EP0274631A1 - Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length - Google Patents

Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length Download PDF

Info

Publication number
EP0274631A1
EP0274631A1 EP87117524A EP87117524A EP0274631A1 EP 0274631 A1 EP0274631 A1 EP 0274631A1 EP 87117524 A EP87117524 A EP 87117524A EP 87117524 A EP87117524 A EP 87117524A EP 0274631 A1 EP0274631 A1 EP 0274631A1
Authority
EP
European Patent Office
Prior art keywords
weight
temperature
room temperature
workpiece
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117524A
Other languages
German (de)
French (fr)
Other versions
EP0274631B1 (en
Inventor
Mohamed Yousef Dr. Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0274631A1 publication Critical patent/EP0274631A1/en
Application granted granted Critical
Publication of EP0274631B1 publication Critical patent/EP0274631B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to the improvement of the mechanical properties of oxide dispersion-hardened nickel-based superalloys with overall optimal properties with regard to high-temperature strength, long-term stability and ductility.
  • it relates to a method for increasing the ductility of a workpiece made of an oxide dispersion-hardened nickel-base superalloy in coarse, longitudinally shaped, columnar crystallites at room temperature, the workpiece being produced by powder metallurgy, extruded or forged or hot-isostatically pressed and then zone-annealed.
  • Oxide dispersion-hardened nickel-based superalloys are characterized by high heat resistance, in particular creep resistance and fatigue strength at the highest working temperatures. In lower temperature ranges, especially at room temperatures, however, these alloys are comparatively brittle and also have a low shear strength compared to conventional high-temperature alloys. This complicates their use as blade material in gas turbine construction, since a rotor blade is usually exposed to very different complex thermal and mechanical stresses in terms of time and location.
  • the blade root usually a kind of "fir tree construction" for anchoring in the rotor body, is always subjected to tensile, compressive and shear stresses and is therefore particularly at risk.
  • the material to be used must therefore have a certain minimum ductility and shear strength.
  • the invention is based on the object of specifying a method for improving the ductility of a workpiece consisting of a coarse-grained oxide dispersion-hardened nickel-based superalloy which can be carried out easily and does not impair the other material properties, particularly in the high temperature range.
  • the process is said to increase the comparatively low ductility in the transverse direction of the longitudinal stem crystallites appreciably. This should be accompanied by an increase in shear strength.
  • the majority of the commercially used oxide-hardened nickel-based superalloys contain, apart from the dispersoids, the well-known ⁇ phase in finely divided deposits. It could be shown that the ductility, especially in the low temperature range (eg at room temperature), is essentially dependent on the amount, shape and distribution of this ⁇ phase. It is therefore a matter of bringing this phase into a suitable form or in solution in the matrix, which is according to the invention according to with the help of the above-mentioned heat treatment and targeted cooling of the workpiece.
  • the creep limit and fatigue strength are not adversely affected by the at least partial dissolution of the ⁇ in phase in the matrix in view of the highest operating temperature of the alloy.
  • the figure shows:
  • T1 is the maximum permissible solution temperature for the ⁇ phase in the ⁇ matrix, which is determined by the melting point of the deep-melting phase of the superalloy. In order to prevent melting of this phase with certainty, T 1 must still be around 10 ° C below the lowest melting point (solidus point) of the alloy.
  • T2 is the minimum required solution annealing temperature for the ⁇ phase in the ⁇ matrix. It is assumed that after a finite period of time that is in operation, the entire mass of the ⁇ phase has changed to a solid solution in the ⁇ matrix (ie after a few hours). a is the upper limit of the temperature profile of the slow cooling of the workpiece, which is given by practical operating conditions.
  • Curve 1 relates to the temperature profile of the heat treatment of the material MA 6000 according to Example 1, curve 2 to that of MA 6000 according to Example 2.
  • the temperature curve according to curve 3 relates to a workpiece of the alloy according to example 3.
  • a prismatic sample 180 mm long, 50 mm wide and 12 mm thick was machined from an oxide dispersion-hardened nickel-based alloy with the trade name MA 6000 (INCO).
  • the raw material had undergone the following thermomechanical and thermal treatments at the manufacturer: - hot extrusion - hot rolling - Zone annealing on elongated coarse grain at 1270 ° C - Annealing at 1230 ° C / 1/2 h, air cooling - Annealing at 955 ° C / 2 h, air cooling - Annealing at 845 ° C / 24 h, air cooling
  • the mechanical properties of the material in the form of elongated crystallites in the delivery state were determined as follows (long-term values at room temperature Transverse direction of the crystallites): - yield strength (0.2%) 1095 MPa - tensile strength 1187 MPa - elongation 2.48%
  • the workpiece was then subjected to a heat treatment as follows: - Warming up to 1180 ° C under an argon atmosphere - Solution annealing at 1180 ° C for 2 1/2 hours - Cool down to 640 ° C at a rate of 0.5 ° C / min - Cool down to room temperature in air
  • the raw material had undergone the following thermomechanical and thermal treatments at the manufacturer: - hot extrusion - Zone annealing on elongated coarse grain at 1270 ° C
  • the mechanical properties of the material in the form of elongated crystallites in the delivery state were determined as follows (values at room temperature): In the longitudinal direction of the crystallites: - yield strength (0.2%) 1186 MPa - tensile strength 1210 MPa - elongation 1.37% In the transverse direction of the crystallites: - yield strength (0.2%) 1228 MPa - tensile strength 1232 MPa - elongation 0.33%
  • the workpiece was then subjected to a heat treatment as follows: - Warming up to 1260 ° C under an argon atmosphere - Solution annealing at 1260 ° C for 1 h - Cool down to 600 ° C at a rate of 0.5 ° C / min - Cool down to room temperature in air
  • a prismatic sample 120 mm long, 40 mm wide and 10 mm thick was machined from an oxide dispersion-hardened nickel-based alloy.
  • the raw material had undergone the following thermomechanical and thermal treatments at the manufacturer: - hot extrusion - Zone annealing on elongated coarse grain at 1260 ° C - Annealing at 1230 ° C / 1/2 h, air cooling - Annealing at 955 ° C / 2 h, air cooling - Annealing at 845 ° C / 24 h, air cooling
  • the mechanical properties of the material in the form of elongated crystallites as delivered were determined as follows (values at room temperature in the transverse direction of the crystallites): - yield strength (0.2%) 1316 MPa - tensile strength 1348 MPa - elongation 0.41%
  • the workpiece was then subjected to a heat treatment as follows: - Warming up to 1260 ° C under an argon atmosphere - Solution annealing at 1260 ° C for 1 h - Cool down to 700 ° C at a rate of 0.4 ° C / min - Cool down to room temperature in air
  • the solution annealing temperature for this type of oxide dispersion hardened nickel-based superalloys can be selected within the limits of T2 (1160 ° C) and T1 (1280 ° C). Depending on the workpiece and operational requirements, the solution annealing time is preferably between 1/2 h and 5 h.
  • the cooling rate during the cooling process after solution annealing can be selected within the limits of 5 ° C / min and 0.1 ° C / min. Approx. 0.5 ° C / min are preferred.
  • the lower temperature T3 up to which the heat treatment is to be carried out at a defined cooling rate can be chosen freely between the limits of 500 and 700 ° C.

Abstract

Verfahren zur Erhöhung der Duktilität eines in groben längsgerichteten stengelförmigen Kristalliten vorliegenden Werkstücks aus einer oxyddispersionsgehärteten Nickelbasis-Superlegierung bei Raumtemperatur, indem das zuvor zonengeglühte Werkstück unter Argonatmosphäre während 1/2 h bis 5 h einer Lösungsglühung im Temperaturbereich zwischen 1160 und 1280 °C und anschliessend einer gezielten Abkühlung mit einer Geschwindigkeit von 0,1 °C/min bis 5 °C/min bis auf eine Temperatur von 500 bis 700 °C unterworfen wird. Daraufhin wird das Werkstück an Luft bis auf Raumtemperatur abgekühlt. Bevorzugte gezielte Abkühlungsgeschwindigkeit: ca. 0,5 °C/min.Process for increasing the ductility of a workpiece made of an oxide dispersion-hardened nickel-base superalloy in coarse, longitudinally shaped, columnar crystallites at room temperature by subjecting the previously zone-annealed workpiece to an annealing solution in the temperature range between 1160 and 1280 ° C for 1/2 h to 5 h and then one targeted cooling at a rate of 0.1 ° C / min to 5 ° C / min to a temperature of 500 to 700 ° C is subjected. The workpiece is then cooled in air to room temperature. Preferred targeted cooling rate: approx. 0.5 ° C / min.

Description

Technisches GebietTechnical field

Oxyddispersionsgehärtete Superlegierungen auf der Basis von Nickel, welche dank ihrer hervorragenden mechanischen Eigen­schaften be hohen Temperaturen beim Bau thermischer Maschinen Verwendung finden. Bevorzugte Verwendung als Schaufelwerk­stoff für Gasturbinen.Oxide dispersion hardened superalloys based on nickel, which thanks to their excellent mechanical properties are used at high temperatures in the construction of thermal machines. Preferred use as a blade material for gas turbines.

Die Erfindung bezieht sich auf die Verbesserung der mechanischen Eigenschaften von oxyddispersionsgehärteten Nickelbasis-Super­legierungen mit insgesamt optimalen Eigenschaften bezüglich Hochtemperaturfestigkeit, Langzeitstabilität und Duktilität.The invention relates to the improvement of the mechanical properties of oxide dispersion-hardened nickel-based superalloys with overall optimal properties with regard to high-temperature strength, long-term stability and ductility.

Insbesondere betrifft sie ein Verfahren zur Erhöhung der Duk­tilität eines in groben längsgerichteten stengelförmigen Kri­stalliten vorliegenden Werkstücks aus einer oxyddisperions­gehärteten Nickelbasis-Superlegierung bei Raumtemperatur, wobei das Werkstück pulvermetallurgisch hergestellt, strang­gepresst oder geschmiedet oder heiss-isostatisch gepresst und anschliessend zonengeglüht wird.In particular, it relates to a method for increasing the ductility of a workpiece made of an oxide dispersion-hardened nickel-base superalloy in coarse, longitudinally shaped, columnar crystallites at room temperature, the workpiece being produced by powder metallurgy, extruded or forged or hot-isostatically pressed and then zone-annealed.

Stand der TechnikState of the art

Zum Stand der Technik wird folgende Literatur zitiert:
- G.H. Gessinger, Powder Metallurgy of Superalloys, Butter­worths, London, 1984
- R.F. Singer and E. Arzt, To be published in: Conf. Proc. "High Temperature Materials for Gas Turbines", Liège, Belgium, Oktober 1986
- J.S. Benjamin, Metall. Trans. 1970, 1, 2943 - 2951
- M.Y. Nazmy and R.F. Singer, Effect of inclusions on tensile ductility of a nickel-base oxide dispersion strengthened superalloy, Scripta Metallurgica, Vol. 19, pp. 829-832, 1985, Pergamon Press Ldt.
- T.K. Glasgow, "Longitudinal Shear Behaviour of Several Oxide Dispersion Strengthened Alloys", NASA TM-78973 (1978).
The following literature is cited on the prior art:
- GH Gessinger, Powder Metallurgy of Superalloys, Butterworths, London, 1984
- RF Singer and E. Arzt, To be published in: Conf. Proc. "High Temperature Materials for Gas Turbines", Liège, Belgium, October 1986
- JS Benjamin, metal. Trans. 1970, 1, 2943-2951
- MY Nazmy and RF Singer, Effect of inclusions on tensile ductility of a nickel-base oxide dispersion strengthened superalloy, Scripta Metallurgica, Vol. 19, pp. 829-832, 1985, Pergamon Press Ldt.
- TK Glasgow, "Longitudinal Shear Behavior of Several Oxide Dispersion Strengthened Alloys", NASA TM-78973 (1978).

Oxyddispersionsgehärtete Nickelbasis-Superlegierungen zeichnen sich durch hohe Warmfestigkeit, insbesondere Kriechfestigkeit und Ermüdungsfestigkeit bei höchsten Arbeitstemperaturen aus. In tieferen Temperaturbereichen, insbesondere bei Raumtempera­turen sind jedoch diese Legierungen vergleichsweise spröde und haben ausserdem im Vergleich zu konventionellen Hochtempera­turlegierungen eine geringe Scherfestigkeit. Dies erschwert ihre Verwendung als Schaufelmaterial im Gasturbinenbau, da eine Rotorschaufel in der Regel zeitlich und örtlich sehr verschiedenen komplexen thermischen und mechanischen Bean­spruchungen ausgesetzt ist. Insbesondere der Schaufelfuss, meist eine Art "Tannenbaumkonstruktion" zwecks Verankerung im Rotorkörper ist stets Zug-, Druck- und Schubspannungen unterworfen und demzufolge besonders gefährdet. Ausserdem sollte er Deformationen übernehmen können, um sich den Betriebs­ bedingungen anpassen zu können. Der zu verwendende Werkstoff muss daher eine bestimmte minimale Duktilität und Scherfestig­keit aufweisen.Oxide dispersion-hardened nickel-based superalloys are characterized by high heat resistance, in particular creep resistance and fatigue strength at the highest working temperatures. In lower temperature ranges, especially at room temperatures, however, these alloys are comparatively brittle and also have a low shear strength compared to conventional high-temperature alloys. This complicates their use as blade material in gas turbine construction, since a rotor blade is usually exposed to very different complex thermal and mechanical stresses in terms of time and location. In particular, the blade root, usually a kind of "fir tree construction" for anchoring in the rotor body, is always subjected to tensile, compressive and shear stresses and is therefore particularly at risk. In addition, he should be able to take deformations to the operating to be able to adapt conditions. The material to be used must therefore have a certain minimum ductility and shear strength.

Es besteht daher ein Bedürfnis, die obigen Mängel weitgehend zu beseitigen und Wege zur Verbesserung des Werkstoffverhaltens im Betrieb aufzuzeigen.There is therefore a need to largely remedy the above deficiencies and to show ways of improving the material behavior in operation.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verbesserung der Duktilität eines aus einer grobkörnigen oxyd­dispersionsgehärteten Nickelbasis-Superlegierung bestehenden Werkstücks anzugeben, das sich einfach durchführen lässt und den übrigen Werkstoffeigenschaften, insbesondere im Hochtempera­turbereich keinen Abbruch tut. Das Verfahren soll insbesondere die vergleichweise geringe Duktilität in der Querrichtung der längsgerichteten Stengelkristallite nahmhaft erhöhen. Damit einher soll eine Erhöhung der Scherfestigkeit erreicht werden.The invention is based on the object of specifying a method for improving the ductility of a workpiece consisting of a coarse-grained oxide dispersion-hardened nickel-based superalloy which can be carried out easily and does not impair the other material properties, particularly in the high temperature range. In particular, the process is said to increase the comparatively low ductility in the transverse direction of the longitudinal stem crystallites appreciably. This should be accompanied by an increase in shear strength.

Diese Aufgabe wird dadurch gelöst, dass im eingangs erwähnten Vefahren das Werkstück nach dem Zonenglühen unter Argonatmos­phäre während 1/2 bis 5 h einer Lösungsglühung bei einer Tem­peratur zwischen 1160 und 1280 °C unterworfen und anschlies­send mit einer Geschwindigkeit zwischen 0,1 °C/min und 5 °C/min bis auf eine Temperatur von 500 bis 700 °C abgekühlt und darauf­hin in Luft bis auf Raumtemperatur abgekühlt wird.This object is achieved in that in the process mentioned at the outset, after the zone annealing under an argon atmosphere, the workpiece is subjected to solution annealing for 1/2 to 5 hours at a temperature between 1160 and 1280 ° C. and then at a speed between 0.1 ° C./min and 5 ° C / min cooled to a temperature of 500 to 700 ° C and then cooled in air to room temperature.

Der Grossteil der komerziell verwendeten oxyddispersionsgehär­teten Nickelbasis-Superlegierungen enthält ausser den Disper­soiden die bekannte γʹ-Phase in feinverteilten Auscheidungen. Es konnte gezeigt werden, dass die Duktilität insbesondere im tiefen Temperaturbereich (z.B. bei Raumtemperatur) wesentlich von der Menge, Form und Verteilung dieser γʹ-Phase abhängig ist. Es handelt sich also darum, diese Phase in eine geeignete Form bzw. in der Matrix in Lösung zu bringen, was erfindungs­ gemäss mit Hilfe der oben genannten Wärmebehandlung und geziel­ter Abkühlung des Werkstücks geschieht. Da die Hochtemperatur­eigenschaften der oxyddispersionsgehärteten Legierungen haupt­sächlich durch die Dispersoide bestimmt sind, werden Kriech­grenze und Ermüdungsfestigkeit durch die mindestens teilweise Lösung der γʹ-Phase in der Matrix in Anbetracht der höchsten Einsatztemperatur der Legierung nicht nachteilig beeinflusst.The majority of the commercially used oxide-hardened nickel-based superalloys contain, apart from the dispersoids, the well-known γʹ phase in finely divided deposits. It could be shown that the ductility, especially in the low temperature range (eg at room temperature), is essentially dependent on the amount, shape and distribution of this γʹ phase. It is therefore a matter of bringing this phase into a suitable form or in solution in the matrix, which is according to the invention according to with the help of the above-mentioned heat treatment and targeted cooling of the workpiece. Since the high-temperature properties of the oxide dispersion-hardened alloys are mainly determined by the dispersoids, the creep limit and fatigue strength are not adversely affected by the at least partial dissolution of the γ in phase in the matrix in view of the highest operating temperature of the alloy.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Erfindung wird anhand der durch eine Figur näher erläuter­ten Ausführungsbeispiele beschrieben:The invention is described on the basis of the exemplary embodiments explained in more detail by a figure:

Dabei zeigt die Figur:The figure shows:

Ein Diagramn des Temperaturverlaufs in Funktion der Zeit bei der Durchführung des Verfahrens. T₁ ist die höchstzulässige Lösungstemperatur für die γʹ-Phase in der γ-Matrix, welche durch den Schmelzpunkt der tiefstschmelzenden Phase der Super­legierung bestimmt wird. Um mit Sicherheit ein Anschmelzen dieser Phase zu verhindern, muss T₁ noch um einen Wert von ca. 10 °C unter dem tiefsten Schmelzpunkt (Soliduspunkt) der Legierung 1egen. T₂ ist die mindest notwendige Lösungsglüh­temperatur für die γʹ-Phase in der γʹ-Matrix. Dabei wird angenom­men, dass nach einer endlichen Zeit, welche im Betrieb vert,ret­bar ist (d.h. nach eingen Stunden) die gesamte Masse der γʹ-Phase in feste Lösung in der γ-Matrix übergegangen ist. a ist die obere Grenze des Temperaturverlaufs der langsamen Abkühlung des Werkstücks, die durch praktische Betriebsbedingungen gegeben ist. Eine noch langsamere Abkühlung wäre unwirtschaftlich und ist nicht notwendig. b ist die untere Grenze des Temperatur­verlaufs der langsamen Abkühlung des Werkstücks. Eine schnellere Abkühlung ist nicht zulässig, da sich dabei zumindest ein Teil der in Lösung befindlichen γʹ-Phase wieder ausscheiden würde. Kurve 1 bezieht sich auf den Temperaturverlauf der Wärmebehand ung des Werkstoffs MA 6000 gemäss Beispiel 1, Kurve 2 auf denjenigen von MA 6000 gemäss Beispiel 2. Der Temperaturverlauf nach Kurve 3 bezieht sich auf ein Werkstück der Legierung gemäss Beispiel 3.A diagram of the temperature curve as a function of time when carrying out the method. T₁ is the maximum permissible solution temperature for the γʹ phase in the γ matrix, which is determined by the melting point of the deep-melting phase of the superalloy. In order to prevent melting of this phase with certainty, T 1 must still be around 10 ° C below the lowest melting point (solidus point) of the alloy. T₂ is the minimum required solution annealing temperature for the γʹ phase in the γʹ matrix. It is assumed that after a finite period of time that is in operation, the entire mass of the γʹ phase has changed to a solid solution in the γ matrix (ie after a few hours). a is the upper limit of the temperature profile of the slow cooling of the workpiece, which is given by practical operating conditions. An even slower cooling would be uneconomical and is not necessary. b is the lower limit of the temperature curve for the slow cooling of the workpiece. A faster cooling is not permitted since at least some of the γʹ phase in solution would separate out again. Curve 1 relates to the temperature profile of the heat treatment of the material MA 6000 according to Example 1, curve 2 to that of MA 6000 according to Example 2. The The temperature curve according to curve 3 relates to a workpiece of the alloy according to example 3.

Ausführungsbeispiel 1:Example 1:

Siehe Kurve 1 der Figur!See curve 1 of the figure!

Aus einer oxyddispersionsgehärteten Nickelbasislegierung mit dem Handelsnamen MA 6000 (INCO) wurde eine prismatische Probe von 180 mm Länge, 50 mm Breite und 12 mm Dicke herausgearbei­tet. Der Werkstoff hatte die nachfolgende Zusammensetzung:
Cr = 15 Gew.-%
W = 4,0 Gew.-%
Mo = 2,0 Gew.-%
Al = 4,5 Gew.-%
Ti = 2,5 Gew.-%
Ta = 2,0 Gew.-%
C = 0,05 Gew.-%
B = 0,01 Gew.-%
Zr = 0,15 Gew.-%
Y₂O₃ = 1,1 Gew.-%
Ni = Rest

A prismatic sample 180 mm long, 50 mm wide and 12 mm thick was machined from an oxide dispersion-hardened nickel-based alloy with the trade name MA 6000 (INCO). The material had the following composition:
Cr = 15% by weight
W = 4.0% by weight
Mo = 2.0% by weight
Al = 4.5% by weight
Ti = 2.5% by weight
Ta = 2.0% by weight
C = 0.05% by weight
B = 0.01% by weight
Zr = 0.15% by weight
Y₂O₃ = 1.1% by weight
Ni = rest

Das Ausgangsmaterial hatte beim Hersteller folgende thermo­mechanischen und thermischen Behandlungen durchgemacht:
- Warmstrangpressen
- Warmwalzen
- Zonenglühen auf längliches Grobkorn bei 1270 °C
- Glühen bei 1230 °C/1/2 h, Luftabkühlung
- Glühen bei 955 °C/2 h, Luftabkühlung
- Glühen bei 845 °C/24 h, Luftabkühlung

The raw material had undergone the following thermomechanical and thermal treatments at the manufacturer:
- hot extrusion
- hot rolling
- Zone annealing on elongated coarse grain at 1270 ° C
- Annealing at 1230 ° C / 1/2 h, air cooling
- Annealing at 955 ° C / 2 h, air cooling
- Annealing at 845 ° C / 24 h, air cooling

Die mechanischen Eigenschaften des in Form von langgestreckten Kristalliten vorliegenden Materials im Anlieferungszustand wurden wie folgt bestimmt (Werte bei Raumtemperatur in langer Querrichtung der Kristallite):
- Streckgrenze (0,2 %)      1095 MPa
- Zugfestigkeit      1187 MPa
- Dehnung      2,48 %

The mechanical properties of the material in the form of elongated crystallites in the delivery state were determined as follows (long-term values at room temperature Transverse direction of the crystallites):
- yield strength (0.2%) 1095 MPa
- tensile strength 1187 MPa
- elongation 2.48%

Das Werkstück wurde nun einer Wärmebehandlung wie folgt unter­worfen:
- Erwärmen unter Argonatmosphäre bis auf 1180 °C
- Lösungsglühen bei 1180 °C während 2 1/2 h
- Abkühlen bis auf 640 °C mit einer Geschwindig­keit von 0,5 °C/min
- Abkühlen bis auf Raumtemperatur an Luft

The workpiece was then subjected to a heat treatment as follows:
- Warming up to 1180 ° C under an argon atmosphere
- Solution annealing at 1180 ° C for 2 1/2 hours
- Cool down to 640 ° C at a rate of 0.5 ° C / min
- Cool down to room temperature in air

Nach dieser Behandlung stellten sich die mechanischen Eigen­schaften wie folgt (Werte bei Raumtepmeratur in langer Quer­richtung der Kristallite):
- Streckgrenze (0,2 %)      930 MPa
- Zugfestigkeit      1147 MPa
- Dehnung      4,30 %
After this treatment, the mechanical properties were as follows (values for room temperature in the long transverse direction of the crystallites):
- yield strength (0.2%) 930 MPa
- tensile strength 1147 MPa
- elongation 4.30%

Ausführungsbeispiel 2:Example 2:

Siehe Kurve 2 der Figur!See curve 2 of the figure!

Aus der Nickelbasislegierung MA 6000 mit der Zusammensetzung gemäss Beispiel 1 wurde eine Gasturbinenschaufel mit folgenden Massen des Schaufelblattes (Tragflügelprofil) herausgearbeitet:
Höhe = 160 mm
Breite = 40 mm
max. Dicke = 8 mm
Profilhöhe = 13 mm

A gas turbine blade with the following dimensions of the airfoil (airfoil profile) was machined from the nickel-based alloy MA 6000 with the composition according to Example 1:
Height = 160 mm
Width = 40 mm
Max. Thickness = 8 mm
Profile height = 13 mm

Das Ausgangsmaterial hatte beim Hersteller folgende thermo­mechanischen und thermischen Behandlungen durchgemacht:
- Warmstrangpressen
- Zonenglühen auf längliches Grobkorn bei 1270 °C

The raw material had undergone the following thermomechanical and thermal treatments at the manufacturer:
- hot extrusion
- Zone annealing on elongated coarse grain at 1270 ° C

Die mechanischen Eigenschaften des in Form von langgestreckten Kristalliten vorliegenden Materials im Anlieferungszustand wurden wie folgt bestimmt (Werte bei Raumtemperatur):

In Längsrichtung der Kristallite:

- Streckgrenze      (0,2 %) 1186 MPa
- Zugfestigkeit      1210 MPa
- Dehnung      1,37 %

In Querrichtung der Kristallite:

- Streckgrenze (0,2 %) 1228 MPa
- Zugfestigkeit      1232 MPa
- Dehnung      0,33 %
The mechanical properties of the material in the form of elongated crystallites in the delivery state were determined as follows (values at room temperature):

In the longitudinal direction of the crystallites:

- yield strength (0.2%) 1186 MPa
- tensile strength 1210 MPa
- elongation 1.37%

In the transverse direction of the crystallites:

- yield strength (0.2%) 1228 MPa
- tensile strength 1232 MPa
- elongation 0.33%

Das Werkstück wurde nun einer Wärmebehandlung wie folgt unter­worfen:
- Erwärmen unter Argonatmosphäre bis auf 1260 °C
- Lösungsglühen bei 1260 °C während 1 h
- Abkühlen bis auf 600 °C mit einer Geschwindig­keit von 0,5 °C/min
- Abkühlen bis auf Raumtemperatur an Luft

The workpiece was then subjected to a heat treatment as follows:
- Warming up to 1260 ° C under an argon atmosphere
- Solution annealing at 1260 ° C for 1 h
- Cool down to 600 ° C at a rate of 0.5 ° C / min
- Cool down to room temperature in air

Nach dieser Behandlung stellten sich die mechanischen Eigen­schaften wie folgt (Werte bei Raumtemperatur):

In Längsrichtung der Kristallite:

- Streckgrenze (0,2 %)      1028 MPa
- Zugfestigkeit      1200 MPa
- Dehnung      5,37 %

In Querrichtung der Kristallite:

- Streckgrenze (0,2 %)      1038 MPa
- Zugfestigkeit      1165 MPa
- Dehnung      1,97 %
After this treatment, the mechanical properties were as follows (values at room temperature):

In the longitudinal direction of the crystallites:

- yield strength (0.2%) 1028 MPa
- tensile strength 1200 MPa
- elongation 5.37%

In the transverse direction of the crystallites:

- yield strength (0.2%) 1038 MPa
- tensile strength 1165 MPa
- elongation 1.97%

Ausführungsbeispiel 3:Example 3: Siehe Kurve 3 der Figur!See curve 3 of the figure!

Aus einer oxyddispersionsgehärteten Nickelbasislegierung wurde eine prismatische Probe von 120 mm Länge, 40 mm Breite und 10 mm Dicke herausgearbeitet. Der Werkstoff hatte die nach­folgende Zusammensetzung:
Cr = 19,6 Gew.-%
W = 3,6 Gew.-%
Mo = 2,0 Gew.-%
Al = 6,0 Gew.-%
Fe = 1,4 Gew.-%
C = 0,04 Gew.-%
B = 0,017 Gew.-%
Zr = 0,12 Gew.-%
Y₂O₃ = 1,1 Gew.-%
Ni = Rest

A prismatic sample 120 mm long, 40 mm wide and 10 mm thick was machined from an oxide dispersion-hardened nickel-based alloy. The material had the following composition:
Cr = 19.6% by weight
W = 3.6% by weight
Mo = 2.0% by weight
Al = 6.0% by weight
Fe = 1.4% by weight
C = 0.04% by weight
B = 0.017% by weight
Zr = 0.12% by weight
Y₂O₃ = 1.1% by weight
Ni = rest

Das Ausgangsmaterial hatte beim Hersteller folgende thermo­mechanischen und thermischen Behandlungen durchgemacht:
- Warmstrangpressen
- Zonenglühen auf längliches Grobkorn bei 1260 °C
- Glühen bei 1230 °C/1/2 h, Luftabkühlung
- Glühen bei 955 °C/2 h, Luftabkühlung
- Glühen bei 845 °C/24 h, Luftabkühlung

The raw material had undergone the following thermomechanical and thermal treatments at the manufacturer:
- hot extrusion
- Zone annealing on elongated coarse grain at 1260 ° C
- Annealing at 1230 ° C / 1/2 h, air cooling
- Annealing at 955 ° C / 2 h, air cooling
- Annealing at 845 ° C / 24 h, air cooling

Die mechanischen Eigenschaften des in Form von langgestreckten Kristalliten vorliegenden Materials im Anlieferungszustand wurden wie folgt bestimmt (Werte bei Raumtemperatur in Quer­richtung der Kristallite):
- Streckgrenze (0,2 %)      1316 MPa
- Zugfestigkeit      1348 MPa
- Dehnung      0,41 %

The mechanical properties of the material in the form of elongated crystallites as delivered were determined as follows (values at room temperature in the transverse direction of the crystallites):
- yield strength (0.2%) 1316 MPa
- tensile strength 1348 MPa
- elongation 0.41%

Das Werkstück wurde nun einer Wärmebehandlung wie folgt unter­zogen:
- Erwärmen unter Argonatmosphäre bis auf 1260 °C
- Lösungsglühen bei 1260 °C während 1 h
- Abkühlen bis auf 700 °C mit einer Geschwindig­keit von 0,4 °C/min
- Abkühlen bis auf Raumtemperatur an Luft

The workpiece was then subjected to a heat treatment as follows:
- Warming up to 1260 ° C under an argon atmosphere
- Solution annealing at 1260 ° C for 1 h
- Cool down to 700 ° C at a rate of 0.4 ° C / min
- Cool down to room temperature in air

Nach dieser Behandlung stellten sich die mechanischen Eigen­schaften wie folgt (Werte bei Raumtemperatur in Querrichtung der Kristallite):
- Streckgrenze (0,2 %)      1095 MPa
- Zugfestigkeit      1221 MPa
- Dehnung      1,29 %

After this treatment, the mechanical properties were as follows (values at room temperature in the transverse direction of the crystallites):
- yield strength (0.2%) 1095 MPa
- tensile strength 1221 MPa
- elongation 1.29%

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Die Lösungsglühtemperatur für diese Art oxyddispersionsgehärtete Nickelbasis-Superlegierungen kann innerhalb der Grenzen von T₂ (1160 °C) und T₁ (1280 °C) gewählt werden. Die Zeitdauer der Lösungsglühung liegt je nach Werkstück und betrieblichen Erfordernissen vorzugsweise zwischen 1/2 h und 5 h. Die Abküh­lungsgeschwindigkeit während des Abkühlungsprozesses nach der Lösungsglühung kann innerhalb der Grenzen von 5 °C/min und 0,1 °C/min gewählt werden. Bevorzugt werden ca. 0,5 °C/min. Die untere Temperatur T₃, bis zu welcher die Wärmebehandlung mit definierter Abkühlungsgeschwindigkeit durchgeführt werden soll, kann frei zwischen den Grenzen von 500 und 700 °C gewählt werden.The invention is not restricted to the exemplary embodiments. The solution annealing temperature for this type of oxide dispersion hardened nickel-based superalloys can be selected within the limits of T₂ (1160 ° C) and T₁ (1280 ° C). Depending on the workpiece and operational requirements, the solution annealing time is preferably between 1/2 h and 5 h. The cooling rate during the cooling process after solution annealing can be selected within the limits of 5 ° C / min and 0.1 ° C / min. Approx. 0.5 ° C / min are preferred. The lower temperature T₃ up to which the heat treatment is to be carried out at a defined cooling rate can be chosen freely between the limits of 500 and 700 ° C.

Aus den Beispielen geht hervor, dass die im Zugversuch bei Raumtemperatur festgestellte Dehnung am fertigen Werkstück in der Längsrichtung der Stengelkristallite bis ca. auf das Doppelte, in der langen Querrichtung durchschnittlich bis auf das Fünffache gesteigert werden konnte. Weitere Versuche zeigten, dass damit auch eine namhafte Steigerung der Duktili­tät verbunden ist.The examples show that the elongation of the finished workpiece in the tensile test at room temperature in the longitudinal direction of the stem crystallites could be increased by approximately twice and in the long transverse direction on average by up to five times. Further tests showed that this also involves a notable increase in ductility.

Claims (4)

1. Verfahren zur Erhöhung der Duktilität eines in groben längs­gerichteten stengelförmigen Kristalliten vorliegenden Wer­stücks aus einer oxyddispersionsgehärteten Nickelbasis-­Superlegerung bei Raumtemperatur, wobei das Werkstück pulvermetallurgisch hergestellt, stranggepresst oder ge­schmiedet oder heissisostatisch gepresst und anschlies­send zonengeglüht wird, dadurch gekennzeichnet, dass das Werkstück nach dem Zonenglühen unter Argonatmosphäre während 1/2 bis 5 h einer Lösungsglühung bei einer Temperatur zwi­schen 1160 und 1280 °C unterworfen und anschliessend mit einer Geschwindigkeit zwischen 0,1 °C/min und 5 °C/min bis auf eine Temperatur von 500 bis 700 °C abgekühlt und daraufhin in Luft bis auf Raumtemperatur abgekühlt wird.1.Method for increasing the ductility of a workpiece present in coarse, longitudinally stem-shaped crystallites from an oxide dispersion-hardened nickel-based superlayer at room temperature, the workpiece being manufactured by powder metallurgy, extruded or forged or hot-isostatically pressed and then zone-annealed, characterized in that the workpiece is annealed after the zone annealing subjected to solution annealing at a temperature between 1160 and 1280 ° C under an argon atmosphere for 1/2 to 5 h and then at a speed between 0.1 ° C / min and 5 ° C / min to a temperature of 500 to 700 ° C cooled and then cooled in air to room temperature. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück aus einem Werkstoff der nachfolgenden Zusammen­setzung

Cr = 15 Gew.-%
W = 4,0 Gew.-%
Mo = 2,0 Gew.-%
Al = 4,5 Gew.-%
Ti = 2,5 Gew.-%
Ta = 2,0 Gew.-%
C = 0,05 Gew.-%
B = 0,01 Gew.-%
Zr = 0,15 Gew.-%
Y₂O₃ = 1,1 Gew.-%
Ni = Rest

besteht, und dass das Werkstück unter Argonatmosphäre während 1 h einer Lösungsglühung bei einer Temperatur von 1260 °C unterworfen und anschliessend mit einer Geschwindigkeit von 0,5 °C/min bis auf eine Temperatur von 500 bis 700 °C abgekühlt und daraufhin in Luft bis auf Raumtemperatur abgekühlt wird.
2. The method according to claim 1, characterized in that the workpiece made of a material of the following composition

Cr = 15% by weight
W = 4.0% by weight
Mo = 2.0% by weight
Al = 4.5% by weight
Ti = 2.5% by weight
Ta = 2.0% by weight
C = 0.05% by weight
B = 0.01% by weight
Zr = 0.15% by weight
Y₂O₃ = 1.1% by weight
Ni = rest

and that the workpiece is under an argon atmosphere for 1 hour solution annealing at a temperature of 1260 ° C subjected and then cooled at a rate of 0.5 ° C / min to a temperature of 500 to 700 ° C and then cooled in air to room temperature.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück aus einem Werkstoff der nachfolgenden Zusammen­setzung

Cr = 15 Gew.-%
W = 4,0 Gew.-%
Mo = 2,0 Gew.-%
Al = 4,5 Gew.-%
Ti = 2,5 Gew.-%
Ta = 2,0 Gew.-%
C = 0,05 Gew.-%
B = 0,01 Gew.-%
Zr = 0,15 Gew.-%
Y₂O₃ = 1,1 Gew.-%
Ni = Rest

besteht, und dass das Werkstück unter Argonatmosphäre während 2 1/2 h einer Lösungsglühung bei einer Temperatur von 1180 °C unterworfen und anschliessend mit einer Geschwindigkeit von 0,5 °C/min bis auf eine Temperatur von 500 bis 700 °C abgekühlt und daraufhin in Luft bis auf Raumtemperatur abgekühlt wird.
3. The method according to claim 1, characterized in that the workpiece made of a material of the following composition

Cr = 15% by weight
W = 4.0% by weight
Mo = 2.0% by weight
Al = 4.5% by weight
Ti = 2.5% by weight
Ta = 2.0% by weight
C = 0.05% by weight
B = 0.01% by weight
Zr = 0.15% by weight
Y₂O₃ = 1.1% by weight
Ni = rest

and that the workpiece is subjected to solution annealing under an argon atmosphere for 2 1/2 hours at a temperature of 1180 ° C. and then cooled at a speed of 0.5 ° C./min to a temperature of 500 to 700 ° C. and then is cooled in air to room temperature.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück aus einem Werkstoff der nachfolgenden Zusammen­setzung

Cr = 19,6 Gew.-%
W = 3,6 Gew.-%
Mo = 2,0 Gew.-%
Al = 6,0 Gew.-%

Fe = 1,4 Gew.-%
C = 0,04 Gew.-%
B = 0,017 Gew.-%
Zr = 0,12 Gew.-%
Y₂O₃ = 1,1 Gew.-%
Ni = Rest

besteht, und dass das Werkstück unter Argonatmosphäre während 1 h einer Lösungsglühung bei einer Temperatur von 1260 °C unterworfen und anschliessend mit einer Geschwindigkeit von 0,4 °C/min bis auf eine Temperatur von 500 bis 700 °C abgekühlt und daraufhin in Luft bis auf Raumtemperatur abgekühlt wird.
4. The method according to claim 1, characterized in that the workpiece made of a material of the following composition

Cr = 19.6% by weight
W = 3.6% by weight
Mo = 2.0% by weight
Al = 6.0% by weight

Fe = 1.4% by weight
C = 0.04% by weight
B = 0.017% by weight
Zr = 0.12% by weight
Y₂O₃ = 1.1% by weight
Ni = rest

and that the workpiece is subjected to solution annealing at an temperature of 1260 ° C for 1 h under an argon atmosphere and then cooled to a temperature of 500 to 700 ° C at a speed of 0.4 ° C / min and then in air until is cooled to room temperature.
EP87117524A 1986-12-19 1987-11-27 Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length Expired - Lifetime EP0274631B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5111/86 1986-12-19
CH5111/86A CH671583A5 (en) 1986-12-19 1986-12-19

Publications (2)

Publication Number Publication Date
EP0274631A1 true EP0274631A1 (en) 1988-07-20
EP0274631B1 EP0274631B1 (en) 1991-03-06

Family

ID=4288113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117524A Expired - Lifetime EP0274631B1 (en) 1986-12-19 1987-11-27 Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length

Country Status (5)

Country Link
US (1) US4795507A (en)
EP (1) EP0274631B1 (en)
JP (1) JPS63162846A (en)
CH (1) CH671583A5 (en)
DE (1) DE3768464D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398121A1 (en) * 1989-05-16 1990-11-22 Asea Brown Boveri Ag Process for producing coarse columnar grains directionally oriented along their length in an oxide dispersion hardened nickel base superalloy
EP0442545A1 (en) * 1990-02-14 1991-08-21 PM HOCHTEMPERATUR-METALL GmbH Process for producing heat treated profiles and bodies
EP0456119A1 (en) * 1990-05-07 1991-11-13 PM HOCHTEMPERATUR-METALL GmbH Nickel-base superalloy
EP0761826A2 (en) * 1995-08-28 1997-03-12 PLANSEE Aktiengesellschaft Method for manufacturing seamless pipes
EP0767252A1 (en) * 1995-10-02 1997-04-09 United Technologies Corporation Nickel base superalloy articles with improved resistance to crack propagation
EP3421621B1 (en) 2017-06-28 2021-01-06 United Technologies Corporation Method for heat treating components

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE123076T1 (en) * 1990-03-20 1995-06-15 Asea Brown Boveri METHOD FOR PRODUCING LONGITUDINALLY DIRECTED COARSE-GRAINED STEM CRYSTALS IN A WORKPIECE CONSISTING OF AN OXIDE DISPERSION HARDENED NICKEL-BASED SUPER ALLOY.
KR100250810B1 (en) * 1997-09-05 2000-04-01 이종훈 Annealing process of ni-base alloy for corrosion resistance improvement
CA2287116C (en) * 1999-10-25 2003-02-18 Mitsubishi Heavy Industries, Ltd. Process for the heat treatment of a ni-base heat-resisting alloy
EP2205771B1 (en) 2007-10-25 2019-04-03 GKN Aerospace Sweden AB Method, nickel base alloy and component
KR101007582B1 (en) * 2008-06-16 2011-01-12 한국기계연구원 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
CH705750A1 (en) * 2011-10-31 2013-05-15 Alstom Technology Ltd A process for the production of components or portions, which consist of a high-temperature superalloy.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943141A (en) * 1961-01-24 1963-11-27 Rolls Royce Method of heat treating nickel alloys
US3746581A (en) * 1972-01-31 1973-07-17 Nat Nickel Co Inc Zone annealing in dispersion strengthened materials
US3871928A (en) * 1973-08-13 1975-03-18 Int Nickel Co Heat treatment of nickel alloys
EP0045984A1 (en) * 1980-08-08 1982-02-17 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for manufacturing an article from a heat-resisting alloy
EP0194683A1 (en) * 1985-03-13 1986-09-17 Inco Alloys International, Inc. Nickel-chromium alloys having a dispersed phase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH554972A (en) * 1972-01-05 1974-10-15
JPS512548B2 (en) * 1972-10-09 1976-01-27
CH580197B5 (en) * 1973-10-18 1976-09-30 Ciba Geigy Ag
CH963874A4 (en) * 1974-07-12 1977-04-29
FR2451270A1 (en) * 1979-03-12 1980-10-10 Sublistatic Holding Sa NOVEL AUXILIARY DRY THERMO-PRINTING MEDIA, PREPARATION METHODS THEREOF AND INKS FOR PRINTING SUCH MEDIA
US4518442A (en) * 1981-11-27 1985-05-21 United Technologies Corporation Method of producing columnar crystal superalloy material with controlled orientation and product
EP0115092B1 (en) * 1983-02-01 1987-08-12 BBC Brown Boveri AG Structural element with a high corrosion and oxidation resistance made from a dispersion-hardened superalloy, and process for its manufacture
US4502896A (en) * 1984-04-04 1985-03-05 Raychem Corporation Method of processing beta-phase nickel/titanium-base alloys and articles produced therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943141A (en) * 1961-01-24 1963-11-27 Rolls Royce Method of heat treating nickel alloys
US3746581A (en) * 1972-01-31 1973-07-17 Nat Nickel Co Inc Zone annealing in dispersion strengthened materials
US3871928A (en) * 1973-08-13 1975-03-18 Int Nickel Co Heat treatment of nickel alloys
EP0045984A1 (en) * 1980-08-08 1982-02-17 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for manufacturing an article from a heat-resisting alloy
EP0194683A1 (en) * 1985-03-13 1986-09-17 Inco Alloys International, Inc. Nickel-chromium alloys having a dispersed phase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POWDER METALLURGY, Nr. 4, 1981, Seiten 191-195, The Metals Society, US; R.C. BENN et al.: "Scale-up thermomechanical processing of MA 6000E" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398121A1 (en) * 1989-05-16 1990-11-22 Asea Brown Boveri Ag Process for producing coarse columnar grains directionally oriented along their length in an oxide dispersion hardened nickel base superalloy
EP0442545A1 (en) * 1990-02-14 1991-08-21 PM HOCHTEMPERATUR-METALL GmbH Process for producing heat treated profiles and bodies
EP0456119A1 (en) * 1990-05-07 1991-11-13 PM HOCHTEMPERATUR-METALL GmbH Nickel-base superalloy
EP0761826A2 (en) * 1995-08-28 1997-03-12 PLANSEE Aktiengesellschaft Method for manufacturing seamless pipes
EP0761826A3 (en) * 1995-08-28 1998-10-28 PLANSEE Aktiengesellschaft Method for manufacturing seamless pipes
EP0767252A1 (en) * 1995-10-02 1997-04-09 United Technologies Corporation Nickel base superalloy articles with improved resistance to crack propagation
US5725692A (en) * 1995-10-02 1998-03-10 United Technologies Corporation Nickel base superalloy articles with improved resistance to crack propagation
US5788785A (en) * 1995-10-02 1998-08-04 United Technology Corporation Method for making a nickel base alloy having improved resistance to hydrogen embittlement
KR100391737B1 (en) * 1995-10-02 2003-10-17 유나이티드 테크놀로지스 코포레이션 Nickel-based superalloy products with improved crack propagation resistance
EP3421621B1 (en) 2017-06-28 2021-01-06 United Technologies Corporation Method for heat treating components

Also Published As

Publication number Publication date
EP0274631B1 (en) 1991-03-06
CH671583A5 (en) 1989-09-15
DE3768464D1 (en) 1991-04-11
US4795507A (en) 1989-01-03
JPS63162846A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
EP0290898B1 (en) Process for production of oxyde dispersion hardened nickelbase superalloy workpieces of various cross sections with oriented coarse columnar crystals
EP0513407B1 (en) Method of manufacture of a turbine blade
AT393842B (en) METHOD FOR FORGING NICKEL-BASED SUPER ALLOYS AND AN OBJECT FROM A NICKEL-BASED SUPER ALLOY WITH IMPROVED LUBRICABILITY
DE3023576C2 (en)
EP2956562B1 (en) Nickel-cobalt alloy
DE3445768C2 (en)
EP0196447B1 (en) Process for enhancing the oxidation and corrosion resistance of a component made from a dispersion-hardened superalloy by means of a surface treatment
DE3926289A1 (en) OBJECT OF A NICKEL BASE ALLOY, ALLOY AND METHOD FOR PRODUCING THEM RESISTING TO GROWTH OF FATIGUE CRACKS
DE3837544C2 (en) Process for heat treating a Ti-6246 alloy
DE60302108T2 (en) Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method
EP0274631B1 (en) Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length
DE3921626C2 (en) High strength component with low fatigue crack propagation speed
DE19756354B4 (en) Shovel and method of making the blade
DE2230317A1 (en) METHOD OF CASTING METAL OBJECTS
DE60008116T2 (en) Superalloy with optimized high-temperature performance in high-pressure turbine disks
DE69922332T2 (en) Thermomechanical process for the production of superalloys with high strength and high thermal stability
EP2402473A2 (en) Process for producing a single-crystal component made of a nickel-based superalloy
EP0115092B1 (en) Structural element with a high corrosion and oxidation resistance made from a dispersion-hardened superalloy, and process for its manufacture
DE2046409A1 (en) Thermo-mechanical increase in the resistance of the superalloys
CH674019A5 (en)
CH365880A (en) Process for the production of workpieces with high damping capacity, workpiece produced according to this process and its use
EP1341945B1 (en) Method for producing components with a high load capacity from tial alloys
DE4318827A1 (en) Heavy metal alloy and process for its manufacture
DE602004002906T2 (en) High temperature resistant member for use in gas turbines
EP0398121B1 (en) Process for producing coarse columnar grains directionally oriented along their length in an oxide dispersion hardened nickel base superalloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19881209

17Q First examination report despatched

Effective date: 19900806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3768464

Country of ref document: DE

Date of ref document: 19910411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911130

Ref country code: CH

Effective date: 19911130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931014

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931018

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941127

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST