EP0286129A2 - Method of forming a thin film on the outer surface of a display screen of a cathode ray tube - Google Patents

Method of forming a thin film on the outer surface of a display screen of a cathode ray tube Download PDF

Info

Publication number
EP0286129A2
EP0286129A2 EP88105646A EP88105646A EP0286129A2 EP 0286129 A2 EP0286129 A2 EP 0286129A2 EP 88105646 A EP88105646 A EP 88105646A EP 88105646 A EP88105646 A EP 88105646A EP 0286129 A2 EP0286129 A2 EP 0286129A2
Authority
EP
European Patent Office
Prior art keywords
cathode ray
ray tube
film
display screen
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88105646A
Other languages
German (de)
French (fr)
Other versions
EP0286129A3 (en
EP0286129B1 (en
Inventor
Takeo C/O Patent Division Itou
Hidemi C/O Patent Division Matsuda
Sakae C/O Patent Division Kamitani
Norihisa C/O Patent Division Takiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of EP0286129A2 publication Critical patent/EP0286129A2/en
Publication of EP0286129A3 publication Critical patent/EP0286129A3/en
Application granted granted Critical
Publication of EP0286129B1 publication Critical patent/EP0286129B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/88Vessels; Containers; Vacuum locks provided with coatings on the walls thereof; Selection of materials for the coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/005Coating the outside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A method of forming a thin film having a smooth surface and a uniform film thickness such as an anti­static or antireflection film on the outer surface of a display screen (12) of a cathode ray tube (11), includes the steps of applying a film formation material solu­tion containing a volatile solvent on the outer surface of the display screen (12) of the cathode ray tube (11) to form a solution film, rotating the cathode ray tube (11) about a tube axis thereof to obtain an uniform film thickness of the solution film, and causing a portion of the solution film applied in and near the center of the outer surface of the display screen (12) to dry while the cathode ray tube (11) is being rotated.

