EP0405288A1 - Verfahren und Vorrichtung zur Gewinnung von reinem Sauerstoff - Google Patents

Verfahren und Vorrichtung zur Gewinnung von reinem Sauerstoff Download PDF

Info

Publication number
EP0405288A1
EP0405288A1 EP90111503A EP90111503A EP0405288A1 EP 0405288 A1 EP0405288 A1 EP 0405288A1 EP 90111503 A EP90111503 A EP 90111503A EP 90111503 A EP90111503 A EP 90111503A EP 0405288 A1 EP0405288 A1 EP 0405288A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
gas space
membrane
pure oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90111503A
Other languages
English (en)
French (fr)
Inventor
Gerd Dr. Bauer
Helmuth Dr. Krauss
Matthias Dr. Kuntz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP0405288A1 publication Critical patent/EP0405288A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the application relates to a method and a device for the production of pure oxygen from oxygen-containing gas mixtures.
  • Oxygen is required in large quantities in many areas of technology, especially for oxidation and combustion processes.
  • the large-scale process is based on the fractional condensation of air in the so-called Linde process.
  • both chemical and electrochemical processes are known.
  • a known electrochemical oxygen pump consists of a membrane which has a conductivity for oxygen ions and is coated on both sides with porous electrodes. By applying a voltage, oxygen is reduced at the cathode to oxygen ions which migrate through the membrane to the anode and are oxidized there again to oxygen. In this way, pure oxygen can be pumped into the anode compartment from the cathode compartment, which is flushed with an oxygen-containing gas.
  • the object was therefore to find a process for the production of pure oxygen which, on the one hand, does not require the effort of the Linde process that can only be carried out in large-scale plants and, on the other hand, runs with good efficiency in simple plants of practically any size.
  • the invention therefore relates to a device for the production of pure oxygen from oxygen-containing gas mixtures, consisting essentially of a first gas space with an inlet and an outlet for the oxygen-containing gas mixture, a second gas space with an outlet for pure oxygen, and a membrane separating the two gas spaces , which has a conductivity for both oxygen ions and electrons, and means for generating an oxygen partial pressure difference between the two gas spaces.
  • the invention also relates to a process for the production of pure oxygen from oxygen-containing gas mixtures, which is characterized in that the oxygen-containing gas mixture is brought into a first gas space, which is separated from a second gas space by a gas-tight membrane which conducts electrons and oxygen ions one by generating an overpressure in the first gas space and / or generating a sub pressure in the second gas space ensures a positive pressure difference between the first and second gas spaces and that pure oxygen is withdrawn from the second gas space.
  • the invention also relates to the use of membranes with electron and oxygen ion conductivity in processes for the production of pure oxygen.
  • the principle on which the present invention is based is that different oxygen partial pressures are generated in two gas spaces which are separated by a gas-tight membrane which conducts both electrons and oxygen ions, as a result of which a large chemical potential difference is generated.
  • This chemical potential difference can only be compensated for if oxygen is transported from the gas space with a higher partial pressure into the gas space with a lower partial pressure. Since the membrane is gas-tight, this can only be done by transporting oxygen ions.
  • the oxygen on the oxygen-rich side has to take up electrons from the membrane and change into ionic form and accordingly on the oxygen-poor side by transferring electrons to the neutral form. So there is a migration of oxygen ions in the mixed conductor from the oxygen-rich to the oxygen-poor side of the membrane and an electron migration in the opposite direction.
  • the motor of this oxygen pump is solely the oxygen partial pressure difference between the two sides of the membrane. In the sense of an optimal procedure, care will be taken to ensure that this differential pressure is as large as possible. This can be done by compressing the oxygen-containing gas mixture and / or reducing the pressure in the gas space containing the pure oxygen. For example, a pressure of 5-15 bar can be generated with simple compressors, which corresponds to an oxygen partial pressure of about 1-3 bar when using air as an oxygen-containing gas mixture. A sufficient potential difference can be generated by reducing the pressure on the product side to approximately 5-20 mbar.
  • Ceramic materials with the required mixed conductor properties are particularly suitable as the material for a membrane according to the invention.
  • These materials are typically made by mixing the oxide components and then sintering or by reaction sintering.
  • a particularly suitable material is also a material of the composition (VO) 2P2O7 which can be produced by coprecipitation, if appropriate after reduction beforehand, and subsequent sintering and which has particularly high conductivities.
  • Such ceramic materials are generally gas-tight if they have a high density of well over 90% of the theoretical density and neither cracks nor continuous porosity. In this case, gas tightness already exists at thicknesses of approximately 10-100 nm.
  • the ceramic material is preferably applied to a porous support. If the membrane is sufficiently stable, however, it is also possible to work without a supporting support.
  • the mode of operation of the device according to the invention is indicated purely schematically in FIG. It designates (1) the first gas space containing the oxygen-containing gas mixture, for example air, which has a gas inlet (2) and a gas outlet (3).
  • the gas space (1) is separated by the membrane (4) from the gas space (5), which has the oxygen outlet (6).
  • an oxygen production plant will preferably be built so that the largest possible membrane area is available.
  • the system can be built, for example, analogously to a tube or plate heat exchanger.
  • An example of such a preferred embodiment is shown in Figure II.
  • An oxygen-containing gas for example air, is forced into the first gas space (13), which is formed by the housing (14), via a compressor (11) and a heat exchanger (12) for heating, and flows around the membrane tubes (15) there. and is transported back to the outside via a throttle (16), a flow measuring cell (17) and a heat exchanger (18) for cooling the gas mixture.
  • the second gas space (19) is on the one hand through the membrane tubes (15) and on the other hand through that with the housing (14) and the mem branch tubes gas-tight welded tube sheet (20) separated from the first gas space (13).
  • the second tube plate (21) only serves to stabilize the membrane tubes (15) and does not need to be connected to them in a gastight manner. It can even be advantageous if the tubes are only loosely guided in the tube sheet (21) for unimpeded thermal expansion.
  • the oxygen transported into the gas space (19) is supplied to the consumer via the heat exchanger (22) and the vacuum pump (23).
  • the membrane in a self-supporting manner.
  • a sintered and ground ceramic powder is generally used, which is then pressed into the corresponding shape in a manner known per se and sintered again.
  • a non-aqueous slip is mixed from ceramic powder, solvent, binder and plasticizer, which is poured onto a rotating belt and brought to a uniform thickness with an adjusted cutting edge.
  • the film formed by evaporation of the solvent which has a thickness of approximately 25-1000 ⁇ m, can then be processed further in the usual way.
  • the ceramic powder is mixed with a thermoplastic powder, brought to a viscous liquid state at elevated temperature and injected into the desired shape under high pressure.
  • the membrane will be applied as a thin layer on a porous support.
  • Methods are also known for this, such as plasma spraying methods.
  • the ceramic material is vaporized in a plasma field, possibly with microwave assistance, and can be deposited on any substrate.
  • the stability of the ceramic layer depends primarily on the substrate used.
  • a ceramic coating can also be obtained by pouring on a ceramic slip and then drying and baking.
  • the ceramic layer can also be applied using the sol-gel method.
  • the porous substrate is soaked with an appropriate organometallic solution.
  • the gel is formed by heating and, after the organic constituents have decomposed, the oxide ceramic film is formed.
  • Suitable carrier materials are, for example, sintered metals, porous ceramics made of or Al2O3 or Zr O2, high-temperature-resistant silica stones (chamotte) and porous glass.
  • FIG. III A detail of the device according to FIG. II is shown in FIG. III as an example of such a supported membrane.
  • the membrane tube (15) shown in Figure II then consists of a porous inner tube (31) consisting, for example, of sintered metal or a porous Al2O3 carrier tube and the sprayed-on membrane (32).
  • the tube sheet (20) is gas-tightly connected to the inner tube (31) with the aid of the weld seam (33), while the tube sheet (21) only loosely supports the membrane tube.
  • Devices according to the present invention can be built in any dimensions and thus adapted to the respective needs of the consumer. A valuable new process for the production of pure oxygen is now available.

