EP0299027A1 - Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung. - Google Patents

Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung.

Info

Publication number
EP0299027A1
EP0299027A1 EP88901002A EP88901002A EP0299027A1 EP 0299027 A1 EP0299027 A1 EP 0299027A1 EP 88901002 A EP88901002 A EP 88901002A EP 88901002 A EP88901002 A EP 88901002A EP 0299027 A1 EP0299027 A1 EP 0299027A1
Authority
EP
European Patent Office
Prior art keywords
alloy
creep
sintered
metals
refractory metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88901002A
Other languages
English (en)
French (fr)
Other versions
EP0299027B1 (de
Inventor
Ralf Eck
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0299027A1 publication Critical patent/EP0299027A1/de
Application granted granted Critical
Publication of EP0299027B1 publication Critical patent/EP0299027B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the invention relates to a sintered alloy of one or more of the refractory metals Mo, W, Nb, Ta, V, Cr with a stacked structure, which has excellent heat resistance combined with excellent creep resistance at high temperatures, and a process for its production.
  • refractory metals are often used for molded parts that are designed to withstand high temperatures.
  • TZM molybdenum alloy that typically contains about 0.5% by weight of titanium, 0.08% by weight of zirconium and 0.05% by weight of carbon.
  • US Pat. No. 3,982,970 also describes a high-melting alloy of this type, where the base material is dispersion-hardened by heat treatment in a special atmosphere.
  • a suitable atmosphere is one which contains particles of thorium oxide or aluminum oxide with a grain size of ⁇ 1 ⁇ m.
  • D ⁇ -OS 34 41 851 Another alloy of high-melting metal of this type based on molybdenum is described in D ⁇ -OS 34 41 851. This alloy contains 0.2-1% by weight of oxides of the tri- or tetravalent metals as dispersed particles.
  • Known alloys of high-melting metals of this type are e.g. B. tungsten and molybdenum alloys, which are usually doped with small amounts of aluminum and / or silicon and potassium. It is essential with these alloys made of high-melting metals that, first of all, potassium must always be present in the alloy so that a stacked wire structure is formed.
  • the additional li doping elements such as aluminum and / or silicon ensure that the potassium does not completely diffuse out of the material during the sintering, while practically completely escaping even during the sintering.
  • the doping elements aluminum, silicon and potassium can in principle be introduced in liquid form, in the form of their solutions, or in the form of dry powders.
  • both methods of introduction are not without problems in the production of these alloys from refractory metals on an industrial scale.
  • the introduction of the potassium can only be sensibly solved in the form of the potassium silicates.
  • the potassium silicates have the disadvantage that they are hygroscopic and are therefore very difficult to distribute uniformly in the powder mixture.
  • the wet introduction of the doping elements in the form of solutions is also not without disadvantages with regard to reproducible production, since the slight volatility of the solutions, again particularly in the case of potassium, sintering with high sintered densities, which would be very advantageous for the subsequent mechanical shaping , difficult.
  • a further molybdenum alloy of this type is described in EU-A1 119438, in which the molybdenum is doped with about 0.005-0.75% by weight of the elements aluminum and / or silicon and potassium.
  • This prior publication also mentions that by additionally doping this alloy with 0.3-3% by weight of at least one compound selected from the group of oxides, carbides, borides and nitrides of the elements La, Ce, Dy, Y, Th, Ti, Zr, Nb, Ta, Hf, V, Cr, Mo, W and Mg the high temperature properties of the alloy can be further improved.
  • This prior publication also does not mention anything about a particularly advantageous grain size of the doping elements in the production of this alloy.
  • the object of the present invention is to create an alloy with a stack structure of one or more high-melting metals, in which the use of potassium as a doping element is dispensed with, as a result of which good reproducible production of the alloy and in particular high densities during sintering are achieved.
  • the alloy is said to have improved room temperature, warm and creep strength properties compared to the known alloys of high-melting metals with a stacked structure.
  • the alloy contains 0.005-10% by weight of one or more compounds and / or one or more mixed phases of the compounds from the group of oxides, nitrides, carbides, borides, silicates or aluminates with a grain size ⁇ 1.5 ⁇ m, the additives being limited to compounds and / or mixed phases whose melting point is above 1500 ° C. Due to the known prior art, the use of potassium as a doping element for the production of alloys from high-melting metals with a stacked structure was absolutely necessary, so that the serious problems in production had to be accepted through the use of potassium.
  • the present invention is based on the completely surprising finding, based on the known prior art, that the element potassium can be dispensed with when using very specific compounds as doping materials for producing high-strength and creep-resistant, sintered alloys from high-melting metals with a stacked structure.
  • the alloy of high-melting metal according to the invention has heat strengths and creep strengths at high temperatures, which exceed those of the known alloys of high-melting metals with a stacked structure.
  • the strength values at room temperature also correspond, at least approximately, to those of the known alloys made of refractory metals, but may even exceed them in some cases.
  • a particularly advantageous alloy made of high-melting metal with a stacked structure according to the present invention contains 1-5% by weight of the oxides and / or mixed oxides with a respective grain size ⁇ 0.5 ⁇ m of one or more elements from the group La, Ce, Y, Th, Mg, Ca, Sr, Hf, Zr, Er, Ba, Pr, Cr.
  • Another particularly advantageous alloy made of refractory metal with a stacked structure according to the present invention contains 1 - 5% by weight of at least one of the borides and / or the nitride, each with a grain size of 0.5 ⁇ m, from Hf.
  • the oxides La 2 O 3 , CeO 2 , Y 2 O 3 , ThO 2 , MgO, CaO, the mixed oxides Sr (Hf, Zr) O 3 , ZrO 2 ; Er 2 O 3 , SrZrO 3 , Sr 4 Zr 3 O 10 , BaZrO 3 as well as La 0.84 Sr 0.16 CrO 3 and the borides HfB, HfB 2 and HfN were found to be within an alloy content of 1 - 5% by weight proven particularly suitable doping materials.
  • Molybdenum, tungsten, chromium and their alloys are particularly suitable as high-melting metals for the production of the alloy according to the invention.
  • the alloy of high-melting metal according to the invention can only be produced by powder metallurgy.
  • the alloy according to the invention is produced from high-melting metal in a particularly advantageous manner by adding 0.005-10% by weight of one or more compounds and / or one or more mixed phases of the compounds from the group of hydroxides, oxides, to the powdery high-melting metal or metals.
  • Nitrides, carbides, borides, silicates or aluminates with a grain size ⁇ 1.5 ⁇ m and with a melting point above 1500 oC are mixed in powder form and that the powder mixture is pressed and sintered in a known manner and the sintered body obtained with a degree of deformation of at least 85 % is mechanically formed in compliance with the necessary heat treatments and then subjected to a recrystallization annealing.
  • the doping materials according to the invention can be introduced dry in the form of solid powders into the high-melting metal powder. It is only important that the doping materials are introduced in a correspondingly fine manner with the specified grain size as a discrete, that is to say non-agglomerated and non-aggregated powder. Such a powder can be obtained, for example, by spray drying finely precipitated compounds. The most uniform distribution possible is achieved by forced mixing.
  • Another method to achieve the required fine grain of the doping materials in the finished alloy is the introduction of the doping materials in the form of compounds that can be decomposed at low temperatures, for example in the case of lanthanum as lanthanum hydroxide La (OH) 3 , lanthanum carbonate La 2 (CO 3 ) 3 .8H 2 O, lanthanum heptahydrate LaCl 3 .7H 2 O or lanthanum molybdate La 2 (MoO 4 ) 3 .
  • the introduction can be achieved with the necessary fine grain.
  • the doping materials have melting points that are well above 1500 ° C., the amount of doping materials introduced into the powder mixture remains almost completely in the finished sintered alloy.
  • the doping materials have melting points that are close to the specified lower limit of 1500 ° C., part of the doping materials introduced into the powder mixture escapes due to the high vapor pressure during sintering in gaseous form and entrains inevitable impurities in the alloy, so that a positive cleaning effect occurs.
  • the powder batches can be pressed on die presses or isostatic presses.
  • the compacts are usually sintered under normal pressure and H 2 atmosphere.
  • the sintering temperature is chosen depending on the alloy composition, but must as a rule be at least 200 ° below the melting point of the lowest melting component.
  • the achievable sintered densities of the alloy according to the invention are then over 95% of the theoretical density.
  • the alloy is mechanically deformed by at least 85%, e.g. B. by rolling or drawing.
  • the mechanical reshaping takes place in individual stages, each reshaping stage advantageously resulting in a reshaping by approximately 10%.
  • Heat treatments are inserted between the individual forming operations. It is essential that both the forming temperature and the temperature of the heat treatment are below the respective recrystallization temperature.
  • the material is subjected to a recrystallization annealing, as a result of which the stacked structure is formed.
  • Table 1 shows the comparison of the creep strengths of known alloys made of high-melting metals according to the prior art and alloys according to the invention made of high-melting metals.
  • Table 2 shows the improved strengths and hardness values of alloys according to the invention made from refractory metals compared to alloys made from refractory metals according to the prior art and to unalloyed refractory metals.
  • Forming temperatures of approx. 1400 o C, starting with gradations of approx. 10% each, are hammered round on rods with a diameter of approx. 3 mm. These bars were drawn at a temperature of about 800 ° C in several stages to 0.5 mm diameter wires. The wires obtained showed a final one
  • Alloy 4 was produced in the same way as in Example 1. Instead of La (OH) 3 , 1% by weight of MgO with a grain size of 0.45 ⁇ m was mixed in and wire with a diameter of 0.5 mm was produced.
  • Alloy 5 was produced by the same procedure as in Example 1. Instead of La (OH) 3 , 1% by weight of Al 2 O 3 with a grain size of 1.2 ⁇ m was mixed in and wire with a diameter of 0.5 mm was produced. In game 4
  • Molybdenum metal powder with a grain size of 5 ⁇ m was mixed with 2% by weight
  • a tungsten alloy according to the invention was produced as follows: 99% by weight of tungsten metal powder with a grain size of 4 ⁇ m was mixed with 1% by weight of La (OH) 3 powder with a grain size of 0.4 ⁇ m and cold isostatically squared with 3 MN Bars with a cross section of 2.5 cm pressed. The bars were then sintered under Hp protective gas at 2100 ° C. for 12 hours. The sintered bars were hammered round at temperatures of 1600 ° C, starting with gradations of about 10% each, on bars with a diameter of approx. 3 mm. After recrystallization annealing at approx. 2300 oC, these rods already showed a stacked structure with a diameter of approx. 3 mm.
  • Example 5 Another tungsten alloy with 1.0 wt% CeO 2 was made in the same manner as Example 5. In contrast, only the sintering was carried out at a temperature of 2400 ° C. for 6 hours. The further processing into bars of approximately 3 mm in diameter was carried out analogously to Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

KRIECHFESTE LEGIERUNG AUS HOCHSCHMELZENDEM METALL UND VERFAHREN ZU IHRER HERSTELLUNG
Die Erfindung betrifft eine gesinterte Legierung aus einem ode r mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr mit Stapelgefügestruktur, die eine ausgezeichnete Warmfestigkeit verbunden mit einer hervorragenden Kriechfestigkeit bei hohen Temperaturen aufweist sowie ein Verfahren zu ihrer Herstellung.
Hochschmelzende Metalle werden wegen ihres hohen Schmelzpunktes und ihrer hohen Warmfestigkeit häufig für Formteile verwendet, die hohen Temperaturen standhalten sollen.
Für Anwendungen, wo es auf eine gute Warmfestigkeit sowie auf eine hohe Kriechfestigkeit, d. h. auf eine gute mechanische Festigkeit bei hohen Temperaturen während langer Zeiträume ankommt, sind die hochschmelzenden Metalle in reiner Form in vielen Fällen jedoch n i c ht mehr verwendbar.
Um die Warmfestigkeit und die Kriechfestigkeit der hochschmelzenden Metalle bei hohen Temperaturen zu steigern, sind in der Vergangenheit zwei wichtige unterschiedliche Arten des Legierens von hochschmelzenden Metallen entwickelt worden.
Bei der einen Art des Legierens von hochschmelzenden Metallen werden dem Grundmaterial aus hochschmelzendem Metall gewisse Elemente zugegeben, die in der fertigen Legierung als feinstdispergierte Teilchen im Gefüge vorhanden sind, wodurch eine Steigerung der Warmfestigkeit und Kriechfestigkeit bei hohen Temperaturen gegenüber dem reinen hochschmelzenden Metall erreicht wird. Wesentlich bei diesen Legierungen ist, daß die verbesserten Eigenschaften ohne spezielle mechanische Umformungen im Zuge des Herstellungsverfahrens erreicht werden.
Der bekannteste Vertreter dieses Legierungstyps ist das sogenannte TZM, eine Molybdän-Legierung, die typischerweise ca. 0,5 Gew.% Titan, 0,08 Gew.% Zirkon und 0,05 Gew.% Kohlenstoff enthält.
Die US-PS 3 982 970 beschreibt ebenfalls eine hochschmelzende Legierung dieser Art, wo das Grundmaterial durch Wärmebehandlung in einer speziellen Atmosphäre dispersionsverfestigt wird. Als geeignete Atmosphäre wird auch eine solche genannt, die Teilchen von Thoriumoxid oder Aluminiumoxid mit einer Korngröße < 1 μm enthält.
Eine weitere Legierung aus hochschmelzendem Metall dieser Art auf Molybdän-Basi s ist in der DΕ-OS 34 41 851 beschrieben. Diese Legierung enthält 0,2 - 1 Gew.% an Oxiden der drei- oder vierwertigen Metalle als dispergierte Teilchen.
Bei allen bekannten Legierungen aus hochschmelzenden Metallen, die ohne spezielle mechanische Umformungen hergestellt werden und bei denen dispergierte Teilchen eine gegenüber dem reinen hochschmelzenden Metall erhöhte Warmfestigkeit und Kriechfestigkeit bei hohen Temperaturen bewirken, ist die Temperatur, bis zu der diese Festigkeiten in ausreichendem Maß erhalten bleiben, für viele Anwendungsfälle auch noch nicht ausreichend.
Um die Einsatztemperatur von hochschmelzenden Metallen mit ausreichenden Warmfestigkeits- und Kriechfestigkeits-Eigenschaften wesentlich zu erhöhen, wurde eine zweite Art des Legierens von hochschmelzenden Metallen entwickelt. Bei dieser Art des Legierens von hochschmelzenden Metallen, d i e nur auf pulvermetallurgischem Wege erfolgen kann, wird das Grundmaterial aus hochschmelzendem Metall mit bestimmten Elementen dotiert und im Zuge des He rste l lungsverf ah rens höchsten mechanischen Umformungen mit einem Umformgrad von mindestens 85 % unterzogen. Auf diese Weise kommt es zu einer ganz bestimmten Gefügeausbildung der Legierung aus hochschmelzendem Metall, dem sogenannten Stapelgefüge, das durch länglich geformte Gefügekörner gekennzeichnet ist, deren Verhältnis von Länge zu Breite mindestens 2:1 beträgt.
Bekannte Legierungen aus hochschmelzenden Metallen dieser Art sind z. B. Wolfram- und Molybdän-Legierungen, die üblicherweise mit geringen Mengen an Aluminium und/oder Silizium und Kalium dotiert sind. Wesentlich bei diesen Legierungen aus hochschmelzenden Metallen ist, daß zumiπαest Kalium immer in der Legierung vorhanden sein muß, damit es zur Ausbildung eines Stapeldrahtgefüge kommt. Die zusätz l i chen Dotierungselemente wie Aluminium und/oder Silizium bewirken, daß das Kalium während der Sinterung nicht vollständig aus dem Materi a l diffundiert, während sie selbst während der Sinterung praktisch vollständig entweichen. Die Dotierungselemente Aluminium, Silizium und Kalium können grundsätzlich flüssig, in Form ihrer Lösungen als auch trocken in Form der festen Pulver eingebracht werden. Beide Einbringungsmethoden sind jedoch bei der Herstellung dieser Legierungen aus hochschmelzenden Metallen in großtechnischem Maßstab nicht unproblematisch. Bei der trockenen Einbringung de r Dot i e rungse lemente in Form von festen Pulvern ist die Einbringung des Kaliums nur in Form der Kaliumsilikate sinnvoll lösbar. Die Kaliumsilikate besitzen jedoch den Nachteil, daß sie hygroskopisch sind und daher in der Pulvermischung nur sehr schwer gleichförmig verteilbar sind. Die nasse Einbringung der Dotierungselemente in Form von Lösungen ist im Hinblick auf eine reproduzierbare Fertigung auch nicht ohne Nachteile, da die leichte Flüchtigkeit der Lösungen, wiederum insbesondere im Fall des Kaliums, eine Sinterung mit hohen Sinterdichten, welche für die nachfolgende mechanische Umformung sehr vorteilhaft wäre, erschwert. Der Einbringung der Dotierungselemente mit einer ganz spezifischen Korngröße war in der Vergangenheit keine wesentliche Bedeutung beigemessen worden. Aus W.Schott, "Pulvermetallurgie, Sinter- und Verbundwerkstoffe", 1. Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Seiten 400 - 425, sind diese Legierungen aus hochschmelzenden Metallen bekannt.
In der EU-A1 119438 ist eine weitere Molybdän-Legierung dieser Art beschrieben, bei der das Molybdän mit etwa 0,005 - 0,75 Gew.% der Elemente Aluminium und/oder Silizium und Kalium dotiert ist. In dieser Vorveröffentlichung wird weiters erwähnt, daß durch eine zusätz l i che Dotierung dieser Legierung mit 0,3 - 3 Gew.% wenigstens einer Verbindung ausgewählt aus der Gruppe der Oxide, Karbide, Boride und Nitride der Elemente La, Ce, Dy, Y, Th, Ti, Zr, Nb, Ta, Hf, V, Cr, Mo, W und Mg die Hochtemperatur-Eigenschaften der Legierung noch weiter verbessert werden können. Auch in dieser Vorveröffentlichung ist nichts über eine besonders vorteilhafte Korngröße der Dotierungselemente bei der Herstellung dieser Legierung erwähnt.
Aufgabe der vorliegenden Erfindung ist es, eine Legierung mit Stapelgefüge aus einem oder mehreren hochschmelzenden Metallen zu schaffen, bei der auf die Verwendung von Kalium als Dotierungselement verzichtet wird, wodurch eine gute reproduzierbare Fertigung der Legierung und insbesondere hohe Dichten bei der Sinterung erreicht werden. Daneben soll die Legierung gegenüber den bekannten Legierungen aus hochschmelzenden Metallen mit Stapelgefügestruktur verbesserte Raumtemperatur-, Warm- und Kriech-Festigkeitseigenschaften aufweisen.
Erfindungsgemäß wird dies dadurch erreicht, daß die Legierung 0,005 - 10 Gew.% einer oder mehrerer Verbindungen und/oder einer oder mehrerer Mischphasen der Verbindungen aus der Gruppe der Oxide, Nitride, Karbide, Boride, Silikate oder Aluminate mit einer Korngröße ≤ 1,5 μm aufweist, wobei die Zusätze auf Verbindungen und/oder Mischphasen beschränkt sind, deren Schmelzpunkt über 1500°C liegt. Aufgrund des bekannten Standes der Technik war die Verwendung von Kalium als Dotierungselement für die Herstellung von Legierungen aus hochschmelzenden Metallen mit Stapelgefügestruktur unbedingt erforderlich, so daß die schwerwiegenden Probleme in der Fertigung durch die Verwendung von Kalium in Kauf genommen werden mußten.
Der vorliegenden Erfindung liegt die aufgrund des bekannten Standes der Technik völlige überraschende Erkenntnis zugrunde, daß bei Verwendung ganz bestimmter Verbindungen als Dotierungsmaterialien zur Herstellung hochfester und kriechfester, gesinterter Legierungen aus hochschmelzenden Metallen mit Stapelgefügestruktur auf das Element Kalium verzichtet werden kann.
Eine wesentliche Voraussetzung, daß diese Dotierungsmaterialien geeignet sind, ist, daß ihre Einbringung in die Legierung in feinster Form erfolgen muß. Erst durch diese zusätzliche Maßnahme wird die Ausbildung einer befriedigenden Stapelgefügestruktur erreicht.
Die erfindungsgemäßen Legierung aus hochschmelzendem Metall weist Warmfestigkeiten und Kriechfestigkeiten bei hohen Temperaturen auf, die diejenigen der bekannten Legierungen aus hochschmelzenden Metallen mit Stapelgefügestruktur übertreffen. Aber auch die Festigkeitswerte bei Raumtemperatur entsprechen je nach Zusatzmenge der Dotierungsmaterialien, zumindest näherungsweise denjenigen der bekannten Legierungen aus hochschmelzenden Metallen, können diese aber auch zum Teil sogar noch übertreffen.
Eine besonders vorteilhafte Legierung aus hochschmelzendem Metall mit Stapelgefügestruktur entsprechend der vorliegenden Erfindung enthält 1 - 5 Gew.% der Oxide und/oder Mischoxide mit einer jeweiligen Korngröße ≤ 0,5 μm eines oder mehrerer Elemente aus der Gruppe La, Ce, Y, Th, Mg, Ca, Sr, Hf, Zr, Er, Ba, Pr, Cr.
Eine weitere besonders vorteilhafte Legierung aus hochschmelzendem Metall mit Stapelgefügestrukur entsprechend der vorliegenden Erfindung enthält 1 - 5 Gew.% mindestens eines der Boride und/oder das Nitrid mit einer jeweiligen Korngrößen 0,5 μm, von Hf.
Insbesondere die Oxide La2O3, CeO2, Y2O3, ThO2, MgO, CaO, die Mischoxide Sr(Hf, Zr)O3, ZrO2; Er2O3, SrZrO3, Sr4Zr3O10, BaZrO3 sowie La0,84Sr0,16CrO3 und die Boride HfB, HfB2 sowie HfN haben sich innerhalb eines Legierungsanteils von 1 - 5 Gew.% als besonders geeignete Dotierungsmaterialien erwiesen. Mit Zusätzen der Dotierungsmaterialien von mindestens 1 Gew.% lassen sich bei bestimmten Verbindungen, insbesondere im Falle des Yttriums gegenüber kleineren Legierungsmengen noch erhebliche Verbesserungen in der Zugfestigkeit und Kriechfestigkeit erreichen. Legierungsanteile, die über 5 Gew.% hinausgehen, bringen dagegen in den meisten Fällen keine nennenswerten weiteren Verbesserungen der angeführten Eigenschaften, so daß der bevorzugte Bereich aufgrund der in der Regel sehr teuren Dotierungsmaterialien auf maximal 5 Gew.% beschränkt bleiben kann.
Als hochschmelzende Metalle sind insbesondere Molybdän, Wolfram, Chrom sowie deren Legierungen für die Herstellung der erfindungsgemäßen Legierung geeignet.
Die erfindungsgemäße Legierung aus hochschmelzendem Metall ist ausschließlich auf pulvermetallurgischem Wege herstellbar.
Auf besonders vorteilhafte Weise wird die erfindungsgemäße Legierung aus hochschmelzendem Metall dadurch hergestellt, daß dem pulverförmigen hochschmelzenden Metall bzw. hochschmelzenden Metallen 0,005 - 10 Gew.% einer oder mehrerer Verbindungen und/oder einer oder mehrerer Mischphasen der Verbindungen aus der Gruppe der Hydroxide, Oxide, Nitride, Karbide, Boride, Silikate oder Aluminate mit einer Korngröße ≤ 1,5 μm und mit einem Schmelzpunkt über 1500ºC in Pulverform zugemischt werden und daß die Pulvermischung auf bekannte Weise gepreßt und gesintert wird und der erhaltene Sinterkörper mit einem Umformgrad von mindestens 85 % unter Einhaltung notwendiger Wärmebehandlungen mechanisch umgeformt und abschließend einer Rekristallisationsglühung unterzogen wird. Der große Vorteil liegt darin, daß die erfindungsgemäßen Dotierungsmaterialien trocken in Form fester Pulver in das hochschmelzende Metallpulver eingebracht werden können. W i cht i g ist lediglich, daß die Dotierungsmaterialien entsprechend fein mit der angegebenen Korngröße als diskretes, das heißt nicht agglomeriertes und nicht aggregiertes Pulver eingebracht werden. Ein solches Pulver kann beispielsweise durch Sprühtrocknen von feinst ausfallenden Verbindungen erhalten werden. Die möglichst gleichförmige Verteilung wird durch Zwangsmischung erreicht.
Eine weitere Methode, um die geforderte Feinkörnigkeit der Dotierungsmaterialien in der fertigen Legierung zu erreichen, ist die Einbringung der Dotierungsmaterialien in Form von Verbindungen, die bei tiefen Temperaturen zersetzbar sind, beispielsweise im Falle des Lanthans als Lanthanhydroxid La(OH)3, Lanthankarbonat La2(CO3)3.8H2O, Lanthanheptahydrat LaCl3.7H2O oder Lanthanmolybdat La2(MoO4)3. Durch Einmahlen dieser leicht mahlbaren Verbindungen in das hochschmelzende Metall-Ausgangspulver werden die Verbindungen weiter zerkleinert, zersetzen sich beim Sintern bereits bei tiefen Temperaturen und sind dann in der fertiggesinterten Legierung aus hochschmelzendem Metall a l s Lanthanoxid in der gewünschten Feinkörnigkeit vorhanden.
Auch durch Bedampfen des hochschmelzendem Metall-Ausgangspulvers mit den erfindungsgemäßen Dotierungsmaterialien, z. B. durch Sputterverfahren, kann die Einbringung mit der notwendigen Feinkörnigkeit erreicht werden.
Weisen die Dotierungsmaterialien Schmelzpunkte auf, die weit über 1500ºC liegen, bleibt die in die Pulvermischung eingebrachte Menge der Dotierungsmaterialien in der fertiggesinterten Legierung fast vollständig enthalten.
Weisen die Dotierungsmaterialien hingegen Schmelzpunkte auf, die nahe der angegebenen Untergrenze von 1500ºC liegen, entweicht ein Teil der in die Pulvermischung eingebrachten Dotierungsmaterialien aufgrund des hohen Dampfdruckes während der Sinterung in Gasform und reißt dabei unvermeidliche Verunreinigungen der Legierung mit, so daß ein positiver Reinigungseffekt auftritt.
Das Verpressen der Pulveransätze kann auf Matrizenpressen oder isostatischen Pressen erfolgen. Die Sinterung der Preßlinge erfolgt üblicherweise unter Normaldruck und H2-Atmosphäre. Die Sintertemperatur wird in Abhängigkeit von der Legierungszusammensetzung gewählt, muß jedoch in der Regel mindestens 200º unter dem Schmelzpunkt der niedrigst schmelzenden Komponente liegen. Die erreichbaren Sinterdichten der erfindungsgemäßen Legierung liegen dann bei über 95 % der theoretischen Dichte. Nach der Sinterung erfolgt die mechanische Umformung der Legierung um mindestens 85 %, z. B. durch Walzen oder Ziehen. Die mechanische Umformung erfolgt dabei in einzelnen Stufen, wobei jede Umformstufe vorteilhafterweise eine Umformung um etwa 10 % ergibt. Zwischen den einzelnen Umformungen werden jeweils Wärmebehandlungen eingelegt. Wesentlich dabei ist, daß sowohl Umformtemperatur als auch die Temperatur der Wärmebehandlung unter der jeweiligen Rekristallisations-Temperatur liegen.
Durch die hohen erzielbaren Sinterdichten ist die mechanische Umformung mit wesentlich geringeren Schwierigkeiten und weniger Ausschuß verbunden. So ist beispielsweise bei einer Umformung durch Walzen die Randrissigkeit des Bleches bedeutend geringer.
Abschließend an die Umformung wird das Material einer Rekristallisationsglühung unterzogen, wodurch sich die Stapelgefügestruktur ausbildet.
Tabelle 1 zeigt am Beispiel von Molybdän die Gegenüberstellung der Kriechfestigkeiten von bekannten Legierungen aus hochschmelzenden Metallen nach dem Stand der Technik und erfindungsgemäßen Legierungen aus hochschmelzenden Metallen. Tabelle 2 zeigt am Beispiel von Molybdän, Tantal, Niob und Chrom die verbesserten Festigkeiten und Härtewerte von erfindungsgemäßen Legierungen aus hochschmelzenden Metallen im Vergleich zu Legierungen aus hochschmelzenden Metallen nach dem Stand der Technik und zu den unlegierten hochschmelzenden Metallen.
Sämtliche Werte wurden mit Ausnahme der Werte von reinem Chrom und der Legierung 33 bei Raumtemperatur ermittelt. Da reines Chrom und die Legierung 33 bei Raumtemperatur spröde sind, wurden diese Werte bei 300° ermittelt.
h
Die Herstel lung der erfindungsgemäßen Legierung aus hochschmelzenden Metallen wi rd in den folgenden Beispielen näher erläutert, wobei diese Beispiele einzelnen Legierungen entsprechen, die zum Tei l in Tabelle 1 und 2 aufgeführt sind.
Beispiel 1
Die Legierung 3 wurde folgendermaßen hergestellt:
99 Gew.% Molybdän-Metallpulver mit einer Korngröße von 5 μm wurden mit
1 Gew.% La(OH)3-Pulver mit einer Korngröße von 0,4 μm vermischt und kaltisostatisch mit 3 MN zu quadratischen Stäben mit einem Querschnitt von 2,5 cm2 verpreßt. Danach wurden die Stäbe unter H2-Schutzgas bei 2000ºC während 5 Stunden gesintert. Die erreichte Sinterdichte lag bei
96 % der Theoretischen-Dichte. Die Sinterstäbe wurden bei
Umformtemperaturen von ca. 1400ºC beginnend mit Abstufungen von jeweils etwa 10 % Umformgrad auf Stäbe mit einem Durchmesser von ca. 3 mm rundgehämmert. Diese Stäbe wurden bei einer Temperatur von etwa 800ºC beginnend in mehreren Stufen zu Drähten von 0,5 mm Durchmesser weitergezogen. Die erhaltenen Drähte wiesen nach einer abschließenden
Rekristallisationsglühung bei ca. 1900ºC Stapelgefügestruktur auf.
Beispiel 2
Die Legierung 4 wurde gleich wie im Beispiel 1 hergestellt. Anstelle von La(OH)3 wurde 1 Gew.% MgO mit einer Korngröße von 0,45 μm eingemischt und Draht von 0,5 mm Durchmesser hergestellt.
Beispiel 3
Die Legierung 5 wurde nach demselben Verfahren wie im Beispiel 1 hergestellt. Anstelle von La(OH)3 wurde 1 Gew.% Al2O3 mit einer Korngröße von 1,2 μm eingemischt und Draht von 0,5 mm Durchmesser hergestellt. Bei spiel 4
Eine weitere erfindungsgemäße Legierung wurde folgendermaßen hergestellt:
Molybdänmetallpulver mit einer Korngröße von 5 .um wurde mit 2 Gew.%
La(OH)3-Pulver mit einer Korngröße von 0,4 μm vermischt und auf
Matrizenpressen mit 3 MN zu Platten mit den Abmessungen
17 cm × 40 cm × 5 cm gepreßt. Danach wurden die Platten bei
Umformtemperaturen von ca. 1400ºC beginnend mit Abstufungen von jeweils etwa 10 % zu Blech mit einer Endblechstärke von 1 mm gewalzt. Die
Bleche wiesen nach einer abschließenden Rekristallisationsglühung bei ca. 1900ºC Stapelgefügestruktur auf.
Beispiel 5
Eine erfindungsgemäße Wolframlegierung wurde wie folgt hergestellt: 99 Gew.% Wolfram-Metallpulver mit einer Korngröße von 4 μm wurde mit 1 Gew.% La(OH)3-Pulver mit einer Korngröße von 0,4 μm vermischt und kaltisostatisch mit 3 MN zu quadratischen Stäben mit einem Querschnitt von 2,5 cm verpreßt. Danach wurden die Stäbe unter Hp-Schutzgas bei 2100ºC 12 Stunden gesintert. Die Sinterstäbe wurden bei Umformtemperaturen von 1600ºC beginnend mit Abstufungen von jeweils etwa 10 % Umformgrad auf Stäbe mit einem Durchmesser von ca. 3 mm rundgehämmert. Nach einer Rekristallisationsglühung bei ca. 2300ºC wiesen diese Stäbe bereits bei ca. 3 mm Durchmesser Stapelgefügestruktur auf.
Beispiel 6
Eine weitere Wolfram-Legierung mit 1,0 Gew.% CeO2 wurde auf die selbe Weise wie Beispiel 5 hergestellt. Lediglich die Sinterung wurde abweichend davon bei einer Temperatur von 2400ºC während 6 Stunden durchgeführt. Die weitere Verarbeitung zu Stäben von ca. 3 mm Durchmesser erfolgte analog Beispiel 5.

Claims

P a t e n t a n s p r ü c h e
1. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr d a d u r c h g e k e n n z e i c h n e t , daß sie 0,005 - 10 Gew.% einer oder mehrerer Verbindungen und/oder einer oder mehrerer Mischphasen der Verbindungen aus der Gruppe der Oxide, Nitride, Karbide, Boride, Silikate oder Aluminate mit einer Korngröße ≤.1,5 μm aufweist, wobei die Zusätze auf Verbindungen und/oder Mischphasen beschränkt sind, deren Schmelzpunkt über 1500ºC liegt.
2. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzende Metalle Mo, W, Nb, Ta, V, Cr nach Anspruch 1, dadurch gekennzeichnet, daß sie 1 - 5 Gew.% der Oxide und/oder Mischoxide mit jeweils einer Korngröße ≤ 0,5 μm eines oder mehrerer der Elemente aus der Gruppe La, Ce, Y, Th, Mg, Ca, Sr, Hf, Zr, Er, Ba, Pr, Cr enthält.
3. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr nach Anspruch 1, dadurch gekennzeichnet, daß sie 1 - 5 Gew.% der Boride und/oder das Nitrid mit jeweils einer Korngrößen 0,5 μm von Hafnium, enthält.
4. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das bzw. die hochschmelzenden Metalle Molybdän oder eine Molybdänlegierung ist.
5. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das bzw. die hochschmelzenden Metalle Wolfram oder eine Wolf ramlegierung ist.
6. Gesinterte, kriechfeste Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das bzw. die hochschmelzenden Metalle Chrom oder eine Chromlegierung ist.
7. Verfahren zur Herstellung einer gesinterten, kriechfesten Legierung mit Stapelgefügestruktur aus einem oder mehreren der hochschmelzenden Metalle Mo, W, Nb, Ta, V, Cr nach einem der Ansprüche 1, 4, 5 oder 6, dadurch gekennzeichnet, daß dem pulverförmigen hochschmelzenden Metall bzw. hochschmelzenden Metallen 0,005 - 10 Gew.% einer oder mehrerer Verbindungen und/oder einer oder mehrerer Mischphasen der Verbindungen aus der Gruppe der Hydroxide, Oxide, Nitride, Karbide, Boride, Silikate oder Aluminate mit einer Korngröße ≤ 1,5 μm und mit einem Schmelzpunkt über 1500ºC in Pulverform zugemischt werden und daß die Pulvermischung auf bekannte Weise gepreßt und gesintert wird und der erhaltene Sinterkörper mit einem Umformgrad von mindestens 85 % unter Einhaltung notwendiger Wärmebehandlungen mechanisch umgeformt und abschließend einer Rekristallisationsglühung unterzogen wird.
EP88901002A 1987-01-28 1988-01-26 Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung Expired - Lifetime EP0299027B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0015887A AT386612B (de) 1987-01-28 1987-01-28 Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung
AT158/87 1987-01-28

Publications (2)

Publication Number Publication Date
EP0299027A1 true EP0299027A1 (de) 1989-01-18
EP0299027B1 EP0299027B1 (de) 1991-10-02

Family

ID=3483080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88901002A Expired - Lifetime EP0299027B1 (de) 1987-01-28 1988-01-26 Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung

Country Status (6)

Country Link
US (1) US4950327A (de)
EP (1) EP0299027B1 (de)
JP (1) JP2609212B2 (de)
AT (1) AT386612B (de)
DE (1) DE3865259D1 (de)
WO (1) WO1988005830A1 (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT389326B (de) * 1987-11-09 1989-11-27 Plansee Metallwerk Verfahren zur herstellung von halbzeug aus gesinterten refraktaermetall-legierungen
DE3835328C1 (de) * 1988-10-17 1989-12-14 Gesellschaft Fuer Wolfram-Industrie Mbh, 8220 Traunstein, De
ES2020131A6 (es) * 1989-06-26 1991-07-16 Cabot Corp Procedimiento para la produccion de polvos de tantalo, niobio y sus aleaciones.
JPH0747793B2 (ja) * 1991-04-26 1995-05-24 株式会社クボタ 酸化物分散強化耐熱焼結合金
AT395493B (de) * 1991-05-06 1993-01-25 Plansee Metallwerk Stromzufuehrung
AT399165B (de) * 1992-05-14 1995-03-27 Plansee Metallwerk Legierung auf chrombasis
AT401124B (de) * 1994-07-05 1996-06-25 Plansee Ag Elektrischer leiter in lampen
US5604321A (en) * 1995-07-26 1997-02-18 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
US5590386A (en) * 1995-07-26 1996-12-31 Osram Sylvania Inc. Method of making an alloy of tungsten and lanthana
US5868876A (en) * 1996-05-17 1999-02-09 The United States Of America As Represented By The United States Department Of Energy High-strength, creep-resistant molybdenum alloy and process for producing the same
DE19643156C1 (de) * 1996-10-18 1998-02-19 Siemens Ag Verfahren zur Herstellung eines Chrom-Werkstoffs
AT2017U1 (de) * 1997-05-09 1998-03-25 Plansee Ag Verwendung einer molybdän-/wolfram-legierung in bauteilen für glasschmelzen
FR2771755B1 (fr) * 1997-11-28 1999-12-31 Saint Gobain Rech Alliage resistant a la corrosion, procede d'elaboration et article realise a partir de l'alliage
US6102979A (en) * 1998-08-28 2000-08-15 The United States Of America As Represented By The United States Department Of Energy Oxide strengthened molybdenum-rhenium alloy
AT4408U1 (de) 2000-05-18 2001-06-25 Plansee Ag Verfahren zur herstellung einer elektrischen lampe
KR100375944B1 (ko) * 2000-07-08 2003-03-10 한국과학기술원 기계적 합금화에 의한 산화물 분산강화 텅스텐 중합금의 제조방법
NZ534212A (en) * 2002-01-23 2006-04-28 Starck H C Inc Process for making stabilized grain size refractory metal powder metallurgy mill products
JP2003293070A (ja) * 2002-03-29 2003-10-15 Japan Science & Technology Corp 高強度・高靭性Mo合金加工材とその製造方法
US6830637B2 (en) * 2002-05-31 2004-12-14 Osram Sylvania Inc. Large diameter tungsten-lanthana rod
DE60312012T2 (de) * 2002-09-04 2007-08-09 Osram Sylvania Inc., Danvers Verfahren zur herstellung von sag-beständigen molybdän-lanthanoxid-legierungen
CN1744961A (zh) * 2003-01-31 2006-03-08 H.C.施塔克公司 难熔金属退火带
CA2522844A1 (en) * 2003-04-23 2004-11-04 H.C. Starck Inc. Molybdenum alloy x-ray targets having uniform grain structure
US7175686B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Erosion-corrosion resistant nitride cermets
US7544228B2 (en) * 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7074253B2 (en) * 2003-05-20 2006-07-11 Exxonmobil Research And Engineering Company Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance
US7153338B2 (en) * 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
JP4603841B2 (ja) * 2004-09-29 2010-12-22 株式会社アライドマテリアル 耐酸化性を有するタングステン合金とその製造方法
WO2006123271A2 (en) * 2005-05-19 2006-11-23 Koninklijke Philips Electronics N.V. Lamp having molybdenum alloy lamp components
US7731776B2 (en) * 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
US8059785B2 (en) * 2007-09-06 2011-11-15 Varian Medical Systems, Inc. X-ray target assembly and methods for manufacturing same
US20090068055A1 (en) * 2007-09-07 2009-03-12 Bloom Energy Corporation Processing of powders of a refractory metal based alloy for high densification
US8323790B2 (en) * 2007-11-20 2012-12-04 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with low melting point binder
EP2194564B1 (de) 2008-12-04 2013-05-22 Varian Medical Systems, Inc. Röntgentarget-Anordnung und Herstellungsverfahren dafür
WO2010141463A1 (en) * 2009-06-04 2010-12-09 First Solar, Inc. Dopant-containing contact material
JP5920793B2 (ja) * 2011-07-29 2016-05-18 国立大学法人東北大学 遷移金属炭化物入りタングステン合金の製造方法及び遷移金属炭化物入りタングステン合金
AT14143U1 (de) * 2013-09-02 2015-05-15 Plansee Se Pulvermetallurgisches Bauteil
DE102015111993A1 (de) * 2015-07-23 2017-01-26 Schott Ag Formdorn mit Diffusionsschicht zur Glasformung
AT15596U1 (de) * 2017-02-28 2018-03-15 Plansee Composite Mat Gmbh Sputtertarget und Verfahren zur Herstellung eines Sputtertargets
EP3950992A4 (de) 2019-03-27 2023-06-28 Proterial, Ltd. Legierungszusammensetzung, verfahren zur herstellung einer legierungszusammensetzung und matrize
CN117897243A (zh) 2021-11-26 2024-04-16 株式会社博迈立铖 复合材料和复合材料的制造方法以及模具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628926A (en) * 1949-06-21 1953-02-17 Westinghouse Electric Corp Manufacture of machinable molybdenum
US3285736A (en) * 1964-08-27 1966-11-15 Gen Electric Powder metallurgical alloy
US3457051A (en) * 1965-01-04 1969-07-22 Du Pont Metallic refractory compositions
GB1298944A (en) * 1969-08-26 1972-12-06 Int Nickel Ltd Powder-metallurgical products and the production thereof
US3982970A (en) * 1972-01-24 1976-09-28 United Kingdom Atomic Energy Authority Ductility of molybdenum and its alloys
US3954421A (en) * 1972-04-10 1976-05-04 Westinghouse Electric Corporation Alloys for high creep applications
JPS5741336A (en) * 1980-08-27 1982-03-08 Hitachi Ltd Manufacture of thorium-tungsten
EP0074679B1 (de) * 1981-09-03 1985-03-20 BBC Aktiengesellschaft Brown, Boveri & Cie. Verfahren zur Herstellung eines Werkstückes aus einer warmfesten Legierung
EP0119438B1 (de) * 1983-02-10 1987-11-25 Kabushiki Kaisha Toshiba Molybdänblech und Herstellungsverfahren
JPH0617556B2 (ja) * 1983-02-10 1994-03-09 株式会社東芝 モリブデン材の製造方法
JPS59177345A (ja) * 1983-03-29 1984-10-08 Toshiba Corp 構造材用モリブデン
US4599214A (en) * 1983-08-17 1986-07-08 Exxon Research And Engineering Co. Dispersion strengthened extruded metal products substantially free of texture
JPS60197839A (ja) * 1984-03-22 1985-10-07 Toshiba Corp セラミツクス焼結用治具及びその製造方法
DE3441851A1 (de) * 1984-11-15 1986-06-05 Murex Ltd., Rainham, Essex Molybdaenlegierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8805830A1 *

Also Published As

Publication number Publication date
ATA15887A (de) 1988-02-15
US4950327A (en) 1990-08-21
EP0299027B1 (de) 1991-10-02
JPH01502680A (ja) 1989-09-14
DE3865259D1 (de) 1991-11-07
WO1988005830A1 (en) 1988-08-11
JP2609212B2 (ja) 1997-05-14
AT386612B (de) 1988-09-26

Similar Documents

Publication Publication Date Title
EP0299027B1 (de) Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung
EP0362351B1 (de) Verfahren zur Herstellung einer ODS-Sinterlegierung sowie Legierung herstellbar nach diesem Verfahren
DE3835328C1 (de)
DE69734515T2 (de) Gesinterte hartlegierung
DE2744700A1 (de) Sinterwerkstoff
DE2141860A1 (de) Dispersionsverfestigte Zircomumer Zeugnisse und Verfahren zu ihrer Her stellung
DE2232884A1 (de) Verfahren zum herstellen von pulver aus verbundteilchen
WO2005028692A1 (de) Ods-molybdän-silizium-bor-legierung
DE102018113340B4 (de) Dichteoptimierte Molybdänlegierung
DE1283547B (de) Verfahren zum Erhoehen der Zugfestigkeit, Dehngrenze und Zeitstandfestigkeit und zurStabilisierung der Kornorientierung von dispersionsgehaerteten Legierungen
DE2401849A1 (de) Verfahren zum herstellen von verformten gegenstaenden aus einer dispersionsverfestigten legierung
DE3700659A1 (de) Feinkoerniger versproedungsfester tantaldraht
DE2749215C2 (de) Verfahren zur Herstellung eines kupferhaltigen Eisenpulvers
DE1558805C3 (de) Verfahren zur Herstellung von verformten Werkstücken aus dispersionsverstärkten Metallen oder Legierungen
EP0396185A1 (de) Verfahren zur Herstellung von warmkriechfesten Halbfabrikaten oder Formteilen aus hochschmelzendem Metall
DE3840573C2 (de) Whisker-verstärkte Keramik
DE2102980C2 (de) Verfahren zur Herstellung eines dispersionsgehärteten Legierungspulvers
EP0016961B1 (de) Verfahren zur pulvermetallurgischen Herstellung eines supraleitenden Faserverbundmaterials
DE2102538A1 (de) Nichtentflammbares Metallpulver zur Herstellung von hochtemperaturfesten, dispersionsverfestigten Metall- oder Metallegierungs-Pressteilen und Verfahren zu dessen Herstellung
DE2437444B2 (de) Verfahren zur Herstellung eines anisotropen Dauermagnetwerkstoffes aus einer Mangan-Aluminium-Kohlenstoff-Legierung
DE2002886A1 (de) Verfahren zur Herstellung eines durch innere Oxydation dispersionsgehaerteten Werkstoffes
EP0035070A1 (de) Gedächtnislegierung auf der Basis eines kupferreichen oder nickelreichen Mischkristalls
DE1783074A1 (de) Durch innere Oxydation dispersionsgehaerteter Werkstoff
DE2807602C2 (de) Pulvermischung für weichmagnetische Sinterkörper
DE3939989A1 (de) Siliziumnitridgrundstoff-sinterkoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3865259

Country of ref document: DE

Date of ref document: 19911107

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88901002.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070109

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070111

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070613

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070111

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080125