Description

  • The present invention relates to a method of form­ing a thin film, especially, an antistatic or antire­flection film on an outer surface of a display screen of a cathode ray tube.
  • Normally, the outer surface of a display screen of a cathode ray tube has a smooth mirror-like surface, and its surface resistance is high. For this reason, external light is reflected on the outer surface, and therefore an image displayed on an inner surface of the display screen is dull or a static charge is un­desirably stored during an operation of the cathode ray tube. In order to prevent such inconveniences, it is well known to form a thin film, especially, an anti­static or antireflection film on the outer surface of a display screen of a cathode ray tube. For this purpose, several manufacturing methods have been proposed.
  • For example, Japanese Patent Disclosure No. 61-118932 describes a method of coating an alco­holic solution of Si(OR)₄ on the outer surface of a display screen of a cathode ray tube by spray coating, drying and baking the coated solution, thereby form­ing an SiO₂ film having antistatic and antidazzling effects.
  • This method aims at obtaining an antistatic effect of an SiO₂ film by forming an SiO₂ film having fine pro­jections on the outer surface of a display screen, which diffuse external light, thereby obtaining an antidazzl­ing effect. However, the above method is not suitable for forming a smooth thin film without projections such as a thin film having only an antistatic effect or an antireflection film which utilizes interference of external light, especially when a solution to be coated is volatile. The reason for this is as follows.
  • Figs. 1A and 1B schematically show a formation process of an SiO₂ film performed by a spray coating method. In Fig. 1A, droplets 2 of an Si(OR)₄ alcoholic solution are adhered to an outer surface of a display screen of a cathode ray tube by the spray coating method. When droplets 2 fly in the air in an arrow direction, a large amount of alcohol as a solvent is evaporated and lost. Therefore, hydrolysis and conden­sation of Si(OR)₄ progress and the viscosity of the droplets is increased. For this reason, the droplets are adhered on the outer surface of the display screen and become semi-spherical droplets 3. Since semi-­spherical droplets 3 adhered on the outer surface of the display screen continue to be dried, hydrolysis and condensation of Si(OR)₄ progress. Therefore, when subsequent droplets are adhered on droplets 3, they do not mixed with one another, resultantly forming the projections 4. As a result, SiO₂ film 5 having fine projections on its surface as shown in Fig. 1B is formed. This phenomenon occurs whenever a volatile solvent such as an alcohol is used.
  • In order to form a film having a surface without projections by the spray coating method, droplets must be adhered to the display screen before the solvent in the previously adhered droplets has evaporated. For this purpose, it is conceivable to increase a spray amount of the Si(OR)₄ alcoholic solution per unit time. In addition, an airless-spraying machine may be used in place of an air-spraying machine and the distance between the airless-spraying machine and the display screen may be shortened to minimize the evaporation of the solvent while the droplets fly in the air.
  • By way of these methods, including the spray coating method, a smooth thin film without projections can be formed. However, the process of forming a uni­form thin film having a desired thickness on the outer surface of a display screen of a cathode ray tube remains a difficult task, especially a large cathode ray tube.
  • A dipping method is also known to those skilled in the art as a method of forming a smooth thin film without projections. In this method, after an outer surface of a display screen of a cathode ray tube is dipped in a film formation material solution, the dis­play screen is raised upright, and then the solution is caused to dry. With this method, a thin film having a smooth surface can be formed. However, since the solu­tion flows downward while it is being dried, a film thickness of a lower portion is increased. In a display screen having a large area, this difference in the film thickness is increased, and therefore a thin film having a uniform thickness is hard to form.
  • In addition to the above dipping method, a rotating method is also known as a method of forming a smooth thin film on a substrate. In this method, a film for­mation material solution is applied on the entire sur­face of a substrate and then the substrate is rotated at a high speed, thereby forming a uniform solution film. This method is effective when a substrate surface is flat and has a relatively small area. However, when a solution containing a volatile solvent is to be applied on a substrate having a convex surface with a relatively large area such as a display screen of a cathode ray tube, it is difficult to directly apply the method.
  • The reason for this is as follows. That is, in this method, after the solution film is formed by applying the film formation material solution on the outer surface of the display screen of the cathode ray tube to form a solution film, the cathode ray tube is rotated about its tube axis at a high speed (about 130 to 200 rpm) in order to obtain a uniform thickness of the solution film. Then, the excess solution film applied near the center of the display screen is moved to a periphery of the display screen by a centrifugal force and then dried and solidified at the periphery by an air flow generated by rotation, thereby forming annular projections. Since an air flow generated by the rotation of a central portion is weak and hence a solution at this portion is slowly dried, not only the excess portion of the solution but also a solution required for obtaining a desired film thickness are caused to flow to the periphery of the display screen. As a result, the difference in a film thickness is further increased.
  • The solution moved from the central portion to the periphery of the display screen causes an inferior, nonuniform thickness in the film at the corners of the display screen because a surface of the display screen of the cathode ray tube is convex and square. That is, in Fig. 2, when the cathode ray tube rotates in a direc­tion indicated by arrow a, the solution applied on a portion near the central portion flows in directions indicated by arrows b. Although the solution mostly spreads outwardly, some of the solution stays at an edge portion of the display screen and flows in a direction indicated by arrows c. A solution which flows to the hatched portions then flows in the directions indicated by arrows d to the corners of the display screen because the display screen is convex and square. Since the speed of air flow generated at the corners is high, the solution film is dried faster in the corner areas than in the central portion, and a solution from the central portion further flows onto the dried film in the corner areas and is dried thereon, thereby forming a thick film.
  • It is, therefore, an object of the present inven­tion to provide a method of forming a thin film having a smooth surface and a uniform film thickness on the outer surface of a display screen of a cathode ray tube.
  • According to the present invention, there is provided a method of forming a thin film on an outer surface of a display screen of a cathode ray tube, comprising the steps of: applying a film formation material solution containing a volatile solvent on the outer surface of the display screen of the cathode ray tube to form a solution film; rotating the cathode ray tube about a tube axis thereof to obtain a uniform film thickness of the solution film; and causing a portion of the solution film applied in and around the center of the outer surface of the display screen to dry while the cathode ray tube is being rotated.