Abstract

Die Anmeldung betrifft ein Verfahren und eine Vorrichtung zur Gewinnung von reinem Sauerstoff unter Verwendung von gasdichten Membranen (4), die sowohl eine Elektronen- als auch eine Sauerstoffionenleitung aufweisen.

Description

  • Die Anmeldung betrifft ein Verfahren und eine Vorrichtung zur Gewinnung von reinem Sauerstoff aus sauerstoffenthal­tenden Gasgemischen.
  • Sauerstoff wird in vielen Bereichen der Technik in großen Mengen benötigt, insbesondere für Oxidations- und Ver­brennungsprozesse. Das großtechnisch übliche Verfahren basiert auf der fraktionierten Kondensation von Luft im sogenannten Linde-Verfahren. Daneben kennt man sowohl chemische als auch elektrochemische Verfahren.
  • Eine bekannte elektrochemische Sauerstoffpumpe besteht aus einer Membran, die eine Leitfähigkeit für Sauerstoff­ionen aufweist und beidseitig mit porösen Elektroden be­schichtet ist. Durch Anlegen einer Spannung wird dabei an der Kathode Sauerstoff zu Sauerstoffionen reduziert, die durch die Membran zur Anode wandern und dort wieder zu Sauerstoff oxidiert werden. Auf diese Weise kann aus dem mit einem sauerstoffenthaltenden Gas gespülten Ka­thodenraum reiner Sauerstoff in den Anodenraum gepumpt werden.
  • Der Wirkungsgrad solcher Zellen beträgt aufgrund von Elektrodenpolarisation und anderen Energieverlusten nur etwa 60 %. Berücksichtigt man die Verluste bei der Her­ stellung und dem Transport von Strom, so ergibt sich ein Gesamtwirkungsgrad von nur etwa 20 %.
  • Es bestand daher die Aufgabe, ein Verfahren zur Gewinnung von reinem Sauerstoff zu finden, das einerseits nicht den nur in großtechnischen Anlagen zu verwirklichenden Auf­wand des Linde-Verfahrens benötigt und das andererseits mit gutem Wirkungsgrad in praktisch beliebig zu dimensio­nierenden einfachen Anlagen abläuft.
  • Es wurde nun gefunden, daß diese Aufgabe durch den Einsatz von Membranen, die sowohl eine Elektronenleitfähigkeit als auch eine Leitfähigkeit für Sauerstoffionen aufweisen, ge­löst werden kann.
  • Gegenstand der Erfindung ist daher eine Vorrichtung zur Gewinnung von reinem Sauerstoff aus sauerstoffenthalten­den Gasgemischen, im wesentlichen bestehend aus einem ersten Gasraum mit einem Einlaß und einem Auslaß für das sauerstoffenthaltende Gasgemisch, einem zweiten Gasraum mit einem Auslaß für reinen Sauerstoff, einer die beiden Gasräume trennenden Membran, die eine Leitfähigkeit so­wohl für Sauerstoffionen als auch für Elektronen aufweist, und Mitteln zur Erzeugung einer Sauerstoffpartialdruck­differenz zwischen den beiden Gasräumen.
  • Gegenstand der Erfindung ist auch ein Verfahren zur Ge­winnung von reinem Sauerstoff aus sauerstoffenthaltenden Gasgemischen, das dadurch gekennzeichnet ist, daß man das sauerstoffenthaltende Gasgemisch in einen ersten Gasraum bringt, der durch eine gasdichte aber Elektronen und Sauerstoffionen leitende Membran von einem zweiten Gas­raum abgetrennt ist, daß man durch Erzeugung eines Über­drucks im ersten Gasraum und/oder Erzeugung eines Unter­ drucks im zweiten Gasraum für eine positive Druckdiffe­renz zwischen erstem und zweitem Gasraum sorgt und daß man reinen Sauerstoff aus dem zweiten Gasraum abzieht.
  • Schließlich ist Gegenstand der Erfindung auch die Ver­wendung von Membranen mit Elektronen- und Sauerstoffionen­leitfähigkeit in Verfahren zur Gewinnung von reinem Sauer­stoff.
  • Das der vorliegenden Erfindung zugrundeliegende Prinzip besteht darin, daß in zwei Gasräumen, die durch eine zwar gasdichte aber sowohl Elektronen als auch Sauer­stoffionen leitende Membran getrennt sind, unterschied­liche Sauerstoffpartialdrücke erzeugt werden, wodurch eine große chemische Potentialdifferenz erzeugt wird. Ein Ausgleich dieser chemischen potentialdifferenz ist nur möglich, wenn Sauerstoff von dem Gasraum mit höherem Partialdruck in den Gasraum mit niedrigerem Partialdruck transportiert wird. Da die Membran gasdicht ist, kann dies nur durch den Transport von Sauerstoffionen ge­schehen.
  • Dazu muß der Sauerstoff auf der sauerstoffreichen Seite Elektronen aus der Membran aufnehmen und in ionische Form übergehen und entsprechend auf der sauerstoffarmen Seite durch Abgabe von Elektronen in die neutrale Form über­gehen. Es findet also in dem Mischleiter eine Wanderung von Sauerstoffionen von der sauerstoffreichen zur sauer­stoffarmen Seite der Membran statt und eine Elektronen­wanderung in entgegengesetzter Richtung.
  • Motor dieser Sauerstoffpumpe ist allein die Sauerstoff­partialdruckdifferenz zwischen den beiden Seiten der Membran. Im Sinne einer optimalen Verfahrensweise wird man also dafür Sorge tragen, daß dieser Differenzdruck möglichst groß ist. Dies kann durch Verdichten des sauer­stoffenthaltenden Gasgemisches und/oder Verminderung des Druckes in dem den reinen Sauerstoff enthaltenden Gasraum geschehen. Beispielsweise kann mit einfachen Kompressoren ein Druck von 5-15 bar erzeugt werden, was bei Verwendung von Luft als sauerstoffenthaltendem Gasgemisch einem Sauerstoffpartialdruck von etwa 1-3 bar entspricht. Durch Verminderung des Druckes auf der Produktseite auf etwa 5-20 mbar kann eine ausreichende Potentialdifferenz er­zeugt werden.
  • Als Material für eine erfindungsgemäße Membran kommen insbesondere Keramik-Materialien mit den geforderten Mischleitereigenschaften in Frage. Solche Materialien sind bekannt und insbesondere unter Mischoxid-Keramik-­Materialien zu finden, wie zum Beispiel BaFe0,5Co0,5YO₃ gelbes Bleioxid, ThO₂ oder Sm₂O₃-dotiertes ThO₂, MoO₃- oder Er₂O₃-dotiertes Bi₂O₃, Gd₂Zr₂O₇, CaTi1-XMXO3-α (M = Fe, Co, Ni), SrCeO₃ und YBa₂Cu₃O7-X. Diese Materia­lien werden in der Regel durch Mischen der Oxidbestand­teile und anschließendes Sintern oder durch Reaktions­sinterverfahren hergestellt. Ein besonders gut geeigne­tes Material ist auch ein Material der Zusammenstetzung (VO)₂P₂O₇ das durch Kopräzipitation, gegebenenfalls nach vorher Reduktion, und anschließendes Sintern herge­stellt werden kann und das besonders hohe Leitfähigkeiten aufweist.
  • Die Leitfähigkeit dieser Membranen für Sauerstoffionen ist in der Regel temperaturabhängig und häufig werden optimale Werte erst bei höheren Temperaturen erreicht, die durchaus im Bereich von 400-1100 °C liegen können. Um einen möglichst schnellen Sauerstoffdurchsatz zu erhalten, sollte nicht nur bei hohen Temperaturen, son­dern auch mit möglichst dünnen, trotzdem jedoch gas­dichten und mechanisch stabilen Membranen gearbeitet werden.
  • Gasdicht sind solche Keramikmaterialien in der Regel dann, wenn sie eine hohe Dichte von deutlich über 90 % der theo­retischen Dichte und weder Risse noch eine durchgehende Porosität aufweisen. In diesem Fall besteht Gasdichtheit bereits bei Dicken von etwa 10-100 nm.
  • Um Membranen dieser Dicke auch mechanisch ausreichend zu stabilisieren, wird das Keramikmaterial vorzugsweise auf einen porösen Träger aufgebracht. Bei ausreichender Sta­bilität der Membran kann jedoch auch ohne einen stützenden Träger gearbeitet werden.
  • In Figur I ist rein schematisch die Funktionsweise der erfindungsgemäßen Vorrichtung angedeutet. Darin ist mit (1) der das sauerstoffenthaltende Gasgemisch, zum Beispiel Luft, enthaltende erste Gasraum bezeichnet, der über einen Gaseinlaß (2) und einen Gasauslaß (3) verfügt. Der Gasraum (1) ist durch die Membran (4) vom Gasraum (5) getrennt, der über den Sauerstoffauslaß (6) verfügt.
  • In der Praxis wird man eine Anlage zur Sauerstoffgewinnung vorzugsweise so bauen, daß eine möglichst große Membran­fläche zur Verfügung steht. Dazu kann die anlage bei­spielsweise analog einem Rohr- oder Plattenwärmetauscher gebaut werden. Ein Beispiel einer solchen bevorzugten Ausführungsform ist in Figur II gezeigt. Über einen Ver­dichter (11) und einem Wärmetauscher (12) zum Aufheizen wird ein sauerstoffenthaltendes Gas, zum Beispiel Luft, in den ersten Gasraum (13), der durch das Gehäuse (14) gebildet wird, gedrückt, umströmt dort die Membranrohre (15) und wird über eine Drossel (16), eine Durchflußmeß­zelle (17) und einen Wärmetauscher (18) zum Abkühlen des Gasgemisches wieder ins Freie befördert. Der zweite Gas­raum (19) ist einerseits durch die Membranrohre (15) und andererseits durch den mit dem Gehäuse (14) und den Mem­ branrohren gasdicht verschweißten Rohrboden (20) vom ersten Gasraum (13) getrennt. Der zweite Rohrboden (21) dient lediglich der Stabilisierung der Membranrohre (15) und braucht mit diesen, nicht gasdicht verbunden zu sein. Es kann sogar vorteilhaft sein, wenn die Rohre zur un­gehinderten Wärmeausdehnung im Rohrboden (21) nur lose geführt werden. Der in den Gasraum (19) transportierte Sauerstoff wird über den Wärmetauscher (22) und die Vakuumpumpe (23) dem Verbraucher zugeführt.
  • Wie bereits erläutert, ist es möglich, die Membran selbst­tragend herzustellen. Dazu geht man in der Regel von einem gesinterten und vermahlenen Keramikpulver aus, das dann in an sich bekannter Weise in die entsprechende Form ge­preßt und erneut gesintert wird.
  • So sind z.B. Band- und Spritzgießverfahren bekannt, mit denen Keramikfolien bzw. Keramikformteile hergestellt werden können. Beim Bandgießverfahren wird aus Keramik­pulver, Lösungsmittel, Binder und Plastifizierer ein nicht-wäßriger Schlicker gemischt, der auf ein umlau­fendes Band gegossen und mit einer justierten Schneide auf eine gleichmäßige Dicke gebracht wird. Die durch Abdunsten des Lösungsmittels gebildete Folie, die eine Dicke von etwa 25-1000 µm aufweist, kann dann in üblicher Weise weiterverarbeitet werden.
  • Beim Spritzgießverfahren wird das Keramikpulver mit einem Thermoplastpulver gemischt, bei erhöhter Temperatur in einen viskos-flüssigen Zustand gebracht und unter hohem Druck in die gewünschte Form gespritzt.
  • In den meisten Fällen wird man jedoch die Membran als dünne Schicht auf einen porösen Träger aufbringen. Auch hierzu sind Verfahren bekannt, wie z.B. Plasma-Spritz­verfahren.
  • Dabei wird das Keramikmaterial in einem Plasmafeld ggf. mit Mikrowellenunterstützung verdampft und kann auf be­liebigen Substraten abgeschieden werden. Die Stabilität der Keramikschicht hängt dabei in erster Linie von dem verwendeten Substrat ab.
  • Grundsätzlich läßt sich eine Keramikbeschichtung jedoch auch durch Aufgießen eines keramischen Schlickers und anschließendes Trocknen und Einbrennen erhalten.
  • Schließlich kann die Keramikschicht auch nach dem Sol-­Gel-Verfahren aufgebracht werden. Dabei wird das poröse Substrat mit einer entsprechenden metallorganischen Lösung getränkt. Durch Aufheizen erfolgt eine Gelbildung und nach Zersetzung der organischen Bestandteile die Bildung des Oxidkeramikfilms.
  • Bei allen trägergestützten Membranen ist darauf zu achten, daß das Trägermaterial eine durchgehende Porosität auf­weist, die möglichst gleichmäßig verteilt ist und Poren­größen von nicht mehr als etwa 1 µm besitzt. Geeignete Trägermaterialien sind z.B. Sintermetalle, poröse Keramik aus oder Al₂O₃ oder Zr O₂, hochtemperaturbeständige Silica­steine (Schamotte) und poröses Glas. Als Beispiel für eine solche trägergestützte Membran ist in Figur III ein Detail der Vorrichtung nach Figur II gezeigt. Das in Figur II gezeigte Membranrohr (15) besteht danach aus einem porösen Innenrohr (31), das z.B. aus Sintermetall oder einem porösen Al₂O₃-Trägerrohr besteht und der auf­gespritzten Membran (32). Der Rohrboden (20) ist mit Hilfe der Schweißnaht (33) gasdicht mit dem Innenrohr (31) verbunden, während der Rohrboden (21) das Membran­rohr nur lose abstützt.
  • Vorrichtungen nach der vorliegenden Erfindung können in beliebigen Dimensionen gebaut werden und damit an die jeweiligen Bedürfnisse des Verbrauchers angepaßt werden. Es steht damit ein wertvolles neues Verfahren zur Ge­winnung von reinem Sauerstoff zur Verfügung.

