EP0261338A2 - Inductively excited ion source - Google Patents

Inductively excited ion source Download PDF

Info

Publication number
EP0261338A2
EP0261338A2 EP87110646A EP87110646A EP0261338A2 EP 0261338 A2 EP0261338 A2 EP 0261338A2 EP 87110646 A EP87110646 A EP 87110646A EP 87110646 A EP87110646 A EP 87110646A EP 0261338 A2 EP0261338 A2 EP 0261338A2
Authority
EP
European Patent Office
Prior art keywords
ion source
frequency
coil
source according
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87110646A
Other languages
German (de)
French (fr)
Other versions
EP0261338A3 (en
EP0261338B1 (en
Inventor
Jürgen Dr. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG, Leybold Heraeus GmbH filed Critical Leybold AG
Publication of EP0261338A2 publication Critical patent/EP0261338A2/en
Publication of EP0261338A3 publication Critical patent/EP0261338A3/en
Application granted granted Critical
Publication of EP0261338B1 publication Critical patent/EP0261338B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation

Definitions

  • the invention relates to an inductively excited ion source with a vessel for receiving substances to be ionized, in particular gases, the substances to be ionized being surrounded by a waveguide which is connected to a high-frequency generator, and the two ends of the waveguide being on the same Potential.
  • ion sources With the help of ion sources, a beam of ions, i. H. of electrically charged atoms or molecules.
  • the different types of ion sources adapted to the respective requirements mostly use a form of gas discharge for the ionization of neutral atoms or molecules.
  • the oldest, very simple ion source is the channel beam ion source or channel beam tube.
  • a gas discharge "burns" between two electrodes, which carry a voltage of a few 1000 volts, at a pressure of 10 ⁇ 1 to 1 Pa, in which the ionization takes place by electron or ion impact.
  • This ion source in which the electrodes are immersed in the plasma, is also called an ion source with capacitive excitation.
  • the ions are generated by a high-frequency discharge in the MHz range at about 10 ⁇ 2 Pa, which is between two specially shaped electrodes burns or is generated by an outer coil.
  • the ions are extracted from the plasma and focused using a special extraction method (H. Oechsner: Electron cyclotron wave resonances and power absorption effects in electrodeless low pressure HF plasmas with superimposed static magnetic field, Plasma Physics, 1974, Volume 16, pp. 835 bis 841; J Freisinger, S.
  • a disadvantage of many known ion sources with inductive excitation is, however, that they have a considerable RF power loss.
  • This RF power loss occurs because the RF coil, which is wrapped around the vessel in which the plasma is located, must be adapted to the RF generator.
  • a matching network is provided between the HF generator and the HF coil, which matches the generator power to the consumer power, ie. H. adapts to the coil power (see, for example, DE-OS 25 31 812, reference number 40 in the figures).
  • This adaptation consists in that the wave resistance of the coil loaded by the plasma is transformed into the wave resistance of the transmitter line.
  • a loss of power of 20% to 50% of the total power output by the HF generator occurs in the matching circuit.
  • Another disadvantage of the known ion source with inductive excitation is that the attachment of additional magnets in the vicinity of the vessel in which the plasma is located is difficult because the RF coil takes up a relatively large amount of space and because the magnets are in the magnetic field Heat up the RF coil. Such additional magnets are required to keep the plasma away from certain points on the vessel wall or to compress the plasma (cf. EP-A-0169744).
  • the cooling of the coils is problematic due to the fact that these coils are flushed hollow and with cooling water on the one hand and on the other hand on HF Potential lie, which requires space-consuming potential degradation routes to bring the potential from a high value to a low value. Since the potential is usually reduced by extending the coil, there is an increased power loss.
  • induction coils in a converter system it is also known to design induction coils in a converter system as a waveguide and to cool them with a liquid (DE-OS 25 44 275). Such liquid-cooled induction coils are also used in high-frequency induction plasma torches (DE-AS 21 12 888).
  • a device for carrying out a reaction between a gas and a material in an electromagnetic field which has a reaction chamber for receiving the gas and the material, a composite coil with two interconnected coil sections, the turns of which are wound in opposite directions, has a high-frequency source and a device for connecting the high-frequency source to the coil (DE-OS 22 45 753).
  • the two ends of the coil are interconnected so that they are at the same potential.
  • one connection of the high-frequency source is connected to a point on the coil which is located between the two ends of the coil.
  • the grounded connection of the radio frequency source is at a different potential than the ends of the coil.
  • a disadvantage of this device is that an adaptation network is required.
  • the invention is therefore based on the object of providing an arrangement in an inductively excited ion source according to the preamble of patent claim 1, which dispenses with a special matching network.
  • the advantage achieved by the invention is, in particular, that the power losses of an inductively excited ion source can be considerably reduced. It is also possible to easily supply and remove the cooling water to earth potential.
  • an evacuated vessel 1 is shown, which is surrounded by an electrically conductive high-frequency coil 2 and is closed with an upper annular end plate 4.
  • the ends 5, 6 of the high-frequency coil 2 are guided through corresponding openings in the lower end plate 4 to a cooling system, not shown.
  • This cooling system has the effect that a cooling liquid is introduced through the end 5 of the high-frequency coil 2 designed as a hollow tube and is led out again through the end 6 of this coil 2.
  • the high-frequency coil 2 consists, for example, of copper tube, which here is arranged outside the vessel, but can also be integrated into it or arranged inside the vessel.
  • the inflow and outflow of the Coolant is indicated by the arrows 7 and 8. Water is preferably used as the cooling liquid.
  • the high-frequency coil 2 has nine turns, a diameter of approximately 120 mm and a height of approximately 130 mm. Their length is ⁇ / 2, where ⁇ is related to the frequency of a high-frequency generator.
  • the coil length is understood to mean the length of the drawn-out coil wire and not, for example, the coil length. It goes without saying that the high-frequency coil 2 can also have dimensions other than those specified here. In addition, it does not have to be wrapped around the vessel 1, but can also be located, for example, on the inner wall of the vessel 1 or integrated into the vessel wall.
  • a nozzle 9 is provided through which the gas to be ionized enters the vessel 1.
  • the electrical coupling of the HF power takes place via a cable 10 which is connected to a high-frequency generator and which is connected to the coil 2 with a clamp 11.
  • the HF generator 12, the lower end plate 4 and the capacitor 15 are connected to earth or ground via the lines 21, 22, 23. Grounding is preferably carried out using a short, wide and well-conducting cable, which, for. B. consists of silver.
  • the coil has not only an inductance, but also an inherent capacitance. Inductance and capacitance together form the resonance frequency of the coil 2, the inductance and the capacitance being determined via the so-called induction coating and the capacitance coating.
  • the coil 2 is consequently to be regarded as a waveguide on which waves of the Lecher type propagate (see K. Simonyi: Theoretical Electrical Engineering, Berlin 1956, pp. 313 to 363, or H.-G. Unger: Electromagnetic waves on lines , Heidelberg, 1980).
  • the winding of the coil 2 is to be regarded as a subordinate influencing variable in relation to its wire length.
  • the output frequency of the HF generator 12 is placed on the resonance frequency of the high-frequency coil 2, which can be influenced by the ions in the vessel 1.
  • the actual resonance circuit is understood here to mean the combination of the excitation coil and plasma, that is to say the excitation coil loaded by the plasma.
  • This actual resonant circuit may also include a high-frequency shielding housing. Such a shielding housing was not shown in the illustration in FIG. 2 because the appearance of these housings and their influence on the overall resonant circuit is known.
  • connection point 13 of the line 10 is selected so that the quotient of voltage and current at point 13 is equal to the characteristic impedance of line 10. If one continuously measures this quotient and compares it with the known wave resistance, an electric drive can be controlled with the help of a control circuit so that it always brings point 13 into a position in which the above-mentioned condition applies. In this way it is possible to automate the performance adjustment.
  • the high-frequency generator 12 is by no means short-circuited, as it might appear from a low-frequency view. Rather, the straight piece of the coil 2, which extends from the connection point 13 to the plate 4, has an inductance and a capacitance coating which prevents a high-frequency short circuit.
  • the capacitor 15 is provided, which is connected to the coil 2.
  • the resonance frequency of the system coil 2 / capacitor 15 is changed.
  • the coil 2 or the system coil 2 / capacitor 15 is acted upon by an alternating voltage, the frequency of which is equal to the resonance frequency of the coil 2 or the system coil 2 / capacitor 15 or a harmonic thereof, the instantaneous currents and voltages are on the Coil 2 distributed as integer multiples of half the wavelength. Current bellies and voltage always appear on the coil ends 5, 6 knot to lie; ie the coil ends 5,6 are at ground potential. The cooling water can therefore be easily fed in and out to earth potential.
  • there is resonance there are always at least two points on the coil at which the ratio of voltage and current is equal to the characteristic impedance of line 10. If the line 10 is connected to such a point 13, the power of the high-frequency generator 12 is coupled in without loss. By shifting this coupling point 13, it is possible to compensate for changes in the natural frequency of the coil 2 which result from different plasma densities, ie different loads on the coil 2.
  • the entire magnetic field energy occurring is concentrated in the coil 2, so that its magnetic field holds the plasma together very effectively and compresses it.
  • the coil can also be different, e.g. meandering, designed to accommodate other field configurations, e.g. generate a "cusp" field or multipolar field as shown in Fig. 2 of EP-A-0169744.
  • FIG 3 the arrangement according to the invention is shown again in section.
  • the inlet connector 9 is provided with its gas supply channel 18. If a pressure between about 2 x 10 ⁇ 2 Pa and 50 Pa is set in the discharge space 19 of the vessel 1, a discharge can be ignited by connecting the high-frequency generator 12.
  • the ions formed here are sucked off by the extraction grid system 16 when a suitable voltage of the extraction power supply 17 is present at this grid system 16.
  • the extraction grid system 16 is - in contrast to the annular end plates 3, 4 which are grounded via the lines 20, 21 or in contrast to the high-frequency generator 12 which is grounded via the line 22 - not at ground potential.
  • FIG. 4 shows a variant of the ion source shown in FIG. 3.
  • the basic resonance frequency of the coil 2 is reduced from originally approximately 50 MHz by doubling its length to approximately half of its original value to approximately 25 MHz.
  • the doubling of the coil length is achieved here by a second coil layer, which is designated by 25.
  • the winding direction of the two coil layers 25, 26 can be in opposite directions, whereby particularly advantageous effects are achieved.
  • the efficiency of the ion source is improved by a small distance between the resonance and excitation frequency.
  • the inductance increases with the number of turns of the coil, which leads to an improvement in the resonant circuit quality.
  • FIG. 5 shows a variant of the connection of a capacitor 27 to the coil shown in FIG. 2.
  • the capacitor 27 is connected to the coil 2 at two points 28, 29, while the oscillator 12 is at the "50-ohm point" 30 of the coil 2.
  • This connection enables the HF ion source to be tuned to a low voltage level.
  • the influence of the capacitor 27 on the tuning is less, and there is also a certain distortion of the current and Voltage distribution on, but the capacitor line 31 can be made longer because of the lower voltage.
  • the advantage achieved in this way is, in particular, that the capacitor no longer has to sit directly on the ion source, but can be arranged at a certain distance therefrom without significant loss of power occurring due to stray capacitances at high voltage.

Abstract

Die Erfindung betrifft eine induktiv angeregte Ionenquelle mit einem Gefäß (1), um das eine Spule (2) geschlungen ist. Das Gefäß (1) besteht aus chemisch inertem Material und dient zur Aufnahme des zu ionisierenden Stoffs. An die Spule (2), deren beide Enden geerdet sind, ist ein Hochfrequenzgenerator (12) mit seinem einen Anschluß angeschlossen, während sein anderer Anschluß (22) ebenfalls geerdet ist. Die Länge der Spule (2), die als elektrisch lange Leitung aufzufassen ist, beträgt n ·λ/2, wobei λ die Wellenlänge der Spannung des Hochfrequenzgenerators (12) und n eine ganze Zahl ist.The invention relates to an inductively excited ion source with a vessel (1) around which a coil (2) is wound. The vessel (1) consists of chemically inert material and is used to hold the substance to be ionized. A high frequency generator (12) is connected to one end of the coil (2), both ends of which are grounded, while its other terminal (22) is also grounded. The length of the coil (2), which is to be regarded as an electrically long line, is n · λ / 2, where λ is the wavelength of the voltage of the high-frequency generator (12) and n is an integer.

Description

Die Erfindung betrifft eine induktiv angeregte Ionenquelle mit einem Gefäß für die Aufnahme von zu ionisierenden Stoffen, insbesondere von Gasen, wobei die zu ionisierenden Stoffe von einem Wellenleiter umgeben sind, der mit einem Hochfrequenzgenerator in Verbindung steht, und wobei die beiden Enden des Wellenleiters auf gleichem Potential liegen.The invention relates to an inductively excited ion source with a vessel for receiving substances to be ionized, in particular gases, the substances to be ionized being surrounded by a waveguide which is connected to a high-frequency generator, and the two ends of the waveguide being on the same Potential.

Mit Hilfe von Ionenquellen wird ein Strahl von Ionen, d. h. von elektrisch geladenen Atomen oder Molekülen, erzeugt. Die den jeweiligen Anforde­rungen angepaßten verschiedenen Typen von Ionenquellen benutzen zur Ionisation neutraler Atome oder Moleküle meist eine Form der Gasent­ladung.With the help of ion sources, a beam of ions, i. H. of electrically charged atoms or molecules. The different types of ion sources adapted to the respective requirements mostly use a form of gas discharge for the ionization of neutral atoms or molecules.

Die älteste, sehr einfache Ionenquelle ist die Kanalstrahl-Ionenquelle oder Kanalstrahlröhre. Hierbei "brennt" zwischen zwei Elektroden, die eine Spannung von einigen 1000 Volt führen, eine Gasentladung bei einem Druck von 10⁻¹ bis 1 Pa, in der die Ionisation durch Elektronen- oder Ionenstoß erfolgt. Diese Ionenquelle, bei der die Elektroden in das Plasma eintauchen, wird auch Ionenquelle mit kapazitiver Anregung bezeichnet.The oldest, very simple ion source is the channel beam ion source or channel beam tube. Here, a gas discharge "burns" between two electrodes, which carry a voltage of a few 1000 volts, at a pressure of 10⁻¹ to 1 Pa, in which the ionization takes place by electron or ion impact. This ion source, in which the electrodes are immersed in the plasma, is also called an ion source with capacitive excitation.

Eine andere Art der Ionenerzeugung wird mit Hilfe der Hochfrequenz­Ionenquelle realisiert. Hierbei werden die Ionen durch eine Hochfrequenz-­entladung im MHz-Bereich bei etwa 10⁻² Pa erzeugt, die zwischen zwei besonders geformten Elektroden brennt oder von einer äußeren Spule er­zeugt wird. Die Ionen werden mittels einer besonderen Extraktionsmethode aus dem Plasma herausgezogen und fokussiert (H. Oechsner: Electron cyclotron wave resonances and power absorption effects in electrodeless low pressure H.F. plasmas with superimposed static magnetic field, Plasma Physics, 1974, Band 16, S. 835 bis 841; J Freisinger, S. Reineck, H.W. Loeb: the RF-Ion source RIG 10 for intense hydrogen ion beams, Journal de Physique, Colloque C7, Supplement au no7, Tome 40, Juli 1979, S. C7-­477 bis C7-478; I. Ogawa: Electron cyclotron resonances in a radio-­frequency ion source, Nuclear Instruments and Methods 16, 1962, S. 227 bis 232).Another type of ion generation is realized using the high-frequency ion source. The ions are generated by a high-frequency discharge in the MHz range at about 10⁻² Pa, which is between two specially shaped electrodes burns or is generated by an outer coil. The ions are extracted from the plasma and focused using a special extraction method (H. Oechsner: Electron cyclotron wave resonances and power absorption effects in electrodeless low pressure HF plasmas with superimposed static magnetic field, Plasma Physics, 1974, Volume 16, pp. 835 bis 841; J Freisinger, S. Reineck, HW Loeb: the RF-Ion source RIG 10 for intense hydrogen ion beams, Journal de Physique, Colloque C7, Supplement au n o 7, Tome 40, July 1979, pp. C7-477 bis C7-478; I. Ogawa: Electron cyclotron resonances in a radio-frequency ion source, Nuclear Instruments and Methods 16, 1962, pp. 227 to 232).

Nachteilig ist bei vielen bekannten Ionenquellen mit induktiver Anregung in­dessen, daß sie eine erhebliche HF-Verlustleistung besitzen. Diese HF-­Verlustleistung tritt dadurch auf, daß die HF-Spule, die um das Gefäß ge­schlungen ist, in welchem sich das Plasma befindet, an den HF-Generator angepaßt werden muß. Zwischen dem HF-Generator und der HF-Spule ist zu diesem Zweck ein Anpaßnetzwerk vorgesehen, das die Generatorleistung an die Verbraucherleistung, d. h. an die Spulenleistung anpaßt (vgl. z. B. DE-OS 25 31 812, Bezugszahl 40 in den Figuren). Diese Anpassung be­steht darin, daß der Wellenwiderstand der durch das Plasma belasteten Spule in den Wellenwiderstand der Senderleitung transformiert wird. In der Anpaßschaltung tritt hierbei eine Verlustleistung von 20 % bis 50 % der vom HF-Generator abgegebenen Gesamtleistung auf.A disadvantage of many known ion sources with inductive excitation is, however, that they have a considerable RF power loss. This RF power loss occurs because the RF coil, which is wrapped around the vessel in which the plasma is located, must be adapted to the RF generator. For this purpose, a matching network is provided between the HF generator and the HF coil, which matches the generator power to the consumer power, ie. H. adapts to the coil power (see, for example, DE-OS 25 31 812, reference number 40 in the figures). This adaptation consists in that the wave resistance of the coil loaded by the plasma is transformed into the wave resistance of the transmitter line. A loss of power of 20% to 50% of the total power output by the HF generator occurs in the matching circuit.

Ein weiterer Nachteil der bekannten Ionenquelle mit induktiver Anregung besteht darin, daß die Anbringung von Zusatzmagneten in der Umgebung des Gefäßes, in dem sich das Plasma befindet, erschwert ist, weil die HF-­Spule relativ viel Raum beansprucht und weil sich die Magnete im Magnet­feld der HF-Spule aufheizen. Derartige Zusatzmagnete werden benötigt, um das Plasma von bestimmten Stellen der Gefäßwand fernzuhalten oder um das Plasma zu verdichten (vgl. EP-A-0169744). Außerdem ist die Küh­lung der Spulen aufgrund des Umstands problematisch, daß diese Spulen einerseits hohl und mit Kühlwasser durchspült und andererseits auf HF-­ Potential liegen, wodurch platzaufwendige Potentialabbaustrecken benötigt werden, um das Potential von einem hohen Wert auf einen niedrigen Wert zu bringen. Da der Potentialabbau in der Regel über eine Verlängerung der Spule erfolgt, tritt eine erhöhte Verlustleistung auf.Another disadvantage of the known ion source with inductive excitation is that the attachment of additional magnets in the vicinity of the vessel in which the plasma is located is difficult because the RF coil takes up a relatively large amount of space and because the magnets are in the magnetic field Heat up the RF coil. Such additional magnets are required to keep the plasma away from certain points on the vessel wall or to compress the plasma (cf. EP-A-0169744). In addition, the cooling of the coils is problematic due to the fact that these coils are flushed hollow and with cooling water on the one hand and on the other hand on HF Potential lie, which requires space-consuming potential degradation routes to bring the potential from a high value to a low value. Since the potential is usually reduced by extending the coil, there is an increased power loss.

Es ist weiterhin bekannt, Induktionsspulen in einer Stromrichteranlage als Hohlleiter auszubilden und mit einer Flüssigkeit zu kühlen (DE-OS 25 44 275). Derartige flüssigkeitsgekühlte Induktionsspulen werden indessen auch bei Hochfrequenz-Induktionsplasmabrennern verwendet (DE-AS 21 12 888).It is also known to design induction coils in a converter system as a waveguide and to cool them with a liquid (DE-OS 25 44 275). Such liquid-cooled induction coils are also used in high-frequency induction plasma torches (DE-AS 21 12 888).

Schließlich ist auch noch eine Vorrichtung zum Durchführen einer Re­aktion zwischen einem Gas und einem Material in einem elektromagneti­schen Feld bekannt, die eine Reaktionskammer zur Aufnahme des Gases und des Materials, eine zusammengesetzte Spule mit zwei miteinander verbundenen Spulenabschnitten, deren Windungen in entgegengesetzten Richtungen gewickelt sind, eine Hochfrequenzquelle und eine Einrichtung zum Verbinden der Hochfrequenzquelle mit der Spule aufweist (DE-OS 22 45 753). Bei dieser Vorrichtung sind die beiden Enden der Spule unterein­ander verbunden, so daß sie auf gleichem Potential liegen. Außerdem ist der eine Anschluß der Hochfrequenzquelle an eine Stelle der Spule ange­schlossen, die sich zwischen den beiden Enden der Spule befindet. Der ge­erdete Anschluß der Hochfrequenzquelle liegt jedoch auf einem anderen Potential als die Enden der Spule. Nachteilig ist auch bei dieser Vorrich­tung, daß ein Anpassungsnetzwerk erforderlich ist.Finally, a device for carrying out a reaction between a gas and a material in an electromagnetic field is also known, which has a reaction chamber for receiving the gas and the material, a composite coil with two interconnected coil sections, the turns of which are wound in opposite directions, has a high-frequency source and a device for connecting the high-frequency source to the coil (DE-OS 22 45 753). In this device, the two ends of the coil are interconnected so that they are at the same potential. In addition, one connection of the high-frequency source is connected to a point on the coil which is located between the two ends of the coil. However, the grounded connection of the radio frequency source is at a different potential than the ends of the coil. A disadvantage of this device is that an adaptation network is required.

Der Erfindung liegt deshalb die Aufgabe zugrunde, bei einer induktiv ange­regten Ionenquelle nach dem Oberbegriff des Patentanspruchs 1 eine An­ordnung zu schaffen, welche auf ein besonderes Anpaß-Netzwerk verzichtet.The invention is therefore based on the object of providing an arrangement in an inductively excited ion source according to the preamble of patent claim 1, which dispenses with a special matching network.

Diese Aufgabe wird dadurch gelöst, daß die Länge des Wellenleiters im wesentlichen n ·λ/2 beträgt, wobei λ = c/f ist und n eine ganze Zahl, c eine Konstante und f die Frequenz des Hochfrequenzgenerators be­deuten.This object is achieved in that the length of the waveguide is essentially n · λ / 2, where λ = c / f and n is an integer, c is a constant and f is the frequency of the high-frequency generator.

Der mit der Erfindung erzielte Vorteil besteht insbesondere darin, daß die Leistungsverluste einer induktiv angeregten Ionenquelle erheblich reduziert werden können. Außerdem ist es möglich, das Kühlwasser problemlos auf Erdpotential zu- und abzuführen.The advantage achieved by the invention is, in particular, that the power losses of an inductively excited ion source can be considerably reduced. It is also possible to easily supply and remove the cooling water to earth potential.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:

  • Fig. 1 eine perspektivische Darstellung der äußeren mechanischen Form der erfindungsgemäßen Ionenquelle;
  • Fig. 2 eine Prinzipdarstellung der erfindungsgemäßen elektrischen Schal­tungsanordnung;
  • Fig. 3 eine Schnittdarstellung durch die erfindungsgemäße Ionenquelle mit den zugehörigen elektrischen Anschlüssen;
  • Fig. 4 eine Schnittdarstellung durch eine Variante der erfindungsgemäßen Ionenquelle;
  • Fig. 5 eine besondere Anschaltung einer variablen Kapazität an eine Spule der erfindungsgemäßen Ionenquelle.
An embodiment of the invention is shown in the drawing and will be described in more detail below. Show it:
  • Figure 1 is a perspective view of the outer mechanical shape of the ion source according to the invention.
  • 2 shows a schematic diagram of the electrical circuit arrangement according to the invention;
  • 3 shows a sectional illustration through the ion source according to the invention with the associated electrical connections;
  • 4 shows a sectional illustration through a variant of the ion source according to the invention;
  • 5 shows a special connection of a variable capacitance to a coil of the ion source according to the invention.

In der Fig. 1 ist ein evakuiertes Gefäß 1 dargestellt, das mit einer elek­trisch leitenden Hochfrequenz-Spule 2 umgeben und mit einer oberen kreis­ringförmigen Abschlußplatte 4 abgeschlossen ist. Die Enden 5, 6 der Hoch­frequenzspule 2 sind über entsprechende Durchbrüche in der unteren Ab­schlußplatte 4 auf ein nicht dargestelltes Kühlsystem geführt. Dieses Kühl­system bewirkt, daß durch das Ende 5 der als Hohlrohr ausgebildeten Hochfrequenzspule 2 eine Kühlflüssigkeit eingeführt und durch das Ende 6 dieser Spule 2 wieder herausgeführt wird. Die Hochfrequenzspule 2 be­steht beispielsweise aus Kupferrohr, das hier zwar außerhalb des Gefäßes angeordnet ist, aber auch in dieses integriert oder innerhalb des Gefäßes angeordnet sein kann. Das Ein- und Ausströmen der Kühlflüssigkeit ist hierbei durch die Pfeile 7 und 8 angedeutet. Als Kühl­flüssigkeit wird vorzugsweise Wasser verwendet. Die Hochfrequenzspule 2 hat in dem Ausführungsbeispiel neun Windungen, einen Durchmesser von ca. 120 mm und eine Höhe von ca. 130 mm. Ihre Länge beträgt λ /2, wobei λ auf die Frequenz eines Hochfrequenzgenerators bezogen ist. Unter Spulenlänge wird die Länge des ausgezogenen Spulendrahts ver­standen und nicht etwa die Spulenlänge. Es versteht sich, daß die Hoch­frequenzspule 2 auch andere als die hier angegebenen Abmessungen haben kann. Außerdem muß sie nicht um das Gefäß 1 geschlungen sein, sondern kann sich beispielsweise auch an der Innenwand des Gefäßes 1 befinden oder in die Gefäßwand integriert sein. An der Unterseite des Gefäßes 1 ist ein Stutzen 9 vorgesehen, durch den das zu ionisierende Gas in das Gefäß 1 gelangt. Die elektrische Einkopplung der HF-Leistung erfolgt über ein mit einem Hochfrequenz-Generator verbundenes Kabel 10, das mit einer Schelle 11 an die Spule 2 angeschlossen ist.In Fig. 1, an evacuated vessel 1 is shown, which is surrounded by an electrically conductive high-frequency coil 2 and is closed with an upper annular end plate 4. The ends 5, 6 of the high-frequency coil 2 are guided through corresponding openings in the lower end plate 4 to a cooling system, not shown. This cooling system has the effect that a cooling liquid is introduced through the end 5 of the high-frequency coil 2 designed as a hollow tube and is led out again through the end 6 of this coil 2. The high-frequency coil 2 consists, for example, of copper tube, which here is arranged outside the vessel, but can also be integrated into it or arranged inside the vessel. The inflow and outflow of the Coolant is indicated by the arrows 7 and 8. Water is preferably used as the cooling liquid. In the exemplary embodiment, the high-frequency coil 2 has nine turns, a diameter of approximately 120 mm and a height of approximately 130 mm. Their length is λ / 2, where λ is related to the frequency of a high-frequency generator. The coil length is understood to mean the length of the drawn-out coil wire and not, for example, the coil length. It goes without saying that the high-frequency coil 2 can also have dimensions other than those specified here. In addition, it does not have to be wrapped around the vessel 1, but can also be located, for example, on the inner wall of the vessel 1 or integrated into the vessel wall. On the underside of the vessel 1, a nozzle 9 is provided through which the gas to be ionized enters the vessel 1. The electrical coupling of the HF power takes place via a cable 10 which is connected to a high-frequency generator and which is connected to the coil 2 with a clamp 11.

In der Fig. 2 ist, von den Abschlußplatten 3, 4 abgesehen, im wesentlichen die elektrische Schaltung der erfindungsgemäßen Ionenquelle dargestellt. Sind die Abschlußplatten 3, 4 ihrerseits gut leitend miteinander verbun­den, so können die Spulenenden 5, 6 auch an einer eigenen Platte 3, 4 allein befestigt sein. Man erkennt in der Fig. 2 einen über eine Leitung 22 geerdeten Hochfrequenz-Generator 12, der über das Kabel 10 an die Hochfrequenzspule 2 angeschlossen ist. Der elektrische Anschlußpunkt des Generators 12 ist mit 13 bezeichnet. An einer anderen Stelle der Spule 2 befindet sich ein weiterer elektrischer Anschlußpunkt 14, an den ein Kondensator 15 mit veränderlicher Kapazität angeschlossen ist. Dieser Kondensator kann jedoch auch weggelassen werden, wenn die Resonanz­frequenz des aus der Spule 2 und dem eingeschlossenen Plasma bestehen­den Resonators genau auf die Frequenz des Hochfrequenzgenerators 12 ab­gestimmt ist.2, apart from the end plates 3, 4, essentially the electrical circuit of the ion source according to the invention is shown. If the end plates 3, 4 are in turn connected to one another in a highly conductive manner, the coil ends 5, 6 can also be fastened to their own plate 3, 4 alone. 2 shows a high-frequency generator 12 which is grounded via a line 22 and which is connected to the high-frequency coil 2 via the cable 10. The electrical connection point of the generator 12 is designated 13. At another point in the coil 2 there is another electrical connection point 14 to which a capacitor 15 with variable capacitance is connected. However, this capacitor can also be omitted if the resonance frequency of the resonator consisting of the coil 2 and the enclosed plasma is precisely matched to the frequency of the high-frequency generator 12.

In der Regel ist diese genaue Abstimmung jedoch schwierig durchzu­führen, so daß es einfacher ist, durch Verändern der Kapazität des Kon­densators 15 den Schwingkreis auf Resonanz zu bringen.As a rule, however, this precise tuning is difficult to carry out, so that it is easier to resonate the resonant circuit by changing the capacitance of the capacitor 15.

Der HF-Generator 12, die untere Abschlußplatte 4 und der Kondensator 15 sind über die Leitungen 21, 22, 23 mit Erde bzw. Masse verbunden. Die Erdung erfolgt vorzugsweise über ein kurzes, breites und gut leitendes Kabel, das z. B. aus Silber besteht.The HF generator 12, the lower end plate 4 and the capacitor 15 are connected to earth or ground via the lines 21, 22, 23. Grounding is preferably carried out using a short, wide and well-conducting cable, which, for. B. consists of silver.

Die Spule hat, hochfrequenzmäßig betrachtet, nicht nur eine Induktivität, sondern auch eine inhärente Kapazität. Induktivität und Kapazität bilden zusammen die Resonanz-Frequenz der Spule 2, wobei sich die Induktivität und die Kapazität über den sogenannten Induktionsbelag und den Kapazi­tätsbelag bestimmen. Die Spule 2 ist folglich als ein Wellenleiter aufzu­fassen, auf dem sich Wellen vom Lecher-Typ ausbreiten (vgl. K. Simonyi: Theoretische Elektrotechnik, Berlin 1956, S. 313 bis 363, oder H.-G. Unger: Elektromagnetische Wellen auf Leitungen, Heidelberg, 1980). Die Wende­lung der Spule 2 ist gegenüber ihrer Drahtlänge hierbei als eine unter­geordnete Einflußgröße zu betrachten.In terms of radio frequency, the coil has not only an inductance, but also an inherent capacitance. Inductance and capacitance together form the resonance frequency of the coil 2, the inductance and the capacitance being determined via the so-called induction coating and the capacitance coating. The coil 2 is consequently to be regarded as a waveguide on which waves of the Lecher type propagate (see K. Simonyi: Theoretical Electrical Engineering, Berlin 1956, pp. 313 to 363, or H.-G. Unger: Electromagnetic waves on lines , Heidelberg, 1980). The winding of the coil 2 is to be regarded as a subordinate influencing variable in relation to its wire length.

Auf die Resonanzfrequenz der Hochfrequenzspule 2, die durch die im Ge­fäß 1 befindlichen Ionen beeinflußt werden kann, wird die Ausgangsfre­quenz des HF-Generators 12 gelegt. Somit wird die gesamte verbrauchte Leistung im eigentlichen Resonanz-Kreis und nicht an einer Impedanz-An­passung verbraucht, d. h. es tritt praktisch keine Verlustleistung auf. Unter dem eigentlichen Resonanzkreis wird hierbei die Kombination aus Erregerspule und Plasma verstanden, also die durch das Plasma belastete Erregerspule. Zu diesem eigentlichen Resonanzkreis zählt gegebenenfalls auch noch ein Hochfrequenz-Abschirmgehäuse. Auf die Darstellung eines solchen Abschirmgehäuses wurde bei der Darstellung der Fig. 2 verzichtet, weil das Aussehen dieser Gehäuse sowie ihr Einfluß auf den Gesamt-­Resonanzkreis bekannt ist.The output frequency of the HF generator 12 is placed on the resonance frequency of the high-frequency coil 2, which can be influenced by the ions in the vessel 1. Thus, the total power consumed is consumed in the actual resonance circuit and not in an impedance matching, i. H. there is practically no power loss. The actual resonance circuit is understood here to mean the combination of the excitation coil and plasma, that is to say the excitation coil loaded by the plasma. This actual resonant circuit may also include a high-frequency shielding housing. Such a shielding housing was not shown in the illustration in FIG. 2 because the appearance of these housings and their influence on the overall resonant circuit is known.

Durch die erwähnten Maßnahmen ist eine Leistungsanpassung in dem Sinn, daß die Leistung des Hochfrequenz-Generators 12 optimal auf die Spule 2 gegeben wird, jedoch noch nicht verbunden.Through the measures mentioned, a power adjustment in the sense that the power of the high-frequency generator 12 is optimally given to the coil 2, but not yet connected.

Diese Leistungsanpassung ist jedoch mittels einer geeigneten Wahl des An­schlußpunktes 13 der Leitung 10 an die Spule 2 möglich. Der Anschluß­punkt 13 wird so ausgewählt, daß der Quotient aus Spannung und Strom an dem Punkt 13 gleich dem Wellenwiderstand der Leitung 10 ist. Mißt man diesen Quotienten fortlaufend und vergleicht ihn mit dem bekannten Wel­lenwiderstand, so kann mit Hilfe einer Regelschaltung ein elektrischer An­trieb so gesteuert werden, daß er den Punkt 13 stets in eine Position bringt, in welcher die oben erwähnte Bedingung gilt. Auf diese Weise ist es möglich, die Leistungsanpassung zu automatisieren.However, this power adjustment is possible by means of a suitable choice of the connection point 13 of the line 10 to the coil 2. The connection point 13 is selected so that the quotient of voltage and current at point 13 is equal to the characteristic impedance of line 10. If one continuously measures this quotient and compares it with the known wave resistance, an electric drive can be controlled with the help of a control circuit so that it always brings point 13 into a position in which the above-mentioned condition applies. In this way it is possible to automate the performance adjustment.

Bei der Darstellung der Fig.2 ist der Hochfrequenz-Generator 12 keines­wegs kurzgeschlossen, wie es bei einer niederfrequenzmäßigen Betrachtung den Anschein haben könnte. Vielmehr ist das gerade Stück der Spule 2, das vom Anschlußpunkt 13 bis zur Platte 4 reicht, mit einem Induktivitäts- und einem Kapazitätsbelag behaftet, der einen hochfrequenzmäßigen Kurz­schluß verhindert.In the illustration in FIG. 2, the high-frequency generator 12 is by no means short-circuited, as it might appear from a low-frequency view. Rather, the straight piece of the coil 2, which extends from the connection point 13 to the plate 4, has an inductance and a capacitance coating which prevents a high-frequency short circuit.

Statt die Frequenz des Frequenzgenerators 12 auf die Eigen- oder Reso­nanzfrequenz der Spule 2 zu legen, ist es auch möglich, die Resonanzfre­quenz der Spule 2 an die vorgegebene Frequenz des Hochfrequenz-Genera­tors 12 anzupassen. Hierzu ist der Kondensator 15 vorgesehen, der an die Spule 2 angeschlossen ist. Durch Verstellen dieses Kondensators 15, der an den Symmetriepunkt 14 der Spule 2 angeschlossen ist, wird die Resonanz­frequenz des Systems Spule 2 / Kondensator 15 verändert. Mittels dieser Änderung der Resonanzfrequenz kann der Einfluß der Ionen auf die Spulen-­Resonanzfrequenz augeglichen werden.Instead of placing the frequency of the frequency generator 12 at the natural or resonant frequency of the coil 2, it is also possible to adapt the resonant frequency of the coil 2 to the predetermined frequency of the high-frequency generator 12. For this purpose, the capacitor 15 is provided, which is connected to the coil 2. By adjusting this capacitor 15, which is connected to the point of symmetry 14 of the coil 2, the resonance frequency of the system coil 2 / capacitor 15 is changed. By means of this change in the resonance frequency, the influence of the ions on the coil resonance frequency can be equalized.

Wird die Spule 2 bzw. das System Spule 2 / Kondensator 15 mit einer Wechselspannung beaufschlagt, deren Frequenz gleich der Resonanzfrequenz der Spule 2 bzw. des Systems Spule 2 / Kondensator 15 oder einer Harmo­nischen hiervon ist, so sind die momentanen Ströme und Spannungen auf der Spule 2 wie ganzzahlige Vielfache von halben Wellenlängen verteilt. Dabei kommen auf den Spulenenden 5,6 stets Strombäuche und Spannungs­ knoten zu liegen; d.h. die Spulenenden 5,6 befinden sich auf Erdpotential. Das Kühlwasser kann also problemlos auf Erdpotential zu- und abgeführt werden. Bei Resonanz gibt es auf der Spule immer mindestens zwei Punkte, an denen das Verhältnis von Spannung und Strom gleich dem Wellenwider­stand der Leitung 10 ist. Schließt man die Leitung 10 an einen solchen Punkt 13 an, so wird die Leistung des Hochfrequenzgenerators 12 verlust­frei eingekoppelt. Durch Verschieben dieses Einkoppelpunktes 13 ist es möglich, Veränderungen der Eigenfrequenz der Spule 2, die sich durch ver­schiedene Plasmadichten, d.h. verschiedene Belastungen der Spule 2, erge­ben, auszugleichen.If the coil 2 or the system coil 2 / capacitor 15 is acted upon by an alternating voltage, the frequency of which is equal to the resonance frequency of the coil 2 or the system coil 2 / capacitor 15 or a harmonic thereof, the instantaneous currents and voltages are on the Coil 2 distributed as integer multiples of half the wavelength. Current bellies and voltage always appear on the coil ends 5, 6 knot to lie; ie the coil ends 5,6 are at ground potential. The cooling water can therefore be easily fed in and out to earth potential. When there is resonance, there are always at least two points on the coil at which the ratio of voltage and current is equal to the characteristic impedance of line 10. If the line 10 is connected to such a point 13, the power of the high-frequency generator 12 is coupled in without loss. By shifting this coupling point 13, it is possible to compensate for changes in the natural frequency of the coil 2 which result from different plasma densities, ie different loads on the coil 2.

Durch die erfindungsgemäße Anordnung wird die gesamte auftretende mag­netische Feldenergie in der Spule 2 konzentriert, so daß deren Magnetfeld das Plasma sehr effektiv zusammenhält und komprimiert. Natürlich kann die Spule auch anders, z.B. mäanderförmig, ausgebildet sein, um andere Feldkonfigurationen, z.B. ein "cusp"-Feld oder multipolares Feld zu erzeu­gen, wie es in der Fig.2 der EP-A-0169744 gezeigt ist.Due to the arrangement according to the invention, the entire magnetic field energy occurring is concentrated in the coil 2, so that its magnetic field holds the plasma together very effectively and compresses it. Of course, the coil can also be different, e.g. meandering, designed to accommodate other field configurations, e.g. generate a "cusp" field or multipolar field as shown in Fig. 2 of EP-A-0169744.

In der Fig.3 ist die erfindungsgemäße Anordnung noch einmal im Schnitt dargestellt. Das Gefäß 1, das zylindrisch ausgebildet ist und aus einem chemisch inerten Material besteht, ist von der Spule 2 umgeben und weist an seinem oberen Ende ein Extraktionsgittersystem 16 auf, das mit einem Extraktionsnetzteil 17 verbunden ist. An dem unteren Ende des Gefäßes 1 ist der Einlaßstutzen 9 mit seinem Gaszufuhrkanal 18 vorgesehen. Wird im Entladungsraum 19 des Gefäßes 1 ein Druck zwischen etwa 2 x 10⁻² Pa und 50 Pa eingestellt, so kann über die Anschaltung des Hochfrequenz-­Generators 12 eine Entladung gezündet werden. Die hierbei entstehenden Ionen werden durch das Extraktionsgittersystem 16 abgesaugt, wenn an diesem Gittersystem 16 eine geeignete Spannung des Extraktionsnetzteils 17 anliegt. Das Extraktionsgittersystem 16 liegt - im Gegensatz zu den kreisringförmigen Abschlußplatten 3,4, die über die Leitungen 20,21 geer­det sind bzw. im Gegensatz zum Hochfrequenz-Generator 12, der über die Leitung 22 geerdet ist - nicht an Erdpotential.In Figure 3, the arrangement according to the invention is shown again in section. The vessel 1, which is cylindrical and consists of a chemically inert material, is surrounded by the coil 2 and has an extraction grid system 16 at its upper end, which is connected to an extraction power supply 17. At the lower end of the vessel 1, the inlet connector 9 is provided with its gas supply channel 18. If a pressure between about 2 x 10⁻² Pa and 50 Pa is set in the discharge space 19 of the vessel 1, a discharge can be ignited by connecting the high-frequency generator 12. The ions formed here are sucked off by the extraction grid system 16 when a suitable voltage of the extraction power supply 17 is present at this grid system 16. The extraction grid system 16 is - in contrast to the annular end plates 3, 4 which are grounded via the lines 20, 21 or in contrast to the high-frequency generator 12 which is grounded via the line 22 - not at ground potential.

Obwohl bei der Erfindung Resonanzerscheinungen eine wichtige Rolle spie­ len, unterscheidet sie sich dennoch von anderen Schaltungen für induktiv gekoppeltes Niederdruckplasma, die ebenfalls mit Resonanzen arbeiten, er­heblich. Bei dem oben bereits angegebenen bekannten Resonanzinduktor muß eine Anpassung mittels Kapazitäten und Induktivitäten vorgenommen werden. Aber auch bei einer Speisung der Spule bzw. des Induktors über eine unsymmetrische Leitung, beispielsweise ein Koaxialkabel, muß dieses Kabel symmetriert und an die Induktorimpedanz angepaßt werden. Bei der vorliegenden Erfindung entfallen Anpassungsnetzwerke und Impedanztrans­formationen. Weder ist eineImpedanztransformation mittels HF-Übertrager, noch über eine π - Transformation oder eine T-Transformation erforderlich.Although resonance phenomena played an important role in the invention len, it differs considerably from other circuits for inductively coupled low-pressure plasma, which also work with resonances. In the known resonance inductor already mentioned above, an adaptation by means of capacitors and inductors has to be carried out. But even when the coil or the inductor is fed via an asymmetrical line, for example a coaxial cable, this cable must be balanced and adapted to the inductor impedance. In the present invention, matching networks and impedance transformations are eliminated. Neither an impedance transformation using an RF transmitter, nor a π transformation or a T transformation is required.

In der Fig. 4 ist eine Variante der in der Fig. 3 dargestellten Ionenquelle gezeigt. Bei dieser Ausführungsform ist die Grund-Resonanzfrequenz der Spule 2 von ursprünglich ca. 50 MHz durch Verdoppelung ihrer Länge auf etwa die Hälfte ihres ursprünglichen Wertes auf ca. 25 MHz abgesenkt. Die Verdoppelung der Spulenlänge wird hierbei durch eine zweite Spulen­lage erreicht, die mit 25 bezeichnet ist. Der Wickelsinn der beiden Spulen­lagen 25, 26 kann gegenläufig sein, wodurch besonders vorteilhafte Effekte erzielt werden.FIG. 4 shows a variant of the ion source shown in FIG. 3. In this embodiment, the basic resonance frequency of the coil 2 is reduced from originally approximately 50 MHz by doubling its length to approximately half of its original value to approximately 25 MHz. The doubling of the coil length is achieved here by a second coil layer, which is designated by 25. The winding direction of the two coil layers 25, 26 can be in opposite directions, whereby particularly advantageous effects are achieved.

Die Effizienz der Ionenquelle wird durch einen geringen Abstand von Reso­nanz- und Anregungsfrequenz verbessert. Außerdem nimmt mit der Win­dungszahl der Spule die Induktivität zu, was zu einer Verbesserung der Schwingkreisgüte führt.The efficiency of the ion source is improved by a small distance between the resonance and excitation frequency. In addition, the inductance increases with the number of turns of the coil, which leads to an improvement in the resonant circuit quality.

Mit der doppellagigen Wicklung der Spule 2 kann ein Zünden ohne Druck­stoß erreicht werden, d. h. es ist eine rein elektrische Zündung möglich.With the double-layer winding of the coil 2, ignition without pressure surge can be achieved. H. purely electrical ignition is possible.

Die Fig. 5 zeigt eine Variante der in der Fig. 2 gezeigten Anschaltung eines Kondensators 27 an die Spule. Der Kondensator 27 ist hierbei an zwei Punkten 28, 29 mit der Spule 2 verbunden, während der Oszillator 12 am "50-Ohm-Punkt" 30 der Spule 2 liegt. Durch diese Anschaltung wird die HF-Ionenquelle auf niedrigem Spannungsniveau abgestimmt. Der Einfluß des Kondensators 27 auf die Abstimmung ist hierbei zwar ge­ringer, und es tritt auch eine gewisse Verzerrung der Strom- und Spannungsverteilung auf, doch kann die Kondensatorleitung 31 wegen der niedrigeren Spannung länger ausgeführt werden. Der hiermit erzielte Vor­teil besteht insbesondere darin, daß der Kondensator nicht mehr direkt auf der Ionenquelle sitzen muß, sondern in einem gewissen Abstand von dieser angeordnet werden kann, ohne daß hierbei wesentliche Leistungs­verluste durch an hoher Spannung liegende Streukapazitäten auftreten.FIG. 5 shows a variant of the connection of a capacitor 27 to the coil shown in FIG. 2. The capacitor 27 is connected to the coil 2 at two points 28, 29, while the oscillator 12 is at the "50-ohm point" 30 of the coil 2. This connection enables the HF ion source to be tuned to a low voltage level. The influence of the capacitor 27 on the tuning is less, and there is also a certain distortion of the current and Voltage distribution on, but the capacitor line 31 can be made longer because of the lower voltage. The advantage achieved in this way is, in particular, that the capacitor no longer has to sit directly on the ion source, but can be arranged at a certain distance therefrom without significant loss of power occurring due to stray capacitances at high voltage.

Claims (17)

1. Induktiv angeregte Ionenquelle mit einem Gefäß für die Aufnahme von zu ionisierenden Stoffen, insbesondere von Gasen, wobei die zu ionisieren­den Stoffe von einem Wellenleiter umgeben sind, der mit einem Hoch­frequenzgenerator in Verbindung steht, und wobei die beiden Enden des Wellenleiters auf gleichem Potential liegen, dadurch gekennzeichnet, daß die Länge des Wellenleiters (2) im wesentlichen n ·λ /2 beträgt, wobei λ = c/f ist und n eine ganze Zahl, c eine Konstante und f die Frequenz des Hochfrequenzgenerators (12) bedeuten.1. Inductively excited ion source with a vessel for receiving substances to be ionized, in particular gases, the substances to be ionized being surrounded by a waveguide which is connected to a high-frequency generator, and the two ends of the waveguide being at the same potential , characterized in that the length of the waveguide (2) is essentially n · λ / 2, where λ = c / f and n is an integer, c is a constant and f is the frequency of the high-frequency generator (12). 2. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeichnet, daß eine doppellagige Wicklung (25, 26) der Spule (2) vorgesehen ist, so daß die Spulenlänge verdoppelt wird.2. Inductively excited ion source according to claim 1, characterized in that a double-layer winding (25, 26) of the coil (2) is provided so that the coil length is doubled. 3. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeichnet, daß das Potential, auf dem die Enden (5, 6) des Wellenleiters (2) und der eine Anschluß (22) des Hochfrequenzgenerators (2) liegen, Erdpotential ist.3. Inductively excited ion source according to claim 1, characterized in that the potential at which the ends (5, 6) of the waveguide (2) and the one connection (22) of the high-frequency generator (2) are ground potential. 4. Induktiv angeregte Ionenquelle nach Anspruch 2, dadurch gekennzeichnet, daß die eine Wicklungslage (25) gegensinnig zur anderen Wicklungslage ge­wickelt ist.4. Inductively excited ion source according to claim 2, characterized in that the one winding layer (25) is wound in opposite directions to the other winding layer. 5. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die Frequenz des Hochfrequenzgenerators (12) auf die Eigenfrequenz des aus dem Wellenleiter (2) und dem zu ionisierenden Stoff bestehenden Systems abgestimmt ist.5. Inductively excited ion source according to claim 1, characterized in that the frequency of the high-frequency generator (12) is tuned to the natural frequency of the waveguide (2) and the system to be ionized. 6. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die Eigenfrequenz des aus Wellenleiter (2) und zu ionisierendem Stoff bestehenden Systems auf die Frequenz des Hochfrequenzgenerators (12) abgestimmt ist.6. Inductively excited ion source according to claim 1, characterized in that the natural frequency of the waveguide (2) and material to be ionized system is tuned to the frequency of the high frequency generator (12). 7. Induktiv angeregte Ionenquelle nach Anspruch 6, dadurch gekennzeichnet, daß die Abstimmung der Eigenfrequenz des aus dem Wellenleiter (2) und dem zu ionisierenden Stoff bestehenden Systems mit Hilfe eines variablen Kondensators (15) erfolgt.7. Inductively excited ion source according to claim 6, characterized in that the tuning of the natural frequency of the waveguide (2) and the system to be ionized is carried out with the aid of a variable capacitor (15). 8. Induktiv angeregte Ionenquelle nach Anspruch 7, dadurch gekennzeichnet, daß der Anschluß des Kondensators (15) im elektrischen Symmetriepunkt (14) des Wellenleiters (2) erfolgt.8. Inductively excited ion source according to claim 7, characterized in that the connection of the capacitor (15) in the electrical point of symmetry (14) of the waveguide (2). 9. Induktiv angeregte Ionenquelle nach Anspruch 7, dadurch gekennzeichnet, daß der eine Anschluß des Kondensators (15) an der Spule (2) und der andere Anschluß dieses Kondensators (15) an Erde liegt.9. Inductively excited ion source according to claim 7, characterized in that one connection of the capacitor (15) to the coil (2) and the other connection of this capacitor (15) is connected to earth. 10. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß die Frequenz des Hochfrequenzgenerators (12) mit der Frequenz einer Harmonischen der Spule (2) des aus Wellenleiter (2) und zu ionisie­rendem Gas bestehenden Systems übereinstimmt.10. Inductively excited ion source according to claim 1, characterized in that the frequency of the high-frequency generator (12) corresponds to the frequency of a harmonic of the coil (2) of the waveguide (2) and system to be ionized gas. 11. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß der Wellenleiter eine als Hohlrohr ausgebildete Spule (2) ist, durch die ein Kühlmittel strömt.11. Inductively excited ion source according to claim 1, characterized in that the waveguide is a coil formed as a hollow tube (2) through which a coolant flows. 12. Induktiv angeregte Ionenquelle nach Anspruch 11, dadurch gekennzeich­net, daß das Kühlmittel Wasser ist.12. Inductively excited ion source according to claim 11, characterized in that the coolant is water. 13. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß der Punkt (13) für die Einspeisung der Hochfrequenzleistung des Hochfrequenzgenerators (12) in den Wellenleiter (2) so gewählt wird, daß an ihm der Quotient aus Spannung und Stromstärke im jeweiligen Betriebs­zustand der Ionenquelle gleich dem Wellenwiderstand der Generatorleitung (10) ist.13. Inductively excited ion source according to claim 1, characterized in that the point (13) for feeding the high-frequency power of the high-frequency generator (12) in the waveguide (2) is selected so that the quotient of voltage and current in the respective operating state the ion source is equal to the characteristic impedance of the generator line (10). 14. Induktiv angeregte Ionenquelle nach Anspruch 13, dadurch gekennzeich­net, daß die Einstellung des Punktes (13) für die Einspeisung der Hoch­frequenzleistung automatisch erfolgt.14. Inductively excited ion source according to claim 13, characterized in that the setting of the point (13) for feeding the high-frequency power is carried out automatically. 15. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß das Gefäß (1) die Form eines Hohlzylinders aufweist und mit einer oberen und einer unteren Abschlußplatte (3 bzw. 4) abgeschlossen ist, wobei die obere Abschlußplatte (3) mit einem Extraktionsgitter (16) und die untere Abschlußplatte (4) mit einem Öffnungsstutzen (9) für die Gaszufuhr versehen ist und wobei die Enden (5, 6) des Wellenleiters (2) über eine Abschlußplatte (3 bzw. 4) geerdet sind.15. Inductively excited ion source according to claim 1, characterized in that the vessel (1) has the shape of a hollow cylinder and is closed with an upper and a lower end plate (3 and 4), the upper end plate (3) with an extraction grid (16) and the lower end plate (4) is provided with an opening connection (9) for the gas supply and the ends (5, 6) of the waveguide (2) are grounded via an end plate (3 or 4). 16. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß der Wellenleiter (2) zusätzlich von einem Gleichstrom durch­flossen ist, der ein die Ionen führendes Magnetfeld erzeugt.16. Inductively excited ion source according to claim 1, characterized in that the waveguide (2) is additionally flowed through by a direct current which generates a magnetic field carrying the ions. 17. Induktiv angeregte Ionenquelle nach Anspruch 1, dadurch gekennzeich­net, daß ein variabler Kondensator (27) vorgesehen ist, der mit seinem einen Anschluß auf Erdpotential liegt und mit seinem anderen Anschluß an zwei verschiedenen Punkten (28, 29) der Spule (2) angeschlossen ist.17. Inductively excited ion source according to claim 1, characterized in that a variable capacitor (27) is provided which is connected to earth potential with its one connection and connected to the coil (2) with its other connection at two different points (28, 29) is.
EP87110646A 1986-09-24 1987-07-23 Inductively excited ion source Expired - Lifetime EP0261338B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3632340A DE3632340C2 (en) 1986-09-24 1986-09-24 Inductively excited ion source
DE3632340 1986-09-24

Publications (3)

Publication Number Publication Date
EP0261338A2 true EP0261338A2 (en) 1988-03-30
EP0261338A3 EP0261338A3 (en) 1989-07-26
EP0261338B1 EP0261338B1 (en) 1994-03-30

Family

ID=6310179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110646A Expired - Lifetime EP0261338B1 (en) 1986-09-24 1987-07-23 Inductively excited ion source

Country Status (4)

Country Link
US (1) US4849675A (en)
EP (1) EP0261338B1 (en)
JP (1) JPS63184233A (en)
DE (2) DE3632340C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462377A2 (en) * 1990-06-21 1991-12-27 Leybold Aktiengesellschaft Ion source
EP0468742A2 (en) * 1990-07-24 1992-01-29 Varian Australia Pty. Ltd. Inductively coupled plasma spectroscopy
WO1993014513A1 (en) * 1992-01-14 1993-07-22 Honeywell, Inc. Radio-frequency ion source
EP1662848A2 (en) * 2004-11-29 2006-05-31 Samsung Electronics Co., Ltd. Electromagnetic induced accelerator based on coil-turn modulation
EP1812959A2 (en) * 2004-10-15 2007-08-01 Advanced Energy Industries, Inc. Thermal management of dielectric components in a plasma discharge device
EP3145275A1 (en) * 2015-09-18 2017-03-22 Technische Hochschule Mittelhessen Induction heating coil

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3708716C2 (en) * 1987-03-18 1993-11-04 Hans Prof Dr Rer Nat Oechsner HIGH FREQUENCY ION SOURCE
US5556501A (en) * 1989-10-03 1996-09-17 Applied Materials, Inc. Silicon scavenger in an inductively coupled RF plasma reactor
US6068784A (en) * 1989-10-03 2000-05-30 Applied Materials, Inc. Process used in an RF coupled plasma reactor
DE3942560C2 (en) * 1989-12-22 1996-05-02 Dressler Hochfrequenztechnik G High frequency generator for a plasma generating consumer
US5383019A (en) * 1990-03-23 1995-01-17 Fisons Plc Inductively coupled plasma spectrometers and radio-frequency power supply therefor
US5017751A (en) * 1990-06-21 1991-05-21 Gte Laboratories Incorporated Inductively-coupled RF plasma torch
US5707486A (en) * 1990-07-31 1998-01-13 Applied Materials, Inc. Plasma reactor using UHF/VHF and RF triode source, and process
US20020004309A1 (en) * 1990-07-31 2002-01-10 Kenneth S. Collins Processes used in an inductively coupled plasma reactor
US6545420B1 (en) * 1990-07-31 2003-04-08 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6251792B1 (en) 1990-07-31 2001-06-26 Applied Materials, Inc. Plasma etch processes
US6036877A (en) 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6518195B1 (en) 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6165311A (en) 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6077384A (en) 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6063233A (en) 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US5207760A (en) * 1991-07-23 1993-05-04 Trw Inc. Multi-megawatt pulsed inductive thruster
US5288969A (en) * 1991-08-16 1994-02-22 Regents Of The University Of California Electrodeless plasma torch apparatus and methods for the dissociation of hazardous waste
US5308461A (en) * 1992-01-14 1994-05-03 Honeywell Inc. Method to deposit multilayer films
AU5017293A (en) * 1992-09-01 1994-03-29 University Of North Carolina At Chapel Hill, The High pressure magnetically assisted inductively coupled plasma
DE4241927C2 (en) * 1992-12-11 1994-09-22 Max Planck Gesellschaft Self-supporting, insulated electrode arrangement suitable for arrangement in a vacuum vessel, in particular antenna coil for a high-frequency plasma generator
DE4242894A1 (en) * 1992-12-18 1994-06-23 Leybold Ag Multiple HF line to cathode feeding device
CA2116821C (en) * 1993-03-05 2003-12-23 Stephen Esler Anderson Improvements in plasma mass spectrometry
US6238533B1 (en) * 1995-08-07 2001-05-29 Applied Materials, Inc. Integrated PVD system for aluminum hole filling using ionized metal adhesion layer
US5962923A (en) 1995-08-07 1999-10-05 Applied Materials, Inc. Semiconductor device having a low thermal budget metal filling and planarization of contacts, vias and trenches
TW279240B (en) 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
EP0774772A1 (en) * 1995-11-17 1997-05-21 Applied Materials, Inc. Methods for physically etching silicon electrically conducting surfaces
US5977715A (en) * 1995-12-14 1999-11-02 The Boeing Company Handheld atmospheric pressure glow discharge plasma source
JP3186066B2 (en) * 1996-01-23 2001-07-11 フラウンホーファー ゲゼルシャフト ツア フォルデルンク デア アンゲヴァンテン フォルシュンク エー ファウ Ion source for wide range ion implantation
DE19618734C2 (en) * 1996-01-23 1999-08-26 Fraunhofer Ges Forschung Ion source for an ion beam system
US5877471A (en) * 1997-06-11 1999-03-02 The Regents Of The University Of California Plasma torch having a cooled shield assembly
US5869832A (en) * 1997-10-14 1999-02-09 University Of Washington Device and method for forming ions
US6107626A (en) * 1997-10-14 2000-08-22 The University Of Washington Device and method for forming ions
JP4947834B2 (en) * 1997-11-26 2012-06-06 アプライド マテリアルズ インコーポレイテッド Damage-free coating engraving deposition method
US20050272254A1 (en) * 1997-11-26 2005-12-08 Applied Materials, Inc. Method of depositing low resistivity barrier layers for copper interconnects
US7253109B2 (en) * 1997-11-26 2007-08-07 Applied Materials, Inc. Method of depositing a tantalum nitride/tantalum diffusion barrier layer system
US6284110B1 (en) 1999-04-14 2001-09-04 Tokyo Electron Limited Method and apparatus for radio frequency isolation of liquid heat transfer medium supply and discharge lines
US6239553B1 (en) 1999-04-22 2001-05-29 Applied Materials, Inc. RF plasma source for material processing
DE10008484C2 (en) * 2000-02-24 2003-07-17 Ccr Gmbh Beschichtungstechnolo Coolable high-frequency air coil
US6441555B1 (en) 2000-03-31 2002-08-27 Lam Research Corporation Plasma excitation coil
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma
US6409933B1 (en) 2000-07-06 2002-06-25 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6462481B1 (en) 2000-07-06 2002-10-08 Applied Materials Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6694915B1 (en) 2000-07-06 2004-02-24 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US6685798B1 (en) * 2000-07-06 2004-02-03 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US6414648B1 (en) 2000-07-06 2002-07-02 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6304036B1 (en) 2000-08-08 2001-10-16 Archimedes Technology Group, Inc. System and method for initiating plasma production
DE10058326C1 (en) * 2000-11-24 2002-06-13 Astrium Gmbh Inductively coupled high-frequency electron source with reduced power requirements due to electrostatic confinement of electrons
JP2002210330A (en) * 2001-01-19 2002-07-30 Pearl Kogyo Kk Waste gas treatment apparatus for semiconductor processing
US6855225B1 (en) * 2002-06-25 2005-02-15 Novellus Systems, Inc. Single-tube interlaced inductively coupling plasma source
DE10231738B4 (en) * 2002-07-13 2005-03-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. An induction plasma torch apparatus and method for electrically controlling an induction plasma torch apparatus
DE10231739B4 (en) * 2002-07-13 2004-10-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Induction plasma torch device
US6876155B2 (en) * 2002-12-31 2005-04-05 Lam Research Corporation Plasma processor apparatus and method, and antenna
US7064322B2 (en) * 2004-10-01 2006-06-20 Agilent Technologies, Inc. Mass spectrometer multipole device
KR100599092B1 (en) * 2004-11-29 2006-07-12 삼성전자주식회사 Electro-magnatic accelerator with driving frequency modulation
US9137884B2 (en) * 2006-11-29 2015-09-15 Lam Research Corporation Apparatus and method for plasma processing
JP4955027B2 (en) * 2009-04-02 2012-06-20 クリーン・テクノロジー株式会社 Control method of plasma by magnetic field in exhaust gas treatment device
US8884178B2 (en) * 2010-10-20 2014-11-11 Lam Research Corporation Methods and apparatus for igniting and sustaining plasma
WO2012151639A1 (en) * 2011-05-12 2012-11-15 Roderick William Boswell Plasma micro-thruster
KR102171725B1 (en) * 2013-06-17 2020-10-29 어플라이드 머티어리얼스, 인코포레이티드 Enhanced plasma source for a plasma reactor
JP6476020B2 (en) * 2015-03-10 2019-02-27 株式会社日立ハイテクサイエンス Inductively coupled plasma generator and inductively coupled plasma analyzer
RU2585340C1 (en) * 2015-06-03 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" Gas-discharge unit of high-frequency ion engine
EP3711079B1 (en) * 2017-11-17 2023-07-05 Evatec AG Rf power delivery to vacuum plasma processing
RU2749668C1 (en) * 2020-12-22 2021-06-16 Общество с ограниченной ответственностью «ПЛАЗТРЕК» (ООО «ПЛАЗТРЕК») Ion source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084281A (en) * 1956-11-30 1963-04-02 Carroll B Mills Ion source
DE2112888A1 (en) * 1971-02-23 1972-09-07 Bbc Brown Boveri & Cie High frequency induction plasma burner - with integral cooling
DE2245753A1 (en) * 1971-10-05 1973-04-12 Lfe Corp DEVICE FOR CARRYING OUT A REACTION BETWEEN A GAS AND A MATERIAL IN AN ELECTROMAGNETIC FIELD
US4362632A (en) * 1974-08-02 1982-12-07 Lfe Corporation Gas discharge apparatus
EP0169744A2 (en) * 1984-07-26 1986-01-29 United Kingdom Atomic Energy Authority Ion source
EP0215618A2 (en) * 1985-09-17 1987-03-25 United Kingdom Atomic Energy Authority Ion sources

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4110320Y1 (en) * 1964-01-20 1966-05-16
DE2544275A1 (en) * 1975-10-03 1977-04-14 Bbc Brown Boveri & Cie Liq. cooled induction choke coil - has hollow conductor with galvanic end connection, and concentric inner conductor
JPH0650110B2 (en) * 1985-09-13 1994-06-29 株式会社東芝 RF ion source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084281A (en) * 1956-11-30 1963-04-02 Carroll B Mills Ion source
DE2112888A1 (en) * 1971-02-23 1972-09-07 Bbc Brown Boveri & Cie High frequency induction plasma burner - with integral cooling
DE2245753A1 (en) * 1971-10-05 1973-04-12 Lfe Corp DEVICE FOR CARRYING OUT A REACTION BETWEEN A GAS AND A MATERIAL IN AN ELECTROMAGNETIC FIELD
US4362632A (en) * 1974-08-02 1982-12-07 Lfe Corporation Gas discharge apparatus
EP0169744A2 (en) * 1984-07-26 1986-01-29 United Kingdom Atomic Energy Authority Ion source
EP0215618A2 (en) * 1985-09-17 1987-03-25 United Kingdom Atomic Energy Authority Ion sources

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ernst, Wörterbuch der industriellen Technik, Band II, Englisch-Deutsch, Oscar Brandstetter Verlag, Wiesbaden, 5. Auflage, 1985, Seiten 1253-1254. *
Fred E. GARDIOL, "Introduction to MICROWAVES", Abschnitte 3.1 bis 3.3 betreffend "Resonant Cavities", 1984, ARTECH HOUSE, INC., 610 Washington Street, Dedham, MA02026, Seiten 109-129. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462377A2 (en) * 1990-06-21 1991-12-27 Leybold Aktiengesellschaft Ion source
EP0462377A3 (en) * 1990-06-21 1992-05-13 Leybold Aktiengesellschaft Ion source
EP0468742A2 (en) * 1990-07-24 1992-01-29 Varian Australia Pty. Ltd. Inductively coupled plasma spectroscopy
EP0468742A3 (en) * 1990-07-24 1992-05-27 Varian Australia Pty. Ltd. Inductively coupled plasma spectroscopy
US5194731A (en) * 1990-07-24 1993-03-16 Varian Associates, Inc. Inductively coupled plasma spectroscopy
WO1993014513A1 (en) * 1992-01-14 1993-07-22 Honeywell, Inc. Radio-frequency ion source
EP1812959A2 (en) * 2004-10-15 2007-08-01 Advanced Energy Industries, Inc. Thermal management of dielectric components in a plasma discharge device
EP1812959A4 (en) * 2004-10-15 2010-12-29 Advanced Energy Ind Inc Thermal management of dielectric components in a plasma discharge device
EP1662848A2 (en) * 2004-11-29 2006-05-31 Samsung Electronics Co., Ltd. Electromagnetic induced accelerator based on coil-turn modulation
EP1662848A3 (en) * 2004-11-29 2010-01-20 Samsung Electronics Co., Ltd. Electromagnetic induced accelerator based on coil-turn modulation
EP3145275A1 (en) * 2015-09-18 2017-03-22 Technische Hochschule Mittelhessen Induction heating coil

Also Published As

Publication number Publication date
JPS63184233A (en) 1988-07-29
EP0261338A3 (en) 1989-07-26
EP0261338B1 (en) 1994-03-30
US4849675A (en) 1989-07-18
DE3789478D1 (en) 1994-05-05
DE3632340A1 (en) 1988-03-31
DE3632340C2 (en) 1998-01-15

Similar Documents

Publication Publication Date Title
EP0261338B1 (en) Inductively excited ion source
DE3915477C2 (en) Device for generating a plasma with microwaves
DE3421530C2 (en)
EP1287548B1 (en) Plasma etching equipment
DE3638880A1 (en) METHOD AND DEVICE FOR PRODUCING AN HF-INDUCED PLASMA PLASMA
EP2849204B1 (en) Plasma generating apparatus
DE4319717A1 (en) Device for generating planar low pressure plasma using a coil with its axis parallel to the surface of a coupling window
EP2020672B1 (en) High frequency generator for ion and electron sources
EP0434932A2 (en) System for generating plasma
EP2058909B1 (en) Resonant assembly
DE7228091U (en) ION SOURCE WITH HIGH FREQUENCY CAVITY RESONATOR
EP1290926B1 (en) High frequency plasma source
EP0462377B1 (en) Ion source
EP1203396B1 (en) Method for etching a substrate using an inductively coupled plasma
DE1541926A1 (en) Microwave tubes with crossed electric and magnetic fields
DE69636966T2 (en) Radio-frequency particle accelerator
EP1421832B1 (en) Plasma burner with microwave stimulation
DE4337119C2 (en) VHF plasma source
DE2939167A1 (en) DEVICE AND METHOD FOR DELIVERING POWER TO A LOAD FORMED BY THE DISCHARGE PLASMA OF A SPRAYING DEVICE
DE10008482A1 (en) High frequency plasma source with support for field coil, gas distribution and plasma jet extraction, has additional high frequency matching network
DE3842756A1 (en) Radio-frequency ion beam source
AT504487A4 (en) Device for the production of plasma or radicals using microwaves
DE4404077C2 (en) Arrangement and method for plasma-assisted machining of workpieces
DE10231738B4 (en) An induction plasma torch apparatus and method for electrically controlling an induction plasma torch apparatus
AT148920B (en) Arrangement for controlling the gas or vapor discharge in an electrical discharge apparatus, in particular in a converter, with a blocking electrode.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891128

17Q First examination report despatched

Effective date: 19910809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940330

REF Corresponds to:

Ref document number: 3789478

Country of ref document: DE

Date of ref document: 19940505

ITF It: translation for a ep patent filed

Owner name: STUDIO ING. ALFREDO RAIMONDI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940526

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970623

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 11

Ref country code: CH

Payment date: 19970630

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050723