EP0222836A1 - Method and apparatus for dividing plant materials - Google Patents

Method and apparatus for dividing plant materials

Info

Publication number
EP0222836A1
EP0222836A1 EP86903135A EP86903135A EP0222836A1 EP 0222836 A1 EP0222836 A1 EP 0222836A1 EP 86903135 A EP86903135 A EP 86903135A EP 86903135 A EP86903135 A EP 86903135A EP 0222836 A1 EP0222836 A1 EP 0222836A1
Authority
EP
European Patent Office
Prior art keywords
plant
image signal
plant material
tone
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86903135A
Other languages
German (de)
French (fr)
Other versions
EP0222836A4 (en
Inventor
David Norman Schonstein
Brian Jordayne Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Industrial Gases Ltd
Original Assignee
Commonwealth Industrial Gases Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Industrial Gases Ltd filed Critical Commonwealth Industrial Gases Ltd
Publication of EP0222836A1 publication Critical patent/EP0222836A1/en
Publication of EP0222836A4 publication Critical patent/EP0222836A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/003Cutting apparatus specially adapted for tissue culture

Definitions

  • This invention relates to improvements in the micropropogation of plants and in particular to a method and apparatus for dividing plant materials.
  • micropropagation offers a convenient and effective method of disease control with consequent improvement in plant quality. Freedom from disease is becoming an increasingly important attribute in relation to quarantine requirements imposed in promising export markets such as the Middle East.
  • Micropropagation provides a method of rapid multiplication. In addition to its general significance as a means of achieving dramatic increases in quantity it confers specific benefits. Production of commercial quantities of a new variety can be achieved by manual micropropagation in approximately 50% of the time required by conventional methods. The facility to rapidly build up the numbers of new varieties is important even for species, such as vines, that are easily propagated by cutting.
  • micropropagation technique enables the more productive use of space. Subculturing is conducive to the achievement of a pleasingly high rate of utilisation of laboratory space. Better utilization of glasshouses and plant "hardening" space is also encouraged. Where seasonal markets are being served, rapid multiplication of varieties avoids the necessity to leave unoccupied space in stock houses for protracted periods while numbers are being built up. Operation can be continued at any time of year under controlled conditions of temperature, light cycle and nutrient balance. Culture storage or reduced temperature can be used to reduce growth rate to produce synchronised high output for seasonal demand.
  • micropropagation to a species requires the identification of a satisfactory relationship between the plant material, culture medium and incubation conditions.
  • the range of species for which a standard procedure for micropropagation has been devised is rapidly increasing with a consequent growth in the potential area in commercial application.
  • Involvement of Australian and overseas nurserymen in micropropagation has greatly increased in the last six years.
  • Two main approaches have been adopted. The first involves integration of a laboratory into an existing nursery followed by enormous expansion of the nursery. Alternatively, a laboratory is established and plants in culture are sold to other nurseries. After a slow start the demand from nurseries and growers for micropropagated plants is rapidly increasing.
  • Roots develop when a sample of the shoots are subcultured to a rooting medium (RM) in a petri dish or similar container.
  • RM rooting medium
  • the plants are usually despatched in stacks of containers.
  • the recipient removes them from the containers under non-sterile conditions and 'hardens* them to outside conditions in a high humidity environment.
  • Subculturing is usually performed in a transfer chamber where the shoots are removed from their containers with sterile forceps, dissected, usually quite roughly, with a sterile scalpel into small clumps of shoots or single shoots and then placed onto fresh medium. Pieces cut so as to not contain sufficient whole meristem cells will grow slowly or not at all. Plants containing few or no whole fully differentiated cells are liable to not regenerate as "true to type" or clonal plants.
  • the largest cost in the procedure is the labor involved in sub-culturing the shoots from one medium to another.
  • the cost of sub-culturing is at least three times the cost of all the other procedures. The reason for this can be illustrated in terms of the sub-culturing of trees.
  • the performance of 5,000 transfer operations per day is an absolute maximum for a technician. Similar productivity constraints apply to these operations whether conducted at macroscopic or microscopic scales.
  • sterility control is incomplete, so that contamination losses can be very substantial. Cleaning, preparation, control and movement of plant containers between cutting, storage and hardening areas and transfers to hardening medium are also labour intense.
  • this invention consists in a method for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said method comprising the steps of scanning the plant material to generate an image signal representative of said structure; determining division locations from the image signal according to said rules; and generating a division signal indicative of said division locations.
  • the method further comprises the steps of processing the image signal to produce a co-ordinate map of the structure; identifying co-ordinates corresponding to selected features of said structure; and determining said division locations from said co-ordinates corresponding to selected features.
  • the image signal can represent a two tone image of the plant material in a two dimensional array of pixels, each pixel being assigned a background tone or a plant tone.
  • the image signal is processed by systematically determining the tone assigned to each pixel in the array and recording the co-ordinates of plant tones to form the co-ordinate map.
  • Co-ordinates corresponding to selected features, for example branch tips and nodes, are identified by determining whether previously examined adjacent pixels represent background or plant.
  • the systematic determination of the tone assigned to each image is conducted sequentially in each of two different directions and the co-ordinates of selected features identified in each direction are averaged. In this way account can be taken of branch tips that may not be otherwise identified because the branches slope away from the direction that the pixels are scanned.
  • a tip of a branch is identified when the branch is formed by a minimum of 20 pixels. This prevents identification of the tips of very small branches or the identification of a small piece of foreign matter as a branch tip and in most angiosperms ensure that each piece subsequently divided from the plant both meristem and fully differentiated cells.
  • this invention consists in an apparatus for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said apparatus comprising: image signal generating means to scan the plant material and generate a signal representative of the plant structure; processing means to determine division locations from the image signal according to said rules and to generate a division signal indicative of said division locations; and cutting means responsive to said division signal to divide the plant material at said locations.
  • the processing means produces a co-ordinate map of the structure from the image signal and identifies co-ordinates corresponding to selected features of the structure.
  • the image signal is generated by a Charge Coupled Device interfaced to processing means comprising a microcomputer.
  • the cutting means is preferably a selectively operable cutting blade mounted on a robot arm for movement over the plant material.
  • the cutting blade can have a circular or oval cross sectional shape to cut a selected quantity of plant material at each actuation.
  • Figure 1 is a schematic perspective view of an apparatus according to the invention
  • Figure 2 is a flow chart of a Down Scan routine used in the apparatus of Figure 1;
  • Figure 3 is a flow chart of a Process Pixel routine forming part of the routine shown in Figure 2.
  • the apparatus of this invention comprises a charge coupled device camera (CCD) 11 forming an image signal generating means.
  • the CCD 11 is a Thomson-CSF CCD camera with a standard RSI70 video interface.
  • the CCD 11 is connected via a Chorus Data Systems series 1000 video capture board 15 to an Olivetti M24 microcomputer 16.
  • a signal representative of the structure of a plant 12 positioned on a continuous belt 13 and scanned by CCD 11 is captured by board 15 and the signal is digitised before being down loaded into the main memory of microcomputer 16.
  • the plant is scanned against a background of contrasting colour and scanning of the plant 12 by CCD 11 is controlled by the microcomputer 16. In this way CCD 11 is actuated to provide a single image of plant 12.
  • the digitised signal stored in microcomputer 12 is representative of a two tone image of the plant in a two dimensional pixel array of 640 pixels horizontally and 400 pixels vertically.
  • the tone assigned to each pixel corresponds to either background or plant.
  • the digitised image signal is processed by systematically determining the tone assigned to each pixel in the array and recording the co-ordinates of plant tones in a data base to form a co-ordinate map.
  • co-ordinates corresponding to the tips of branches and nodes where branches join are identified and stored in a data base.
  • the systematic processing of each pixel in the array is conducted twice, once using a Down Scan routine and once using an Up Scan routine.
  • the Downscan and Upscan routines process the pixels sequentially in different directions and the co-ordinates representing branch tips and nodes obtained by each routine are averaged.
  • Figure 2 is a flow chart of the Down Scan routine which shows that the image is processed pixel by pixel starting from the upper left hand corner and working downwardly row by row.
  • the Up Scan routine (not shown) is substantially identical but processes each pixel working upwardly row by row.
  • Figure 3 is a flow chart of a Process Pixel routine which is a sub routine of the Down Scan routine.
  • the first step in the Process Pixel routine is a backscan for an upwardly sloping branch. This is required because the same branch identifying technique used in the process pixel routine is based on determining whether background or branch is represented by the pixel to left, the pixel above and to the left and the pixel immediately above the pixel being processed. A branch sloping upwardly to the left can therefore intially be identified as a new branch until a pixel immediately above the pixel being processed is discovered to be a pixel representing plant. When this is determined the backscan is implemented to relabel plant pixels immediately to the left as being in the same branch as the plant pixel identified immediately above the pixel being processed.
  • the apparatus further comprises cutting means in the form of a cutter mechanism 17 operable by the microcomputer 16 to cut the plant 12 at the determined cutting locations.
  • the cutter mechanism 17 includes tubular cutting blade 18 of circular cross section mounted in a double acting solenoid 19.
  • Cutter 18 is moved to cut the plant 12 by selective actuation of solenoid 19 under control of microcomputer 16.
  • the solenoid 19 is mounted on a frame 20 for movement over the plant 12 by two step motors 21.
  • the step motors 21 are independently operable by dimension signals indicative of division locations which are generated by microcomputer 16 and each move the solenoid 19 in perpendicular directions. In this way cutter 18 can be moved to any position in a cutting area bounded by the limits of travel of the frame 20.
  • the position of the cutter 18 at each instant is determined by microcomputer 16 by storage of the number and direction of actuating pulses supplied to step motors 21.
  • a sensor 22 is provided to allow periodic checking of actual and calculated cutter position.
  • the alignment of plants 12 under cutter mechanism 19 can be achieved by means of reference holes 14 in continuous belt 13 on which the plant 12 is positioned.
  • the cutting locations determined by microcomputer 16 are the centres of nodes and a point 4 mm from the tips of branches.
  • the cutting blade has a diameter of 5 mm and is centred on these cutting locations so that a selected quantity of plant material is cut at each actuation. In the case of most angiosperms this ensures that the divided plant contains sufficient meristem and differentiated cell growth to ensure monclonal propogation.

Abstract

Un procédé et un appareil permettent de diviser des matériaux végétaux ayant une structure optiquement détectable selon des règles ayant trait à la structure. Les matériaux végétaux sont balayés par une caméra à dispositif de couplage de charge relié via une carte de saisie vidéo à un micro-ordinateur. Un signal d'image émis par la caméra à dispositif de couplage de charge représente une image à deux tons des matériaux végétaux dans une série bidimensionnelle de points où chaque point reçoit un ton de fond ou un ton végétal. Le signal d'image est traité en déterminant systématiquement le ton attribué à chaque point dans la série et les coordonnées des points représentant la plante sont entreposées dans une base de données pour former une carte de coordonnées des matériaux végétaux. Des caractéristiques sélectionnées de la plante, par exemple la pointe des branches et les noeuds de jonction des branches, sont identifiés et les coordonnées correspondant à ces caractéristiques sont entreposées afin de déterminer les emplacements des divisions. Le micro-ordinateur commande une lame de coupe sélectivement actionnable à section transversale circulaire et agencée de façon à se déplacer au-dessus des matériaux végétaux. Le couteau se déplace jusqu'à une position au-dessus de noeuds adjacents aux pointes des branches et est actionné par le micro-ordinateur pour couper une quantité sélectionnée de matériaux végétaux.A method and apparatus for dividing plant materials having an optically detectable structure according to rules relating to the structure. The plant materials are scanned by a camera with charge coupling device connected via a video capture card to a microcomputer. An image signal from the charge coupled camera represents a two-tone image of the plant materials in a two-dimensional series of points where each point receives a background tone or a plant tone. The image signal is processed by systematically determining the tone assigned to each point in the series and the coordinates of the points representing the plant are stored in a database to form a coordinate map of plant materials. Selected characteristics of the plant, for example the tips of the branches and the junctions of the branches, are identified and the coordinates corresponding to these characteristics are stored in order to determine the locations of the divisions. The microcomputer controls a selectively actuable cutting blade with a circular cross section and arranged to move above the plant materials. The knife moves to a position above nodes adjacent to the tips of the branches and is operated by the microcomputer to cut a selected amount of plant material.

Description

"METHOD AND APPARATUS FOR DIVIDING PLANT MATERIALS"
TECHNICAL FIELD
This invention relates to improvements in the micropropogation of plants and in particular to a method and apparatus for dividing plant materials.
BACKGROUND ART
The advantages of micropropagation are well known: (i) It offers a convenient and effective method of disease control with consequent improvement in plant quality. Freedom from disease is becoming an increasingly important attribute in relation to quarantine requirements imposed in promising export markets such as the Middle East.
(ii) Micropropagation provides a method of rapid multiplication. In addition to its general significance as a means of achieving dramatic increases in quantity it confers specific benefits. Production of commercial quantities of a new variety can be achieved by manual micropropagation in approximately 50% of the time required by conventional methods. The facility to rapidly build up the numbers of new varieties is important even for species, such as vines, that are easily propagated by cutting.
(iii) The micropropagation technique enables the more productive use of space. Subculturing is conducive to the achievement of a pleasingly high rate of utilisation of laboratory space. Better utilization of glasshouses and plant "hardening" space is also encouraged. Where seasonal markets are being served, rapid multiplication of varieties avoids the necessity to leave unoccupied space in stock houses for protracted periods while numbers are being built up. Operation can be continued at any time of year under controlled conditions of temperature, light cycle and nutrient balance. Culture storage or reduced temperature can be used to reduce growth rate to produce synchronised high output for seasonal demand.
Application of micropropagation to a species requires the identification of a satisfactory relationship between the plant material, culture medium and incubation conditions. The range of species for which a standard procedure for micropropagation has been devised is rapidly increasing with a consequent growth in the potential area in commercial application. Involvement of Australian and overseas nurserymen in micropropagation has greatly increased in the last six years. Two main approaches have been adopted. The first involves integration of a laboratory into an existing nursery followed by enormous expansion of the nursery. Alternatively, a laboratory is established and plants in culture are sold to other nurseries. After a slow start the demand from nurseries and growers for micropropagated plants is rapidly increasing.
-The sequence of operations involved in micropropagation by organ culture is briefly as follows: (i) Initial culture; shoots are taken from the selected plant, surface sterilized and placed onto a sterile medium, (ii) The buds on these shoots eventually develop and these are subcultured to shoot multiplication medium (SM). (iii) The shoots grow rapidly on SM producing a large number of clonal shoots. To increase the number of shoots and to maintain the line, the shoots are subcultured to fresh SM every 3 to 4 weeks.
(iv) Roots develop when a sample of the shoots are subcultured to a rooting medium (RM) in a petri dish or similar container.
The plants are usually despatched in stacks of containers. The recipient removes them from the containers under non-sterile conditions and 'hardens* them to outside conditions in a high humidity environment.
Subculturing is usually performed in a transfer chamber where the shoots are removed from their containers with sterile forceps, dissected, usually quite roughly, with a sterile scalpel into small clumps of shoots or single shoots and then placed onto fresh medium. Pieces cut so as to not contain sufficient whole meristem cells will grow slowly or not at all. Plants containing few or no whole fully differentiated cells are liable to not regenerate as "true to type" or clonal plants.
The largest cost in the procedure is the labor involved in sub-culturing the shoots from one medium to another. The cost of sub-culturing is at least three times the cost of all the other procedures. The reason for this can be illustrated in terms of the sub-culturing of trees. Here the performance of 5,000 transfer operations per day is an absolute maximum for a technician. Similar productivity constraints apply to these operations whether conducted at macroscopic or microscopic scales. In addition in many laboratories sterility control is incomplete, so that contamination losses can be very substantial. Cleaning, preparation, control and movement of plant containers between cutting, storage and hardening areas and transfers to hardening medium are also labour intense.
Thus, the present ability of the Australian and overseas nursery industry to satisfy the demand for micropropagated plants is severely constrained by the cost of the manual cutting process presently employed in the micropropagation process and the maximum number of operations per day which may be performed by even the most skilled operator without deleterious side affects.
It is therefore an object of this invention to provide a method and apparatus for dividing plant materials that will overcome, or at least ameliorate, the above disadvantages.
DISCLOSURE OF INVENTION
Accordingly, in one aspect this invention consists in a method for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said method comprising the steps of scanning the plant material to generate an image signal representative of said structure; determining division locations from the image signal according to said rules; and generating a division signal indicative of said division locations.
For preference, the method further comprises the steps of processing the image signal to produce a co-ordinate map of the structure; identifying co-ordinates corresponding to selected features of said structure; and determining said division locations from said co-ordinates corresponding to selected features.
The image signal can represent a two tone image of the plant material in a two dimensional array of pixels, each pixel being assigned a background tone or a plant tone. The image signal is processed by systematically determining the tone assigned to each pixel in the array and recording the co-ordinates of plant tones to form the co-ordinate map. Co-ordinates corresponding to selected features, for example branch tips and nodes, are identified by determining whether previously examined adjacent pixels represent background or plant.
In accordance with the preferred method the systematic determination of the tone assigned to each image is conducted sequentially in each of two different directions and the co-ordinates of selected features identified in each direction are averaged. In this way account can be taken of branch tips that may not be otherwise identified because the branches slope away from the direction that the pixels are scanned.
In the preferred method a tip of a branch is identified when the branch is formed by a minimum of 20 pixels. This prevents identification of the tips of very small branches or the identification of a small piece of foreign matter as a branch tip and in most angiosperms ensure that each piece subsequently divided from the plant both meristem and fully differentiated cells.
In a second aspect this invention consists in an apparatus for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said apparatus comprising: image signal generating means to scan the plant material and generate a signal representative of the plant structure; processing means to determine division locations from the image signal according to said rules and to generate a division signal indicative of said division locations; and cutting means responsive to said division signal to divide the plant material at said locations.
For preference the processing means produces a co-ordinate map of the structure from the image signal and identifies co-ordinates corresponding to selected features of the structure.
In the preferred embodiment the image signal is generated by a Charge Coupled Device interfaced to processing means comprising a microcomputer.
The cutting means is preferably a selectively operable cutting blade mounted on a robot arm for movement over the plant material. The cutting blade can have a circular or oval cross sectional shape to cut a selected quantity of plant material at each actuation.
An embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
Figure 1 is a schematic perspective view of an apparatus according to the invention;
Figure 2 is a flow chart of a Down Scan routine used in the apparatus of Figure 1; and
Figure 3 is a flow chart of a Process Pixel routine forming part of the routine shown in Figure 2. BEST MODE FOR CARRYING OUT THE INVENTION
Referring to Figure 1 the apparatus of this invention comprises a charge coupled device camera (CCD) 11 forming an image signal generating means. The CCD 11 is a Thomson-CSF CCD camera with a standard RSI70 video interface. The CCD 11 is connected via a Chorus Data Systems series 1000 video capture board 15 to an Olivetti M24 microcomputer 16. A signal representative of the structure of a plant 12 positioned on a continuous belt 13 and scanned by CCD 11 is captured by board 15 and the signal is digitised before being down loaded into the main memory of microcomputer 16. The plant is scanned against a background of contrasting colour and scanning of the plant 12 by CCD 11 is controlled by the microcomputer 16. In this way CCD 11 is actuated to provide a single image of plant 12.
The digitised signal stored in microcomputer 12 is representative of a two tone image of the plant in a two dimensional pixel array of 640 pixels horizontally and 400 pixels vertically. The tone assigned to each pixel corresponds to either background or plant. The digitised image signal is processed by systematically determining the tone assigned to each pixel in the array and recording the co-ordinates of plant tones in a data base to form a co-ordinate map.
In addition, co-ordinates corresponding to the tips of branches and nodes where branches join are identified and stored in a data base. The systematic processing of each pixel in the array is conducted twice, once using a Down Scan routine and once using an Up Scan routine. The Downscan and Upscan routines process the pixels sequentially in different directions and the co-ordinates representing branch tips and nodes obtained by each routine are averaged.
Figure 2 is a flow chart of the Down Scan routine which shows that the image is processed pixel by pixel starting from the upper left hand corner and working downwardly row by row. The Up Scan routine (not shown) is substantially identical but processes each pixel working upwardly row by row.
Figure 3 is a flow chart of a Process Pixel routine which is a sub routine of the Down Scan routine.
The first step in the Process Pixel routine is a backscan for an upwardly sloping branch. This is required because the same branch identifying technique used in the process pixel routine is based on determining whether background or branch is represented by the pixel to left, the pixel above and to the left and the pixel immediately above the pixel being processed. A branch sloping upwardly to the left can therefore intially be identified as a new branch until a pixel immediately above the pixel being processed is discovered to be a pixel representing plant. When this is determined the backscan is implemented to relabel plant pixels immediately to the left as being in the same branch as the plant pixel identified immediately above the pixel being processed.
The remaining steps in the routine will be apparent to persons skilled in the art from Figure 3.
The apparatus further comprises cutting means in the form of a cutter mechanism 17 operable by the microcomputer 16 to cut the plant 12 at the determined cutting locations. The cutter mechanism 17 includes tubular cutting blade 18 of circular cross section mounted in a double acting solenoid 19. Cutter 18 is moved to cut the plant 12 by selective actuation of solenoid 19 under control of microcomputer 16. The solenoid 19 is mounted on a frame 20 for movement over the plant 12 by two step motors 21. The step motors 21 are independently operable by dimension signals indicative of division locations which are generated by microcomputer 16 and each move the solenoid 19 in perpendicular directions. In this way cutter 18 can be moved to any position in a cutting area bounded by the limits of travel of the frame 20. The position of the cutter 18 at each instant is determined by microcomputer 16 by storage of the number and direction of actuating pulses supplied to step motors 21. A sensor 22 is provided to allow periodic checking of actual and calculated cutter position.
The alignment of plants 12 under cutter mechanism 19 can be achieved by means of reference holes 14 in continuous belt 13 on which the plant 12 is positioned.
The cutting locations determined by microcomputer 16 are the centres of nodes and a point 4 mm from the tips of branches. The cutting blade has a diameter of 5 mm and is centred on these cutting locations so that a selected quantity of plant material is cut at each actuation. In the case of most angiosperms this ensures that the divided plant contains sufficient meristem and differentiated cell growth to ensure monclonal propogation.

Claims

1. A method for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said method comprising the steps of scanning the plant material to generate an image signal representative of said structure; determining division locations from the image signal according to said rules; and generating a division signal indicative of said division locations.
2. A method as claimed in claim 1 further comprising the steps of processing the image signal to produce a co-ordinate map of said structure; identifying co-ordinates corresponding to selected features of said structure; and determining said division locations from said co-ordinates corresponding to selected features.
3. A method as claimed in claim 2 wherein said image signal represents a two tone image of the plant material in a two dimensional array of pixels, each pixel being assigned a background tone or a plant tone.
4. A method as claimed in claim 3 wherein the image signal is processed by systematically determining the tone assigned to each pixel in said array and recording the co-ordinates of plant tones to form said co-ordinate map.
5. A method as claimed in claim 4 wherein co-ordinates corresponding to said selected features are identified by determining whether previously examined adjacent pixels represent background or plant.
6. A method as claimed in claim 5 wherein the systematic determination of the tone assigned to each pixel is conducted sequentially in each of two different directions and the co-ordinates of said selected features identified in each direction are averaged.
7. -A method as claimed in any one of claims 2 to 5 wherein said features are the tips of branches of the plant material and nodes where the branches join.
8. A method as claimed in claim 7 wherein wherein a tip of a branch is identified when the branch is formed by a selected minimum number of pixels.
9. A method as claimed in claim 7 wherein said selected minimum number is 20.
10. A method as claimed in any one of claims 2 to 9 wherein said division locations are a selected distance from said selected features.
11. A method for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said method being substantially as herein described with reference to the accompanying drawings.
12. An apparatus for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said apparatus comprising: image signal generating means to scan the plant material and generate a signal representative of the plant structure; processing means to determine division locations from the image signal according to said rules and to generate a division signal indicative of said division locations; and cutting means responsive to said division signal to divide the plant material at said locations.
13. An apparatus as claimed in claim 12 wherein said processing means produces a co-ordinate map of the structure from said image signal and identifies co-ordinates corresponding to selected features of the structure.
14. An apparatus as claimed in claim 13 wherein said processing means includes a data base for storage of said co-ordinate map and said co-ordinates corresponding to selected features.
15. An apparatus as claimed in any one of claims 12 to 14 wherein said image signal is generated by a Charge Coupled Device.
16. An apparatus as claimed in claim 15 wherein said Charge Coupled Device is interfaced to processing means comprising a microcomputer.
17. An apparatus as claimed in any one of claims 12 to 16 wherein the plant material is scanned against a background of contrasting colour.
18. An apparatus as claimed in any one of claims 12 to 17 wherein said cutting means comprises a selectively operable cutting blade mounted for movement over the plant material .
19. An apparatus as claimed in claim 18 wherein the cutting blade has a circular cross section to cut a selected quantity of plant material at each actuation.
20. An apparatus for dividing plant materials with an optically detectable structure according to rules related to the structure of the plant material, said apparatus being substantially as herein described with reference to the accompanying drawings.
EP19860903135 1985-05-15 1986-05-14 Method and apparatus for dividing plant materials. Withdrawn EP0222836A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPH056985 1985-05-15
AU569/85 1985-05-15

Publications (2)

Publication Number Publication Date
EP0222836A1 true EP0222836A1 (en) 1987-05-27
EP0222836A4 EP0222836A4 (en) 1988-04-27

Family

ID=3771105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860903135 Withdrawn EP0222836A4 (en) 1985-05-15 1986-05-14 Method and apparatus for dividing plant materials.

Country Status (7)

Country Link
EP (1) EP0222836A4 (en)
JP (1) JPS62502840A (en)
CN (1) CN1011377B (en)
BR (1) BR8606674A (en)
NZ (1) NZ216187A (en)
WO (1) WO1986006576A1 (en)
ZA (1) ZA863613B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013443A1 (en) * 1991-02-01 1992-08-20 Plant Production Systems B.V. A method for use in a multiplication process of plants and a device for carrying out said method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8630610D0 (en) * 1986-12-22 1987-02-04 Twyford Plant Lab Ltd Cutting/moving items
EP0303472A1 (en) * 1987-08-12 1989-02-15 Albright & Wilson Limited Plant propagation
JPH02295418A (en) * 1989-05-09 1990-12-06 Iseki & Co Ltd Automatic extraction and implantation apparatus for explant in tissue culture
JPH0716341B2 (en) * 1990-02-02 1995-03-01 株式会社東芝 Seedling split transplanter
NL194111C (en) * 1990-04-05 2001-07-03 Visser S Gravendeel Holding Method for laterally gripping plant root balls.
GB9012708D0 (en) * 1990-06-07 1990-08-01 British Res Agricult Eng Cutting apparatus and methods relating to micropropagation
GB9014387D0 (en) * 1990-06-28 1990-08-22 British Res Agricult Eng Method and apparatus relating to micropropagation
GB9016443D0 (en) * 1990-07-26 1990-09-12 British Res Agricult Eng Methods and apparatus relating to micropropagation
US5370713A (en) * 1990-09-07 1994-12-06 The Commonwealth Industrial Gases Limited Automatic plant dividing system
EP1967062A1 (en) * 2007-03-08 2008-09-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method and system for removing undesired plant parts
GB0914186D0 (en) * 2009-08-13 2009-09-16 Syngenta Ltd Sensing method and apparatus
US9271448B2 (en) 2010-06-09 2016-03-01 Basf Se Method for cultivating sugar cane
AU2012311471B2 (en) 2011-09-23 2016-06-02 Basf Se Method for cultivating sugar cane
WO2013160241A1 (en) 2012-04-26 2013-10-31 Basf Se Method and system for extracting buds from a stalk of a graminaceous plant
MX2014013003A (en) 2012-04-26 2015-09-16 Basf Se Method and system for extracting buds from a stalk of a graminaceous plant.
CN103171927B (en) * 2013-03-14 2015-09-30 苏州吉视电子科技有限公司 A kind of carpet automatic cutting device and method adopting real time machine vision technology
WO2015128163A1 (en) 2014-02-28 2015-09-03 Basf Se Method for detecting a node and/or a bud from a stalk of a graminaceous plant
CN114051928B (en) * 2021-11-15 2023-06-20 兰州理工大学 Method and device for cutting detoxified seedling stems by laser based on machine vision

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285258A (en) * 1978-05-02 1981-08-25 Gulf & Western Corporation Device for translating and rotating a cutting platen with respect to a reciprocal cutter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361984A (en) * 1981-08-06 1982-12-07 Kelowna Nurseries Ltd. Micropropagation of plant material
US4583320A (en) * 1982-10-12 1986-04-22 Plant Genetics, Inc. Delivery system for meristematic tissue
IL69333A (en) * 1983-07-26 1986-04-29 Biolog Ind Process for plant tissue culture propagation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285258A (en) * 1978-05-02 1981-08-25 Gulf & Western Corporation Device for translating and rotating a cutting platen with respect to a reciprocal cutter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8606576A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013443A1 (en) * 1991-02-01 1992-08-20 Plant Production Systems B.V. A method for use in a multiplication process of plants and a device for carrying out said method
EP0570473B1 (en) * 1991-02-01 1996-01-03 Plant Production Systems B.V. A method for use in a multiplication process of plants and a device for carrying out said method

Also Published As

Publication number Publication date
EP0222836A4 (en) 1988-04-27
WO1986006576A1 (en) 1986-11-20
ZA863613B (en) 1987-01-28
NZ216187A (en) 1989-08-29
JPS62502840A (en) 1987-11-12
BR8606674A (en) 1987-08-11
CN86103942A (en) 1987-06-10
CN1011377B (en) 1991-01-30

Similar Documents

Publication Publication Date Title
EP0222836A1 (en) Method and apparatus for dividing plant materials
EP1788859B1 (en) Root evaluation
EP0500886B1 (en) Automatic plant dividing system
JP4913160B2 (en) Method and apparatus for determining the start of flowering in plants
McGranahan et al. In vitro propagation of mature Persian walnut cultivars
Raper Sexual hormones in Achlya
AU591678B2 (en) Method and apparatus for dividing plant materials
Raper Sexuality and breeding
Bell et al. Changes in the Level of the Protein Nitrogen during Growth of the Gametophyte and the Initiation of the Sporophyte of Dryopteris borreri Newm.
Kurtz et al. Current methods of commercial micropropagation
Jensen et al. Fine structure of protonemal apical cells of the moss Physcomitrium turbinatum
Wang et al. Automated micropropagated sugarcane shoot separation by machine vision
AU638868B2 (en) Automatic plant dividing system
Hamalainen et al. Selection of Norway spruce somatic embryos by computer vision
Cooper et al. Development of a prototype automated cutting and placing system for tissue culture multiplication
JPS621716B2 (en)
GB2247948A (en) Micropropagration
JPS6244166A (en) Colony transplanting device
Olmo Selecting and breeding new grape varieties
Ting et al. Research on flexible automation and robotics for plant production at Rutgers University
CN116058280A (en) Synergistic breeding method of excellent parent and new variety of widely-adapted cotton
North Artificial chromosome doubling in Narcissus and its implication for breeding N. tazetta hybrids
Shang et al. A new banding technique for chromosomes of wheat (Triticum) and its relatives
JPS62224280A (en) Method for transplanting colony
Lowry The number and morphology of moss chromosomes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870406

A4 Supplementary search report drawn up and despatched

Effective date: 19880427

17Q First examination report despatched

Effective date: 19900228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900911

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOHNSON, BRIAN, JORDAYNE

Inventor name: SCHONSTEIN, DAVID, NORMAN