Claims (6)

1. Vorrichtung zur Gewinnung von reinem Sauerstoff aus sauerstoffenthaltenden Gasgemischen, im wesentlichen bestehend aus einem ersten Gasraum, mit einem Einlaß und einem Auslaß für das sauerstoffenthaltende Gas­gemisch, einem zweiten Gasraum mit einem Auslaß für reinen Sauerstoff, einer die beiden Gasräume trennen­den Membran, die eine Leitfähigkeit sowohl für Sauer­stoffionen als auch für Elektronen aufweist, und Mitteln zur Erzeugung einer Sauerstoffpartialdruckdifferenz zwischen den beiden Gasräumen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Membran ein Keramikmaterial auf Basis von YBa₂Cu₃O7-X, SrCeO₃ oder (VO)₂P₂O₇ enthalten ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie nach Art eines Platten- oder Rohrwärme­tauschers aufgebaut ist.
4. Verfahren zur Gewinnung von reinem Sauerstoff aus sauerstoffenthaltenden Gasgemischen, dadurch ge­kennzeichnet, daß man das sauerstoffenthaltende Gasgemisch in einen ersten Gasraum bringt, der durch eine gasdichte aber Elektronen und Sauerstoffionen leitende Membran von einem zweiten Gasraum abge­trennt ist, daß man durch Erzeugung eines Überdrucks im ersten Gasraum und/oder Erzeugung eines Unter­ drucks im zweiten Gasraum für eine positive Sauer­stoffpartialdruckdifferenz zwischen erstem und zwei­tem Gasraum sorgt und daß man reinen Sauerstoff aus dem zweiten Gasraum abzieht.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Sauerstoffpartialdruck im ersten Gasraum mindestens etwa das zweifache bis dreifache des Drucks im zweiten Gasraum beträgt.
6. Verwendung von Membranen mit Elektronen- und Sauer­stoffionenleitfähigkeit in Verfahren zur Gewinnung von reinem Sauerstoff.
EP90111503A 1989-06-29 1990-06-19 Verfahren und Vorrichtung zur Gewinnung von reinem Sauerstoff Withdrawn EP0405288A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3921390A DE3921390A1 (de) 1989-06-29 1989-06-29 Verfahren und vorrichtung zur gewinnung von reinem sauerstoff
DE3921390 1989-06-29

Publications (1)

Publication Number Publication Date
EP0405288A1 true EP0405288A1 (de) 1991-01-02

Family

ID=6383921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90111503A Withdrawn EP0405288A1 (de) 1989-06-29 1990-06-19 Verfahren und Vorrichtung zur Gewinnung von reinem Sauerstoff

Country Status (4)

Country Link
US (1) US5108465A (de)
EP (1) EP0405288A1 (de)
JP (1) JPH0340904A (de)
DE (1) DE3921390A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015389A1 (de) * 1991-03-06 1992-09-17 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Verfahren und vorrichtung zum trennen von gasen durch oberflächendiffusion
GB2257054A (en) * 1991-07-04 1993-01-06 Normalair Garrett Oxygen generating system
DE4221593A1 (de) * 1991-07-04 1993-01-14 Normalair Garrett Ltd Verfahren und einrichtung zum erzeugen von sauerstoff
EP0550071A1 (de) * 1992-01-02 1993-07-07 Air Products And Chemicals, Inc. Verfahren zur Herstellung von anorganischen Membranen durch chemische Abscheidung aus der Gasphase mittels metallorganischen Verbindungen
EP0726226A1 (de) * 1995-02-09 1996-08-14 Normalair-Garrett (Holdings) Limited Vorrichtung zur Gewinnung von Sauerstoff
WO1997007053A1 (en) * 1995-08-16 1997-02-27 Normalair-Garrett (Holdings) Limited Oxygen generating device
US5766317A (en) * 1995-06-01 1998-06-16 Technology Management, Inc. Microspheres for combined oxygen separation, storage and delivery
US5910238A (en) * 1995-06-01 1999-06-08 Technology Management, Inc. Microspheres for combined oxygen separation, storage and delivery
WO2000068139A1 (en) * 1999-05-07 2000-11-16 Bp Amoco Corporation Composite materials for membrane reactors

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342431A (en) * 1989-10-23 1994-08-30 Wisconsin Alumni Research Foundation Metal oxide membranes for gas separation
JPH05184906A (ja) * 1991-06-03 1993-07-27 L'air Liquide 高いフレキシビリティを有する膜型発生器
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5487774A (en) * 1993-11-08 1996-01-30 Wisconsin Alumni Research Foundation Gas phase fractionation method using porous ceramic membrane
US5516359A (en) * 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
US5565017A (en) * 1993-12-17 1996-10-15 Air Products And Chemicals, Inc. High temperature oxygen production with steam and power generation
US5534471A (en) * 1994-01-12 1996-07-09 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed mixed conducting porous layer
US5447555A (en) * 1994-01-12 1995-09-05 Air Products And Chemicals, Inc. Oxygen production by staged mixed conductor membranes
US5439624A (en) * 1994-02-14 1995-08-08 Wisconsin Alumni Research Foundation Method for forming porous ceramic materials
AU706663B2 (en) * 1994-09-23 1999-06-17 Standard Oil Company, The Oxygen permeable mixed conductor membranes
US5681373A (en) * 1995-03-13 1997-10-28 Air Products And Chemicals, Inc. Planar solid-state membrane module
US5599383A (en) * 1995-03-13 1997-02-04 Air Products And Chemicals, Inc. Tubular solid-state membrane module
US5547494A (en) * 1995-03-22 1996-08-20 Praxair Technology, Inc. Staged electrolyte membrane
EP0743088A3 (de) * 1995-05-18 1997-05-07 Praxair Technology Inc Verfahren und Vorrichtung zum Trennen von Gasen mit elektrolytischer Membran und unter Druckgefälle
US5562754A (en) * 1995-06-07 1996-10-08 Air Products And Chemicals, Inc. Production of oxygen by ion transport membranes with steam utilization
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
US5972079A (en) * 1996-06-28 1999-10-26 University Of Delaware Supported carbogenic molecular sieve membrane and method of producing the same
US5938822A (en) * 1997-05-02 1999-08-17 Praxair Technology, Inc. Solid electrolyte membrane with porous catalytically-enhancing constituents
US5820654A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler
US5820655A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Solid Electrolyte ionic conductor reactor design
US5855648A (en) * 1997-06-05 1999-01-05 Praxair Technology, Inc. Solid electrolyte system for use with furnaces
US6132573A (en) * 1997-12-05 2000-10-17 Igr Enterprises, Inc. Ceramic composite electrolytic device and methods for manufacture thereof
US6056807A (en) * 1998-01-26 2000-05-02 Air Products And Chemicals, Inc. Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide
US6033457A (en) * 1998-03-23 2000-03-07 Oxynet, Inc. Oxygen generator system and method of operating the same
NO312342B1 (no) * 1998-05-20 2002-04-29 Norsk Hydro As En tett enfase membran med bade hoy ionisk og hoy elektronisk ledningsevne og anvendelse derav
US6296686B1 (en) 1998-06-03 2001-10-02 Praxair Technology, Inc. Ceramic membrane for endothermic reactions
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
GB9823651D0 (en) * 1998-10-29 1998-12-23 Normalair Garrett Ltd Gas generating system
US6290757B1 (en) 1999-03-26 2001-09-18 Ceramphysics, Inc. Nitrogen purification device
US6824661B2 (en) 1999-09-23 2004-11-30 Ceramphysics, Inc. Combined oxygen and NOx sensor
US6592731B1 (en) 1999-09-23 2003-07-15 Ceramphysics, Inc. Amperometric oxygen sensor
US6361584B1 (en) * 1999-11-02 2002-03-26 Advanced Technology Materials, Inc. High temperature pressure swing adsorption system for separation of oxygen-containing gas mixtures
FR2866695B1 (fr) * 2004-02-25 2006-05-05 Alstom Technology Ltd Chaudiere oxy-combustion avec production d'oxygene
WO2007118237A2 (en) * 2006-04-07 2007-10-18 President And Fellows Of Harvard College Nano-scale gas separation device utilizing thin film structures for hydrogen production
US7632338B2 (en) * 2006-10-05 2009-12-15 United Technologies Corporation Electrochemical oxygen pump for fuel stabilization unit
CN101961591B (zh) * 2010-09-29 2012-08-29 中国舰船研究设计中心 多循环常温空气分离系统和方法
GB2485789B (en) * 2010-11-23 2014-03-12 Nebb Engineering As Method and system for energy efficient conversion of a carbon containing fuel to CO2 and H2O
US9004909B2 (en) * 2012-02-03 2015-04-14 Massachusetts Institute Of Technology Integrated polymeric-ceramic membrane based oxy-fuel combustor
DE102013107610A1 (de) * 2013-07-17 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Membrantrennverfahren und Membrananlage zur energieeffizienten Erzeugung von Sauerstoff
US9797054B2 (en) 2014-07-09 2017-10-24 Carleton Life Support Systems Inc. Pressure driven ceramic oxygen generation system with integrated manifold and tubes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2082156A (en) * 1980-08-15 1982-03-03 Teijin Ltd Solid electrolyte
EP0362898A2 (de) * 1988-10-07 1990-04-11 Yeda Research And Development Company Limited Vorrichtung und Verfahren zur Trennung von Gasen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1174631A (en) * 1914-09-17 1916-03-07 Walter O Snelling Apparatus for separating gases.
GB1113273A (en) * 1964-05-16 1968-05-08 Kinzoku Zairyo Kenkyusho A dispersion type metallic oxide silver alloy membrane for use in a device for separating and purifying oxygen
US3350846A (en) * 1964-12-29 1967-11-07 Tyco Laboratories Inc Separation of hydrogen by permeation
US3413777A (en) * 1965-06-22 1968-12-03 Engelhard Min & Chem Hydrogen diffusion and method for producing same
US3359705A (en) * 1966-10-27 1967-12-26 Union Carbide Corp Oxygen permeable membranes
US3630690A (en) * 1969-04-21 1971-12-28 Gen Electric Hydrogen-pumping apparatus of laminated construction
US3690465A (en) * 1970-10-15 1972-09-12 Du Pont Permeation separation element
JPS5334077B2 (de) * 1973-08-29 1978-09-19
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
US4151060A (en) * 1978-02-01 1979-04-24 Westinghouse Electric Corp. Solid state filter for gas sensors
FR2471208A1 (fr) * 1979-12-17 1981-06-19 Commissariat Energie Atomique Procede et dispositif pour la separation isotopique par diffusion gazeuse
JPS57207533A (en) * 1981-06-15 1982-12-20 Shimadzu Corp Permselective element for chemical material
JPS5864258A (ja) * 1981-10-13 1983-04-16 帝人株式会社 金属酸化物複合体および酸素を分離する方法
JPS5955314A (ja) * 1982-09-22 1984-03-30 Toshiba Corp 酸素ガス選択透過性複合膜の製造方法
JPS5955315A (ja) * 1982-09-22 1984-03-30 Toshiba Corp 酸素ガス選択透過性複合膜の製造方法
JPS59150508A (ja) * 1983-02-17 1984-08-28 Toshiba Corp 酸素ガス選択透過性複合膜の製造方法
JPS612548A (ja) * 1984-02-10 1986-01-08 小宮山 宏 酸素イオン透過性を有する複合体とこの複合体の製造方法
JPS63291621A (ja) * 1987-05-21 1988-11-29 Idemitsu Kosan Co Ltd 磁性気体分離膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2082156A (en) * 1980-08-15 1982-03-03 Teijin Ltd Solid electrolyte
EP0362898A2 (de) * 1988-10-07 1990-04-11 Yeda Research And Development Company Limited Vorrichtung und Verfahren zur Trennung von Gasen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 110, no. 2, 09 Januar 1989 Columbus, Ohio, USA Seite 135; ref. no. 10621G & JP-A-63156515 (Matsushita El. Ind. Co.) 29.06. 1988 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015389A1 (de) * 1991-03-06 1992-09-17 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Verfahren und vorrichtung zum trennen von gasen durch oberflächendiffusion
US5411720A (en) * 1991-03-06 1995-05-02 Deutsche Forschungsanstalt Fur Luft- Und Raumfahft, E.V. Method and device for the separation and conveyance of gases and/or of gas molecule fragments generated by dissociation on surfaces by surface diffusion
GB2257054A (en) * 1991-07-04 1993-01-06 Normalair Garrett Oxygen generating system
DE4221593A1 (de) * 1991-07-04 1993-01-14 Normalair Garrett Ltd Verfahren und einrichtung zum erzeugen von sauerstoff
FR2684312A1 (fr) * 1991-07-04 1993-06-04 Normalair Garrett Ltd Systemes de production d'oxygene utilisant une membrane selective.
EP0550071A1 (de) * 1992-01-02 1993-07-07 Air Products And Chemicals, Inc. Verfahren zur Herstellung von anorganischen Membranen durch chemische Abscheidung aus der Gasphase mittels metallorganischen Verbindungen
EP0726226A1 (de) * 1995-02-09 1996-08-14 Normalair-Garrett (Holdings) Limited Vorrichtung zur Gewinnung von Sauerstoff
US5766317A (en) * 1995-06-01 1998-06-16 Technology Management, Inc. Microspheres for combined oxygen separation, storage and delivery
US5910238A (en) * 1995-06-01 1999-06-08 Technology Management, Inc. Microspheres for combined oxygen separation, storage and delivery
WO1997007053A1 (en) * 1995-08-16 1997-02-27 Normalair-Garrett (Holdings) Limited Oxygen generating device
WO2000068139A1 (en) * 1999-05-07 2000-11-16 Bp Amoco Corporation Composite materials for membrane reactors

Also Published As

Publication number Publication date
US5108465A (en) 1992-04-28
JPH0340904A (ja) 1991-02-21
DE3921390A1 (de) 1991-01-17

Similar Documents

Publication Publication Date Title
EP0405288A1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Sauerstoff
DE3048439C2 (de) Verfahren zur Herstellung eines Festelektrolyt-Sauerstoff-Meßelements mit Schichtstruktur
EP0788175A1 (de) Hochtemperatur-Brennstoffzelle mit einem Dünnfilm-Elektrolyten
DE102010031741B4 (de) Verfahren und Anordnung zur Herstellung von supraleitenden Schichten auf Substraten
DE19949431A1 (de) Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt
DE3907485A1 (de) Brennstoffzellenanordnung
DE3922673A1 (de) Hochtemperaturbrennstoffzelle
DE4011506A1 (de) Brennstoffzellenanordnung und verfahren zu deren herstellung
DE4343748A1 (de) Sauerstoffühler
WO2007045113A1 (de) Verbund eines dünnfilms und eines glaskeramischen substrats als miniaturisiertes elektrochemisches gerät
DE2203080C2 (de) Verfahren zum Herstellen einer Schicht auf einem Substrat
EP0667043B1 (de) Verfahren zum dichten von hochtemperatur-brennstoffzellen und nach dem verfahren gedichtete brennstoffzelle
DE2300813A1 (de) Verfahren zum niederschlagen von stickstoffdotiertem beta-tantal sowie eine beta-tantal-duennschicht aufweisender artikel
DE3922057A1 (de) Keramik-verbundstoff und verfahren zu seiner herstellung
EP0328757B1 (de) Verfahren zur Herstellung dünner Schichten aus oxydischem Hochtemperatur-Supraleiter
DE60123839T2 (de) Gestapelte mikrostrukturen leitender, keramischer oxidionenmembranen; verwendung zur trennung von sauerstoff von luft
DE1922970A1 (de) Brennstoffzellenbatterie
DE2052221C3 (de) Verfahren zum Erzeugen einer Siliciumoxidschicht auf einem Süiciumsubstrat und Vorrichtung zur Durchführung dieses Verfahrens
EP0722193B1 (de) Elektrochemisch aktives Element zu einer planaren Hochtemperatur-Brennstoffzelle
DE3131927A1 (de) "verfahren zur herstellung eines festkoerperelektrolytsauerstofffuehlerelementes mit lamellenstruktur, dessen aeussere elektrode aus der dampfphase niedergeschlagen ist."
DE1771399C3 (de) Verfahren zur Herstellung einer dünnen porösen Mehrschichtelektrode für Brennstoffelemente
DE4307727C3 (de) Elektrolytfolie für planare Hochtemperaturbrennstoffzellen und Verfahren zu ihrer Herstellung
DE2822691A1 (de) Vorrichtung zum elektrochemischen messen der sauerstoffkonzentration in verbrennungsgasen
DE4307967C2 (de) Verfahren zur Herstellung einer integrierten vollkeramischen Hochtemperaturbrennstoffzelle
WO2018102837A1 (de) Membranrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI

17P Request for examination filed

Effective date: 19910525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920207