  • A rotational speed of the cathode ray tube is preferably 30 to 300 rpm, and more preferably, 50 to 200 rpm. This rotational speed is preferably changed, e.g., reduced in a stepwise manner.
  • An angle defined by a rotational axis of the cathode ray tube and a vertical axis is preferably 90° or less.
  • The drying step can be performed by heating. Heat­ing can be performed by blowing hot air or by using a heater.
  • When the hot air is used for heating, a temperature of the hot air near the display screen is preferably 30 to 200°C, and more preferably, 50 to 120°C. A flow speed of the hot air near the display screen is pre­ferably 1 to 10 m/s, and more preferably, 1.5 to 6 m/s. The temperature and the flow speed of the air are pre­ferably changed, e.g., increased in a stepwise manner. If drying is rapidly performed from the beginning, the solution film is dried before it attains a uniform thickness, thereby forming scale-like projections on the thin film.
  • The solution film at a portion near the central portion on the outer surface of the display screen may be dried by preheating this portion up to a temperature higher than that at the corners before the solution is applied.
  • According to the method of the present invention as described above, a thin film having a smooth surface and a uniform film thickness can be formed on the outer surface of a display screen of a cathode ray tube.
  • This invention can be more fully understood from the following detailed description when taken in con­junction with the accompanying drawings, in which:
    • Figs. 1A and 1B are sectional views schematically showing a process of forming an SiO₂ film on a substrate by a spray coating method;
    • Fig. 2 is a plan view showing a flow of a solution on a display screen obtained when a thin film is formed on a display screen of a cathode ray tube by a rotating method;
    • Fig. 3 is a sectional view of an apparatus for carrying out a method of the present invention;
    • Fig. 4 is a graph showing the temperature distri­bution which is obtained when hot air located near a display screen surface is blown onto a display screen of a cathode ray tube; and
    • Fig. 5 is a partially cutaway view of a structure of a cathode ray tube.
  • A preferred embodiment of the present invention will be described below with reference to the accom­panying drawings.
  • In Fig. 3, the outer surface of display screen 12 of the 25 inch-type color cathode ray tube 11 is washed with fluoric acid, ammonium fluoride, nitric acid, or sodium hydroxide and then washed with pure water. Thereafter, a high pressure air is blown onto the outer surface of the display screen 12 to dry it. Then, tube 11 is mounted on supporting apparatus 13 so that the outer surface of screen 12 faces obliquely downward. Apparatus 13 can be inclined so that angle ϑ defined by axis 14 of tube 11 and vertical axis 15 falls within the range of 90° or less. In this example, angle ϑ is 15°.
  • Then, while tube 11 is slowly rotated about axis 14, a mixed solution is applied from nozzle 16 to the entire outer surface of screen 12. A composition of the mixed solution is 7 g of Si(OC2H5), 176 g of isopropyl alco­hol, 3 g of hydrochloric acid, and 2 g of water.
  • Thereafter, while a rotational speed of tube 11 is increased to 200 rpm to splash the excess solution, hot air is blown from hot air supplying pipe 17 to the central portion of the outer surface of screen 12 for 10 seconds so that the temperature and flow speed of the hot air near screen 12 are about 50°C and about 2 m/sec, respectively, (a first heating step). Then, the tem­perature of the hot air near the central portion of screen 12 is increased to about 80°C, and hot air is similarly blown for 10 seconds (a second heating step). Similarly, the temperature of the hot air near the central portion of screen 12 is increased to 110°C, and the hot air is blown for 40 seconds (a third heating step). Curves A, B, and C in Fig. 4 represent tem­perature distributions of the hot air near the entire outer surface of screen 12 in the first, second, and third heating steps, respectively. Note that distances , m, and n on the abscissa of Fig. 4 represent the width, the length, and a diagonal of the display screen, respectively.
  • The results of the surface check, reporting the smoothness and uniformity of the thin film surface formed as described above, are summarized in Table 1 below. Note that Table 1 also displays the results obtained when no hot air is blown, when the hot air is blown only under the heating condition of the first heating step for 60 seconds, and when air at room tem­perature of 22°C is blown for 100°C seconds onto the thin film surface.
    Figure imgb0001
  • As is apparent from Table 1, when the air is blown onto the portion near the center of the outer surface of screen 12, a smooth thin film having a uniform thickness can be obtained. Especially better results are obtained when the hot air is blown, and the temperature of the hot air is increased in a stepwise manner.
  • Then, when a flow speed of the hot air increased in a stepwise manner with a constant temperature is applied to a thin film layer, the same results are obtained as when the temperature of the hot air is increased in a stepwise manner. This is because the temperature of the hot air reaching the outer surface of screen 12 is reduced when its flow speed is low and increased when the flow speed is high.
  • Note that when the flow speed of the hot air exceeds 10 m/s, the thin film surface is found to possess scale-like unevenness.
  • The solution film at the central portion of the outer surface of screen 12 can also be dried by pre­heating this portion, before the solution is applied, to a high temperature of, e.g., 40°C and preheating the corner portions with a low temperature of, e.g., 25°C.
  • An angle defined by the rotational axis of the cathode ray tube and the vertical axis is preferably 90° or less. The reason for this is as follows.
  • That is, as shown in Fig. 5, cathode ray tube 21 comprises reinforcing member 24 which serves to prevent cathode ray tube 21 from exploiding, located on side periphery 23 of display screen 22. A small gap is formed between side periphery 23 and reinforcing member 24. For this reason, when axis 25 of tube 21 is ver­tically positioned so that screen 22 faces up ward, the solution adhered on side periphery 23 of screen 22 reaches funnel portion 28 through the gap between peri­phery 23 and reinforcing member 24 and is adhered on anode 26 or outer conductive film 27, thereby posing a serious problem of, e.g., poor insulation. When the rotational axis of the cathode ray tube is positioned horizontally or facing downward, i.e., when the angle defined by the rotational axis of the cathode ray tube and the vertical axis is 90° or less, the above problem can be solved.
  • Sometimes dust particles fall upon screen 22 after it has been washed, or get mixed in with the solution. In this case, if the solution is applied to screen 21 and tube 21 is rotated after axis 25 is vertically set so that screen 21 faces up, a film thickness is reduced behind dust particles, i.e., the film is blurred. When the rotational axis of the cathode ray tube is positioned horizontally or facing downward, i.e., when the angle defined by the rotational axis of the cathode ray tube and the vertical axis is 90° or less, dust par­ticles can be easily removed from screen 22 by scatter­ing them outward together with the excess solution by means of a centrifugal force. This solves the above problem.

Claims (18)

1. A method of forming a thin film on an outer surface of a display screen of a cathode ray tube, com­prising the steps of: applying a film formation material solution containing a volatile solvent on said outer surface of said display screen (12) of said cathode ray tube (11) to form a solution film; rotating said cathode ray tube (11) about a tube axis thereof to obtain an uniform film thickness of said solution film; and caus­ing a portion of said solution film applied in and around the center of said outer surface of said display screen (12) to dry while said cathode ray tube (11) is being rotated.
2. A method according to claim 1, characterized in that a rotational speed of said cathode ray tube (11) is 30 to 300 rpm.
3. A method according to claim 1, characterized in that a rotational speed of said cathode ray tube (11) is 50 to 200 rpm.
4. A method according to claim 1, characterized in that a rotational speed of said cathode ray tube (11) is changed in a stepwise manner.
5. A method according to claim 1, characterized in that a rotational speed of said cathode ray tube (11) is reduced in a stepwise manner.
6. A method according to claim 1, characterized in that an angle defined by a rotational axis of said cathode ray tube (11) and a vertical axis is not more than 90°.
7. A method according to claim 1, characterized in that said drying step is performed by heating.
8. A method according to claim 7, characterized in that the heating is performed by blowing hot air.
9. A method according to claim 7, characterized in that the heating is performed by using a heater.
10. A method according to claim 8, characterized in that a temperature of the hot air near the screen is 30 to 200°.
11. A method according to claim 8, characterized in that a temperature of the hot air near the screen (12) is 50 to 120°.
12. A method according to claim 8, characterized in that a flow speed of the hot air near the screen (12) is 1 to 10 m/s.
13. A method according to claim 8, characterized in that a flow speed of the hot air near the screen (12) is 1.5 to 6 m/s.
14. A method according to claim 8, characterized in that a temperature of the hot air is increased in a stepwise manner.
15. A method according to claim 8, characterized in that a flow speed of the hot air is increased in a stepwise manner.
16. A method according to claim 7, characterized in that heating is performed before the solution is applied by preheating a portion in and around the center of the outer surface up to a temperature higher than that at corner portions.
17. A method according to claim 1, characterized in that said thin film is an antistatic film.
18. A method according to claim 1, characterized in that said thin film is an antireflection film.
EP88105646A 1987-04-10 1988-04-08 Method of forming a thin film on the outer surface of a display screen of a cathode ray tube Expired - Lifetime EP0286129B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP86966/87 1987-04-10
JP8696687 1987-04-10
JP2381288 1988-02-05
JP23812/88 1988-02-05

Publications (3)

Publication Number Publication Date
EP0286129A2 true EP0286129A2 (en) 1988-10-12
EP0286129A3 EP0286129A3 (en) 1988-11-17
EP0286129B1 EP0286129B1 (en) 1990-09-26

Family

ID=26361233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105646A Expired - Lifetime EP0286129B1 (en) 1987-04-10 1988-04-08 Method of forming a thin film on the outer surface of a display screen of a cathode ray tube

Country Status (6)

Country Link
US (1) US4908232A (en)
EP (1) EP0286129B1 (en)
JP (1) JP2695823B2 (en)
KR (1) KR930001186B1 (en)
CN (1) CN1021715C (en)
DE (1) DE3860680D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204637C1 (en) * 1992-02-15 1993-03-11 Schott Glaswerke, 6500 Mainz, De
EP0602721A1 (en) * 1992-12-17 1994-06-22 Koninklijke Philips Electronics N.V. Method of curing a film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000328B1 (en) * 1988-09-29 1992-01-11 미쯔비시덴끼 가부시끼가이샤 Method for manufacturing anti-static cathode ray tubes
JPH04137436A (en) * 1990-09-28 1992-05-12 Sony Corp Manufacture of cathode-ray tube
CN100437152C (en) * 2004-09-30 2008-11-26 亚洲光学股份有限公司 Coating method of wet type anti-reflective compound film
US7993610B2 (en) * 2005-10-05 2011-08-09 Idexx Laboratories, Incorporated Blood centrifuge rotor with fill indicator
JP2014507686A (en) 2011-02-11 2014-03-27 ディーエスエム アイピー アセッツ ビー.ブイ. Method for depositing an antireflective layer on a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542038A (en) * 1983-09-30 1985-09-17 Hitachi, Ltd. Method of manufacturing cathode-ray tube
JPS61104535A (en) * 1984-10-26 1986-05-22 Hitachi Ltd Method of forming reflection preventing film in panel surface of cathode-ray tube
JPS61290622A (en) * 1985-06-19 1986-12-20 Hitachi Ltd Manufacture of cathode-ray tube
JPS61290623A (en) * 1985-06-19 1986-12-20 Hitachi Ltd Surface treatment of cathode-ray tube panel
JPS6237850A (en) * 1985-08-12 1987-02-18 Taiyo Bussan Kk Cathode-ray tube

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143435A (en) * 1962-01-05 1964-08-04 Gen Electric Round panel lamp phosphor coating
US3376153A (en) * 1964-10-20 1968-04-02 Rauland Corp Method of coating cathode-ray tubes
NL6713664A (en) * 1967-10-07 1969-04-09
US3653939A (en) * 1970-01-05 1972-04-04 Zenith Radio Corp Screening of black-surround color picture tubes
US4078095A (en) * 1974-03-28 1978-03-07 Rca Corporation Slurry process for coating particles upon the viewing-window surface of a cathode-ray tube
US3940508A (en) * 1974-09-16 1976-02-24 Westinghouse Electric Corporation Precoating color television picture tube faceplate panels to promote phosphor pattern adherence
JPS5947418B2 (en) * 1976-12-17 1984-11-19 株式会社東芝 Manufacturing method of color picture tube
JPS54147773A (en) * 1978-05-11 1979-11-19 Mitsubishi Electric Corp Filming method for fluorescent screen
JPS5512629A (en) * 1978-07-11 1980-01-29 Mitsubishi Electric Corp Formation of organic film on the inside surface of cathode-ray tube or color picture tube
JPS55130039A (en) * 1979-03-30 1980-10-08 Toshiba Corp Formation method of metal back fluorescent screen
US4746588A (en) * 1985-11-25 1988-05-24 Rca Corporation Method for preparing a photosensitive film on a glass surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542038A (en) * 1983-09-30 1985-09-17 Hitachi, Ltd. Method of manufacturing cathode-ray tube
JPS61104535A (en) * 1984-10-26 1986-05-22 Hitachi Ltd Method of forming reflection preventing film in panel surface of cathode-ray tube
JPS61290622A (en) * 1985-06-19 1986-12-20 Hitachi Ltd Manufacture of cathode-ray tube
JPS61290623A (en) * 1985-06-19 1986-12-20 Hitachi Ltd Surface treatment of cathode-ray tube panel
JPS6237850A (en) * 1985-08-12 1987-02-18 Taiyo Bussan Kk Cathode-ray tube

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, E Field, Vol. 10, No. 285, September 27, 1986 The Patent Office Japanese Government page 47 E 441 & JP-A-61 104 535 (Hitachi) *
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, E Field, Vol. 11, No. 154, May 19, 1987 The Patent Office Japanese Government page 16 E 508 & JP-A-61 290 622 (Hitachi) *
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, E Field, Vol. 11, No. 154, May 19, 1987 The Patent Office Japanese Government page 17 E 508 & JP-A-61 290 623 (Hitachi) *
PATENT ABSTRACTS OF JAPAN, Unexamined Applications, E Field, Vol. 11, No. 217, July 14, 1987 The Patent Office Japanese Government page 137 E 523 & JP-A-62 037 850 (Taiyo Bussan) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204637C1 (en) * 1992-02-15 1993-03-11 Schott Glaswerke, 6500 Mainz, De
US5314715A (en) * 1992-02-15 1994-05-24 Schott Glaswerke Coating process
EP0602721A1 (en) * 1992-12-17 1994-06-22 Koninklijke Philips Electronics N.V. Method of curing a film

Also Published As

Publication number Publication date
KR880013218A (en) 1988-11-30
EP0286129A3 (en) 1988-11-17
JPH01281637A (en) 1989-11-13
KR930001186B1 (en) 1993-02-20
US4908232A (en) 1990-03-13
EP0286129B1 (en) 1990-09-26
CN1021715C (en) 1993-07-28
CN88102016A (en) 1988-11-23
JP2695823B2 (en) 1998-01-14
DE3860680D1 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
US4068019A (en) Spin coating process for prevention of edge buildup
EP0286129A2 (en) Method of forming a thin film on the outer surface of a display screen of a cathode ray tube
US3652323A (en) Process for coating flatlike surfaces
US5660876A (en) Method of manufacturing cathode ray tube with a nonglare multi-layered film
US4035524A (en) Process for coating a phosphor slurry on the inner surface of a color cathode ray tube faceplate
US2903377A (en) Method of applying films to cathode ray tube screens
GB2224596A (en) Method for manufacturing anti-static cathode ray tubes
JPH10296172A (en) Method for forming coating film
JP3280225B2 (en) Sol-gel thin film deposition method
KR100277629B1 (en) How to apply peeling liquid
EP0574112A1 (en) A coating composition and a cathode ray tube using the same
JPH0588001A (en) Formation of antireflection film on outside surface of face part of cathode ray tube
JPH03152827A (en) Method of forming thin film on face outer surface of cathode-ray tube
JPS59186230A (en) Phosphor screen forming method of cathode ray tube
JP3732559B2 (en) Method for forming graphite conductive film of cathode ray tube
US5314715A (en) Coating process
JPH0536351A (en) Formation of undercoat film for crt aluminum back
KR920008314B1 (en) Method of coating film on the panel of crt
JPH0241140B2 (en) INKYOKUSENKANNOSEIZOHOHO
JPH08138545A (en) Manufacture of non-glare and antistatic cathode-ray tube
JPH06267413A (en) Surface processing of panel face for cathode ray tube and device therefor
JP2002050284A (en) Treatment method of face-panel for picture display device and picture display device fitted with treated face-panel by the method
JPH117889A (en) Manufacture of cathode-ray tube
JPH0461726A (en) Film formation method for small-sized cathode-ray tube
JPH09180632A (en) Fluorescent screen forming method for color picture tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19880505

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19891227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3860680

Country of ref document: DE

Date of ref document: 19901031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19981010

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070405

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070404

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070411

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080407