EP0276742A2 - Verfahren und Vorrichtung zum Mikronisieren von Feststoffen in Strahlmühlen - Google Patents

Verfahren und Vorrichtung zum Mikronisieren von Feststoffen in Strahlmühlen Download PDF

Info

Publication number
EP0276742A2
EP0276742A2 EP88100769A EP88100769A EP0276742A2 EP 0276742 A2 EP0276742 A2 EP 0276742A2 EP 88100769 A EP88100769 A EP 88100769A EP 88100769 A EP88100769 A EP 88100769A EP 0276742 A2 EP0276742 A2 EP 0276742A2
Authority
EP
European Patent Office
Prior art keywords
solids
injector
grinding
jet mill
entry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88100769A
Other languages
English (en)
French (fr)
Other versions
EP0276742B1 (de
EP0276742A3 (en
Inventor
Hans-Günter Dipl.-Ing. Zander
Horst Dr. Bornefeld
Bernd-Michael Dr. Holle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kerr-Mcgee Pigments & Co KG GmbH
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0276742A2 publication Critical patent/EP0276742A2/de
Publication of EP0276742A3 publication Critical patent/EP0276742A3/de
Application granted granted Critical
Publication of EP0276742B1 publication Critical patent/EP0276742B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills

Definitions

  • the invention relates to a method for micronizing solids in jet mills, the solids being introduced into the jet mill by means of a propellant gas via an injector, and the micronization optionally being carried out in the presence of grinding and / or dispersing agents.
  • Jet mills consist of a grinding chamber into which water vapor or air jets are blown in at high speeds and the solids to be micronized (hereinafter also referred to as regrind) are injected with a propellant gas.
  • Compressed air or steam is usually used as the propellant (hereinafter briefly referred to as steam).
  • the solids are usually fed into the injector via an inlet funnel or an entry chute.
  • grinding aids are often added to the solid.
  • dispersing aids are mostly used which improve their dispersibility in various materials and at the same time also support the micronization of the pigments.
  • the above-mentioned type of entry of solids in jet mills has the disadvantage that grinding disturbances due to blockages of the injector and deposits of the ground material can occur on the walls of the inlet funnel.
  • the object of the invention was to provide a method for micronizing solids in jet mills that does not have the disadvantages described.
  • the term “forced feeding of the solids” is understood to mean that the solids only have one degree of freedom for movement, i. H. that the solids are transported in a forced direction of movement.
  • the solids cannot move in a different direction of movement, as was possible with the conventional feeding of the solids into the injector via inlet funnels or entry chutes (regrind from the steel mill due to blockages in the apparatus).
  • the invention thus relates to a process for the micronization of solids in jet mills, the solids being introduced into the jet mill via an injector and the micronization optionally taking place in the presence of grinding and / or dispersing agents, which is characterized in that the solids Injector are forcibly fed.
  • the forced feeding of the solids is preferably carried out via a pneumatic conveying device.
  • the solids are fluidized with a propellant gas, preferably compressed air, and transported to the injector.
  • the solids can also be fluidized with other gases, such as steam.
  • a pressure lock In order to ensure trouble-free operation of the pneumatic conveying device, it is advantageous to force the solids into it without recoil wear. This is preferably done using a pressure lock. Suitable pressure locks of various types can be used. Pressure locks consisting of a combination of a discharge lock and a blow-through lock are preferred.
  • the uniform dosing is preferably carried out by dosing scales. However, it can also be done by measuring the volume of the solids. These process variants make it possible to maintain defined propellant gas / solid ratios in the pneumatic conveying device. Depending on the requirements, the propellant gas / solids ratio can be adjusted at any time by varying the amount of solids.
  • injectors are preferred which, according to FIG. 1, consist of a combination of a steam line (11), a jet nozzle (13), a solid / steam / air mixing tube (14) and a trap nozzle (15).
  • This special arrangement ensures an even entry of the solid / carrier gas mixture into the pressurized jet mill.
  • the forced feeding of the solids and optionally the addition of grinding and / or dispersing aids is carried out via a pressure measurement monitored on a device in the jet mill, the device optionally also serving as a grinding and / or dispersing aid feed device.
  • the pressure measurement is preferably carried out in measuring cycles, with a blockage of the device being prevented between the measuring cycles by a pressure surge or by a constant amount of purge air, which is superimposed by a pressure surge between the measuring cycles.
  • the method according to the invention can be used in the micronization of a wide variety of solids.
  • Pigments in particular inorganic pigments such as titanium dioxide pigments, iron oxide pigments, chromium oxide pigments and mixed phase pigments, can be micronized particularly advantageously by this process.
  • the special grinding or dispersing agent feed device in the jet mill ensures a uniform and homogeneous coating of the pigments with dispersing agents.
  • the described dosing and monitoring measures optimize the grinding process and the conveyance of the solids. This enables a significantly higher utilization of the jet mill without the quality of the micronized solids occurring.
  • the dosing device can consist of a wide variety of devices that enable dosing of solids. It is advantageous if, according to FIG. 1, it consists of a combination of a storage vessel (1), a swivel slide (2), a cellular wheel (3) and a dosing scale (5).
  • the forced entry device, the injector and the jet mill can also be of various types.
  • 1 preferably consists of a combination of an entry chute (6), a discharge lock (7), a blow-through lock (9) and a pneumatic conveying device (10).
  • a device according to the invention is particularly preferred, in which the injector according to FIG. 1 consists of a combination of a steam line (11), a jet nozzle (13), a solid / steam / air mixing tube (14) and a collecting nozzle (15).
  • the injector can also be of conventional design. Such an injector is shown, for example, in Winnacker, Küchler, Chemische Technologie, 4th edition, volume 1, p. 93, Carl Hanser Verlag Kunststoff, Vienna, 1984.
  • a device according to the invention is also particularly preferred, in which a device (17) for pressure measurement is installed in the jet mill according to FIG. 1, which device optionally also serves as a grinding and / or dispersing agent feed device.
  • the ground material is placed in the storage vessel (1).
  • a swivel slide (2) with which the outlet can be closed and opened.
  • the regrind reaches the forced entry device via the dosing scale (5), which is fed by the cellular wheel (3).
  • the speed of rotation of the cellular wheel (3) is regulated depending on the desired feed quantity of the regrind.
  • the connecting line (4) serves to equalize the pressure.
  • the regrind passes through the entry chute (6) into the pressure lock, which consists of a discharge lock (7) and a blow-through lock (9).
  • the solids are forcibly transported into the pneumatic conveying device (10) without recoil via this special pressure lock.
  • the regrind is fluidized with compressed air and conveyed to the solid / steam / air mixing tube (14) of the injector. The amount of compressed air can be monitored with the measuring device (8).
  • the fluidized regrind is finally transported to the jet mill (16) via the catch nozzle (15) with steam, which is passed via the steam line (11) and the jet nozzle (13) to the solid / steam / air mixing tube (14).
  • the amount of steam is monitored with the measuring device (12).
  • the device At the entrance of the jet mill there is a device (17) for measuring the pressure, via which grinding and / or dispersing aids can also be added.
  • the device consists of a plurality of openings or pipe ends, an apparatus for pressure measurement being connected to one opening and one or more grinding and / or dispersing aids being able to be added to the fluidized solids via the other openings.
  • the grinding and / or dispersing aids are preferably added via metering pumps.
  • the pressure measurement is carried out in measuring cycles. Between the respective measuring cycles, a pressure surge or a constant amount of purge air, over which a pressure surge is superimposed, is applied to the device (17), thereby preventing the device from becoming clogged with solids.
  • the entire grinding process including the dosage of the regrind, the forced entry of the solids into the injector, the Operation of the injector and the addition of grinding and / or dispersing aids are monitored.
  • the grinding and / or dispersing aids can be added with the aid of the dosing scale and this special measuring device depending on the weight of the material to be ground.
  • the amount of the dispersing aid was 0.25% by weight, based on the dry pigment.
  • the dispersing aid was added to the fluidized pigment in the specified amount via a commercially available metering pump.
  • the pressure was measured using a pressure measuring device of the usual type.
  • the pneumatic conveyor was operated with air at a pressure of 4 bar. 130 cm3 (0.16 tons) of air were consumed per hour and per ton of the titanium dioxide pigment.
  • the throughput of the titanium dioxide pigment was 2.0 to 2.0 tons per hour.
  • Example 1 The titanium dioxide pigment used in Example 1 was micronized with the addition of the same dispersing aid in a conventional device as shown in Winnacker, Küchler, Chemische Technologie, 4th edition, Volume 1, p. 93, Carl Hanser Verlag Kunststoff, Vienna, 1984 . A spiral jet mill of the same type as in Example 1 was used.
  • the pigment was introduced into the injector via an entry chute, the injector and the entry chute being of conventional design.
  • the dispersing aid was added in a known manner by continuously spraying the pigment in the feed chute in the same amount as stated in Example 1.
  • the operation of this device consumed 2.4 tons of steam per ton of titanium dioxide pigment for micronization.
  • the throughput of the titanium dioxide pigment was 1.5 to 1.8 tons per hour.
  • Example 1 A comparison with Example 1 shows that the throughput quantities of the titanium dioxide pigment could be increased considerably when using the method according to the invention. This was associated with a steam saving of 0.4 tons per ton of the titanium dioxide pigment and the production of pigment with reduced quality is certainly avoided.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Mikronisieren von Feststoffen in Strahlmühlen, wobei die Feststoffe über einen Injektor in die Strahlmühle eingebracht werden und wobei die Mikronisierung gegebenenfalls in Gegenwart von Mahl- und/oder Dispergierhilfsmitteln erfolgt, wobei die Feststoffe dem Injektor zwangsweise zugeführt werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Mikronisieren von Feststoffen in Strahlmühlen, wobei die Feststoffe mittels eines Treibgases über einen Injektor in die Strahlmühle eingebracht werden und wobei die Mikroni­sierung gegebenenfalls in Gegenwart von Mahl- und/oder Dispergiermitteln erfolgt.
  • Die Mikronisierung von Feststoffen kann in Strahlmühlen, beispielsweise vom Typ der Spiral- oder Gegenrohrstrahl­mühlen durchgeführt werden (vergl. Winnacker Küchler: Chemische Technologie, 4. Auflage, Band 1, S. 91-93, Carl Hanser Verlag München Wien 1984). Strahlmühlen bestehen aus einem Mahlraum, in der Wasserdampf- oder Luftstrahlen mit hohen Geschwindigkeiten eingeblasen und die zu mikronisierenden Feststoffe (im folgenden auch als Mahlgut bezeichnet) über einen Injektor mit einem Treibgas eingebracht werden. Als Treibgas wird dabei zumeist Druckluft oder Wasserdampf (im folgenden kurz als Dampf bezeichnet) verwendet. Die Zuführung der Fest­stoffe in den Injektor erfolgt in der Regel über einen Einlauftrichter bzw. eine Eintragsschurre.
  • Zur Unterstützung der Mikronisierung werden oft auch Mahlhilfsmittel dem Feststoff zugegeben. Insbesondere bei Pigmenten werden darüber hinaus zumeist Dispergier­hilfsmittel eingesetzt, die deren Dispergierbarkeit in verschiedenen Materialien verbessern und zugleich auch die Mikronisierung der Pigmente unterstützen. Die oben genannte Art des Eintrags von Feststoffen in Strahlmüh­len hat den Nachteil, daß Mahlstörungen aufgrund von Verstopfungen des Injektors und Ablagerungen des Mahl­gutes an den Wänden des Einlauftrichters auftreten können.
  • Diese Mahlstörungen führen in der Regel zu einer vermin­derten Qualität des mikronisierten Feststoffs. Zudem kann bei diesen Mahlstörungen Mahlgut aus der unter Überdruck stehenden Strahlmühle austreten.
  • Die Aufgabe der Erfindung bestand darin, ein Verfahren zum Mikronisieren von Feststoffen in Strahlmühlen be­reitzustellen, daß die beschriebenen Nachteile nicht aufweist.
  • Es wurde nun gefunden, daß Mahlstörung und die damit verbundenen Probleme nicht auftreten, wenn die Fest­ stoffe dem Injektor der Strahlmühle zwangsweise zuge­führt werden.
  • Unter dem Begriff "zwangsweise Zuführung der Feststoffe" wird erfindungsgemäß verstanden, daß den Feststoffen nur ein Freiheitsgrad zur Bewegung zur Verfügung steht, d. h. daß die Feststoffe in einer erzwungenen Bewegungsrichtung transportiert werden. Ein Ausweichen der Feststoffe in eine andere Bewegungsrichtung, wie dies bei der herkömm­lichen Zuführung der Feststoffe in den Injektor über Einlauftrichter bzw. Eintragsschurren möglich war (Aus­treten von Mahlgut aus der Stahlmühle aufgrund von Ver­stopfungen der Apparatur), ist ausgeschlossen.
  • Gegenstand der Erfindung ist somit ein Verfahren zum Mikronisieren von Feststoffen in Strahlmühlen, wobei die Feststoffe über einen Injektor in die Strahlmühle einge­bracht werden und wobei die Mikronisierung gegebenen­falls in Gegenwart von Mahl- und/oder Dispergiermitteln erfolgt, welches dadurch gekennzeichnet ist, daß die Feststoffe dem Injektor zwangsweise zugeführt werden.
  • Die zwangsweise Zuführung der Feststoffe erfolgt vor­zugsweise über eine pneumatische Fördervorrichtung. In dieser pneumatischen Fördervorrichtung werden die Fest­stoffe mit einem Treibgas, vorzugsweise Druckluft, flui­disiert und zum Injektor transportiert. Die Fluidisie­rung der Feststoffe kann auch mit anderen Gasen, wie beispielsweise Dampf, erfolgen.
  • Um einen störungsfreien Betrieb der pneumatischen För­dervorrichtung zu gewährleisten, ist es vorteilhaft, die Feststoffe zwangsweise und rückstoßfrei in diese einzu­ tragen. Dies geschieht vorzugsweise mittels einer Druck­schleuse. Dabei können geeignete Druckschleusen ver­schiedenster Bauart eingesetzt werden. Bevorzugt werden Druckschleusen, die aus einer Kombination einer Austra­geschleuse und einer Durchblaseschleuse bestehen.
  • Es ist besonders vorteilhaft, wenn der Eintrag der Fest­stoffe in die pneumatische Fördervorrichtung in gleich­mäßiger Dosierung erfolgt.
  • Die gleichmäßige Dosierung wird vorzugsweise durch Do­sierwaagen vorgenommen. Sie kann aber auch über eine Volumenmessung der Feststoffe erfolgen. Diese Verfah­rensvarianten ermöglichen das Einhalten von definierten Treibgas-/Feststoffverhältnissen in der pneumatischen Fördervorrichtung. Je nach den Erfordernissen kann da­durch das Treibgas-/Feststoffverhältnis durch Variation der Feststoffmenge jederzeit Sollwerten angepaßt wer­den.
  • Beim erfindungsgemäßen Verfahren werden Injektoren be­vorzugt, die gemäß Fig. 1 aus einer Kombination von einer Dampfleitung (11), einer Strahldüse (13), einem Feststoff-/ Dampf-/Luftmischrohr (14) und einer Fangdüse (15) bestehen. Diese spezielle Anordnung gewährleistet einen gleichmäßigen Eintrag des Feststoff-/Trägergas­gemisches in die unter Überdruck stehende Strahlmühle.
  • In einer sehr vorteilhaften Variante des erfindungsge­mäßen Verfahrens wird die zwangsweise Zuführung der Feststoffe sowie gegebenenfalls die Zugabe von Mahl- und/oder Dispergierhilfsmittel über eine Druckmessung an einer Einrichtung in der Strahlmühle überwacht, wobei die Einrichtung gegebenenfalls zugleich als Mahl- und/oder Dispergierhilfsmittelaufgabevorrichtung dient.
  • Die Druckmessung erfolgt vorzugsweise in Meßzyklen, wo­bei zwischen den Meßzyklen durch einen Druckstoß oder durch eine konstante Spülluftmenge, der zwischen den Meßzyklen ein Druckstoß überlagert ist, ein Verstopfen der Einrichtung verhindert wird.
  • Das erfindungsgemäße Verfahren kann bei der Mikronisie­rung von verschiedensten Feststoffen eingesetzt werden. Besonders vorteilhaft können Pigmente, insbesondere an­organische Pigmente wie Titandioxidpigmente, Eisenoxid­pigmente, Chromoxidpigmente und Mischphasenpigmente, nach diesem Verfahren mikronisiert werden. Durch die spezielle Mahl- bzw. Dispergierhilfsmittelaufgabevor­richtung in der Strahlmühle wird eine gleichmäßige und homogene Beschichtung der Pigmente mit Dispergierhilfs­mitteln erreicht.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens treten keine Mahlstörungen mit den damit verbundenen Problemen auf.
  • Zudem wird durch die beschriebenen Dosier- und Überwa­chungsmaßnahmen der Mahlvorgang und die Förderung der Feststoffe optimiert. Dies ermöglicht eine wesentlich höhere Auslastung der Strahlmühle, ohne daß eine Quali­tätsminderung der mikronisierten Feststoffe eintritt.
  • Gegenstand der Erfindung ist ferner eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Diese Vorrichtung besteht aus
    • a) einer Dosiervorrichtung
    • b) einer Zwangseintragsvorrichtung
    • c) einem Injektor und
    • d) einer Strahlmühle
  • Die Dosiervorrichtung kann aus unterschiedlichsten Ein­richtungen bestehen, die eine Dosierung von Feststoffen ermöglichen. Es ist vorteilhaft, wenn sie gemäß Fig. 1 aus einer Kombination eines Vorratsgefäßes (1), eines Schwenkschiebers (2), eines Zellenrades (3) und einer Dosierwaage (5) besteht.
  • Auch die Zwangseintragsvorrichtung, der Injektor und die Strahlmühle können verschiedenster Bauart sein.
  • Vorzugsweise besteht dabei die Zwangseintragsvorrichtung gemäß Fig. 1 aus einer Kombination einer Eintragsschurre (6), einer Austragsschleuse (7), einer Durchblaseschleu­se (9) und einer pneumatischen Fördervorrichtung (10).
  • Einzelne Teile der Zwangseintragsvorrichtung können durch andere geeignete Teile bzw. Apparaturen ersetzt werden. Beispielsweise können anstatt der Austrags­schleuse (7) und der Durchblaseschleuse (9), Druckschleu­sen anderer Art aber gleicher Funktionsweise eingebaut sein.
  • Besonders bevorzugt ist eine erfindungsgemäße Vorrich­tung, in der der Injektor gemäß Fig. 1 aus einer Kombi­nation einer Dampfleitung (11), einer Strahldüse (13), einem Feststoff-/Dampf-/Luftmischrohr (14) und einer Fangdüse (15) besteht.
  • Der Injektor kann aber auch hekömmlicher Bauart sein. Ein solcher Injektor ist beispielsweise in Winnacker, Küchler, Chemische Technologie, 4. Auflage, Band 1, S. 93, Carl Hanser Verlag München, Wien, 1984, abgebildet.
  • Besonders bevorzugt ist auch eine erfindungsgemäße Vor­richtung, bei der in der Strahlmühle gemäß Fig. 1 eine Einrichtung (17) zur Druckmessung eingebaut ist, die gegebenenfalls zugleich als Mahl- und/oder Dispergier­hilfsmittelaufgabevorrichtung dient.
  • Das erfindungsgemäße Verfahren und die dazugehörende Vorrichtung sollen anhand der Fig. 1 näher erläutert werden.
  • Das Mahlgut wird in das Vorratsgefäß (1) gegeben. Am Auslauf des Vorratsgefäßes befindet sich ein Schwenk­schieber (2), mit dem der Auslauf geschlossen und geöffnet werden kann. Über die Dosierwaage (5), die vom Zellenrad (3) gespeist wird, gelangt das Mahlgut zur Zwangseintragsvorrichtung. Die Drehzahl des Zellenrades (3) wird dabei in Abhängigkeit von der gewünschten Auf­gabemenge des Mahlguts geregelt.
  • Die Verbindungsleitung (4), an die sich ein Staubfilter anschließt, dient zum Druckausgleich. In der Zwangsein­tragsvorrichtung gelangt das Mahlgut über die Eintrags­schurre (6) in die Druckschleuse, die aus einer Aus­tragsschleuse (7) und einer Durchblaseschleuse (9) be­steht. Über diese spezielle Druckschleuse werden die Feststoffe zwangsweise und rückstoßfrei in die pneumati­sche Fördervorrichtung (10) transportiert. In der pneu­ matischen Fördervorrichtung wird das Mahlgut mit Druck­luft fluidisiert und zum Feststoff-/Dampf-/Luftmischrohr (14) des Injektors gefördert. Die Druckluftmenge kann dabei mit dem Meßgerät (8) überwacht werden. Das fluidi­sierte Mahlgut wird schließlich mit Dampf, der über die Dampfleitung (11) und die Strahldüse (13) zum Fest­stoff-/Dampf-/Luftmischrohr (14) geleitet wird, über die Fangdüse (15) in die Strahlmühle (16) transportiert. Die Dampfmenge wird dabei mit dem Meßgerät (12) überwacht.
  • Am Eingang der Strahlmühle befindet sich eine Einrich­tung (17) zur Druckmessung, über die auch Mahl- und/oder Dispergierhilfsmittel zugegeben werden können. Die Ein­richtung besteht erfindungsgemäß aus mehreren Öffnungen bzw. Rohrenden, wobei sich an eine Öffnung eine Appara­tur zur Druckmessung anschließt und über die anderen Öffnungen ein oder mehrere Mahl- und/oder Dispergier­hilfsmittel den fluidisierten Feststoffen zugegeben wer­den können. Die Zugabe der Mahl- und/oder Dispergier­hilfsmittel erfolgt dabei vorzugsweise über Dosierpum­pen.
  • Die Druckmessung wird in Meßzyklen durchgeführt. Zwi­schen den jeweiligen Meßzyklen wird auf die Einrichtung (17) ein Druckstoß oder eine konstante Spülluftmenge, der ein Druckstoß überlagert ist, gegeben, wodurch ein Verstopfen der Einrichtung mit Feststoff verhindert wird.
  • Mit dieser speziellen Einrichtung kann der gesamte Mahlvorgang, einschließlich der Dosierung des Mahlguts, dem Zwangseintrag der Feststoffe in den Injektor, dem Betrieb des Injektors sowie der Zugabe von Mahl- und/­oder Dispergierhilfsmitteln überwacht werden. Die Zugabe der Mahl- und/oder Dispergierhilfsmittel kann mit Hilfe der Dosierwaage und dieser speziellen Meßeinrichtung exakt in Abhängigkeit vom Gewicht des Mahlguts erfol­gen.
  • Bei Abweichungen des Druckes innerhalb der Mühle von einem vorgegebenen Sollwert, d.h. Abweichungen von den optimalen Mahlbedingungen, können schnelle Korrekturmaß­nahmen durchgeführt werden, wodurch Qualtitätsschwan­kungen bei den mikronisierten Feststoffen sicher vermie­den werden.
  • Das folgende Beispiel zeigt die Vorteile des erfindungs­gemäßen Verfahrens im Vergleich zu einem herkömmlichen Verfahren zum Mikronisieren von Feststoffen:
  • Beispiel 1
  • Ein nach dem Sulfatverfahren hergestelltes Titandioxid­pigment mit Rutilstruktur, das mit 0,8 Gew.-% SiO₂ und 2,2 Gew.-% Al₂O₃ nachbehandelt war, wurde unter Zusatz eines Dispergierhilfsmittels in einer erfindungsgemäßen Vorrichtung gemäß Abb. 1 mikronisiert. Als Dispergier­hilfsmittel wurde ein in Wasser gelöstes Umsetzungspro­dukt von Trimethylolpropan mit Ethylenoxid eingesetzt, wie es in der DE-B-1 467 442, Beispiel 2, beschrieben ist. Die Menge des Dispergierhilfsmittels betrug 0,25 Gew.-% bezogen auf das trockene Pigment.
  • Die Vorrichtung setzte sich aus folgenden Einzelteilen zusammen:
    • a) einer Dosiervorrichtung, bestehend aus einer Kombi­nation eines Vorratssilos (1), eines Schwenkschie­bers (2), eines Zellenrades (3) und einer Bandwaage (5), wobei sämtliche Geräte üblicher Bauart waren;
    • b) einer Zwangseintragsvorrichtung, bestehend aus einer Kombination einer Eintragsschurre (6) übli­cher Bauart, einer Austrageschleuse (7), einer Durchblaseschleuse (9) und einer pneumatischen Fördervorrichtung (10), wobei die Austragschleuse und die Durchblaseschleuse handelsübliche Zellen­räder aus V4A-Stahl mit einem Zellenraddurchmesser von 300 mm waren und die pneumatische Fördervor­richtung eine Preßluftleitung mit Meßblende war;
    • c) einem speziellen Injektor mit einer Dampfleitung (11) üblicher Bauart, einer Strahldüse (13), einem Feststoff-/Dampf-/Luftmischrohr (14) und einer Fangdüse (15), wobei die Strahldüse eine handels­übliche Düse aus Gußbronze war, die Fangdüse aus einem Venturirohr aus ST-6--Stahl bestand und das Feststoff-/Dampf-/Luftmischrohr (14) aus einem V4A-Stahlrohr mit einem Durchmesser von 80 mm ge­fertigt war;
    • d) einer Spiralstrahlmühle (16) üblicher Bauart mit einem Durchmesser von 915 mm, in der sich am Ein­gang der Mühle hinter der Fangdüse (15) eine Ein­richtung zur Druckmessung (17) befand, über die auch die Dispergierhilfsmittelaufgabe erfolgte.
  • Das Dispergierhilfsmittel wurde in der angegebenen Menge über eine handelsübliche Dosierpumpe dem fluidisierten Pigment zugegeben. Die Druckmessung erfolgte mit einer Druckmeßapparatur üblicher Bauart.
  • Die pneumatische Fördervorrichtung wurde mit Luft mit einem Druck von 4 bar betrieben. Pro Stunde und pro Tonne des Titandioxidpigmentes wurden 130 cm³ (0,16 Ton­nen) Luft verbraucht.
  • Zur Mikronisierung wurden 2,0 Tonnen Dampf pro Tonne des Titandioxidpigmentes benötigt.
  • Der Durchsatz des Titandioxidpigmentes betrug 2,0 bis 2,0 Tonnen pro Stunde.
  • Beim Betrieb dieser Vorrichtung traten keinerlei Mahl­störungen auf und das mikronisierte Titandioxidpigment konnte in der gewünschten guten Qualität erhalten werden.
  • Beispiel 2 (Vergleichsbeispiel)
  • Das in Beispiel 1 eingesetzte Titandioxidpigment wurde unter Zusatz des gleichen Dispergierhilfsmittels in einer herkömmlichen Vorrichtung mikronisiert, wie sie in Winnacker, Küchler, Chemische Technologie, 4. Auf­lage, Band 1, S. 93, Carl Hanser Verlag München, Wien, 1984, abgebildet ist. Es wurde eine Spiralstrahlmühle des gleichen Typs wie in Beispiel 1 eingesetzt.
  • Der Eintrag des Pigmentes in den Injektor ergolgte über eine Eintragsschurre, wobei der Injektor und die Ein­tragsschurre üblicher Bauart waren. Die Dispergierhilfs­mittelzugabe erfolgte in bekannter Weise durch kontinu­ierliches Besprühen des Pigmentes in der Eintragsschurre in der gleichen Menge wie in Beispiel 1 angegben.
  • Beim Betrieb dieser Vorrichtung wurden zur Mikronisie­rung 2,4 Tonnen Dampf pro Tonne Titandioxidpigment ver­braucht. Der Durchsatz des Titandioxidpigmentes betrug 1,5 bis 1,8 Tonnen pro Stunde.
  • Es traten bis zu zehn Mahlstörungen pro Tag auf, was damit verbunden auch zur Produktion von Pigment mit teilweise verminderter Qualität führte.
  • Der Vergleich zu Beispiel 1 zeigt, daß bei Anwendung des erfindungsgemäßen Verfahrens die Durchsatzmengen des Ti­tandioxidpigmentes erheblich gesteigert werden konnten. Damit verbunden war eine Dampfersparnis von 0,4 Tonnen pro Tonne des Titandioxidpigmentes und die Produktion von Pigment mit verminderter Qualität wird sicher ver­mieden.

Claims (12)

1. Verfahren zum Mikronisieren von Feststoffen in Strahlmühlen, wobei die Feststoffe über einen Injektor in die Strahlmühle eingebracht werden und wobei die Mikronisierung gegebenenfalls in Gegen­wart von Mahl- und/oder Dispergierhilfsmitteln erfolgt, dadurch gekennzeichnet, daß die Feststoffe dem Injektor zwangsweise zugeführt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zwangsweise Zuführung über eine pneumati­sche Fördervorrichtung erfolgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Feststoffe zwangsweise und rückstoßfrei in die pneumatische Fördervorrichtung eingetragen werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Eintrag der Feststoffe mittels einer Druck­schleuse erfolgt.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekenn­zeichnet, daß der Eintrag in gleichmäßiger Dosie­rung erfolgt.
6. Verfahren nach einem oder mehrerer der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Injektor aus einer Kombination von einer Dampfleitung (11), einer Strahldüse (13), einem Feststoff-/Dampf-/­Luftmischrohr (14) und einer Fangdüse (15) be­steht.
7. Verfahren nach einem oder mehrerer der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die zwangswei­se Zuführung der Feststoffe sowie gegebenenfalls die Zugabe von Mahl- und/oder Dispergierhilfs­mitteln über eine Druckmessung an einer Einrich­tung in der Strahlmühle überwacht wird, wobei die Einrichtung gegebenenfalls zugleich als Mahl- und/oder Dispergierhilfsmittelaufgabevorrichtung dient.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Druckmessung in Meßzyklen erfolgt und daß zwischen den Meßzyklen durch einen Druckstoß oder durch eine konstante Spülluftmenge, der zwischen den Meßzyklen ein Druckstoß überlagert ist, ein Verstopfen der Einrichtung verhindert wird.
9. Vorrichtung zur Durchführung des Verfahrens nach einem oder mehrerer der Ansprüche 1 bis 8, be­stehend aus
a) einer Dosiervorrichtung,
b) einer Zwangseintragsvorrichtung,
c) einem Injektor und
d) einer Strahlmühle
10. Vorrichtung nach Anspruch 9, dadurch gekennzeich­net, daß die Zwangseintragsvorrichtung aus einer Kombination von einer Eintragsschurre (6), einer Austragsschleuse (7), einer Durchblaseschleuse (9) und einer pneumatischen Fördervorrichtung (10) be­steht.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch ge­kennzeichnet, daß der Injektor aus einer Kombi­nation von einer Dampfleitung (11), einer Strahl­düse (13), einem Feststoff-/Dampf-/Luftmischrohr (14) und einer Fangdüse (15) besteht.
12. Vorrichtung nach einem oder mehrerer der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß sich in der Strahlmühle eine Einrichtung (17) zur Druckmessung befindet, die gegebenenfalls zugleich als Mahl- und/oder Dispergierhilfsmittelaufgabevorrichtung dient.
EP88100769A 1987-01-30 1988-01-20 Verfahren und Vorrichtung zum Mikronisieren von Feststoffen in Strahlmühlen Expired - Lifetime EP0276742B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873702787 DE3702787A1 (de) 1987-01-30 1987-01-30 Verfahren und vorrichtung zum mikronisieren von feststoffen in strahlmuehlen
DE3702787 1987-01-30

Publications (3)

Publication Number Publication Date
EP0276742A2 true EP0276742A2 (de) 1988-08-03
EP0276742A3 EP0276742A3 (en) 1989-08-30
EP0276742B1 EP0276742B1 (de) 1991-10-16

Family

ID=6319873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88100769A Expired - Lifetime EP0276742B1 (de) 1987-01-30 1988-01-20 Verfahren und Vorrichtung zum Mikronisieren von Feststoffen in Strahlmühlen

Country Status (11)

Country Link
US (2) US4880169A (de)
EP (1) EP0276742B1 (de)
JP (1) JP2659045B2 (de)
AU (1) AU600074B2 (de)
BR (1) BR8800362A (de)
CA (1) CA1332392C (de)
DE (2) DE3702787A1 (de)
ES (1) ES2026577T3 (de)
FI (1) FI87544C (de)
NO (1) NO172787C (de)
ZA (1) ZA88630B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004098A1 (en) * 1989-09-15 1991-04-04 Micro Milling Machines Oy Feeder of a counter jet pulverizer
EP0878236A1 (de) * 1997-05-15 1998-11-18 Bayer Ag Verfahren und Vorrichtung zur Eindosierung von königem Grobgut in eine Luftstrahlmühle
WO2003020428A1 (fr) * 2001-09-03 2003-03-13 Seishin Enterprise Co., Ltd. Alimenteur en produits bruts d'un broyeur a jet
WO2012025770A2 (en) 2010-08-23 2012-03-01 Creogen D.O.O. Device for micronization of solid materials and its use
CN103604676A (zh) * 2013-12-02 2014-02-26 中山鼎晟生物科技有限公司 一种农产品检测样品采集装置
US8789785B2 (en) 2010-08-23 2014-07-29 Lambano Trading Limited Device for micronization of solid materials and its use
EP3329926A1 (de) 2016-12-02 2018-06-06 Hraschan, Jakob Zeolith-zusammensetzungen und verfahren zur herstellung davon

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702787A1 (de) * 1987-01-30 1988-08-11 Bayer Ag Verfahren und vorrichtung zum mikronisieren von feststoffen in strahlmuehlen
GB8720904D0 (en) * 1987-09-05 1987-10-14 Tioxide Group Plc Mill
US5520932A (en) * 1988-06-24 1996-05-28 The Upjohn Company Fine-milled colestipol hydrochloride
US5304451A (en) * 1991-12-23 1994-04-19 Xerox Corporation Method of replenishing a liquid developer
US5254424A (en) * 1991-12-23 1993-10-19 Xerox Corporation High solids replenishable liquid developer containing urethane-modified polyester toner resin
US5206108A (en) * 1991-12-23 1993-04-27 Xerox Corporation Method of producing a high solids replenishable liquid developer containing a friable toner resin
US5306590A (en) * 1991-12-23 1994-04-26 Xerox Corporation High solids liquid developer containing carboxyl terminated polyester toner resin
US5300394A (en) * 1992-12-16 1994-04-05 Eastman Kodak Company Dispersions for imaging systems
GB9226994D0 (en) * 1992-12-24 1993-02-17 Tioxide Group Services Ltd Method of milling
US5424077A (en) * 1993-07-13 1995-06-13 Church & Dwight Co., Inc. Co-micronized bicarbonate salt compositions
DE19536845A1 (de) * 1995-10-02 1997-04-03 Bayer Ag Verfahren und Vorrichtung zur Herstellung von feinteiligen Feststoffdispersionen
US5695132A (en) * 1996-01-11 1997-12-09 Xerox Corporation Air actuated nozzle plugs
US5716751A (en) * 1996-04-01 1998-02-10 Xerox Corporation Toner particle comminution and surface treatment processes
CN1287023A (zh) * 1999-09-08 2001-03-14 株式会社威士诺 喷射式粉碎机
DE19962049C2 (de) * 1999-12-22 2003-02-27 Babcock Bsh Gmbh Wirbelstrommühle
EP1290390A1 (de) 2000-06-07 2003-03-12 Universal Preservation Technologies, Inc. Barrieretechnologie in industriellem umfang für konservierung von empfindlichen biologischen materialien
US7794743B2 (en) * 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7011842B1 (en) 2002-06-21 2006-03-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7070798B1 (en) 2002-06-21 2006-07-04 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices incorporating chemically-bound polymers and oligomers of L-arginine
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US6994867B1 (en) 2002-06-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing L-arginine
US7033602B1 (en) * 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US20040121003A1 (en) * 2002-12-19 2004-06-24 Acusphere, Inc. Methods for making pharmaceutical formulations comprising deagglomerated microparticles
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US20070122698A1 (en) * 2004-04-02 2007-05-31 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
US20050266298A1 (en) * 2003-07-09 2005-12-01 Maxwell Technologies, Inc. Dry particle based electro-chemical device and methods of making same
US20100014215A1 (en) * 2004-04-02 2010-01-21 Maxwell Technologies, Inc. Recyclable dry particle based electrode and methods of making same
US20110165318A9 (en) * 2004-04-02 2011-07-07 Maxwell Technologies, Inc. Electrode formation by lamination of particles onto a current collector
US7342770B2 (en) * 2003-07-09 2008-03-11 Maxwell Technologies, Inc. Recyclable dry particle based adhesive electrode and methods of making same
US20060147712A1 (en) * 2003-07-09 2006-07-06 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US7508651B2 (en) * 2003-07-09 2009-03-24 Maxwell Technologies, Inc. Dry particle based adhesive and dry film and methods of making same
US7791860B2 (en) * 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7352558B2 (en) * 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US20050250011A1 (en) * 2004-04-02 2005-11-10 Maxwell Technologies, Inc. Particle packaging systems and methods
US7295423B1 (en) * 2003-07-09 2007-11-13 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US7920371B2 (en) * 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
JP2005116762A (ja) 2003-10-07 2005-04-28 Fujitsu Ltd 半導体装置の保護方法及び半導体装置用カバー及び半導体装置ユニット及び半導体装置の梱包構造
US7495349B2 (en) * 2003-10-20 2009-02-24 Maxwell Technologies, Inc. Self aligning electrode
US7090946B2 (en) * 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7384433B2 (en) 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination
US20060246343A1 (en) * 2004-04-02 2006-11-02 Maxwell Technologies, Inc. Dry particle packaging systems and methods of making same
US20060137158A1 (en) * 2004-04-02 2006-06-29 Maxwell Technologies, Inc. Dry-particle packaging systems and methods of making same
US7492571B2 (en) * 2004-04-02 2009-02-17 Linda Zhong Particles based electrodes and methods of making same
US7227737B2 (en) 2004-04-02 2007-06-05 Maxwell Technologies, Inc. Electrode design
US7245478B2 (en) 2004-08-16 2007-07-17 Maxwell Technologies, Inc. Enhanced breakdown voltage electrode
US7492574B2 (en) 2005-03-14 2009-02-17 Maxwell Technologies, Inc. Coupling of cell to housing
US7440258B2 (en) * 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
WO2007070851A2 (en) * 2005-12-15 2007-06-21 Acusphere, Inc. Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration
JP2009519970A (ja) * 2005-12-15 2009-05-21 アキュスフィア, インコーポレイテッド 粒子ベースの経口投与用製薬剤形の製造方法
US20070257394A1 (en) * 2006-05-08 2007-11-08 Maxwell Technologies, Inc. Feeder for Agglomerating Particles
DE102006023193A1 (de) * 2006-05-17 2007-11-22 Nied, Roland, Dr.-Ing. Verfahren zur Erzeugung feinster Partikel mittels einer Strahlmühle
US8518573B2 (en) * 2006-09-29 2013-08-27 Maxwell Technologies, Inc. Low-inductive impedance, thermally decoupled, radii-modulated electrode core
US20080201925A1 (en) 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US9139791B2 (en) * 2008-02-13 2015-09-22 Hydrocoal Technologies, Llc Processing device for improved utilization of fuel solids
EP2471642B1 (de) 2010-12-30 2014-07-30 Mufit Caglayan Mikronisierungsvorrichtung und Verfahren zur Mikronisierung vulkanisierter Elastomermaterialien

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623880A1 (de) * 1976-05-28 1977-12-01 Nette Friedrich W Spiralstrahlmuehle
AT343978B (de) * 1975-11-17 1978-06-26 Talkumwerke Naintsch Ges M B H Strahlmuhle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE343978C (de) * 1919-12-04 1921-11-11 Adlerwerke Kleyer Ag H Verbrennungskraftmaschine mit von oben gesteuerten Ventilen und mit die Auspuff- und Einlassventile jedes Zylinders gemeinsam aufnehmendem Ventilkorb
US2515541A (en) * 1947-07-22 1950-07-18 Inst Gas Technology Apparatus for disintegration of solids
US2636688A (en) * 1948-02-20 1953-04-28 Inst Gas Technology Method for treating coal and the like
US2628786A (en) * 1948-08-25 1953-02-17 Celanese Corp Moving-fluid-stream pulverizing apparatus with screened discharge
US3815833A (en) * 1973-01-08 1974-06-11 Fluid Energy Process Equip Method and apparatus for grinding thermoplastic material
US4502641A (en) * 1981-04-29 1985-03-05 E. I. Du Pont De Nemours And Company Fluid energy mill with differential pressure means
JPS58171238U (ja) * 1982-05-11 1983-11-15 株式会社クボタ 流体エネルギ−ミル
JPS5924150U (ja) * 1982-08-03 1984-02-15 株式会社クボタ 流体エネルギ−ミル
US4504017A (en) * 1983-06-08 1985-03-12 Norandy, Incorporated Apparatus for comminuting materials to extremely fine size using a circulating stream jet mill and a discrete but interconnected and interdependent rotating anvil-jet impact mill
DE3702787A1 (de) * 1987-01-30 1988-08-11 Bayer Ag Verfahren und vorrichtung zum mikronisieren von feststoffen in strahlmuehlen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT343978B (de) * 1975-11-17 1978-06-26 Talkumwerke Naintsch Ges M B H Strahlmuhle
DE2623880A1 (de) * 1976-05-28 1977-12-01 Nette Friedrich W Spiralstrahlmuehle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Winnacker Kuchler "Chemische Technologie", 4. Auflage, Band 1, 1984 CARL HANSER Verlag Munchen, Wien seiten 91-93 * seite 93, zeilen 12, 13; bild 52 * *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004098A1 (en) * 1989-09-15 1991-04-04 Micro Milling Machines Oy Feeder of a counter jet pulverizer
EP0878236A1 (de) * 1997-05-15 1998-11-18 Bayer Ag Verfahren und Vorrichtung zur Eindosierung von königem Grobgut in eine Luftstrahlmühle
US5967429A (en) * 1997-05-15 1999-10-19 Bayer Aktiengesellschaft Method and apparatus for the metered feed of coarse granular material into an air jet mill
WO2003020428A1 (fr) * 2001-09-03 2003-03-13 Seishin Enterprise Co., Ltd. Alimenteur en produits bruts d'un broyeur a jet
US7278595B2 (en) 2001-09-03 2007-10-09 Seishin Enterprise Co., Ltd. Particle feed apparatus for jet mill
WO2012025770A2 (en) 2010-08-23 2012-03-01 Creogen D.O.O. Device for micronization of solid materials and its use
US8789785B2 (en) 2010-08-23 2014-07-29 Lambano Trading Limited Device for micronization of solid materials and its use
CN103604676A (zh) * 2013-12-02 2014-02-26 中山鼎晟生物科技有限公司 一种农产品检测样品采集装置
EP3329926A1 (de) 2016-12-02 2018-06-06 Hraschan, Jakob Zeolith-zusammensetzungen und verfahren zur herstellung davon
WO2018100178A1 (en) 2016-12-02 2018-06-07 Jakob Hraschan Method and apparatus for the production of a zeolite particle composition
US11628448B2 (en) 2016-12-02 2023-04-18 Jakob Hraschan Method and apparatus for the production of a zeolite particle composition

Also Published As

Publication number Publication date
US4917309A (en) 1990-04-17
EP0276742B1 (de) 1991-10-16
BR8800362A (pt) 1988-09-20
ZA88630B (en) 1988-08-02
FI880389A0 (fi) 1988-01-28
ES2026577T3 (es) 1992-05-01
FI880389A (fi) 1988-07-31
FI87544B (fi) 1992-10-15
FI87544C (fi) 1993-01-25
AU1064088A (en) 1988-08-04
NO172787B (no) 1993-06-01
DE3702787A1 (de) 1988-08-11
US4880169A (en) 1989-11-14
NO880172L (no) 1988-08-01
JP2659045B2 (ja) 1997-09-30
CA1332392C (en) 1994-10-11
DE3865442D1 (de) 1991-11-21
NO172787C (no) 1993-09-08
AU600074B2 (en) 1990-08-02
NO880172D0 (no) 1988-01-15
JPS63194750A (ja) 1988-08-11
EP0276742A3 (en) 1989-08-30

Similar Documents

Publication Publication Date Title
EP0276742B1 (de) Verfahren und Vorrichtung zum Mikronisieren von Feststoffen in Strahlmühlen
DE3216022A1 (de) Strahlmuehle mit begrenztem wirbel
DE2652510C3 (de) Anordnung zum kontinuierlichen Einblasen von pulverförmiger Kohle in einen Hochofen
DE1949173B2 (de) Verfahren und vorrichtung zur foerderung kohaesiven teilchenmaterials
DE2435181A1 (de) Mit stroemungsenergie arbeitende muehle zum zerkleinern von feinpulvrigem mahlgut
DE2650919A1 (de) Verfahren und vorrichtung zum trocknen von duenger, schlamm o.dgl.
DE2165340A1 (de) Verfahren und vorrichtung zum prallstrahlmahlen feinkoerniger und pulverfoermiger feststoffe
DE102020006008B3 (de) Fließbettgegenstrahlmühle zur Erzeugung feinster Partikel aus Aufgabegut geringer Schüttdichte und Verfahren dafür
EP0292739B1 (de) Verfahren und Anlage zur Zerkleinerung von Mahlgut
DE2313614C3 (de) Vorrichtung zum Abtrennen von Grit aus einem feindisperse Feststoffe enthaltenden, zur pneumatischen Förderung dieser Stoffe dienenden Gasstrom
DE2603088C3 (de) Verteilerkopf für Saatgut- und Düngemitteldrillmaschin e
DE2943396A1 (de) Anlage zur foerderung von feinkoernigem gut
DE2334360B2 (de) Verfahren und einrichtung zum pneumatischen foerdern von feinpulverigen, zum ansetzen an die rohrwand neigenden produkten
DE3736885C2 (de) Verfahren und Vorrichtung zum Mahlen von pulvrigem Material
EP2477751B1 (de) Verfahren und vorrichtung zum fördern und verteilen von pulvern in einem gasstrom
DE2714355A1 (de) Verfahren und vorrichtung zum einschleusen von rieselfaehigem beschickungsgut
CH423628A (de) Schleusenanordnung zum Überführen eines Pulvers von einer Kammer mit einem rotierenden Gasstrom und mit gesonderter Auslassöffnungen für Pulver und Gas, in eine pneumatische Förderanlage
DE2822950A1 (de) Vorrichtung zum pneumatischen abloesen von staubteilchen von einer entstaubungsanordnung
DE3828901A1 (de) Verbesserte muehle
DE3050394C2 (de) Verfahren zur Zuführung eines pulverförmigen Brennstoffgemisches zu den Blasformen eines Hochofens
DE19830697C2 (de) Verfahren zum Entfernen von relativ grobkörnigen Feststoffen aus einem stationären Wirbelbett
DE19949193A1 (de) Verfahren und Vorrichtung zur Durchführung einer Reaktion zwischen gasförmigen und festen Reaktanten in einer fluidisierten Partikelschicht
EP2594336A1 (de) Verfahren und Vorrichtung zum Zerkleinern von mineralischen Stoffen sowie mineralischer Stoff
DE658293C (de) Schlagmuehle, deren Mahlwerkzeuge einen das Gut in einen angeschlossenen Windsichter austragenden Luftstrom erzeugen
DE878253C (de) Einrichtung zur Herstellung einer Suspension von fein verteilten Feststoffen in gasfoermigen Medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880120

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19900816

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3865442

Country of ref document: DE

Date of ref document: 19911121

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2026577

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: KERR-MCGEE PIGMENTS GMBH & CO. KG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

BECA Be: change of holder's address

Free format text: 19990324 *KERR-MCGEE PIGMENTS G.M.B.H. & CO. K.G.:RHEINUFERSTRASSE 7-9, GEB. N215 47829 KREFELD

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060103

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060110

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060112

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060118

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060215

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060307

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070120

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070120

BERE Be: lapsed

Owner name: *KERR-MCGEE PIGMENTS G.M.B.H. & CO. K.G.

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070120