as a melting charge (30) is applied to an essentially planar mould (28) exhibiting on the surface thereof, at least one groove-type track conforming to the shape of the workpiece to be produced, and that the laser beam (52) is directed toward the mould (28) and is moved at a speed along the groove-type track such that the pulverulent melting charge (30) is continuously molten therein and that the melt coherently solidifies.

Description

Die Erfindung betrifft ein Verfahren zur spanlosen Herstellung sehr dünner oder schmaler Werkstücke mit Querabmessungen von weniger als 1 mη aus Metall oder Legierungen mittels kontinuierlichen Laserstrahls unter Vakuum oder Schutzgas.The invention relates to a method for the chipless production of very thin or narrow workpieces with transverse dimensions of less than 1 mη made of metal or alloys by means of a continuous laser beam under vacuum or protective gas.

Kleine elektronische Bauteile und Verbindungen aus Metall oder Legierungen, z. B. Heizwendeln und andere kleine Werkstücke mit einer Dicke oder einem Durchmesser im Mikrobereich und einer Länge, die ein Vielfaches der Dicke oder des Durchmessers beträgt, wobei die Form gerade oder gekrümmt sein kann, werden nach herkömmlicher Technik z.B. aus einem Draht mechanisch geformt. Das Biegen des Drahts ist jedoch mit örtlich unterschiedlichen mechanischen Verfestigungen und Gefügeveränderungen verbunden, wodurch später im Gebrauch unter mechanischen und thermischen Belastungen Brüche verursacht werden können.Small electronic components and connections made of metal or alloys, e.g. B. heating coils and other small workpieces with a thickness or a diameter in the micro range and a length which is a multiple of the thickness or the diameter, whereby the shape can be straight or curved, e.g. mechanically formed from a wire. The bending of the wire, however, is associated with locally different mechanical strengthening and structural changes, which can cause fractures later in use under mechanical and thermal loads.

Es ist weiterhin bekannt, Werkstücke bestimmter Form mittels Laserstrahl aus dem Ausgangsmaterial auszuschneiden. Auch in diesem Fall lassen sich Gefügeveränderungen im Bereich der Schnittflächen infolge Erhitzung durch den Laserstrahl während des Schneidvorgangs nicht vermeiden.It is also known to cut out workpieces of a specific shape from the starting material by means of a laser beam. In this case too, structural changes in the area of the cut surfaces due to heating by the laser beam cannot be avoided during the cutting process.

Elektronische Bauteile, die durch Aufdampfen von Schichten oder nach bekannter Maskentechnik hergestellt werden, haben den Nachteil, daß sie fest auf einem Substratträger haften und nur zusammen mit diesem verwendbar sind.Electronic components, which are produced by vapor deposition of layers or according to known mask technology, have the disadvantage that they adhere firmly to a substrate carrier and only can be used together with this.

Die Herstellung kleiner Bauteile aus Metall im Gießverfahren findet seine Grenze bei Durchmessern oder Querabständen von etwa 1 mm. Wird die Schmelze unter Druck in die Form gepreßt, lassen sich zwar kleinere Querschnitte erreichen, es treten aber wiederum, insbesondere bei gekrümmten Formen, Verspannungen auf, die später während des Betriebs die Zuverlässigkeit des Bauteils beeinträchtigen.The production of small metal components using the casting process is limited to diameters or transverse distances of around 1 mm. If the melt is pressed into the mold under pressure, smaller cross-sections can be achieved, but again, especially in the case of curved shapes, stresses occur which later impair the reliability of the component during operation.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, um sehr dünne oder schmale Werkstücke aus Metall oder Legierungen mit Querabmessungen von weniger als 1 mm, aber praktisch beliebiger Länge und Krümmung, spannungsfrei und mit homogenem Gefüge herstellen zu können.The invention is therefore based on the object of providing a method and a device for being able to produce very thin or narrow workpieces made of metal or alloys with transverse dimensions of less than 1 mm, but practically of any length and curvature, stress-free and with a homogeneous structure.

Vorstehende Aufgabe wird nach der Erfindung verfahrensmaßig dadurch gelöst, daß eine Schicht aus Metall-oder Legierungspulver als Schmelzgut auf einen im wesentlichen ebenen Schmelzgutträger aufgebracht wird, der auf seiner Oberfläche wenigstens eine der Form des herzustellenden Werkstücks entsprechende rinnenförmige Bahn aufweist, und der Laserstrahl auf den Schmelzgutträger gerichtet und mit solcher Geschwindigkeit entlang der rinnenförmigen Bahn geführt wird, daß in dieser das pulvrige Schmelzgut kontinuierlich geschmolzen wird und die Schmelze zusammenhängend erstarrt. Das neue Herstellungsverfahren ist somit ein kontinuierliches Schmelzverfahren, bei dem gleichzeitig geschmolzen und durch die Fortbwegung des Laserstrahls geformt wird. Bei diesem Formvorgang aus der Schmelze schreitet die Erstarrung über die Länge des Werkstücks gleichmäßig fort, so daß ein gleichmäßiges Gefüge erhalten wird und keine inneren Spannungen auftreten. Da sich ein Laserstrahl auf einen Querschnitt von weniger als 1 mm fokussieren läßt, bereitet auch die Herstellung sehr schmaler Werkstücke keine Schwierigkeiten. Der Laserstrahl wird im Auftreffpunkt auf das Schmelzgut im wesentlichen auf die dort vorhandene Breite der rinnenförmigen Bahn eingestellt, so daß das auf dem Schmelzgutträger in der rinnenförmigen Bahn liegende Pulver an jedem Punkt der Bahn auf deren gesamter Breite gleichzeitig geschmolzen wird und bei der Fortbewegung des Laserstrahlbrennpunkts längs der rinnenförmigen Bahn die Schmelze auf deren gesamter Breite gleichzeitig erstarrt.The above object is achieved according to the invention in that a layer of metal or alloy powder is applied as melting material to a substantially flat melting material carrier, which has at least one trough-shaped path on its surface corresponding to the shape of the workpiece to be produced, and the laser beam onto the The melt carrier is directed and guided along the channel-shaped path at such a speed that the powdery melt is continuously melted in it and the melt solidifies in a coherent manner. The new manufacturing process is thus a continuous smelting process in which it is melted and shaped by the advancement of the laser beam. In this molding process from the melt, the solidification proceeds uniformly over the length of the workpiece, so that a uniform structure is obtained and no internal stresses occur. Since a laser beam can be focused on a cross section of less than 1 mm, the production of very narrow workpieces is not difficult. The laser beam is set at the point of impact on the melting material essentially to the width of the trough-shaped path there, so that the Powder lying on the melt material carrier in the trough-shaped path is melted at every point of the path over its entire width at the same time and, as the laser beam focal point moves along the trough-shaped path, the melt solidifies over its entire width at the same time.

Je nach der Gestalt des herzustellenden Werkstücks können Tiefe und Breite der rinnenförmigen Bahn über die Länge des Werkstücks variiert werden, denn durch Änderung des Abstands des Brennpunkts vom Schmelzgut kann der Querschnitt des Laserstrahls entsprechend der sich ändernden Breite der rinnenförmigen Bahn verändert werden. In gleicher Weise kann, während der Laserstrahl dem geraden oder gekrümmten Verlauf einer rinnenförmigen Bahn folgt, die Bahngeschwindigkeit des Laserstrahls innerhalb vorgegebener Grenzen verändert werden, falls dies z.B. wegen örtlicher Änderungen des zu schmelzenden pulverförmigen Materials oder der Tiefe der rinnenförmigen Bahn zweckmäßig erscheint.Depending on the shape of the workpiece to be produced, the depth and width of the trough-shaped path can be varied over the length of the workpiece, because by changing the distance of the focal point from the melting material, the cross section of the laser beam can be changed in accordance with the changing width of the trough-shaped path. In the same way, while the laser beam follows the straight or curved course of a trough-shaped path, the path speed of the laser beam can be changed within predetermined limits, if this is e.g. appears appropriate due to local changes in the powdery material to be melted or the depth of the channel-shaped track.

Wie ohne weiteres ersichtlich, ist das neue Verfahren nicht auf die Herstellung von Werkstücken aus einzelnen reinen Metallen beschränkte sondern kann auch Anwendung finden bei Legierungen, wobei das zu schmelzende pulverisierte Ausgangsmaterial eine pulverisierte Legierung oder eine Mischung aus Pulvern der zu legierenden Metalle sein kann. Dabei besteht auch die Möglichkeit, beim Fortschreiten des Laserstrahls längs der rinnenförmigen Bahn zunächst ein erstes Metallpulver zu schmelzen und dann ab einer bestimmten Grenzstelle ein anderes Metallpulver, wobei an der Grenzstelle die beiden unterschiedlichen Schmelzen zusammenfließen und verschweißen.As can be readily seen, the new method is not limited to the production of workpieces from individual pure metals, but can also be used with alloys, the powdered starting material to be melted being a powdered alloy or a mixture of powders of the metals to be alloyed. It is also possible to first melt a first metal powder as the laser beam progresses along the trough-shaped path and then another metal powder from a certain boundary point, the two different melts flowing together and welding at the boundary point.

Die erfindungsgemäße Vorrichtung zur Durchführung des neuen Verfahrens besteht aus einem CW-Laser, einem Werkstückträger für wenigstens ein unter Schutzgas zu haltendes Werkstück und einer den Laserstrahl relativ zum Werkstückträger längs einer vorbestimmten Bahn führenden Steuereinrichtung und ist dadurch gekennzeichnet, daß der Werkstückträger ein im wesentlichen ebener Schmelzgutträger ist, der auf seiner Oberfläche wenigstens eine der Form eines herzustellenden Werkstücks entsprechende rinnenförmige Bahn aufweist und mit einer Schicht aus M&tall-oder Legierungspulver als Schmelzgut belegbar ist, wobei der Laserstrahl mittels der Steuereinrichtung mit einer zum Schmelzen des pulvrigen Schmelzguts ausreichend langsamen Geschwindigkeit längs der rinnenförmigen Bahn lenkbar ist.The device according to the invention for carrying out the new method consists of a CW laser, a workpiece carrier for at least one workpiece to be held under protective gas and a control device guiding the laser beam relative to the workpiece carrier along a predetermined path and is characterized in that the workpiece carrier is essentially a is a flat melt material carrier which has at least one trough-shaped path on its surface which corresponds to the shape of a workpiece to be produced and can be coated with a layer of metal or alloy powder as the melt material, the laser beam by means of the control device along with a speed which is sufficiently slow to melt the powdery melt material the channel-shaped track is steerable.

In bevorzugter praktischer Ausführung der Erfindung ist der Laserstrahl durch eine durch die Steuereinrichtung bewegbare Optik auf jeden Punkt längs der rinnenförmigen Bahn fokussierbar. Die hierzu erforderliche Optik wird besonders einfach bei Verwendung eines bewegbaren asphärischen Spiegels, welcher den Laserstrahl auf einen Punkt der rinnenförmigen Bahn des Schmelzgutträgers umlenkt und dabei gleichzeitig fokussiert. Zweckmäßigerweise ist der asphärische Spiegel um wenigstens eine Schwenkachse drehbar gelagert und/oder längs wenigstens einer Geradführung bewegbar gelagert.In a preferred practical embodiment of the invention, the laser beam can be focused on any point along the trough-shaped path by means of optics which can be moved by the control device. The optics required for this are particularly simple when using a movable aspherical mirror, which deflects the laser beam to a point on the channel-shaped path of the melt material carrier and at the same time focuses it. The aspherical mirror is expediently rotatably mounted about at least one pivot axis and / or movably mounted along at least one straight guide.

Um einwandfreie Werkstücke und Gefüge zu erhalten, wird in praktischer Ausführung der Erfindung der Schmelzgutträger in einer oben durch ein Fenster begrenzten Hochvakuumkammer angeordnet, welches der auf das Schmelzgut gerichtete Laserstrahl durchdringt.In order to obtain flawless workpieces and structures, in a practical embodiment of the invention the melting material carrier is arranged in a high vacuum chamber delimited at the top by a window, through which the laser beam directed onto the melting material penetrates.

Für das Schmelzen des pulvrigen Schmelzguts längs einer vorgegebenen rinnenförmigen Bahn mittels eines Laserstrahls kommt es nur auf die Relativbewegung zwischen dem Schmelzgutträger und dem Laserstrahl an. Es genügt also, wenn entweder nur der Laserstrahl, z.B. durch Bewegung des asphärischen Spiegels, bewegt wird oder alternativ der Laserstrahl ortsfest im Raum gehalten wird, während der Schmelzgutträger bewegt wird. Um mit verhältnismäßig kleinen Bewegungsbereichen auszukommen, ist vorzugsweise vorgesehen, daß sowohl der Laserstrahl mittels einer steuerbaren Optik als auch der Schmelzgutträger bewegbar ist.For the melting of the powdery melting material along a predetermined channel-shaped path by means of a laser beam, it is only a matter of the relative movement between the melting material carrier and the laser beam. It is therefore sufficient if either only the laser beam, e.g. by moving the aspherical mirror, or alternatively the laser beam is held stationary in space while the melt carrier is moved. In order to get by with relatively small ranges of movement, it is preferably provided that both the laser beam can be moved by means of a controllable optical system and the melting material carrier.

Das vorgeschlagene Herstellungsverfahren sollte möglichst erschütterungsfrei durchgeführt werden. Es empfiehlt sich daher, die gesamte Vorrichtung auf Luftlagern ruhen zu lassen.The proposed manufacturing process should be carried out as vibration-free as possible. It is therefore advisable to let the entire device rest on air bearings.

Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Diese zeigt eine erfindungsgemäße Vorrichtung, bestehend aus einem Rahmen 10, der auf Luftlagern 12 ruht und einen CW-CO 2-Laser 14 trägt. Weiterhin ist am Rahmen 1o eine Hochvakuumkammer 16 befestigt, die nach dem öffnen eines Deckels 18 von außen zugänglich ist und auf der Oberseite durch ein Fenster 10, z.B. aus NaCl begrenzt ist. Die Hochvakuumkammer 16 hat einen Vakuumanschluß 22 und eine Einlaßöffnung 24 für Schutzgas. Im Inneren der Hochvakuumkammer 16 ist ein Tisch 26 drehbar gelagert und mittels eines Antriebsmotors 28 drehbar. Auf dem Tisch ruht eine auswechselbare plattenförmige Schablone 28, welche auf ihrer Oberseite flach eingesenkte, rinnenförmige Bahnen in der Form der herzustellenden Werkstücke aufweist. Breite und Tiefe dieser rinnenförmigen Bahnen betragen vorzugsweise weniger als etwa 1 mm, können aber ggf. auch etwas größer sein. Auf die Oberfläche der Schablone 28 wird wenigstens im Bereich einer oder mehrerer rinnenförmiger Bahnen Metallpulver, z.B. aus Kupfer, Silber oder einem anderen Metall, aus dem das Werkstück hergestellt werden soll, in einer dünnen Schicht 3o aufgetragen. Derartige Metallpulver feiner Körnung von z.B. 1ooµ stehen zur Verfügung. Die Dicke der Pulverschicht 3o und die Tiefe der rinnenförmigen Bahnen richten sich nach der Dicke der herzustellenden Werkstücke.The invention is explained below with reference to the drawing. This shows a device according to the invention, consisting of a frame 10 , which rests on air bearings 12 and carries a CW-CO 2 laser 14. Furthermore, the frame 1o a high vacuum chamber 16 is mounted, which open a lid according to the 18 is accessible from the outside and is bounded on the top by a window 1 0, for example of NaCl. The high vacuum chamber 16 has a vacuum connection 22 and an inlet opening 24 for protective gas. Inside the high vacuum chamber 16, a table 26 is rotatably supported and rotatable by means of a drive motor 28. An interchangeable plate-shaped template 28 rests on the table, which has flat recessed, channel-shaped tracks on the top in the shape of the workpieces to be produced. The width and depth of these trough-shaped tracks are preferably less than about 1 mm, but may also be somewhat larger, if necessary. Metal powder, for example made of copper, silver or another metal from which the workpiece is to be produced, is applied in a thin layer 3o to the surface of the template 28, at least in the region of one or more trough-shaped tracks. Such metal powders with a fine grain size of, for example, 1ooµ are available. The thickness of the powder layer 3o and the depth of the trough-shaped tracks depend on the thickness of the workpieces to be produced.

An einem sich über der Hochvakuumkammer 16 erstreckenden Tragarm 32 des Rahmens 1o ist ein asphärischer Spiegel 34 mehrfach beweglich gelagert und geführt. Der Tragarm 32 selbst ist nach Art eines Schlittens mittels eines Stellmotors 36 längs einer senkrechten Führung 38 am Rahmen 1o vertikal verfahrbar. Ein den Spiegel 34 aufnehmendes abgeschlossenes Gehäuse 40, dessen Boden durch ein Fenster 42 gebildet ist, kann mittels eines Stellmotors 44 nach Art eines Schlittens einlang einer Längsführung am Tragarm 32 verfahren werden. In dem Gehäuse 4o ist der Spiegel 34 mittels zweier Stellmotore 46 und 48 um zwei sich kreuzende waagrechte Achsen verschwenkbar.An aspherical mirror 34 is mounted and guided several times in a movable manner on a support arm 32 of the frame 10 extending over the high vacuum chamber 16. The support arm 32 itself can be moved vertically in the manner of a slide by means of a servomotor 36 along a vertical guide 38 on the frame 10. A mirror 34 receiving sealed housing 4 0, the bottom of which is formed by a window 42, by means of a servomotor 44 by way of a carriage on a longitudinal guide einlang Support arm 32 are moved. In the housing 4o, the mirror 34 can be pivoted about two intersecting horizontal axes by means of two servomotors 46 and 48.

Der Tragarm 32 des Rahmens 1o trägt weiterhin eine Beobachtungsoptik 50, die zweckmäßigerweise mit einer Temperaturmeßeinrichtung verbunden ist. Die Beobachtungsoptik gestattet die Beobachtung des Schmelzvorgangs in der Hochvakuumkammer durch das Fenster 2o hindurch, und die mit der Beobachtungsoptik 5o verbundene Temperaturmeßeinrichtung mißt die am Schmelzpunkt herrschende Temperatur anhand der durch das Fenster 2o nach außen dringenden Strahlung.The support arm 32 of the frame 1o further carries an observation optical system 5 0, which is conveniently connected to a temperature measuring device. The observation optics allow the melting process in the high vacuum chamber to be observed through the window 2o, and the temperature measuring device connected to the observation optics 5o measures the temperature prevailing at the melting point on the basis of the radiation penetrating through the window 2o to the outside.

Die Funktionsweise der gezeigten Vorrichtung ist wie folgt:

  • Nachdem sich die mit Pulver 3o beschichtete Schablone 28 in der geschlossenen, evakuierten Hochvakuumkammer 16 befindet, die vorzugsweise aus Edelstahl besteht und wassergekühlt ist, wird der vom Laser 14 erzeugte Laserstrahl 52 auf den asphärischen Spiegel 34 gerichtet und von diesem auf die mit Metallpulver 3o belegte Schablone 28 umgelenkt und fokussiert. Der Brennpunkt befindet sich dort, wo das Metallpulver 3o in einer rinnenförmigen Bahn geschmolzen werden soll. Eine nicht gezeigte Steuereinrichtung führt den Brennpunkt des Laserstrahls langsam entlang einer rinnenförmigen Bahn in der Oberfläche der Schablone 28. Hierzu genügt es, den asphärischen Spiegel 34 um die eine und/oder die andere seiner beiden Schwenkachsen zu verschwenken und gleichzeitig durch Verfahren des Tragarms 32 in senkrechter Richtung entlang der Führung 38 dafür zu sorgen, daß sich der Brennpunkt des Laserstrahls 52 beim Verschwenken des Spiegels 34 im wesentlichen in einer horizontalen Ebene bewegt.
The functioning of the device shown is as follows:
  • After the template 28 coated with powder 30 is in the closed, evacuated high vacuum chamber 16, which is preferably made of stainless steel and is water-cooled, the laser beam 52 generated by the laser 14 is directed onto the aspherical mirror 34 and from there onto the one covered with metal powder 30 Template 28 deflected and focused. The focal point is where the metal powder 3o is to be melted in a trough-shaped path. A control device, not shown, guides the focal point of the laser beam slowly along a trough-shaped path in the surface of the template 28. For this purpose, it is sufficient to pivot the aspherical mirror 34 about one and / or the other of its two pivot axes and simultaneously by moving the support arm 32 in vertical direction along the guide 38 to ensure that the focal point of the laser beam 52 moves substantially in a horizontal plane when pivoting the mirror 34.

Es versteht sich, daß der Strahlengang des Laserstrahls 52 auch anders als gezeigt gewählt werden kann. Während im gezeichneten Ausführungsbeispiel die umlenkende und fokussierende Optik mit dem asphärischen Spiegel 34.im wesentlichen senkrecht über dem Strahlaustritt des Lasers 14 angeordnet ist und der Stellmotor 44 nur der genauen Positionierung des Spiegels 34 vor Beginn des Arbeitens dient, könnte auch daran gedacht sein, während des Arbeitens das Gehäuse 4o mit dem Spiegel 34 längs des Tragarms 32 zu verfahren und den Laserstrahl 52 mittels eines steuerbaren Strahlaustritts am Laser 14 so nachzuführen, daß der Laserstrahl jederzeit auf den Spiegel 34 zielt.It goes without saying that the beam path of the laser beam 52 can also be selected differently than shown. While in the illustrated embodiment the deflecting and focusing optics with the aspherical mirror 34 are essentially perpendicular above the Beam exit of the laser 14 is arranged and the servomotor 44 is only used for the exact positioning of the mirror 34 before starting work, it could also be considered to move the housing 4o with the mirror 34 along the support arm 32 during the work and by means of the laser beam 52 of a controllable beam exit on the laser 14 so that the laser beam is aimed at the mirror 34 at all times.

Eine weitere Modifikation besteht darin, daß anstelle des asphärischen Spiegels 34 auch ein reiner Umlenkspiegel in Verbindung mit einer fokussierende Linse Verwendung finden könnte.Another modification is that instead of the aspherical mirror 34, a pure deflecting mirror could also be used in conjunction with a focusing lens.

Der Schmelz- und Formprozeß kann gesteuert ablaufen. Man kann aber auch eine Regelung vorsehen, welche die von der Temperaturmeßeinrichtung gemessenen Temperaturen benutzt, um den Brennpunkt des Laserstrahls 52 mit optimaler Bahngeschwindigkeit längs einer rinnenförmigen Bahn der Schablone 28 zu führen.The melting and molding process can be controlled. However, it is also possible to provide a control which uses the temperatures measured by the temperature measuring device in order to guide the focal point of the laser beam 52 along a trough-shaped path of the template 28 at an optimal path speed.

Den Schmelzprozeß wird man normalerweise unter einem kontinuierlichen Schutzgasstrom ablaufen lassen. Das Schutzgas tritt über die Einlaßöffnung 24 in die Hochvakuumkammer 16 ein und wird durch den Vakuumanschluß 22 daraus wieder abgesaugt.The melting process will normally be carried out under a continuous flow of inert gas. The protective gas enters the high-vacuum chamber 16 via the inlet opening 24 and is sucked out of it again through the vacuum connection 22.

Die Geschwindigkeit, mit der sich der Brennpunkt des Laserstrahls 52 auf der Oberfläche der Schablone 28 bewegt, kann zwischen etwa o,1 mm und ungefähr loo mm pro Stunde betragen.The speed at which the focal point of the laser beam 52 moves on the surface of the stencil 28 can be between approximately 0.1 mm and approximately 100 mm per hour.

Claims (9)

1. Verfahren zur spanlosen Herstellung sehr dünner oder schmaler Werkstücke mit Querabmessungen von weniger als 1 mm aus Metall oder Legierungen mittels kontinuierlichen Laserstrahls unter Vakuum oder Schutzgas, d a-durch gekennzeichnet, daß eine Schicht aus Metall-oder Legierungspulver als Schmelzgut (30) auf einen im wesentlichen ebenen Schmelzgutträger (26,28) aufgebracht wird, der auf seiner Oberfläche wenigstens eine der Form des herzustellenden Werkstücks entsprechende rinnenförmige Bahn aufweist, und der Laserstrahl (52) auf den Schmelzgutträger (26, 28) gerichtet und mit solcher Geschwindigkeit entlang der rinnenförmigen Bahn geführt wird, daß in dieser das pulvrige Schmelzgut (3o) kontinuierlich geschmolzen wird und die Schmelze zusammenhängend erstarrt.1. Process for the chipless production of very thin or narrow workpieces with transverse dimensions of less than 1 mm made of metal or alloys by means of a continuous laser beam under vacuum or protective gas, d a-characterized in that a layer of metal or alloy powder as the melt material (30) an essentially flat melt material carrier (26, 28) is applied, which has at least one trough-shaped path on its surface corresponding to the shape of the workpiece to be produced, and the laser beam (52) is directed onto the melt material carrier (26, 28) and at such speed along the trough-shaped path that the powdery melt material (3o) is continuously melted in this and the melt solidifies coherently. 2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bestehend aus einem CW-Laser, einem Werkstückträger für wenigstens ein unter Schutzgas zu haltendes Werkstück und einer den Laserstrahl relativ zum Werkstückträger längs einer vorbestimmten Bahn führenden Steuereinrichtung, dadurch gekennzeichnet, daß der Werkstückträger (26, 28) ein im wesentlichen ebener Schmelzgutträger ist, der auf seiner Oberfläche wenigstens eine der Form eines herzustellenden Werkstücks entsprechende rinnenförmige Bahn aufweist und mit einer Schicht aus Metall- oder Legierungspulver als Schmelzgut (30) belegbar ist, und daß der Laserstrahl (52) mittels der Steuereinrichtung mit einer zum Schmelzen des pulvrigen Schmelzguts (3o) ausreichend langsamen Geschwindigkeit längs der rinnenförmigen Bahn lenkbar ist.2. Device for carrying out the method according to claim 1, consisting of a CW laser, a workpiece carrier for at least one workpiece to be held under protective gas and a control device guiding the laser beam relative to the workpiece carrier along a predetermined path, characterized in that the workpiece carrier (26 , 28) is an essentially flat melt material carrier, which has on its surface at least one trough-shaped path corresponding to the shape of a workpiece to be produced and can be coated with a layer of metal or alloy powder as the melt material (30), and that the laser beam (52) by means of the control device can be steered along the trough-shaped path at a speed which is sufficiently slow to melt the powdery melting material (30). 3. Vorrichtung nach Anspruch 2, ddadurch gekennzeichnet, daß der Laserstrahl durch eine durch die Steuereinrichtung bewegbare Optik (34) auf jeden Punkt längs der rinnenförmigen Bahn fokussierbar ist.3. Apparatus according to claim 2, characterized in that the laser beam can be focused on any point along the trough-shaped path by optics (34) which can be moved by the control device. 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Optik einen mittels der Steuereinrichtung bewegbaren, asphärischen Spiegel (34) aufweist, welcher den Laserstrahl (52) auf einen Punkt der rinnenförmigen Bahn des Schmelzgutträgers (26, 28) umlenkt und dabei gleichzeitig fokussiert.4. The device according to claim 3, characterized in that the optics has a movable by means of the control device, aspherical mirror (34) which deflects the laser beam (52) to a point on the trough-shaped path of the melt carrier (26, 28) and at the same time focuses . 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der asphärische Spiegel (34) um wenigstens eine Schwenkachse drehbar gelagert ist.5. The device according to claim 4, characterized in that the aspherical mirror (34) is rotatably mounted about at least one pivot axis. 6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der asphärische Spiegel längs wenigstens einer Geradführung (38) bewegbar ist.6. Apparatus according to claim 4 or 5, characterized in that the aspherical mirror is movable along at least one straight guide (38). 7. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet , daß der Schmelzgutträger (26, 28) in einer oben durch ein Fenster (20) begrenzten Hochvakuumkammer (16) angeordnet ist, welches der auf das Schmelzgut (30) gerichtete Laserstrahl (52) durchdringt.7. Device according to one of claims 2 to 6, characterized in that the melting material carrier (26, 28) in a top by a window (20) limited high vacuum chamber (16) is arranged, which is directed to the melting material (30) laser beam ( 52) penetrates. 8. Vorrichtung nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet , daß der Schmelzgutträger (26, 28) um eine im wesentlichen senkrechte Achse drehbar und/oder in mindestens einer Richtung parallel zu seiner Oberfläche verfahrbar ist.8. Device according to one of claims 2 to 7, characterized in that the melting material carrier (26, 28) is rotatable about a substantially vertical axis and / or can be moved in at least one direction parallel to its surface. 9. Vorrichtung nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß der Schmelzgutträger aus einem tragenden Unterteil (26) und wenigstens einer darauf auflegbaren oder auswechselbar befestigbaren plattenförmigen Schablone (28) mit eingeformter rinnenförmiger Bahn besteht.9. Device according to one of claims 2 to 8, characterized in that the melting material carrier consists of a supporting lower part (26) and at least one plate-shaped template (28) which can be placed thereon or exchangeably fastened with a molded-in channel-shaped track.
EP85115810A 1984-12-14 1985-12-11 Method and device for the non-chipping production of thin, longish metallic workpieces by means of a laser beam Expired EP0184839B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3445613A DE3445613C1 (en) 1984-12-14 1984-12-14 Method and device for the chipless production of narrow, elongated metal workpieces by means of a laser beam
DE3445613 1984-12-14

Publications (2)

Publication Number Publication Date
EP0184839A1 true EP0184839A1 (en) 1986-06-18
EP0184839B1 EP0184839B1 (en) 1989-03-08

Family

ID=6252763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115810A Expired EP0184839B1 (en) 1984-12-14 1985-12-11 Method and device for the non-chipping production of thin, longish metallic workpieces by means of a laser beam

Country Status (2)

Country Link
EP (1) EP0184839B1 (en)
DE (1) DE3445613C1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517132A1 (en) * 1985-05-11 1986-11-13 Jürgen 6074 Rödermark Wisotzki Semiconductor element having a microelement joined thereto in an electrically conductive manner, and method for effecting the join
JPH0730362B2 (en) * 1987-03-20 1995-04-05 株式会社日立製作所 Electronic component and manufacturing method thereof
DE19853979A1 (en) * 1998-11-23 2000-05-31 Fraunhofer Ges Forschung Device and method for scanning an object surface with a laser beam, in particular for selective laser melting
US8062020B2 (en) 2003-02-25 2011-11-22 Panasonic Electric Works Co., Ltd. Three dimensional structure producing device and producing method
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
DE102006014835A1 (en) * 2006-03-30 2007-10-04 Fockele, Matthias, Dr. Assembly to fabricate objects from e.g. titanium powder in chamber with inert gas partition forming smoke screen
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
CN107931605B (en) * 2017-10-09 2021-01-29 太原理工大学 3D printing manufacturing method for friction pair surface microtexture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177372A (en) * 1976-05-26 1979-12-04 Hitachi, Ltd. Method and apparatus for laser zone melting
US4243867A (en) * 1978-06-26 1981-01-06 Caterpillar Tractor Co. Apparatus for fusibly bonding a coating material to a metal article
US4464557A (en) * 1981-11-23 1984-08-07 Risbud Subhash H Crystal growth in glasses and amorphous semiconductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177372A (en) * 1976-05-26 1979-12-04 Hitachi, Ltd. Method and apparatus for laser zone melting
US4243867A (en) * 1978-06-26 1981-01-06 Caterpillar Tractor Co. Apparatus for fusibly bonding a coating material to a metal article
US4464557A (en) * 1981-11-23 1984-08-07 Risbud Subhash H Crystal growth in glasses and amorphous semiconductors

Also Published As

Publication number Publication date
EP0184839B1 (en) 1989-03-08
DE3445613C1 (en) 1985-07-11

Similar Documents

Publication Publication Date Title
DE19953000C2 (en) Method and device for the rapid production of bodies
DE19935274C1 (en) Apparatus for producing components made of a material combination has a suction and blowing device for removing material from the processing surface, and a feed device for a further material
DE19511772C2 (en) Device and method for producing a three-dimensional object
EP1137504B1 (en) Process chamber for selective laser fusion
EP1133377B1 (en) Method and device for scanning the surface of an object with a laser beam
EP1332039B1 (en) Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation and method for operating the device
DE4143189A1 (en) METHOD FOR INCREASING THE RESISTANCE OF WORKPIECES AGAINST THE DISTRIBUTION OF FATIGUE BREAKINGS
EP1173304B1 (en) Method for producing a surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component
EP0223058A1 (en) Method for soldering metallic catalyst support articles
EP0184839B1 (en) Method and device for the non-chipping production of thin, longish metallic workpieces by means of a laser beam
EP0748268B1 (en) Process for preparing the seam regions of coated workpieces for laser beam welding and lap joint for welding coated workpieces
DE3801068C2 (en)
EP0558135B1 (en) Procedure for generating pattern in the surface of a work piece
EP1404484B1 (en) Strip-shaped cutting tools
WO1988007431A1 (en) Process and device for removing coatings with a laser beam
EP0336335B1 (en) Process for manufacturing amorphous ceramic substances and amorphous alloys
DE19520149B4 (en) Apparatus for manufacturing, method for producing and using a coating on a component
DE3626808C2 (en)
DE3541584C2 (en)
DE4415783A1 (en) Free forming of workpieces, esp. prototypes and articles in small series
DE10215999A1 (en) Process for the production of fiber-reinforced semi-finished products in the form of metal strips, metal sheets or the like and apparatus for carrying out the method
DE3300576C2 (en) Method and device for producing an optical component, in particular a metal reflector
EP0889769B1 (en) Process for joining of workpieces with laser beam
DE2907885A1 (en) Powder metallurgical mfr. of components without using capsules - where surface of pressed blank is heated to form continuous thin skin prior to hot isostatic pressing
EP0009603A1 (en) Method and apparatus for the production of metallic strips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

17P Request for examination filed

Effective date: 19861217

17Q First examination report despatched

Effective date: 19880328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930601

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930608

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST