EP0270920A2 - Method and apparatus to generate emission current signals in an alternating current distribution network - Google Patents

Method and apparatus to generate emission current signals in an alternating current distribution network Download PDF

Info

Publication number
EP0270920A2
EP0270920A2 EP87117358A EP87117358A EP0270920A2 EP 0270920 A2 EP0270920 A2 EP 0270920A2 EP 87117358 A EP87117358 A EP 87117358A EP 87117358 A EP87117358 A EP 87117358A EP 0270920 A2 EP0270920 A2 EP 0270920A2
Authority
EP
European Patent Office
Prior art keywords
transmitter
current
capacitor
switches
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117358A
Other languages
German (de)
French (fr)
Other versions
EP0270920B1 (en
EP0270920A3 (en
Inventor
Bernhard Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zellweger Uster AG
Original Assignee
Zellweger Uster AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4284364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0270920(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zellweger Uster AG filed Critical Zellweger Uster AG
Priority to AT87117358T priority Critical patent/ATE91574T1/en
Publication of EP0270920A2 publication Critical patent/EP0270920A2/en
Publication of EP0270920A3 publication Critical patent/EP0270920A3/en
Application granted granted Critical
Publication of EP0270920B1 publication Critical patent/EP0270920B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/0001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Definitions

  • the invention relates to a method for generating transmission current signals in an AC distribution network by means of a transmitter connected to the network and having a controlled switch, wherein a series of current pulses forming the transmission signal is generated by actuating the switch, and the times of their generation and / or their duration can be selected such that the resulting transmission signal corresponds at least approximately to a desired theoretical signal.
  • a method of this type which is described in European Patent Application No. 85 108 615.7 (publication number 0 175 863), has the advantage that the frequency-selective coupling circuits required in other known methods are eliminated and are replaced by an essentially aperiodic network. This makes it possible to use the same transmitter for different transmission frequencies and to introduce redundancy into the transmission channel by placing the signals on different frequencies. This considerably increases the security of the transmission.
  • the said network can basically consist of both reactive and ohmic components.
  • no choke coil may lie directly in series with the switch if the latter is not dimensioned for a very high recurring voltage.
  • no capacitor may be connected directly to the switch, that is, connected to the mains voltage or to another capacitor if the switch is not dimensioned for very high peak currents, which would, however, lead to relatively high additional costs.
  • the aim of the invention is to improve and modify the aforementioned method in such a way that essentially only loss-free elements can be used for the transmitter.
  • This object is achieved according to the invention in that the transmitter contains at least two energy stores and at least two switches for controlling the energy exchange between them, and that the energy stores and the switches are connected to one another in such a way that the exchange current flows over the network and thereby generates the current pulses mentioned will.
  • the invention further relates to a transmitter for carrying out said method with a control logic supplying the control signals for said switches.
  • the transmitter according to the invention is characterized by a storage choke and by a capacitor connected in series and containing the second energy store.
  • the transmitter shown in the figures is used to generate current pulses, and a sequence of these current pulses should match a theoretical signal as closely as possible. This can be achieved by a suitable choice of the time of generation of the current pulses and / or of their duration, namely by the time average of the signal formed from the current pulses (determined over an interval which is a multiple the duration of an individual pulse is) can be brought practically into agreement with the mean value of the desired theoretical signal.
  • FIG. 1 shows a basic circuit diagram of a first exemplary embodiment of such a switched capacitor GC, which is constructed in the manner of a bridge circuit and consists of four branches.
  • the two nodes 1 and 2 are each connected via a line 3 or 4 to the network terminals 5 and 6, between which the network voltage UN lies.
  • Line 3 contains a storage choke SD (choke voltage UL).
  • the two other nodes 7 and 8 of the bridge circuit are connected to one another via a branch 9 having a capacitor C.
  • Each of the four branches of the bridge circuit contains a parallel connection of a controlled switch S1, S2, S3, S4 and a diode D1, D2, D3, D4.
  • This capacitor voltage UC can be achieved in the following way: With open switches S1 to S4 (or in other words, with blocked valves), the switched capacitor GC represents a full-wave bridge rectifier, which charges the capacitor C to the voltage UN (max). The arrangement shown now enables the capacitor C to be further charged to a higher voltage value by clocking the switches S1 to S4 in such a way that a 50 Hz active power is drawn from the network. However, since switched capacitor GC does not contain any lossy elements, this increasing energy must cause capacitor C to be charged further.
  • the energy in the capacitor C thus increases monotonously as long as there is a line frequency component in the input current I which is in phase with the line voltage.
  • FIG. 2 shows a block diagram of a transmitter according to the invention, which, in addition to the switched capacitor GC and the storage choke SD, has a stage SE for generating the setpoint, a control logic SL, and a setpoint / actual value comparator SI.
  • the setpoint value generation SE which, in addition to the mains voltage UN, the capacitor voltage UC and other control parameters, such as the signal current I *, are supplied, generates the desired transmission signal Is as an analog signal at one input of the setpoint / actual value comparator SI, at the other Input is the image of the transmission current Ie.
  • the desired transmission signal Is can be, for example, a purely sinusoidal signal.
  • the control logic SL now simulates this setpoint by suitably switching the switches (valves) S1 to S4 of the switched capacitor GC by regulating the difference Is-Ie as completely as possible to zero, which is done according to known methods of power electronics, such as time-discrete two-point or Three-point control takes place.
  • Whether the charge on the capacitor C has to be increased is determined, for example, once per network period by querying the capacitor voltage UC and, depending on the result, charging current is specified or not. Any excessive charging of the capacitor can be reduced by reversing the sign of the charging current.
  • Table 1 gives an overview of the permissible switching states of the switches and diodes S1 to S4 or D1 to D4 of the switched capacitor GC (FIG. 1) of the transmitter and the behavior of the input current I, the capacitor current IC, the capacitor voltage UC and the Choke voltage UL.
  • a switched capacitor GC * which consists of an anti-parallel connection of two branches, each with a controlled switch (valve) S1, S2 and a capacitor C1 or C2 in series.
  • An appropriate flow of switches S1 and S2 results in an energy flow between the network and the two capacitors C1, C2, and vice versa.
  • Table 2 gives an overview of the choke voltage UL resulting from the various switch positions of switches S1, S2 depending on input current I and line voltage UN, as well as the behavior of capacitor voltages UC1 and UC2.
  • the symbols used correspond to those in Table 1.
  • capacitor voltages UC1 and UC2 are greater than UN (max) and UN is greater than zero, and for example S2 is ignited for a period of time T1, then the LC resonant circuit is triggered and a current flows from a value I1 approximately linearly increases a value I2.
  • the following applies to the current change: dI / dt (UN + UC2) / L.
  • the storage choke SD ensures a further circulation of the current, C2 discharges and C1 charges because D1 is now conducting.
  • the energy flow taking place via the network between the storage choke SD and the capacitors C1 and C2 and vice versa can be controlled by the length of the current pulses, that is to say by the length of the time periods T1 and T2. If cases b and c are preferred, i.e. longer pulse times are selected for these cases than during a and d, the voltage at C1 and C2 increases. If too high a voltage arises at the capacitors C1 and C2, this can be reduced by giving preference to cases a and d over b and c.
  • the broadcast of Information referred to as telegrams can basically be of the same content, but with different frequencies, either successively or simultaneously.
  • the setpoint generation SE (FIG. 2) is designed such that it generates a purely sinusoidal signal which is modulated, for example, in amplitude, frequency or phase.
  • the setpoint value generation SE is carried out in such a way that it generates the sum of the signals of the different telegrams, the transmitter approximating this setpoint value by means of a series of current pulses. Since the peak value of the transmission current is higher in this case than in the first, the elements of the transmitter must be dimensioned accordingly.
  • the storage choke SD shown in the figures is preferably designed as a coil with an iron core and an air gap when the transmitter is installed in a low-voltage network.
  • the primary winding of this transformer would come to lie between the terminals 5 and 6 and the secondary winding between the terminals 1 and 2.
  • the desired transmission signal Is is sinusoidal and the transmission current Ie is composed of individual current pulses In.
  • a single current pulse corresponds to the hatched area In.
  • the desired transmission signal Is is sampled periodically and it is determined for each sample whether the current value of the respective current pulse In is greater or less than the corresponding discrete value of Is. Based on the result of this comparison and taking into account whether the respective current pulse In If the next current pulse rises or falls, the switches S1 to S4 or S1, S2 are selected accordingly in accordance with Tables 1 and 2.
  • a short circuit is sufficient to achieve the required steepness of the current change in the storage inductor SD, which can be achieved in the switched capacitor GC of FIG. 1 by simultaneous ignition of the switches S1 and S3 or S2 and S4, in each case a short circuit via the storage choke SD. If this short circuit is interrupted, the energy stored in the storage inductor SD goes via the freewheeling diodes D1 to D4 into the capacitor C or into the capacitors C1, C2.
  • FIG. 6 shows a variant of the switched capacitor GC * shown in FIG. 3, in which, as shown, a capacitor CS is arranged between the storage inductor SD and the switches S1, S2.
  • This modification which can of course also be done with the switched capacitor GC of FIG. 1, can be used to achieve a reduction in the switch voltage by pulling the switches S1, S2 by means of a suitable keying, a 50 Hz reactive current can be drawn from the capacitor CS such a drop in voltage causes only a reduced voltage to develop at the switches.
  • the voltage at the capacitors C1 and C2 can be controlled by setting a corresponding 50 Hz active current component.
  • the voltage at the switches S1, S2 is composed of the capacitor voltages UC1, UC2, the mains voltage UN, and the 50 Hz voltage drop that occurs at the series connection of the storage choke SD and the capacitor CS. If the ignition and extinction torques of switches S1, S2 are set so that a 50 Hz reactive current circulates, the capacitor voltages UC1 and UC2 will not change on average, as can be determined from Table 2. This 50 Hz reactive current generates in the series LC circuit of storage choke SD and capacitor CS a 50 Hz voltage drop, so that only a small remainder of the 50 Hz voltage of the network is produced at switches S1, S2.
  • the switched capacitor GC or GC * from FIG. 1 or FIG. 3 can be operated with switches S1 to S4 or S1, S2 which do not have the full voltage UN + UC or UN + UC1, UC2 need to be dimensioned. This can be particularly advantageous for those transmitters that are connected to the medium voltage. However, precautions must then be taken so that non-transient processes in some way destroy the switches.
  • transmitters of the type described are used in particular for the feedback of the counter status of, for example, electricity meters or the execution of commands from ripple control receivers in a control center.
  • Transmitters of the type described in Swiss Patent Application No. 03 923 / 86-0 are used as ripple control transmitters for the transmission of ripple control telegrams from the head office to the ripple control receivers distributed over the network.
  • the transmitter described can now be used, as described, for the information transmission in the direction of the decentralized ripple control receiver center and, on the other hand, opens up the interesting possibility of using it as a ripple control transmitter for information transmission in the direction of the center - decentralized receiver.
  • This would result in Known ripple control transmitters have the advantage that the control frequency is essentially independent and that no direct current circuit would be required.
  • much larger valves would be required because the product peak current times recurring voltage would be larger.
  • the transmitter would be three-phase, that is to say three-phase single-phase.

Abstract

A transmitter with controlled switches for use in a process for the generation of transmission current signals in an alternating current distribution network is connected to the supply network. When operated, this transmitter generates a series of current impulses. The moments in time of the generation of these current impulses and/or their duration are so chosen that the resulting transmission signal corresponds at least approximately to a desired theoretical signal. The transmitter contains at least two energy storages or energy storage devices and at least two switches for controlling the energy exchange between the two storages. These switches are so controlled that the exchange current flows through the mains, whereby the aforesaid current pulses are generated. It is thereby possible to use substantially only loss-free elements for the transmitter. The main field of application of the transmitter lies in ripple control technology, where it may be used as a transmitter in a central station (center) or as a transmitter for return signals to the center and for remote reading through the network of distributed meters with return signalling of the state of the meters to a center.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Sende-stromsignalen in einem Wechselstromverteilungsnetz mittels eines an das Netz angeschlossenen und einen gesteuerten Schalter aufweisenden Senders, wobei durch Betätigung des Schalters eine das Sendesignal bildende Reihe von Stromimpulsen erzeugt wird, und wobei die Zeitpunkte von deren Erzeugung und/oder deren Dauer so gewählt werden, dass das resultierende Sendesignal wenigstens angenähert einem gewünschten theoretischen Signal entspricht.The invention relates to a method for generating transmission current signals in an AC distribution network by means of a transmitter connected to the network and having a controlled switch, wherein a series of current pulses forming the transmission signal is generated by actuating the switch, and the times of their generation and / or their duration can be selected such that the resulting transmission signal corresponds at least approximately to a desired theoretical signal.

Ein Verfahren dieser Art, welches in der europäischen Patentanmeldung Nr. 85 108 615.7 (Veröffentlichungsnummer 0 175 863) beschrieben ist, hat den Vorteil, dass die bei anderen bekannten Verfahren erforderlichen frequenzselektiven Ankoppelkreise wegfallen und durch ein im wesentlichen aperiodisches Netzwerk ersetzt werden. Dadurch ist es möglich, den gleichen Sender für verschiedene Sendefrequenzen zu benützen und in den Uebertragungskanal Redundanz einzuführen, indem die Signale auf verschiedenen Frequenzen abgesetzt werden. Dies erhöht die Sicherheit der Uebertragung beträchtlich.A method of this type, which is described in European Patent Application No. 85 108 615.7 (publication number 0 175 863), has the advantage that the frequency-selective coupling circuits required in other known methods are eliminated and are replaced by an essentially aperiodic network. This makes it possible to use the same transmitter for different transmission frequencies and to introduce redundancy into the transmission channel by placing the signals on different frequencies. This considerably increases the security of the transmission.

Das genannte Netzwerk kann grundsätzlich sowohl aus reaktiven als auch aus ohmschen Komponenten bestehen. Eine nähere Analyse zeigt jedoch, dass einerseits keine Drosselspule direkt in Reihe mit dem Schalter liegen darf, wenn letzterer nicht für eine sehr hohe wiederkehrende Spannung dimensioniert ist. Und anderseits darf kein Kondensator unmittelbar mit dem Schalter geschaltet, das heisst, über diesen mit der Netzspannung oder mit einem anderen Kondensator verbunden werden, wenn der Schalter nicht für sehr hohe Spitzenströme dimensioniert ist, was jedoch zu relativ hohen Mehrkosten führen würde.The said network can basically consist of both reactive and ohmic components. However, a closer analysis shows that, on the one hand, no choke coil may lie directly in series with the switch if the latter is not dimensioned for a very high recurring voltage. On the other hand, no capacitor may be connected directly to the switch, that is, connected to the mains voltage or to another capacitor if the switch is not dimensioned for very high peak currents, which would, however, lead to relatively high additional costs.

Wenn nun aufgrund dieser Gegebenheiten die Verwendung von Seriedrosseln und Parallelkondensatoren verboten ist, zumindest ohne starke dämpfende ohmsche Komponenten, dann bietet ein derartiges Netzwerk gegenüber einem einfachen Widerstand nur wenig Vorteile. Ein Widerstand hätte aber wiederum den Nachteil, dass in diesem eine erhebliche Netzfrequenzleistung verbraucht wird. Dabei sind nicht so sehr die Kosten der entsprechenden Energie, sondern vielmehr die erzeugte und abzuführende Wärme nachteilig.If the use of series chokes and parallel capacitors is prohibited due to these circumstances, at least without strong damping ohmic components, then such a network offers only little advantages compared to a simple resistor. However, a resistor would have the disadvantage that it consumes a considerable amount of mains frequency power. It is not so much the cost of the corresponding energy, but rather the heat generated and dissipated that is disadvantageous.

Durch die Erfindung soll nun das eingangs erwähnte Verfahren dahingehend verbessert und modifiziert werden, dass für den Sender im wesentlichen nur verlustfreie Elemente verwendet werden können. Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Sender mindestens zwei Energiespeicher und mindestens zwei Schalter zur Steuerung des Energieaustausches zwischen diesen enthält, und dass die Energiespeicher und die Schalter so miteinander verbunden sind, dass der Austauschstrom über das Netz fliesst und dadurch die genannten Stromimpulse erzeugt werden.The aim of the invention is to improve and modify the aforementioned method in such a way that essentially only loss-free elements can be used for the transmitter. This object is achieved according to the invention in that the transmitter contains at least two energy stores and at least two switches for controlling the energy exchange between them, and that the energy stores and the switches are connected to one another in such a way that the exchange current flows over the network and thereby generates the current pulses mentioned will.

Die Erfindung betrifft weiter einen Sender zur Durchführung des genannten Verfahrens mit einer die Steuersignale für die genannten Schalter liefernden Steuerlogik.The invention further relates to a transmitter for carrying out said method with a control logic supplying the control signals for said switches.

Der erfindungsgemässe Sender ist gekennzeichnet durch eine Speicherdrossel und durch einen in Serie zu dieser angeordneten geschalteten Kondensator, welcher den zweiten Energiespeicher enthält.The transmitter according to the invention is characterized by a storage choke and by a capacitor connected in series and containing the second energy store.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigen:

  • Fig. 1 ein Prinzipschaltbild eines ersten Ausführungsbeispiels eines geschalteten Kondensators eines erfindungsgemässen Senders,
  • Fig. 2 ein Blockschaltbild eines Senders,
  • Fig. 3 ein Prinzipschaltbild eines zweiten Ausführungsbeispiels eines geschalteten Kondensators,
  • Fig. 4 ein Diagramm zur Funktionserläuterung,
  • Fig. 5 ein Prinzipschaltbild einer ersten Variante von Fig. 3, und
  • Fig. 6 ein Prinzipschaltbild einer weiteren Variante von Fig. 3.
The invention is explained in more detail below with the aid of exemplary embodiments and the drawings; show it:
  • 1 shows a basic circuit diagram of a first exemplary embodiment of a switched capacitor of a transmitter according to the invention,
  • 2 is a block diagram of a transmitter,
  • 3 shows a basic circuit diagram of a second exemplary embodiment of a switched capacitor,
  • 4 shows a diagram for the explanation of the function,
  • Fig. 5 is a schematic diagram of a first variant of Fig. 3, and
  • 6 shows a basic circuit diagram of a further variant of FIG. 3.

Der in den Figuren dargestellte Sender dient zur Erzeugung von Stromimpulsen, wobei eine Folge dieser Stromimpulse möglichst gut mit einem theoretischen Signal übereinstimmen soll. Dies lässt sich durch geeignete Wahl des Zeitpunkts der Erzeugung der Stromimpulse und/oder von deren Dauer erreichen, indem nämlich der zeitliche Mittelwert des aus den Stromimpulsen gebildeten Signals (ermittelt über ein Intervall, welches ein Mehrfaches der Dauer eines Einzelimpulses beträgt) praktisch in Uebereinstimmung mit dem Mittelwert des gewünschten theoretischen Signals gebracht werden kann.The transmitter shown in the figures is used to generate current pulses, and a sequence of these current pulses should match a theoretical signal as closely as possible. This can be achieved by a suitable choice of the time of generation of the current pulses and / or of their duration, namely by the time average of the signal formed from the current pulses (determined over an interval which is a multiple the duration of an individual pulse is) can be brought practically into agreement with the mean value of the desired theoretical signal.

In den folgenden Figuren sind nun verschiedene Ausführungsbeispiele des für die Erzeugung der genannten Stromimpulse verwendeten Senders bzw. von dessen geschaltetem Kondensator beschrieben.In the following figures, various exemplary embodiments of the transmitter used for generating the current pulses mentioned or of its switched capacitor are described.

Fig. 1 zeigt ein Prinzipschaltbild eines ersten Ausführungsbeispiels eines derartigen geschalteten Kondensators GC, welcher nach Art einer Brückenschaltung aufgebaut ist und aus vier Zweigen besteht. Die beiden Knotenpunkte 1 und 2 sind je über eine Leitung 3 bzw. 4 mit den Netzklemmen 5 und 6 verbunden, zwischen denen die Netzspannung UN liegt. Die Leitung 3 enthält eine Speicherdrossel SD (Drosselspannung UL). Die beiden anderen Knotenpunkte 7 und 8 der Brückenschaltung sind über einen einen Kondensator C aufweisenden Zweig 9 miteinander verbunden. Jeder der vier Zweige der Brükkenschaltung enthält eine Parallelschaltung eines gesteuerten Schalters S1, S2, S3, S4 und einer Diode D1, D2, D3, D4. Die gesteuerten Schalter S1 bis S4 sind vorzugsweise ein/ausschaltbare Einweg-Stromventile, wie beispielsweise GTO-Thyristoren oder Leistungstransistoren in bipolarer oder MOSFET- Technologie, die Dioden D1 bis D4 sind sogenannte Freilaufdioden, welche dafür sorgen, dass im Abschaltmoment eines Schalters S1 bis S4 die in der Speicherdrossel SD gespeicherte Energie positiv oder negativ zur Kondensatorspannung UC des Kondensators C addiert wird, so dass an dem entsprechenden Schalter keine zu hohe wiederkehrende Spannung auftritt. Es ist denkbar, ein Stromventil und die zugehörige Freilaufdiode jeweils in einem Bauelement zu vereinigen, im Sinne eines sogenannten RLT (=rückwärts leitender Thyristor).1 shows a basic circuit diagram of a first exemplary embodiment of such a switched capacitor GC, which is constructed in the manner of a bridge circuit and consists of four branches. The two nodes 1 and 2 are each connected via a line 3 or 4 to the network terminals 5 and 6, between which the network voltage UN lies. Line 3 contains a storage choke SD (choke voltage UL). The two other nodes 7 and 8 of the bridge circuit are connected to one another via a branch 9 having a capacitor C. Each of the four branches of the bridge circuit contains a parallel connection of a controlled switch S1, S2, S3, S4 and a diode D1, D2, D3, D4. The controlled switches S1 to S4 are preferably one-way current valves that can be switched on and off, such as GTO thyristors or power transistors in bipolar or MOSFET technology, and the diodes D1 to D4 are so-called free-wheeling diodes, which ensure that a switch S1 to S4 switches off when it is switched off the energy stored in the storage inductor SD is added positively or negatively to the capacitor voltage UC of the capacitor C, so that there is no excessively high recurring voltage at the corresponding switch. It is conceivable to combine a current valve and the associated freewheeling diode in one component, in the sense of a so-called RLT (= reverse conducting thyristor).

Für die Erzeugung des Sendesignals muss eine gewisse Kondensatorspannung UC vorhanden sein. Wenn I(max) der maximale Wert des gewünschten Sendestroms ist, f die Sendefrequenz und UN(max) der Scheitelwert der Netzspannung, dann ist die geforderte Kondensatorspannung:
    UC = UN(max) + 2.pi.f.L.I(max)
A certain capacitor voltage UC must be present for the generation of the transmission signal. If I (max) is the maximum value of the desired transmission current, f the transmission frequency and UN (max) the peak value of the mains voltage, then the required capacitor voltage is:
UC = UN (max) + 2.pi.fLI (max)

Diese Kondensatorspannung UC lässt sich auf folgende Weise erreichen: Bei offenen Schaltern S1 bis S4 (oder mit anderen Worten, bei gesperrten Ventilen) stellt der geschaltete Kondensator GC einen Vollweg-Brückengleichrichter dar, welcher den Kondensator C auf die Spannung UN(max) auflädt. Die dargestellte Anordnung ermöglicht nun eine weitere Aufladung des Kondensators C auf einen höheren Spannungswert, indem die Schalter S1 bis S4 so getaktet werde, dass dem Netz eine 50 Hz-­Wirkleistung entnommen wird. Da nun aber geschaltete Kondensator GC keine prinzipbedingt verlustbehafteten Elemente enthält, muss diese ansteigende Energie eine weitere Aufladung des Kondensators C bewirken.This capacitor voltage UC can be achieved in the following way: With open switches S1 to S4 (or in other words, with blocked valves), the switched capacitor GC represents a full-wave bridge rectifier, which charges the capacitor C to the voltage UN (max). The arrangement shown now enables the capacitor C to be further charged to a higher voltage value by clocking the switches S1 to S4 in such a way that a 50 Hz active power is drawn from the network. However, since switched capacitor GC does not contain any lossy elements, this increasing energy must cause capacitor C to be charged further.

Wenn die Netzfrequenz fN = 50 Hz ist und î die Amplitude des Eingangsstroms und ûN den Scheitelwert der Netzspannung bezeichnet, dann gelten für den Eingangsstrom I, die Netzspannung UN, die Leistung P und die Energieänderung W(t) im geschalteten Kondensator GC die folgenden Beziehungen:
I = î . sin (2.pi.fN.t)
UN = ûN . sin (2.pi.fN.t)
P = UN . I = ûN.î.(sin(2.pi.fN.t))2
W(t) = (ûN.î).t/2 - (ûN.î).sin(4.pi.fN.t)/(8.pi.f)
If the mains frequency fN = 50 Hz and î denotes the amplitude of the input current and ûN the peak value of the mains voltage, then the following relationships apply to the input current I, the mains voltage UN, the power P and the energy change W (t) in the switched capacitor GC :
I = î. sin (2.pi.fN.t)
UN = ûN. sin (2.pi.fN.t)
P = UN. I = ûN.î. (sin (2.pi.fN.t)) 2
W (t) = (ûN.î) .t / 2 - (ûN.î) .sin (4.pi.fN.t) / (8.pi.f)

Die Energie im Kondensator C nimmt also monoton zu, solange im Eingangsstrom I ein netzfrequenter, in Phase mit der Netzspannung befindlicher Anteil vorhanden ist.The energy in the capacitor C thus increases monotonously as long as there is a line frequency component in the input current I which is in phase with the line voltage.

Fig. 2 zeigt ein Blockschaltbild eines erfindungsgemässen Senders, welcher darstellungsgemäss zusätzlich zum geschalteten Kondensator GC und zur Speicherdrossel SD eine Stufe SE zur Sollwert-Erzeugung, eine Steuerlogik SL, und einen Soll-­/Istwert-Vergleicher SI aufweist.2 shows a block diagram of a transmitter according to the invention, which, in addition to the switched capacitor GC and the storage choke SD, has a stage SE for generating the setpoint, a control logic SL, and a setpoint / actual value comparator SI.

Am Eingang 6 liegt die Netzspannung UN, welche der Sollwert-­Erzeugung SE, der Steuerlogik SL und dem geschalteten Kondensator GC zugeführt wird. Die Sollwert- Erzeugung SE, welcher neben der Netzspannung UN noch die Kondensatorspannung UC und weitere Steuerparameter, wie beispielsweise der Signalstrom I* zugeführt werden, generiert das gewünschte Sendesignal Is als Analogsignal am einen Eingang des Soll-/Istwert-Vergleichers SI, an dessen anderem Eingang das Abbild des Sendestroms Ie liegt. Das gewünschte Sendesignal Is kann beispielsweise ein rein sinusförmiges Signal sein. Die Steuerlogik SL bildet nun diesen Sollwert durch geeignetes Schalten der Schalter (Ventile) S1 bis S4 des geschalteten Kondensators GC nach, indem die Differenz Is-Ie möglichst vollständig auf Null geregelt wird, was nach bekannten Verfahren der Leistungselektronik, wie beispielsweise zeitdiskrete Zweipunkt- oder Dreipunktregelung erfolgt.At the input 6 is the mains voltage UN, which is supplied to the setpoint generation SE, the control logic SL and the switched capacitor GC. The setpoint value generation SE, which, in addition to the mains voltage UN, the capacitor voltage UC and other control parameters, such as the signal current I *, are supplied, generates the desired transmission signal Is as an analog signal at one input of the setpoint / actual value comparator SI, at the other Input is the image of the transmission current Ie. The desired transmission signal Is can be, for example, a purely sinusoidal signal. The control logic SL now simulates this setpoint by suitably switching the switches (valves) S1 to S4 of the switched capacitor GC by regulating the difference Is-Ie as completely as possible to zero, which is done according to known methods of power electronics, such as time-discrete two-point or Three-point control takes place.

Hier ist ersichtlich, wozu die geforderte Anfangsspannung UC des Kondensators C erforderlich ist. Sie gewährleistet durch Bereitstellung der nötigen Spannung die maximal erforderliche Stromänderung in der Speicherdrossel SD.Here you can see why the required initial voltage UC of the capacitor C is required. By providing the necessary voltage, it ensures the maximum required current change in the storage choke SD.

Die letztere glättet den Eingangsstrom durch Integration der Spannungspulse UN-US, wobei US die vom geschalteten Kondensator GC erzeugte Spannung bezeichnet.The latter smoothes the input current by integrating the voltage pulses UN-US, where US denotes the voltage generated by the switched capacitor GC.

Durch geeignete Vorgabe eines 50 Hz-Sollstroms (Ladestrom) kann also die Ladung des Kondensators C erhöht werden und bei ausreichender Kondensatorspannung kann ein vorgegebenes Sendesignal (Sendestrom) nachgebildet werden. Zur Ermöglichung eines kontinuierlichen Sendebetriebs können diese beiden Prozesse in einfacher Weise überlagert werden, indem die Sollwerte von Ladestrom und Sendestrom addiert und als gemeinsamer Sollwert ausgegeben werden.By appropriately specifying a 50 Hz target current (charging current), the charge of the capacitor C can thus be increased and, if the capacitor voltage is sufficient, a predetermined transmission signal (transmission current) can be simulated. To enable continuous transmission, these two processes can be overlaid in a simple manner by adding the setpoints of charging current and transmission current and outputting them as a common setpoint.

Ob die Ladung des Kondensators C erhöht werden muss, wird beispielsweise einmal je Netzperiode durch Abfrage der Kondensatorspannung UC ermittelt und je nach dem Ergebnis wird Ladestrom vorgegeben oder nicht. Eine eventuelle zu hohe Ladung des Kondensators kann durch Umkehrung des Vorzeichens des Ladestroms abgebaut werden.Whether the charge on the capacitor C has to be increased is determined, for example, once per network period by querying the capacitor voltage UC and, depending on the result, charging current is specified or not. Any excessive charging of the capacitor can be reduced by reversing the sign of the charging current.

Die folgende Tabelle 1 ergibt eine Uebersicht über die zulässigen Schaltzustände der Schalter und Dioden S1 bis S4 bzw. D1 bis D4 des geschalteten Kondensators GC (Fig. 1) des Senders sowie des Verhaltens des Eingangsstroms I, des Kondensatorstroms IC, der Kondensatorspannung UC und der Drosselspannung UL.The following Table 1 gives an overview of the permissible switching states of the switches and diodes S1 to S4 or D1 to D4 of the switched capacitor GC (FIG. 1) of the transmitter and the behavior of the input current I, the capacitor current IC, the capacitor voltage UC and the Choke voltage UL.

In der Tabelle 1 werden ausserdem folgende Symbole verwendet:
0: Ventil/Diode sperrt
1: Ventil/Diode leitet
x: Ventil leitet nicht wegen physikalischer Gegebenheit, kann eingeschaltet sein
s: Signalwert steigt
f: Signalwert fällt
=: Signalwert gleichbleibend
g: grösser als Null
k: kleiner als Null

Figure imgb0001
The following symbols are also used in Table 1:
0: valve / diode blocks
1: Valve / diode conducts
x: valve does not conduct due to physical conditions, can be switched on
s: signal value increases
f: signal value falls
=: Signal value constant
g: greater than zero
k: less than zero
Figure imgb0001

Im wesentlichen ergeben sich drei verschiedene Bestimmungsgleichungen für Strom und Spannung:
UL = UN + UC mit IC = -I
UL = UN - UC mit IC = +I
UL = UN mit IC = Null
Aus diesen Bestimmungsgleichungen und der Beziehung dI = 1/L . UL.dt können die Stromformen der Zwei- oder Dreipunktregelung ermittelt werden.
There are essentially three different equations for current and voltage:
UL = UN + UC with IC = -I
UL = UN - UC with IC = + I
UL = UN with IC = zero
From these equations and the relationship dI = 1 / L. UL.dt the current forms of the two or three-point control can be determined.

Die Grösse der Komponenten L und C richtet sich nach den zulässigen Werten von Spannungsbelastung der Ventile, Stromwelligkeit, usw. Sinnvolle Werte sind beispielsweise:î = 10 A, L = 1 mH, C = 1 mF.The size of components L and C depends on the permissible values of voltage loading of the valves, current ripple, etc. Useful values are, for example: î = 10 A, L = 1 mH, C = 1 mF.

In Fig. 3 ist ein geschalteter Kondensator GC* dargestellt, welcher aus einer Antiparallelschaltung von zwei Zweigen mit je einem gesteuerten Schalter (Ventil) S1, S2 und einem Kondensator C1 bzw. C2 in Reihe besteht. Hier entsteht durch geeignete Betätigung der Schalter S1 und S2 ein Energiefluss zwischen dem Netz und den beiden Kondensatoren C1, C2, und umgekehrt.In Fig. 3, a switched capacitor GC * is shown, which consists of an anti-parallel connection of two branches, each with a controlled switch (valve) S1, S2 and a capacitor C1 or C2 in series. An appropriate flow of switches S1 and S2 results in an energy flow between the network and the two capacitors C1, C2, and vice versa.

Tabelle 2 gibt in Analogie zu Tabelle 1 eine Uebersicht über die bei den verschiedenen Schaltstellungen der Schalter S1, S2 in Abhängigkeit von Eingangsstrom I und Netzspannung UN resultierende Drosselspannung UL sowie über das Verhalten der Kondensatorspannungen UC1 und UC2. Die verwendeten Symbole entsprechen denjenigen von Tabelle 1.

Figure imgb0002
Analogous to Table 1, Table 2 gives an overview of the choke voltage UL resulting from the various switch positions of switches S1, S2 depending on input current I and line voltage UN, as well as the behavior of capacitor voltages UC1 and UC2. The symbols used correspond to those in Table 1.
Figure imgb0002

Wenn die Kondensatorspannungen UC1 und UC2 grösser als UN(max) sind und UN grösser als Null ist, und man zündet beispielsweise S2 für eine Zeitdauer T1, dann wird der LC-Schwingkreis angestossen und es fliesst ein Strom der von einem Wert I1 annähernd linear auf einen Wert I2 ansteigt. Für die Stromänderung gilt: dI/dt = (UN + UC2)/L.If the capacitor voltages UC1 and UC2 are greater than UN (max) and UN is greater than zero, and for example S2 is ignited for a period of time T1, then the LC resonant circuit is triggered and a current flows from a value I1 approximately linearly increases a value I2. The following applies to the current change: dI / dt = (UN + UC2) / L.

Wird nach der Zeit T1 für eine Zeit T2 das Ventil S2 gelöscht, dann sorgt die Speicherdrossel SD für eine weitere Zirkulation des Stroms, C2 entlädt sich und C1 lädt sich auf, da nun D1 leitet. Dabei sinkt der Strom linear vom Wert I2 auf den Wert I1 ab, aber mit einer anderen Steilheit. Es entstehen somit trapezförmige Stromimpulse verschiedenen Energieinhalts. Jetzt gilt für die Stromänderung dI/dt = (UN - UC1)/L.If after the time T1 the valve S2 is extinguished for a time T2, the storage choke SD ensures a further circulation of the current, C2 discharges and C1 charges because D1 is now conducting. The current drops linearly from the value I2 to the value I1, but with a different slope. Trapezoidal current impulses with different energy contents are created. Now the current change is dI / dt = (UN - UC1) / L.

Der über das Netz zwischen der Speicherdrossel SD und den Kondensatoren C1 und C2 und umgekehrt stattfindende Energiefluss ist durch die Länge der Stromimpulse, das heisst, durch die Länge der Zeitspannen T1 und T2 steuerbar. Wenn man die Fälle b und c bevorzugt, also für diese Fälle längere Impulszeiten wählt als während a und d, dann erhöht sich die Spannung an C1 und C2. Entsteht an den den Kondensatoren C1 und C2 eine zu hohe Spannung, dann kann man diese durch Bevorzugung der Fälle a und d gegenüber b und c abbauen.The energy flow taking place via the network between the storage choke SD and the capacitors C1 and C2 and vice versa can be controlled by the length of the current pulses, that is to say by the length of the time periods T1 and T2. If cases b and c are preferred, i.e. longer pulse times are selected for these cases than during a and d, the voltage at C1 and C2 increases. If too high a voltage arises at the capacitors C1 and C2, this can be reduced by giving preference to cases a and d over b and c.

Wie in der Beschreibungseinleitung erwähnt wurde, ist die Möglichkeit, den gleichen Sender ohne Abstimmung für verschiedene Sendefrequenzen benützen zu können, einer der Hauptvorteile dieser Gattung von Sendern, weil man dadurch im Uebertragungskanal mit Redundanz arbeiten kann. Die Sendung von als Telegramme bezeichneten Informationen grundsätzlich gleichen Inhalts, aber mit verschiedenen Frequenzen, kann entweder nacheinander oder gleichzeitig erfolgen.As mentioned in the introduction to the description, the possibility of using the same transmitter for different transmission frequencies without tuning is one of the main advantages of this type of transmitter, because it enables redundancy to be used in the transmission channel. The broadcast of Information referred to as telegrams can basically be of the same content, but with different frequencies, either successively or simultaneously.

Im ersten Fall wird die Sollwerterzeugung SE (Fig. 2) so ausgebildet, dass sie ein rein sinusförmiges Signal erzeugt, welches beispielsweise in Amplitude, Frequenz oder Phase moduliert ist. Im zweiten Fall, also bei der gleichzeitigen Sendung mehreren Telegramme auf verschiedenen Frequenzen, wird die Sollwerterzeugung SE so ausgeführt, dass sie die Summe der Signale der verschiedenen Telegramme generiert, wobei der Sender diesen Sollwert mittels einer Reihe von Stromimpulsen approximiert. Da der Spitzenwert des Sendestroms in diesem Fall höher liegt als im ersten, müssen die Elemente des Senders entsprechend dimensioniert werden.In the first case, the setpoint generation SE (FIG. 2) is designed such that it generates a purely sinusoidal signal which is modulated, for example, in amplitude, frequency or phase. In the second case, that is to say when several telegrams are transmitted simultaneously on different frequencies, the setpoint value generation SE is carried out in such a way that it generates the sum of the signals of the different telegrams, the transmitter approximating this setpoint value by means of a series of current pulses. Since the peak value of the transmission current is higher in this case than in the first, the elements of the transmitter must be dimensioned accordingly.

Die in den Figuren dargestellte Speicherdrossel SD wird bei Installation des Senders in einem Niederspannungsnetz vorzugsweise als Spule mit Eisenkern und Luftspalt ausgebildet. Bei Installation des Senders in einem Hochspannungsnetz, oder bei Auslegung der Schalter S1 bis S4 für relativ tiefe Spannungen, ist es vorteilhaft, die Speicherdrossel SD durch die Streuinduktivität eines Transformators zu ersetzen. Im Fall einer Ausbildung des geschalteten Kondensators GC nach Fig. 1, würde die Primärwicklung dieses Transformators zwischen die Klemmen 5 und 6 und die Sekundärwicklung zwischen die Klemmen 1 und 2 zu liegen kommen.The storage choke SD shown in the figures is preferably designed as a coil with an iron core and an air gap when the transmitter is installed in a low-voltage network. When installing the transmitter in a high-voltage network, or when designing switches S1 to S4 for relatively low voltages, it is advantageous to replace the storage choke SD with the leakage inductance of a transformer. In the case of the formation of the switched capacitor GC according to FIG. 1, the primary winding of this transformer would come to lie between the terminals 5 and 6 and the secondary winding between the terminals 1 and 2.

In Fig. 4 ist anhand eines Diagramms dargestellt, wie das aus den einzelnen Stromimpulsen zusammengesetzte Sendesignal mit dem gewünschten theoretischen Signal in Uebereinstimmung gebracht werden kann.4 shows, using a diagram, how the transmission signal composed of the individual current pulses can be brought into agreement with the desired theoretical signal.

Beim dargestellten Beispiel ist das gewünschte Sendesignal Is sinusförmig und der Sendestrom Ie ist aus einzelnen Stromimpulsen In zusammengesetzt. Ein einzelner Stromimpuls entspricht dabei der schraffierten Fläche In. Das gewünschte Sendesignal Is wird periodisch abgetastet und es wird für jeden Abtastwert ermittelt, ob der aktuelle Wert des jeweiligen Stromimpulses In grösser oder kleiner ist als der entsprechende diskrete Wert von Is. Anhand des Ergebnisses dieses Vergleichs und unter Berücksichtigung dessen, ob der jeweilige Stromimpuls In steigt oder fällt, erfolgt die Auswahl des nächsten Stromimpulses und die entsprechende Tastung der Schalter S1 bis S4 oder S1, S2 gemäss den Tabellen 1 bzw. 2.In the example shown, the desired transmission signal Is is sinusoidal and the transmission current Ie is composed of individual current pulses In. A single current pulse corresponds to the hatched area In. The desired transmission signal Is is sampled periodically and it is determined for each sample whether the current value of the respective current pulse In is greater or less than the corresponding discrete value of Is. Based on the result of this comparison and taking into account whether the respective current pulse In If the next current pulse rises or falls, the switches S1 to S4 or S1, S2 are selected accordingly in accordance with Tables 1 and 2.

Es kann zur Erzielung einer besseren Approximation des gewünschten theoretischen Signals Is durch das aus den Stromimpulsen In bestehende Sendesignal Ie in gewissen Fällen vorteilhaft sein, den Stromanstieg dI/dt und gleichzeitig auch die Spannung US am geschalteten Kondensator GC zu reduzieren. Dies kann dadurch erreicht werden, dass zeitweise nur die Netzspannung UN in diesem Stromkreis wirksam wird.In order to achieve a better approximation of the desired theoretical signal Is by the transmission signal Ie consisting of the current pulses In, it can be advantageous in certain cases to reduce the current increase dI / dt and at the same time also the voltage US on the switched capacitor GC. This can be achieved by temporarily having only the mains voltage UN in this circuit.

In diesen Fällen genügt für die Erzielung der nötigen Steilheit der Stromänderung in der Speicherdrossel SD ein Kurzschluss, was sich beim geschalteten Kondensator GC von Fig. 1 durch gleichzeitiges Zünden der Schalter S1 und S3 oder S2 und S4 erreichen lässt, in welchen Fällen jeweils ein Kurzschluss über die Speicherdrossel SD erfolgt. Wird dieser Kurzschluss unterbrochen, dann geht die in der Speicherdrossel SD gespeicherte Energie über die Freilaufdioden D1 bis D4 in den Kondesator C bzw. in die Kondensatoren C1, C2.In these cases, a short circuit is sufficient to achieve the required steepness of the current change in the storage inductor SD, which can be achieved in the switched capacitor GC of FIG. 1 by simultaneous ignition of the switches S1 and S3 or S2 and S4, in each case a short circuit via the storage choke SD. If this short circuit is interrupted, the energy stored in the storage inductor SD goes via the freewheeling diodes D1 to D4 into the capacitor C or into the capacitors C1, C2.

Bei der Mittelpunktschaltung von Fig. 3 ist ein derartiger Kurzschluss nicht so ohne weiteres zu realisieren, sondern erfordert, wie in Fig. 5 gezeigt, einen zwischen den beiden antiparallelen Zweigen angeordneten dritten Zweig 10 mit einem ein-/ausschaltbaren Zweiwegschalter (Zweiwegventil) S5.3, such a short circuit cannot be easily realized, but, as shown in FIG. 5, requires a third branch 10 arranged between the two antiparallel branches with a two-way switch (two-way valve) S5 that can be switched on and off.

Fig. 6 zeigt eine Variante des in Fig. 3 dargestellten geschalteten Kondensators GC*, bei welcher darstellungsgemäss zwischen der Speicherdrossel SD und den Schaltern S1, S2 ein Kondensator CS angeordnet ist. Durch diese Abwandlung, welche übrigens selbsverständlich auch beim geschalteten Kondensator GC von Fig. 1 vorgenommen werden kann, kann man eine Reduktion der Schalterspannung erzielen, indem sich mittels geeigneter Tastung der Schalter S1, S2 ein 50 Hz-Blindstrom ziehen lässt, der am Kondensator CS einen solchen Spannungsabfall verursacht, dass an den Schaltern nur noch eine reduzierte Spannung entsteht. Die Spannung an den Kondensatoren C1 und C2 lässt sich dadurch steuern, dass eine entsprechende 50 Hz-Wirkstromkomponente eingestellt wird.FIG. 6 shows a variant of the switched capacitor GC * shown in FIG. 3, in which, as shown, a capacitor CS is arranged between the storage inductor SD and the switches S1, S2. This modification, which can of course also be done with the switched capacitor GC of FIG. 1, can be used to achieve a reduction in the switch voltage by pulling the switches S1, S2 by means of a suitable keying, a 50 Hz reactive current can be drawn from the capacitor CS such a drop in voltage causes only a reduced voltage to develop at the switches. The voltage at the capacitors C1 and C2 can be controlled by setting a corresponding 50 Hz active current component.

Die Spannung an den Schaltern S1, S2 setzt sich zusammen aus den Kondensatorspannungen UC1, UC2, der Netzspannung UN, sowie aus dem 50 Hz-Spannungsabfall, der an der Reihenschaltung der Speicherdrossel SD und des Kondensators CS entsteht. Wenn man die Zünd- und Löschmomente der Schalter S1, S2 so einstellt, dass ein 50 Hz-Blindstrom zirkuliert, so werden dadurch, wie sich anhand von Tabelle 2 ermitteln lässt, die Kondensatorspannungen UC1 und UC2 im Schnitt keine Aenderung erfahren. Dieser 50 Hz-Blindstrom erzeugt im Serie-LC-Kreis von Speicherdrossel SD und Kondensator CS einen 50 Hz-Spannungsabfall, so dass an den Schaltern S1, S2 nur mehr ein kleiner Rest der 50 Hz-Spannung des Netzes entsteht.The voltage at the switches S1, S2 is composed of the capacitor voltages UC1, UC2, the mains voltage UN, and the 50 Hz voltage drop that occurs at the series connection of the storage choke SD and the capacitor CS. If the ignition and extinction torques of switches S1, S2 are set so that a 50 Hz reactive current circulates, the capacitor voltages UC1 and UC2 will not change on average, as can be determined from Table 2. This 50 Hz reactive current generates in the series LC circuit of storage choke SD and capacitor CS a 50 Hz voltage drop, so that only a small remainder of the 50 Hz voltage of the network is produced at switches S1, S2.

Durch den in Reihe mit der Speicherdrossel SD angeordneten zusätzlichen Kondensator CS kann der geschaltete Kondensator GC oder GC* von Fig. 1 bzw. Fig. 3 mit Schaltern S1 bis S4 bzw. S1, S2 betrieben werden, die nicht für die volle Spannung UN + UC bzw. UN + UC1, UC2 dimensioniert zu sein brauchen. Dies kann insbesondere für solche Sender vorteilhaft sein, die an der Mittelspannung angeschlossen sind. Allerdings müssen dann Vorkehrungen getroffen werden, damit nicht transiente Vorgänge auf irgendeine Art die Schalter zerstören.Due to the additional capacitor CS arranged in series with the storage choke SD, the switched capacitor GC or GC * from FIG. 1 or FIG. 3 can be operated with switches S1 to S4 or S1, S2 which do not have the full voltage UN + UC or UN + UC1, UC2 need to be dimensioned. This can be particularly advantageous for those transmitters that are connected to the medium voltage. However, precautions must then be taken so that non-transient processes in some way destroy the switches.

Wie in der Beschreibungseinleitung der eingangs zitierten EP-­Offenlegungsschrift 0 175 863 erwährt ist, werden Sender der beschriebenen Gattung insbesondere für die Rückmeldung des Zählwerkstandes von beispielsweise Elektrizitätszählern oder der Befehlsausführung von Rundsteuerempfängern in eine Zentrale verwendet. Als Rundsteuersender für die Aussendung von Rundsteuertelegrammen von der Zentrale zu den über das Netz verteilten Rundsteuerempfänger werden dabei Sender der in der CH-Patentanmeldung Nr. 03 923/86-0 beschriebenen Art verwendet.As is proven in the introduction to the description of EP-publication 0 175 863 cited at the outset, transmitters of the type described are used in particular for the feedback of the counter status of, for example, electricity meters or the execution of commands from ripple control receivers in a control center. Transmitters of the type described in Swiss Patent Application No. 03 923 / 86-0 are used as ripple control transmitters for the transmission of ripple control telegrams from the head office to the ripple control receivers distributed over the network.

Der beschriebene Sender kann nun einerseits wie beschrieben für die Informationsübertragung in der Richtung dezentral angeordnete Rundsteuerempfänger-Zentrale verwendet werden und eröffnet anderseits die interessante Möglichkeit der Verwendung als Rundsteuersender für die Informationsübertragung in der Richtung Zentrale - dezentrale Empfänger. Dies ergäbe gegenüber bekannten Rundsteuersendern den Vorteil, dass die Steuerfrequenz im wesentlichen unabhängig, und dass keine Gleichstromkreis erforderlich wäre. Allerdings wären verglichen mit den statischen Frequenzumrichtern mit Gleichstromzwischenkreis wesentlich grössere Ventile erforderlich, weil das Produkt Spitzenstrom mal wiederkehrende Spannung grösser wäre.The transmitter described can now be used, as described, for the information transmission in the direction of the decentralized ripple control receiver center and, on the other hand, opens up the interesting possibility of using it as a ripple control transmitter for information transmission in the direction of the center - decentralized receiver. This would result in Known ripple control transmitters have the advantage that the control frequency is essentially independent and that no direct current circuit would be required. However, compared to the static frequency inverters with a DC link, much larger valves would be required because the product peak current times recurring voltage would be larger.

Bei einer derartigen Anwendung als Rundsteuersender könnte vorteilhafterweise die Speicherdrossel GD durch die Kurzschlussimpedanz (=Streuimpedanz) eines üblichen Mittelspannungs/Niederspannungstransformators (beispielsweise 20/0,4 kV) gebildet sein. Der Sender wäre dreiphasig, das heisst dreimal einphasig auszubilden.In such an application as a ripple control transmitter, the storage choke GD could advantageously be formed by the short-circuit impedance (= leakage impedance) of a conventional medium-voltage / low-voltage transformer (for example 20 / 0.4 kV). The transmitter would be three-phase, that is to say three-phase single-phase.

Claims (17)

1. Verfahren zur Erzeugung von Sende-Stromsignalen in einem Wechselstromverteilungsnetz mittels eines an das Netz angeschlossenen und einen gesteuerten Schalter aufweisenden Senders, wobei durch Betätigung des Schalters eine das Sendesignal bildende Reihe von Stromimpulsen erzeugt wird und wobei die Zeitpunkte von deren Erzeugung und/oder deren Dauer so gewählt werden, dass das resultierende Sendesignal wenigstens angenähert einem gewünschten theoretischen Signal entspricht, dadurch gekennzeichnet, dass der Sender mindestens zwei Energiespeicher (SD; C, C1, C2) und mindestens zwei Schalter (S1 bis S4) zur Steuerung des Energieaustausches zwischen diesen enthält, und dass die Energiespeicher und die Schalter so miteinander verbunden sind, dass der Austauschstrom über das Netz fliesst und dadurch die genannten Stromimpulse (In) erzeugt werden.1. A method for generating transmission current signals in an AC distribution network by means of a transmitter connected to the network and having a controlled switch, wherein a series of current pulses forming the transmission signal is generated by actuating the switch and the times of their generation and / or their Duration selected so that the resulting transmission signal corresponds at least approximately to a desired theoretical signal, characterized in that the transmitter at least two energy stores (SD; C, C1, C2) and at least two switches (S1 to S4) for controlling the energy exchange between them contains, and that the energy storage device and the switches are connected to one another in such a way that the exchange current flows through the network and the current pulses (In) mentioned are thereby generated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das resultierende Sendesignal (Ie) durch eine Reihe von mehreren unmittelbar aneinandergereihten Stromimpulsen (In) gebildet ist.2. The method according to claim 1, characterized in that the resulting transmission signal (Ie) is formed by a series of a plurality of current pulses (In) arranged directly next to one another. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Stromimpulse (In) eine annähernd trapezförmige oder dreieckige Form besitzen, so dass das resultierende Sendesignal (Ie) eine sägezahnartige Kontur aufweist.3. The method according to claim 2, characterized in that the current pulses (In) have an approximately trapezoidal or triangular shape, so that the resulting transmission signal (Ie) has a sawtooth-like contour. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der eine Energiespeicher durch eine Speicherdrossel (SD) und der andere Energiespeicher durch mindestens einen in Serie zu dieser angeordneten Kondensator (C, C1, C2) gebildet ist, und dass der Energieaustausch zwischen der Speicherdrossel und dem mindestens einen Kondensator über das Netz durch die Ein/Ausschaltzeitpunkte der Schalter (S1 bis S4) und damit die Amplitude und Dauer der entstehenden Stromimpulse (In) gesteuert wird.4. The method according to any one of claims 1 to 3, characterized in that the one energy store is formed by a storage choke (SD) and the other energy store by at least one capacitor (C, C1, C2) arranged in series therewith, and that Energy exchange between the storage choke and the at least one capacitor via the network is controlled by the on / off times of the switches (S1 to S4) and thus the amplitude and duration of the resulting current pulses (In). 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Spannung (UC, UC1, UC2) am jeweiligen Kondensator (C, C1, C2) dadurch in der Nähe eines Sollwerts gehalten wird, dass die Schalter (S1 bis S4) so gesteuert werden, dass sich zum gewollten Signalstrom ein positiver oder negativer 50 Hz-Wirkstrom addiert.5. The method according to claim 4, characterized in that the voltage (UC, UC1, UC2) on the respective capacitor (C, C1, C2) is kept in the vicinity of a target value in that the switches (S1 to S4) are controlled that a positive or negative 50 Hz active current is added to the desired signal current. 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass in Reihe mit der Speicherdrossel (SD) ein Seriekondensator (CS) angeordnet wird.6. The method according to claim 4, characterized in that a series capacitor (CS) is arranged in series with the storage inductor (SD). 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Schalter (S1 bis S4) derart gesteuert werden, dass sich zum gewollten Signalstrom ein 50 Hz-Blindstrom addiert und längs des Seriekondensators (CS) ein 50 Hz-Spannungsabfall entsteht, so dass die Schalter für eine kleinere wiederkehrende Spannung als die der Summe von Netzspannung (UN) und Kondensatorspannung (UC, UC1, UC2) entsprechende ausgelegt werden können.7. The method according to claim 6, characterized in that the switches (S1 to S4) are controlled such that a 50 Hz reactive current is added to the desired signal current and a 50 Hz voltage drop occurs along the series capacitor (CS), so that the Switches can be designed for a smaller recurring voltage than the sum of the mains voltage (UN) and capacitor voltage (UC, UC1, UC2). 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass bei zu steilem Verlauf eines Stromimpulses (In) ein Kurzschluss über die Speicherdrossel (SD) herbeigeführt und damit für die Erzeugung der Stromimpulse ausschliesslich die Netzspannung (UN) verwendet wird.8. The method according to claim 7, characterized in that if the course of a current pulse (In) is too steep, a short circuit is brought about via the storage inductor (SD) and thus only the mains voltage (UN) is used for generating the current pulses. 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der gleichzeitigen Sendung von Sendesignalen verschiedener Frequenzen die Summe der verschiedenen Sendesignale generiert und vom Sender mittels einer Reihe von Stromimpulsen approximiert wird.9. The method according to claim 1, characterized in that the simultaneous transmission of transmission signals of different frequencies, the sum of the different transmission signals is generated and approximated by the transmitter by means of a series of current pulses. 10. Sender zur Durchführung des Verfahrens nach Anspruch 1, mit einer die Steuersignale für die genannten Schalter liefernden Steuerlogik, gekennzeichnet durch eine Speicherdrossel (SD) und durch einen in Serie zu dieser angeordneten geschalteten Kondensator (GC, GC*), welcher den zweiten Energiespeicher (C, C1, C2) enthält.10. Transmitter for performing the method according to claim 1, with a control logic supplying the control signals for said switches, characterized by a storage choke (SD) and by a series-arranged capacitor (GC, GC *), which is the second energy store (C, C1, C2) contains. 11. Sender nach Anspruch 10, dadurch gekennzeichnet, dass die Speicherdrossel (SD) durch die Streuimpedanz eines Transformators gebildet ist.11. Transmitter according to claim 10, characterized in that the storage choke (SD) is formed by the leakage impedance of a transformer. 12. Sender nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der geschaltete Kondensator (GC) aus einer Brückenschaltung besteht, in deren Zweigen je ein gesteuerter Schalter (S1 bis S4) und in deren Diagonale (9) ein Speicherkondensator (C) angeordnet ist.12. Transmitter according to claim 10 or 11, characterized in that the switched capacitor (GC) consists of a bridge circuit, in the branches of which a controlled switch (S1 to S4) and in the diagonal (9) of which a storage capacitor (C) is arranged . 13. Sender nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der geschaltete Kondensator (GC*) durch eine Antiparallelschaltung von zwei Zweigen mit je einem gesteuerten Schalter (S1, S2) und einem Kondensator (C1, C2) in Reihe gebildet ist.13. Transmitter according to claim 10 or 11, characterized in that the switched capacitor (GC *) by an anti-parallel connection of two Branches with a controlled switch (S1, S2) and a capacitor (C1, C2) are formed in series. 14. Sender nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die gesteuerten Schalter (S1 bis S4) durch ein-/ausschaltbare Einweg-Stromventile gebildet sind.14. Transmitter according to claim 12 or 13, characterized in that the controlled switches (S1 to S4) are formed by on / off switchable one-way flow valves. 15. Sender nach Anspruch 12 oder 13, gekennzeichnet durch einen in Reihe mit der Speicherdrossel (SD) angeordneten Seriekondensator (CS).15. Transmitter according to claim 12 or 13, characterized by a series capacitor (CS) arranged in series with the storage inductor (SD). 16. Sender nach Anspruch 13, dadurch gekennzeichnet, dass zwischen den beiden antiparallelen Zweigen ein dritter Zweig (10) mit einem ein-/ausschaltbaren Zweiwegventil (S5) vorgesehen ist.16. Transmitter according to claim 13, characterized in that a third branch (10) with an on / off switchable two-way valve (S5) is provided between the two anti-parallel branches. 17. Sender nach Anspruch 11, dadurch gekennzeichnet, dass der Sender bei Verwendung als Rundsteuersender in einer Zentrale dreiphasig ausgebildet ist.17. Transmitter according to claim 11, characterized in that the transmitter is formed in three phases when used as a ripple control transmitter in a center.
EP87117358A 1986-12-09 1987-11-25 Method and apparatus to generate emission current signals in an alternating current distribution network Expired - Lifetime EP0270920B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117358T ATE91574T1 (en) 1986-12-09 1987-11-25 METHOD AND APPARATUS FOR GENERATION OF TRANSMIT CURRENT SIGNALS IN AN AC DISTRIBUTION NETWORK.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4893/86 1986-12-09
CH4893/86A CH672565A5 (en) 1986-12-09 1986-12-09

Publications (3)

Publication Number Publication Date
EP0270920A2 true EP0270920A2 (en) 1988-06-15
EP0270920A3 EP0270920A3 (en) 1989-12-06
EP0270920B1 EP0270920B1 (en) 1993-07-14

Family

ID=4284364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117358A Expired - Lifetime EP0270920B1 (en) 1986-12-09 1987-11-25 Method and apparatus to generate emission current signals in an alternating current distribution network

Country Status (10)

Country Link
US (1) US4899062A (en)
EP (1) EP0270920B1 (en)
AT (1) ATE91574T1 (en)
AU (1) AU603396B2 (en)
CH (1) CH672565A5 (en)
DE (1) DE3786535D1 (en)
DK (1) DK168905B1 (en)
FI (1) FI875410A (en)
NZ (1) NZ222830A (en)
ZA (1) ZA879120B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1031408C2 (en) * 2005-12-07 2010-09-07 Inst Information Industry ELECTRONIC SWITCH DEVICE WITH NON-INTERRUPTABLE VOLTAGE CONTROLLER.

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022821B2 (en) * 2008-02-05 2011-09-20 J. Baxter Brinkman International Corporation Smart power supply
US20090195193A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Compact fluorescent light device
US8212377B2 (en) * 2008-02-05 2012-07-03 J. Baxter Brinkman International Corporation Smart control device
US20090195192A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Smart light
US20090195085A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Alternating current power source
US20090195179A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Power line communication
US8450944B2 (en) * 2008-02-05 2013-05-28 J. Baxter Brinkman International Corporation Intelligent light for controlling lighting level

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714451A (en) * 1971-07-12 1973-01-30 Franklin Electric Co Inc Phase selective telemetry system
FR2401563A1 (en) * 1977-08-25 1979-03-23 Landis & Gyr Ag PROCESS FOR GENERATING SIGNALS AND EMISSION MOUNTING FOR INSTALLATION OF INFORMATION TRANSMISSION BY SUPERIMPOSITION ON AN ALTERNATIVE CURRENT DISTRIBUTION NETWORK
GB2008299A (en) * 1977-11-17 1979-05-31 Consumer Elec Prod Remote control over power lines
EP0175863A2 (en) * 1984-08-27 1986-04-02 Zellweger Uster Ag Method for sending data on the line of an alternating-current distribution network, and method for carrying out the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH446962A (en) * 1966-09-30 1967-11-15 Electrometre Transmitting device for a network overlay consumption reporting system
CH666771A5 (en) * 1985-02-15 1988-08-15 Zellweger Uster Ag CIRCUIT ARRANGEMENT FOR AN ELECTRONIC RADIO CONTROL RECEIVER.
CH672210A5 (en) * 1986-10-01 1989-10-31 Zellweger Uster Ag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714451A (en) * 1971-07-12 1973-01-30 Franklin Electric Co Inc Phase selective telemetry system
FR2401563A1 (en) * 1977-08-25 1979-03-23 Landis & Gyr Ag PROCESS FOR GENERATING SIGNALS AND EMISSION MOUNTING FOR INSTALLATION OF INFORMATION TRANSMISSION BY SUPERIMPOSITION ON AN ALTERNATIVE CURRENT DISTRIBUTION NETWORK
GB2008299A (en) * 1977-11-17 1979-05-31 Consumer Elec Prod Remote control over power lines
EP0175863A2 (en) * 1984-08-27 1986-04-02 Zellweger Uster Ag Method for sending data on the line of an alternating-current distribution network, and method for carrying out the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1031408C2 (en) * 2005-12-07 2010-09-07 Inst Information Industry ELECTRONIC SWITCH DEVICE WITH NON-INTERRUPTABLE VOLTAGE CONTROLLER.

Also Published As

Publication number Publication date
DK637987A (en) 1988-06-10
FI875410A0 (en) 1987-12-09
DK168905B1 (en) 1994-07-04
EP0270920B1 (en) 1993-07-14
EP0270920A3 (en) 1989-12-06
DE3786535D1 (en) 1993-08-19
DK637987D0 (en) 1987-12-04
CH672565A5 (en) 1989-11-30
AU8221587A (en) 1988-06-09
ATE91574T1 (en) 1993-07-15
AU603396B2 (en) 1990-11-15
US4899062A (en) 1990-02-06
NZ222830A (en) 1990-10-26
FI875410A (en) 1988-06-10
ZA879120B (en) 1988-06-06

Similar Documents

Publication Publication Date Title
EP0677917B1 (en) Circuit arrangement with an inverter
DE102017212224B4 (en) High voltage generator for an X-ray machine
DE19607704A1 (en) Magnetic stimulator for neuro-muscular tissue
DE2223371A1 (en) X-RAY DIAGNOSTIC APPARATUS WITH A REGULATING DEVICE FOR THE X-RAY PIPE VOLTAGE
DE19724931A1 (en) Power supply unit with a pulse duration modulated inverter, in particular for an X-ray generator
EP0455960B1 (en) Reversible converter and its application as control element of an energy storage device
EP0396126A2 (en) Power supply device
DE2657450A1 (en) FEED CIRCUIT FOR THE MICROWAVE GENERATOR OF A MICROWAVE HEATING DEVICE OR METHOD OF OPERATING SUCH MICROWAVE GENERATOR
EP0270920B1 (en) Method and apparatus to generate emission current signals in an alternating current distribution network
DE3221851A1 (en) SEMICONDUCTOR VOLTAGE REGULATOR AND GENERATOR FOR RADIOLOGY APPLICATIONS WITH SUCH A VOLTAGE REGULATOR
DE102005018525A1 (en) Stabilized energy source
DE3490150C2 (en)
DE3600205C2 (en)
DE1284479B (en) Electric vibration generator with at least three discharge circuits and switching means charged by a DC voltage source
EP0401901B1 (en) Generator for the operation of the rotating anode of an x-ray tube
DE2811908A1 (en) ARRANGEMENT WITH A TRANSFORMER FOR VOLTAGES CHANGING IN JUMPS
DE1080212B (en) Device for converting direct, alternating or three-phase current into three-phase current with adjustable frequency
EP0791244B1 (en) Modulator for generating a high-power electric pulse
DE69728780T2 (en) RESONANCE POWER CONVERTER FOR EXCITING A COIL
EP0067156B1 (en) Circuit for generating high power pulses by means of an inductive energy accumulator
DE2814706C3 (en) Flyback converter arrangement
DE2224393A1 (en) Circuit for switching on thyristors
DE4237131A1 (en) Thin film windshield heater for aircraft
DE19938527C2 (en) Device for controlling reactive power
DE3443809C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19900522

17Q First examination report despatched

Effective date: 19920225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930714

Ref country code: NL

Effective date: 19930714

Ref country code: SE

Effective date: 19930714

REF Corresponds to:

Ref document number: 91574

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3786535

Country of ref document: DE

Date of ref document: 19930819

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931117

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931201

Year of fee payment: 7

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940105

Year of fee payment: 7

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941125

Ref country code: AT

Effective date: 19941125

Ref country code: GB

Effective date: 19941125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941130

BERE Be: lapsed

Owner name: ZELLWEGER USTER A.G.

Effective date: 19941130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST