EP0412856A1 - Device for the propulsion of a fluid - Google Patents

Device for the propulsion of a fluid Download PDF

Info

Publication number
EP0412856A1
EP0412856A1 EP90401297A EP90401297A EP0412856A1 EP 0412856 A1 EP0412856 A1 EP 0412856A1 EP 90401297 A EP90401297 A EP 90401297A EP 90401297 A EP90401297 A EP 90401297A EP 0412856 A1 EP0412856 A1 EP 0412856A1
Authority
EP
European Patent Office
Prior art keywords
membrane
annular
fluid
passage
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401297A
Other languages
German (de)
French (fr)
Other versions
EP0412856B1 (en
Inventor
Michel Moir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo Salmson France SAS
Original Assignee
Pompes Salmson SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9384658&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0412856(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pompes Salmson SAS filed Critical Pompes Salmson SAS
Priority to AT90401297T priority Critical patent/ATE100179T1/en
Publication of EP0412856A1 publication Critical patent/EP0412856A1/en
Application granted granted Critical
Publication of EP0412856B1 publication Critical patent/EP0412856B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0018Special features the periphery of the flexible member being not fixed to the pump-casing, but acting as a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members

Definitions

  • the present invention relates to a device for propelling a fluid, forming a pump and comprising a flexible membrane moved alternately.
  • centrifugal pumps in which a vane rotor causes the centrifugal drive of the liquid which generates pressure dynamically, these pumps do not require a relief valve in the if the liquid cannot be discharged.
  • One of the main drawbacks of these pumps lies precisely in the centrifugal drive of the liquid which causes numerous parasitic pressure drops by friction and by swirling.
  • Such pumps can reach hydraulic efficiencies of 90% for favorable discharge flow-height ratios, but for small units such as those of heating circulators or, thanks to a gap tube, the stator of the electric motor is immersed with the pump rotor in the liquid to be pumped, which facilitates sealing to the outside, the best overall yields are of the order of 20%, that is to say much lower than those of positive displacement pumps or peristaltics.
  • centrifugal pumps have a rotating part subject to wear and to rotational and cavitation vibrations.
  • fluid propulsion devices which use one or more flexible elements such as membranes and which are actuated by a mechanism which gives them alternating displacements which are transmitted to the fluid to be pumped and the result of which circulates the fluid.
  • it is proposed to produce a sort of peristaltic pump in which one side of a fluid pipe consists of a flexible blade driven from the outside by progressive undulatory movements making it possible to entrain the fluid along the conduct.
  • Fluid propulsion devices have made it possible to improve the efficiency of the pumps in order to bring it closer to that of positive displacement pumps, but they do have the disadvantage of a greater mechanical complexity than that of centrifugal air-tube pumps and are not suitable for high pressures.
  • One of the aims of the present invention is precisely to provide a fluid propulsion pump by an elastic membrane, in which the propulsion member is immersed in the fluid like a centrifugal pump rotor but makes it possible to obtain good efficiency. pumping without mechanical complications and practically without risk of wear, at least for the low pumping pressures which are the most used, in particular for central heating circulators.
  • the propulsion device comprises, in a circular body, an annular peripheral space connected to a fluid supply duct, and a central orifice connected to a fluid delivery duct and connected to said annular peripheral space.
  • an annular passage comprised between the smooth parallel or slightly divergent interior surfaces of two walls and extending radially all around the central orifice
  • the flexible membrane extends freely in the annular passage and has respectively a passage in its center transverse which is placed opposite the central orifice and a peripheral zone located in the annular peripheral space and connected to a vibrating member capable of causing the periphery of the membrane to oscillate in a manner substantially perpendicular to the local median plane of the membrane, in such a way that it is subjected from its periphery to concentric oscillation trains s directed towards its center and which, in cooperation with the walls of the annular passage, trap volumes annular fluid by propelling them from the periphery of the membrane towards the center of the latter to discharge them through the discharge conduit.
  • the excitation frequency of the vibrating member corresponds substantially to the natural frequency of the membrane cooperating with the smooth walls of the annular passage and with the fluid to be pumped, so as to put the membrane in resonance at its natural frequency of excitation.
  • the periphery of the membrane is positioned at rest substantially in the mean plane of the oscillations of the periphery of the membrane by an elastic member for holding the periphery of the membrane.
  • the spacing between the two wall surfaces of the annular passage is substantially constant or is increasing from the peripheral annular space to the central orifice , according to a law making it possible to maintain a substantially constant radial passage section, which can lead to greater flexural fatigue of the membrane.
  • the vibrating member is constituted by an electrical coil placed in a magnetic field of air gap and made integral with a peripheral zone of the membrane, said coil being supplied by an alternating electrical voltage of which the frequency is that chosen to cause concentric wave trains on the membrane.
  • the magnetic field of the air gap can be produced by permanent magnets, which constitutes a reliable, economical solution which improves the electrical efficiency of the assembly but which has the drawback of retaining on the interior walls in the vicinity of the air gap. ferrous particles which may be present in the transported liquid, in particular in central heating water.
  • the magnetic field can be produced by an electromagnet exciting the magnetic circuit with low remanence capable of releasing ferrous particles when the pump, or the magnetic circuit may include removable permanent magnets combined with a low remanence magnetic circuit capable of releasing ferrous particles after removal of the permanent magnets.
  • the vibrating member is constituted by a mobile short-circuit winding secured to a peripheral zone of the membrane and forming a frager turn powered by induction, said mobile winding being placed in a magnetic field of air gap created on a magnetic circuit by a fixed winding supplied by an alternating voltage whose frequency is that chosen to cause on the membrane of the wave trains to allow the alternating actuation of the moving winding by the alternating magnetic field air gap.
  • the vibrating member consists of two rings of radial section in the general shape of an isosceles triangle, each fixed on a different side of the flexible membrane at the periphery of the latter in the annular space, in connection with a magnetic circuit, the two air gaps on either side of the inclined surfaces of the two equal sides of the isosceles triangle section are reduced when one of the rings moves in a substantially perpendicular direction at the local median plane of the membrane while the two air gaps of the other ring increase and vice versa for the magnetic circuit of the other ring and in that each of the magnetic circuits of the rings with triangle section is alternately supplied by a different alternation of an alternating electrical voltage whose frequency corresponds substantially to the beat frequency of the membrane and n in particular substantially at the natural frequency of the membrane cooperating with the smooth wall surfaces of the annular passage and with the fluid to be pumped.
  • the periphery of the elastic membrane made of an elastomeric material is advantageously provided with serrated cutouts in each of which is housed and closes a tab of an annular support of the winding and which, in position mounting the membrane in the body, frees a passage for introducing the fluid on either side of the membrane.
  • the flexible membrane may comprise, according to its median plane, a central textile and / or metal frame and it has in the free state a domed shape towards its pierced center, from a substantially planar crown.
  • the flexible membrane has a decreasing thickness from the peripheral zone where it is connected to a vibrating member to its central transverse passage which is crossed by a rigid pipe provided with evacuation vents towards the delivery and serving as a guide for the center of the membrane.
  • the circular body of the propulsion device according to the invention is generally made of a non-magnetic material, for example stainless steel, allowing the magnetic stresses of the vibrating member to pass freely.
  • the device for propelling a fluid shown in FIGS. 1 and 2 comprises a circular body 1 constituted here by two shell-shaped flanges 2 and 3 assembled to each other by crimping at their periphery with the interposition of a interlayer membrane 4 which will be described in more detail below.
  • the flanges 2 and 3 which must have in the embodiment non-magnetic qualities and resistance to pressure, are made for example of stainless steel or aluminum sheet, cold stamped and provided with annular ribs improving the resistance and rigidity.
  • the body 1 determines after its assembly, an annular peripheral space 5 consisting of an upper annular bowl 5a of generally rectangular section distributing the liquid to be propelled and of a lower annular bowl 5 b also of generally rectangular section but deeper and receiving a winding 6 for actuating the membrane 4.
  • the peripheral space 5 is connected to a fluid intake duct 7 while the center of the upper flange 2 has a central fluid delivery orifice 8 connected to a rigid delivery pipe 8a.
  • the central space 9 of the body 1 is connected to the peripheral space 5 by an annular passage 10 which is between the smooth parallel internal surfaces or slightly diverging 11 and 12, respectively of the wall of the flange 2 and of the wall of the flange 3.
  • the annular passage 10 extends radially all around the central orifice 8 or rather, in the embodiment shown, around the inlet orifices 8b vents formed at the end of the discharge pipe 8a.
  • the membrane 4, clamped at its periphery between the two peripheral edges 2a and 3a of the flanges 2 and 3, is produced in annular shape with a circular central passage passing through 13 and extends throughout the annular passage 10.
  • the membrane 4 has a significant thickness in zone 4a where it is clamped between the two peripheral edges 2a and 3a and respectively, an even greater thickness in the zone 4b in the vicinity of the center of the peripheral space 5 where it is connected to the actuating winding 6. From zone 4b, the thickness of the membrane 4 decreases regularly throughout the zone 4c inside from the annular passage 10 where it is subjected to concentric oscillations, up to its border 4d around the circular passage 13.
  • the membrane shown here is made in one piece from an elastomer material resistant to even hot water to function in a heating circulator central. It is obvious that the membrane 4 can be provided, at least at its periphery, with a textile and / or metallic central frame (see FIG. 5) but that the use of a frame, in particular metallic, varies considerably the natural frequency of the membrane which can no longer be tuned to that of the vibrating organ. It can be seen in FIG. 2 that the rim 4d of the central passage 13 surrounds with a large clearance the end 8c of the delivery pipe 8a provided with delivery vents 8b and which has a frustoconical shape, so that the displacement of the rim 4d is limited by the outer surface of the end 8c.
  • the periphery of the membrane 4 may comprise, as shown in FIG. 4, cutouts 14 forming serrations 15 at the periphery 4a of the membrane 4.
  • the cutouts 14 receive the tabs 16 of an annular support 17 of the winding 6.
  • the tabs 16 close on the peripheral rim 4a leaving behind a free space 18 (see FIG. 1) serving as a passage in the annular chamber 5 to allow the fluid to pass from one side to the other of the membrane 4 by passages distributed annually.
  • the serrations 15 are clamped between the edges 2a and 3a of the flanges 2 and 3 and allow the membrane 4 to oscillate freely while being kept at rest substantially in the middle position in the annular passage 10.
  • the upper wall 2 of the ascending passage towards the central orifice 8, the membrane 4 can advantageously have a convex shape towards the central passage 13 so as to come to be housed naturally in the middle position of the annular passage 10, despite its natural tendency to fall due to the action of gravity in the rest position.
  • the lower bowl 5b is deep enough to allow the coil 6 to be vertically flipped (according to FIG. 2) from its middle position shown on the right of FIG. 2.
  • this comprises a bottom drain orifice 22 closed by a removable screw cap 23.
  • the lower bowl 5b in fact constitutes the annular air gap (shown by arrows NS on the right of FIG. 2) of a magnetic circuit 24 made up of two annular parts assembled with high magnetic permeability: an upper annular part 24a with radial section in angle iron and a lower annular part 24b with U-shaped radial section.
  • the excitation of the magnetic circuit is here carried out by an excitation winding 25 supplied with direct current by the electric power supply unit 20 connected to the network by a socket 26, this which removes the magnetic retention of particles when the power supply stops. It is obvious that the excitation winding 25 can be replaced by one or more permanent magnets with high coercive force to take account of the large thickness of the air gap NS.
  • the permanent magnets can be removable to make it possible to remove the ferrous particles retained in the lower bowl 5b at the start of the annular passage 10. It is also possible to replace the actuating coil 6 by a coil of large cross-section in short circuit, such as the turn in short circuit 27, thus forming a Trainr turn.
  • the excitation coil 25 must then be supplied by a alternating voltage whose frequency is that chosen to cause concentric wave trains on the membrane.
  • a magnetic field of air gap NS is created in the horizontal direction, according to FIG. 2, in the air gap constituted by the lower cup 5b, this magnetic field passing through the non-magnetic walls of the lower flange 3.
  • the winding 6 is supplied by the flexible cable 19 with alternating current, preferably at low voltage between 12 and 24 V to take account of the fact that the winding 6 is immersed with the cable 19 in a liquid such as central heating water made ferruginous and which therefore has a high conductivity.
  • the winding 6 is thus subjected to a magnetic force perpendicular to the magnetic field NS of the air gap and directly proportional to the current which flows through its turns, that is to say a substantially sinusoidal force which excites the oscillation in concentric circles of the membrane 4.
  • the oscillations of the membrane 4 in FIG. 2 are shown in a simplified manner, assuming that it comes into its zone 4c in contact with the smooth interior surfaces 11 and 12 at three points constituted here by two points 28a and 28b on the upper surface 11 and of a single point 29 on the lower surface 12, so as to trap a liquid ring 29a in contact with the flange 2 and to propel it towards the central delivery port 8.
  • the progression of the waves from the annular peripheral space 5 towards the central orifice 8 has the effect of transporting the fluid from the supply line 7 to the delivery line 8
  • the propulsion of the fluid is substantially continuous since a wave forms at the entrance to the peripheral space 5 at the moment when a wave disappears at the edge of the central space 9 of the body 1.
  • the deformation of the membrane 4 has the effect of creating four concentric annular chambers 34, 35, 36 and 37 with radial section of general triangular or sinusoidal shape and which are delimited by the membrane 4 and one of the surfaces 11 or 12 of the walls 2 or 3.
  • the spacing of the walls 2 and 3 constituting the annular passage 10 is chosen so that, taking into account the local flexibility of the membrane 4, it is easy to obtain contact circles between the membrane 4 and the surfaces 11 and 12 during vibrations of the membrane.
  • the flow rate of which the pump according to the invention is capable is determined by the volume of the concentric annular chambers 34 to 37 and by the frequency of the beatings of the membrane which is a function of the frequency of the current flowing through the coil 6 but which generally constitutes a frequency tuned to the natural frequency of the membrane at its operating site.
  • the wave progression according to the arrows F1 results from the deformation of the membrane 4 and not from its displacement by relative to the surfaces 11 and 12 of the walls of the annular space 10 because its periphery is kept fixed relative to it. Consequently, the fluid trapped between two successive waves moves with them and the contact between the membrane 4 and the surfaces 11 and 12 of the walls 2 and 3 of the annular space 10 takes place without any friction and therefore without wear of the membrane 4.
  • the contact circles 30 to 33 move by unwinding of the membrane 4 against the walls and there is practically no sliding between the elastomer of the membrane 4 and the surfaces 11 and 12. This rolling contact does not cause , in addition, no reaction liable to impede the flow of the fluid or to lower the efficiency of the fluid propulsion device.
  • the radial section of the membrane 4 decreases in the area 4c, that is to say that the thickness of this membrane 4 decreases regularly from a maximum value E in the zone 4b in the vicinity of its periphery and the center of the annular peripheral space 5, up to a minimum value e at the edge of the central passage 13 (see FIG. 4).
  • the body 1 consists of two flanges 2 and 3 of non-magnetic stainless steel, substantially symmetrical with respect in the median plane of the membrane 4, with the exception of the fluid inlet 7 and fluid delivery fittings 8.
  • the membrane 4 has in its swollen zone 4b, on each side, a ring 40, 41 with a radial section in the shape of an isosceles triangle, the rings 40 and 41 each constituting the air gap connection section of a magnetic circuit with two air gaps.
  • the two air gaps are delimited between, on the one hand, the respective sides 40a and 40b of the isosceles triangle of the section of the ring and, on the other hand, curved faces 42 and 43 forming poles, of a high annular magnetic circuit here consisting of an annular part with a substantially rectangular radial section 44 assembled on an annular part 45 with a U-shaped radial section to surround an excitation winding 46 supplied here with alternating single-alternating current via a rectifier 48.
  • the lower ring 41 cooperates with an identical magnetic circuit, the excitation winding 49 of which is supplied with alternating current of the same frequency as that supplying the winding 46 but of alternating alternation by means of a rectifier 50.
  • the flexible membrane 4 may include an internal reinforcement flexible metal 51 which facilitates the assembly of the two rings 40 and 41 on the bulged area 4b using assembly rivets 52 similar to the rivets 52 shown tees in Figure 1 to ensure the assembly of the coil 6 to the coil 4.
  • the rectifier 48 prohibits the passage of current through the winding 46 in the other direction but the rectifier 50 on the other hand allows the current of the other alternation to be established in the winding 49 and the lower ring 41 is attracted by the curved surfaces forming poles 42a and 43a of the magnetic circuit of the excitation winding 49.
  • the membrane 4 is thus subjected to periodic excitation substantially sinusoidal by the action of the alternating excitation currents of the windings 46 and 49 on the rings 40 and 41.
  • the device shown in FIG. 5 does not include an electric winding immersed in the liquid but generally makes it possible to obtain a yield electric less than that shown in section in Figure 2.
  • the embodiment shown in Figure 5 has the advantage of eliminating the risk of blockage due to the presence of ferrous particles in the pumped liquid.
  • the immersion of the coil 6 in the pumped liquid can present electrical insulation difficulties requiring a low voltage supply but sometimes allows more energetic cooling of the electrical windings to be obtained.
  • the fluid propulsion device according to the invention preferably appears to be applicable for pumping poorly compressible fluids such as liquids, in particular water for central heating circulators operating at low overpressure. It is obvious that the device according to the invention can be applied to convey gases with low overpressure without the compressibility of the gases significantly deforming the waves of the membrane. In the case of application to gases, the displacements of the rolling membrane do not require the presence of a lubricating fluid such as a liquid at the points of contact between the membrane and the walls. In the case where the fluid cannot be discharged, it does not produce untimely heating because the membrane continues to unfold alternately while rolling without discharging fluid. For small pumping devices such as central heating circulators, the electrical energy received on the membrane is transmitted to 90% to the pumped fluid, which ensures an overall efficiency of 70% instead of the 20% commonly accepted for centrifugal air-gap pumps.
  • the membrane can be made of an elastomer insensitive to the fluid conveyed if it is water and which over time resists aging and the distortion stresses which are applied to it by vibrations.
  • the vibrating member such as the coil 6 or the rings 40, 41 can for example be fixed to the membrane 4 by means compact such as an adhesive.
  • the membrane 4 can be actuated by vibrating members other than those described, with internal and / or external action, in particular by simple electromagnets, the mobile part of which constitutes a mobile armature.
  • the mobile part and the membrane can also be associated more intimately, in particular by choosing to make them together a composite material which simultaneously offers the qualities of flexibility necessary for the motor function of the membrane and the magnetic qualities necessary for its control.

Abstract

The propulsion device forms a pump and comprises an alternately displaced flexible diaphragm. An annular passage 10, formed between the smooth, parallel or slightly divergent internal faces 11, 12 of two walls 2, 3, extends radially all round a central orifice 8 and the flexible diaphragm 4 extends freely into the annular passage 10 and is connected to a vibrating element 6, capable of causing the periphery of the diaphragm 4 to oscillate in a manner essentially perpendicular to its local mid-plane, in such a way that it is subjected to trains of concentric oscillations directed towards its centre. Application in low-power booster pumps such as circulating pumps for central heating.

Description

La présente invention se rapporte à un dispositif de propulsion d'un fluide, formant pompe et comprenant une mem­brane flexible déplacée alternativement.The present invention relates to a device for propelling a fluid, forming a pump and comprising a flexible membrane moved alternately.

Les dispositifs de propulsion d'un fluide les plus courants sont constitués par les pompes centrifuges dans lesquelles un rotor à ailettes provoque l'entraînement centri­fuge du liquide qui génère une pression par voie dynamique, ces pompes n'exigeant pas de clapet de décharge dans les cas où le refoulement du liquide ne peut être réalisé. L'un des inconvénients principaux de ces pompes réside précisément dans l'entraînement centrifuge du liquide qui provoque de nombreuses pertes de charge parasites par friction et par tourbillonne­ment. De telles pompes peuvent atteindre des rendements hy­drauliques de 90% pour des rapports débit-hauteur de refou­lement favorables, mais pour les petites unités telles que celles des circulateurs de chauffage ou, grâce à un tube d'entrefer, le stator du moteur électrique est immergé avec le rotor de pompe dans le liquide à pomper, ce qui facilite les étanchéités vers l'extérieur, les rendements globaux les meilleurs sont de l'ordre de 20%, c'est-à-dire bien inférieurs à ceux des pompes volumétriques ou péristaltiques. De plus, les pompes centrifuges comportent une partie tournante soumise à usure et à des vibrations de rotation et de cavitation.The most common fluid propulsion devices consist of centrifugal pumps in which a vane rotor causes the centrifugal drive of the liquid which generates pressure dynamically, these pumps do not require a relief valve in the if the liquid cannot be discharged. One of the main drawbacks of these pumps lies precisely in the centrifugal drive of the liquid which causes numerous parasitic pressure drops by friction and by swirling. Such pumps can reach hydraulic efficiencies of 90% for favorable discharge flow-height ratios, but for small units such as those of heating circulators or, thanks to a gap tube, the stator of the electric motor is immersed with the pump rotor in the liquid to be pumped, which facilitates sealing to the outside, the best overall yields are of the order of 20%, that is to say much lower than those of positive displacement pumps or peristaltics. In addition, centrifugal pumps have a rotating part subject to wear and to rotational and cavitation vibrations.

Pour réduire les inconvénients des pompes centrifuges, on a proposé des dispositifs de propulsion d'un fluide qui utilisent un ou plusieurs élements flexibles tels que des membranes et qui sont actionnés par un mécanisme qui leur imprime des déplacements alternés qui se transmettent au fluide à pomper et dont la résultante fait circuler le fluide. Dans certains systèmes connus, on propose de réaliser une sorte de pompe péristaltique dans laquelle un côté d'une canalisation de fluide est constitué d'une lame flexible animée depuis l'extérieur de mouvements ondulatoires progres­sifs permettant d'entraîner le fluide le long de la conduite.To reduce the disadvantages of centrifugal pumps, fluid propulsion devices have been proposed which use one or more flexible elements such as membranes and which are actuated by a mechanism which gives them alternating displacements which are transmitted to the fluid to be pumped and the result of which circulates the fluid. In certain known systems, it is proposed to produce a sort of peristaltic pump in which one side of a fluid pipe consists of a flexible blade driven from the outside by progressive undulatory movements making it possible to entrain the fluid along the conduct.

Les dispositifs de propulsion de fluide ont permis d'améliorer le rendement des pompes pour le rapprocher de celui des pompes volumétriques, mais ils présentent par contre l'inconvénient d'une complexité mécanique plus grande que celle des pompes centrifuges à tube d'entrefer et ne sont pas adaptés aux pressions élevées. L'un des buts de la présente invention est précisément de proposer une pompe à propulsion de fluide par une membrane élastique, dans lequel l'organe de propulsion est immergé dans le fluide comme un rotor de pompe centrifuge mais permet d'obtenir un bon rendement de pompage sans complication mécanique et pratiquement sans risque d'u­sure, au moins pour les faibles pression de pompage qui sont les plus utilisées, notamment pour les circulateurs de chauf­fage central.Fluid propulsion devices have made it possible to improve the efficiency of the pumps in order to bring it closer to that of positive displacement pumps, but they do have the disadvantage of a greater mechanical complexity than that of centrifugal air-tube pumps and are not suitable for high pressures. One of the aims of the present invention is precisely to provide a fluid propulsion pump by an elastic membrane, in which the propulsion member is immersed in the fluid like a centrifugal pump rotor but makes it possible to obtain good efficiency. pumping without mechanical complications and practically without risk of wear, at least for the low pumping pressures which are the most used, in particular for central heating circulators.

A cet effet, selon l'invention, le dispositif de propul­sion comprend dans un corps circulaire un espace périphérique annulaire raccordé à un conduit d'amenée de fluide, et un orifice central raccordé à un conduit de refoulement de fluide et relié audit espace périphérique annulaire par un passage annulaire compris entre les surfaces intérieures lisses paral­lèles ou peu divergentes de deux parois et s'étendant radiale­ment tout autour de l'orifice central, et la membrane flexible s'étend librement dans le passage annulaire et présente respec­tivement en son centre un passage transversal qui vient se placer en face de l'orifice central et une zone périphérique située dans l'espace périphérique annulaire et reliée à un organe vibrant apte à faire osciller la périphérie de la membrane de façon sensiblement perpendiculaire au plan médian local de la membrane, de telle manière que celle-ci soit soumise depuis sa périphérie à des trains d'oscillations concentriques dirigés vers son centre et qui, en coopération avec les parois du passage annulaire, emprisonnent des volumes annulaires de fluide en les propulsant de la périphérie de la membrane vers le centre de celle-ci pour les refouler par le conduit de refoulement.To this end, according to the invention, the propulsion device comprises, in a circular body, an annular peripheral space connected to a fluid supply duct, and a central orifice connected to a fluid delivery duct and connected to said annular peripheral space. by an annular passage comprised between the smooth parallel or slightly divergent interior surfaces of two walls and extending radially all around the central orifice, and the flexible membrane extends freely in the annular passage and has respectively a passage in its center transverse which is placed opposite the central orifice and a peripheral zone located in the annular peripheral space and connected to a vibrating member capable of causing the periphery of the membrane to oscillate in a manner substantially perpendicular to the local median plane of the membrane, in such a way that it is subjected from its periphery to concentric oscillation trains s directed towards its center and which, in cooperation with the walls of the annular passage, trap volumes annular fluid by propelling them from the periphery of the membrane towards the center of the latter to discharge them through the discharge conduit.

Afin de transmettre la puissance maximale au fluide pompé, la fréquence d'excitation de l'organe vibrant correspond sensiblement à la fréquence propre de la membrane coopérant avec les parois lisses du passage annulaire et avec le fluide à refouler, de manière à mettre la membrane en résonance à sa fréquence propre d'excitation.In order to transmit the maximum power to the pumped fluid, the excitation frequency of the vibrating member corresponds substantially to the natural frequency of the membrane cooperating with the smooth walls of the annular passage and with the fluid to be pumped, so as to put the membrane in resonance at its natural frequency of excitation.

La périphérie de la membrane est positionnée au repos sensiblement dans le plan moyen des oscillations de la péri­phérie de la membrane par un organe élastique de maintien de la périphérie de la membrane.The periphery of the membrane is positioned at rest substantially in the mean plane of the oscillations of the periphery of the membrane by an elastic member for holding the periphery of the membrane.

Selon le type de pompe réalisé: simple et fiable ou à grande capacité et grand rendement, l'écartement entre les deux surfaces de parois du passage annulaire est sensiblement constant ou bien est croissant depuis l'espace annulaire périphérique jusqu'à l'orifice central, selon une loi permet­tant de maintenir une section de passage radial sensiblement constante, ce qui peut conduire à une plus grande fatigue de flexion de la membrane.Depending on the type of pump produced: simple and reliable or high capacity and high efficiency, the spacing between the two wall surfaces of the annular passage is substantially constant or is increasing from the peripheral annular space to the central orifice , according to a law making it possible to maintain a substantially constant radial passage section, which can lead to greater flexural fatigue of the membrane.

Selon un aspect très avantageux de l'invention, l'organe vibrant est constitué par un bobinage électrique placé dans un champ magnétique d'entrefer et rendu solidaire d'une zone périphérique de la membrane, ledit bobinage étant alimenté par une tension électrique alternative dont la fréquence est celle choisie pour provoquer sur la membrane des trains d'ondes concentriques. Le champ magnétique d'entrefer peut être réalisé par des aimants permanents, ce qui constitue une solution fiable, économique et améliorant le rendement électrique de l'ensemble mais qui présente l'inconvénient de retenir sur les parois intérieures au voisinage de l'entrefer les particules ferreuses qui peuvent être présentes dans le liquide véhiculé, notamment dans une eau de chauffage central. Pour éviter cet inconvénient et diminuer le volume du circuit du circuit magnétique, le champ magnétique peut être réalisé par un électroaimant excitant le circuit magnétique à faible réma­nence apte à libérer les particules ferreuses à l'arrêt de la pompe, ou bien le circuit magnétique peut comporter des aimants permanents amovibles combinés à un circuit magnétique à faible rémanence apte à libérer les particules ferreuses après dépose des aimants permanents.According to a very advantageous aspect of the invention, the vibrating member is constituted by an electrical coil placed in a magnetic field of air gap and made integral with a peripheral zone of the membrane, said coil being supplied by an alternating electrical voltage of which the frequency is that chosen to cause concentric wave trains on the membrane. The magnetic field of the air gap can be produced by permanent magnets, which constitutes a reliable, economical solution which improves the electrical efficiency of the assembly but which has the drawback of retaining on the interior walls in the vicinity of the air gap. ferrous particles which may be present in the transported liquid, in particular in central heating water. To avoid this drawback and reduce the volume of the magnetic circuit circuit, the magnetic field can be produced by an electromagnet exciting the magnetic circuit with low remanence capable of releasing ferrous particles when the pump, or the magnetic circuit may include removable permanent magnets combined with a low remanence magnetic circuit capable of releasing ferrous particles after removal of the permanent magnets.

Selon un autre mode de réalisation de l'invention, l'organe vibrant est constitué par un bobinage mobile en court-circuit solidaire d'une zone périphérique de la membrane et formant une spire de Frager alimentée par induction, ledit bobinage mobile étant placé dans un champ magnétique d'en­trefer créé sur un circuit magnétique par un bobinage fixe alimenté par une tension alternative dont la fréquence est celle choisie pour provoquer sur la membrane des trains d'ondes pour permettre l'actionnement alternatif du bobinage mobile par le champ magnétique alternatif d'entrefer.According to another embodiment of the invention, the vibrating member is constituted by a mobile short-circuit winding secured to a peripheral zone of the membrane and forming a frager turn powered by induction, said mobile winding being placed in a magnetic field of air gap created on a magnetic circuit by a fixed winding supplied by an alternating voltage whose frequency is that chosen to cause on the membrane of the wave trains to allow the alternating actuation of the moving winding by the alternating magnetic field air gap.

Selon encore un autre mode de réalisation de l'invention, l'organe vibrant est constitué par deux bagues à section radiale en forme générale de triangle isocèle, fixées chacune d'un côté différent de la membrane flexible à la périphérie de cette dernière dans l'espace annulaire périphérique, en liaison d'un circuit magnétique dont les deux entrefers de part et d'autre des surfaces inclinées des deux côtés égaux de la section en triangle isocèle se réduisent lorsque l'une des bagues se déplace dans une direction sensiblement perpendicu­laire au plan médian local de la membrane tandis que les deux entrefers de l'autre bague s'accroissent et vice versa pour le circuit magnétique de l'autre bague et en ce que chacun des circuits magnétiques des bagues à section en triangle est alternativement alimenté par une alternance différente d'une tension électrique alternative dont la fréquence correspond sensiblement à la fréquence de battement de la membrane et notamment sensiblement à la fréquence propre de la membrane coopérant avec les surfaces de parois lisses du passage annu­laire et avec le fluide à refouler.According to yet another embodiment of the invention, the vibrating member consists of two rings of radial section in the general shape of an isosceles triangle, each fixed on a different side of the flexible membrane at the periphery of the latter in the annular space, in connection with a magnetic circuit, the two air gaps on either side of the inclined surfaces of the two equal sides of the isosceles triangle section are reduced when one of the rings moves in a substantially perpendicular direction at the local median plane of the membrane while the two air gaps of the other ring increase and vice versa for the magnetic circuit of the other ring and in that each of the magnetic circuits of the rings with triangle section is alternately supplied by a different alternation of an alternating electrical voltage whose frequency corresponds substantially to the beat frequency of the membrane and n in particular substantially at the natural frequency of the membrane cooperating with the smooth wall surfaces of the annular passage and with the fluid to be pumped.

La périphérie de la membrane élastique en un matériau élastomère est avantageusement muni de découpes en dentelures dans chacune desquelles vient se loger et se refermer une patte d'un support annulaire du bobinage et qui, en position de montage de la membrane dans le corps, libère un passage d'introduction du fluide de part et d'autre de la membrane. La membrane flexible peut comporter, selon son plan médian, une armature centrale textile et/ou métallique et elle présente à l'état libre une forme bombée vers son centre percé, à partir d'une couronne sensiblement plane.The periphery of the elastic membrane made of an elastomeric material is advantageously provided with serrated cutouts in each of which is housed and closes a tab of an annular support of the winding and which, in position mounting the membrane in the body, frees a passage for introducing the fluid on either side of the membrane. The flexible membrane may comprise, according to its median plane, a central textile and / or metal frame and it has in the free state a domed shape towards its pierced center, from a substantially planar crown.

Selon encore un autres mode de réalisation, la membrane flexible présente une épaisseur décroissante depuis la zone périphérique où elle est reliée à un organe vibrant jusqu'à son passage transversal central qui est traversé par une conduite rigide munie d'évents d'évacuation vers le refoule­ment et servant de guidage pour le centre de la membrane. Le corps circulaire du dispositif de propulsion selon l'invention est généralement réalisé en un matériau amagnétique, par exemple en acier inoxydable, laissant passer librement les sollicitations magnétiques de l'organe vibrant.According to yet another embodiment, the flexible membrane has a decreasing thickness from the peripheral zone where it is connected to a vibrating member to its central transverse passage which is crossed by a rigid pipe provided with evacuation vents towards the delivery and serving as a guide for the center of the membrane. The circular body of the propulsion device according to the invention is generally made of a non-magnetic material, for example stainless steel, allowing the magnetic stresses of the vibrating member to pass freely.

D'autres buts, avantages et caractéristiques apparaî­tront à la lecture de la description de divers modes de réali­sation de l'invention, faite à titre non limitatif et en regard du dessin annexé, dans lequel:

  • - la figure 1 est une vue en perspective schématique et selon deux plans de coupe radiaux, d'un premier mode de réalisation du dispositif de propulsion de fluide selon l'invention;
  • - la figure 2 est une vue en coupe transversale d'un dispositif de propulsion selon l'invention voisin de celui représenté en perspective à la figure 1, la membrane étant en fonction­nement sur la demi coupe de gauche et au repos sur la demi coupe de droite;
  • - la figure 3 est une vue fragmentaire en coupe de la membrane du dispositif de propulsion, représentée en fonctionnement entre les deux parois d'un passage radial;
  • - la figure 4 représente en perspective, avec un plan de coupe radial, la membrane flexible du dispositif de propulsion équipée de son bobinage d'actionnement;
  • - la figure 5 représente en coupe transversale schématique un autre mode de réalisation du dispositif de propulsion selon l'invention.
Other objects, advantages and characteristics will appear on reading the description of various embodiments of the invention, given without limitation and with reference to the appended drawing, in which:
  • - Figure 1 is a schematic perspective view and along two radial section planes, of a first embodiment of the fluid propulsion device according to the invention;
  • - Figure 2 is a cross-sectional view of a propulsion device according to the invention similar to that shown in perspective in Figure 1, the membrane being in operation on the left half cut and at rest on the half cut of right;
  • - Figure 3 is a fragmentary sectional view of the membrane of the propulsion device, shown in operation between the two walls of a radial passage;
  • - Figure 4 shows in perspective, with a radial section plane, the flexible membrane of the propulsion device equipped with its actuating winding;
  • - Figure 5 shows in schematic cross section another embodiment of the propulsion device according to the invention.

Le dispositif de propulsion d'un fluide représenté sur les figures 1 et 2 comprend un corps circulaire 1 constitué ici de deux flasques en forme de coquille 2 et 3 assemblés l'un à l'autre par sertissage à leur périphérie avec interpo­sition d'une membrane intercalaire 4 qui sera décrite plus en détail par la suite. Les flasques 2 et 3, qui doivent présenter dans le mode de réalisation des qualités amagnétiques et de résistance à la pression, sont réalisées par exemple en tôle d'acier inoxydable ou d'aluminium estampée à froid et munie de nervures annulaires améliorant la résistance et la rigidité.The device for propelling a fluid shown in FIGS. 1 and 2 comprises a circular body 1 constituted here by two shell-shaped flanges 2 and 3 assembled to each other by crimping at their periphery with the interposition of a interlayer membrane 4 which will be described in more detail below. The flanges 2 and 3, which must have in the embodiment non-magnetic qualities and resistance to pressure, are made for example of stainless steel or aluminum sheet, cold stamped and provided with annular ribs improving the resistance and rigidity.

Le corps 1 détermine après son assemblage, un espace périphérique annulaire 5 constitué d'une cuvette annulaire supérieure 5a de section générale rectangulaire distribuant le liquide à propulser et d'une cuvette annulaire inférieure 5 b également de section générale rectangulaire mais plus profonde et recevant un bobinage 6 d'actionnement de la membrane 4. L'espace périphérique 5 est raccordé à un conduit d'admission de fluide 7 tandis que le centre du flasque supérieur 2 pré­sente un orifice central de refoulement de fluide 8 raccordé à un tuyau de refoulement rigide 8a. L'espace central 9 du corps 1 est relié à l'espace périphérique 5 par un passage annulaire 10 qui est compris entre les surfaces intérieures lisses parallèles ou peu divergentes 11 et 12, respectivement de la paroi du flasque 2 et de la paroi du flasque 3. Le passage annulaire 10 s'étend radialement tout autour de l'ori­fice central 8 ou plutôt, dans le mode de réalisation repré­senté, autour des orifices d'entrée ou évents 8b ménagés à l'extrémité du tuyau de refoulement 8a.The body 1 determines after its assembly, an annular peripheral space 5 consisting of an upper annular bowl 5a of generally rectangular section distributing the liquid to be propelled and of a lower annular bowl 5 b also of generally rectangular section but deeper and receiving a winding 6 for actuating the membrane 4. The peripheral space 5 is connected to a fluid intake duct 7 while the center of the upper flange 2 has a central fluid delivery orifice 8 connected to a rigid delivery pipe 8a. The central space 9 of the body 1 is connected to the peripheral space 5 by an annular passage 10 which is between the smooth parallel internal surfaces or slightly diverging 11 and 12, respectively of the wall of the flange 2 and of the wall of the flange 3. The annular passage 10 extends radially all around the central orifice 8 or rather, in the embodiment shown, around the inlet orifices 8b vents formed at the end of the discharge pipe 8a.

La membrane 4, serrée à sa périphérie entre les deux rebords périphériques 2a et 3a des flasques 2 et 3, est réa­lisée en forme annulaire avec un passage central circulaire traversant 13 et s'étend dans tout le passage annulaire 10. La membrane 4 présente une épaisseur importante dans la zone 4a où elle est serrée entre les deux rebords périphériques 2a et 3a et respectivement, une épaisseur encore plus importante dans la zone 4b au voisinage du centre de l'espace périphéri­que 5 où elle est reliée au bobinage d'actionnement 6. A partir de la zone 4b, l'épaisseur de la membrane 4 décroit régulièrement dans toute la zone 4c à l'intérieur du passage annulaire 10 où elle est soumise à des oscillations concentri­ques, jusqu'à sa bordure 4d autour du passage circulaire 13. La membrane représentée ici est réalisée monobloc en un maté­riau élastomère résistant à l'eau même chaude pour fonctionner dans un circulateur de chauffage central. Il est évident que la membrane 4 peut être munie, au moins à sa périphérie, d'une armature centrale textile et/ou métallique (voir la figure 5) mais que l'utilisation d'une armature, notamment métallique, fait varier considérablement la fréquence propre de la membrane qui peut ne plus être accordée à celle de l'organe vibrant. On voit sur la figure 2 que le rebord 4d du passage central 13 entoure avec un jeu important l'extrémité 8c du tuyau de refoulement 8a munie d'évents de refoulement 8b et qui présente une forme tronconique, de telle façon que le déplacement du rebord 4d soit limité par la surface extérieure de l'extrémité 8c.The membrane 4, clamped at its periphery between the two peripheral edges 2a and 3a of the flanges 2 and 3, is produced in annular shape with a circular central passage passing through 13 and extends throughout the annular passage 10. The membrane 4 has a significant thickness in zone 4a where it is clamped between the two peripheral edges 2a and 3a and respectively, an even greater thickness in the zone 4b in the vicinity of the center of the peripheral space 5 where it is connected to the actuating winding 6. From zone 4b, the thickness of the membrane 4 decreases regularly throughout the zone 4c inside from the annular passage 10 where it is subjected to concentric oscillations, up to its border 4d around the circular passage 13. The membrane shown here is made in one piece from an elastomer material resistant to even hot water to function in a heating circulator central. It is obvious that the membrane 4 can be provided, at least at its periphery, with a textile and / or metallic central frame (see FIG. 5) but that the use of a frame, in particular metallic, varies considerably the natural frequency of the membrane which can no longer be tuned to that of the vibrating organ. It can be seen in FIG. 2 that the rim 4d of the central passage 13 surrounds with a large clearance the end 8c of the delivery pipe 8a provided with delivery vents 8b and which has a frustoconical shape, so that the displacement of the rim 4d is limited by the outer surface of the end 8c.

La périphérie de la membrane 4 peut comporter, comme représenté à la figure 4, des découpes 14 formant des dente­lures 15 à la périphérie 4a de la membrane 4. Les découpes 14 reçoivent les pattes 16 d'un support annulaire 17 du bobi­nage 6. Les pattes 16 se referment sur le rebord périphéri­que 4a en laissant derrière elles un espace libre 18 (voir la figure 1) servant de passage dans la chambre annulaire 5 pour permettre au fluide de passer d'un côté à l'autre de la mem­brane 4 par des passages répartis annulairement. Les dente­lures 15 sont serrées entre les rebords 2a et 3a des flasques 2 et 3 et permettent à la membrane 4 d'osciller librement tout en étant maintenue au repos sensiblement en position médiane dans le passage annulaire 10. La paroi supérieure 2 du pas­sage 10 montant vers l'orifice central 8, la membrane 4 peut présenter avantageusement une forme bombée vers le passage central 13 pour venir se loger naturellement en position médiane du passage annulaire 10, malgré sa tendance naturelle à retomber du fait de l'action de la pesanteur en position de repos.The periphery of the membrane 4 may comprise, as shown in FIG. 4, cutouts 14 forming serrations 15 at the periphery 4a of the membrane 4. The cutouts 14 receive the tabs 16 of an annular support 17 of the winding 6. The tabs 16 close on the peripheral rim 4a leaving behind a free space 18 (see FIG. 1) serving as a passage in the annular chamber 5 to allow the fluid to pass from one side to the other of the membrane 4 by passages distributed annually. The serrations 15 are clamped between the edges 2a and 3a of the flanges 2 and 3 and allow the membrane 4 to oscillate freely while being kept at rest substantially in the middle position in the annular passage 10. The upper wall 2 of the ascending passage towards the central orifice 8, the membrane 4 can advantageously have a convex shape towards the central passage 13 so as to come to be housed naturally in the middle position of the annular passage 10, despite its natural tendency to fall due to the action of gravity in the rest position.

Le bobinage d'actionnement 6 de la membrane 4, posé sur son support 17 recourbé en 17b à la partie inférieure, est logé mobile verticalement (selon la figure 2) dans la cuvette inférieure 5b et est alimenté en courant électrique par un câble souple 19 noyé de façon étanche dans le fluide à pomper et relié à un bloc d'alimentation électrique 20 par un cir­cuit 21. La cuvette inférieure 5b est suffisamment profonde pour permettre au bobinage 6 de se débattre verticalement (selon la figure 2) à partir de sa position moyenne représenté à droite de la figure 2. Afin de permettre l'évacuation des particules ferreuses et de rouille qui pourraient venir s'ac­crocher sous l'effet de l'aimantation sur les parois inté­rieures de la cuvette inférieure 5b, celle-ci comporte un orifice de vidange de fond 22 fermé par un bouchon amovible vissé 23.The actuating winding 6 of the membrane 4, placed on its support 17 curved at 17b at the bottom, is housed vertically movable (according to FIG. 2) in the lower bowl 5b and is supplied with electric current by a flexible cable 19 embedded in a sealed manner in the fluid to be pumped and connected to an electric power supply 20 by a circuit 21. The lower bowl 5b is deep enough to allow the coil 6 to be vertically flipped (according to FIG. 2) from its middle position shown on the right of FIG. 2. In order to allow the evacuation of ferrous and rust particles which could come to catch under the effect of the magnetization on the interior walls of the lower bowl 5b, this comprises a bottom drain orifice 22 closed by a removable screw cap 23.

La cuvette inférieure 5b constitue en fait l'entrefer annulaire (figuré par des flèches NS à droite de la figure 2) d'un circuit magnétique 24 constitué de deux pièces annulaires assemblées à grande perméabilité magnétique: une pièce annu­laire supérieure 24a à section radiale en cornière et une pièce annulaire inférieure 24b à section radiale en U. L'exci­tation du circuit magnétique est ici réalisée par un bobinage d'excitation 25 alimenté en courant continu par le bloc d'ali­mentation électrique 20 relié au réseau par une prise 26, ce qui permet de supprimer la rétention magnétique des particules lorsque l'alimentation électrique cesse. Il est bien évident que l'on peut remplacer le bobinage d'excitation 25 par un ou plusieurs aimants permanents à grande force coercitive pour tenir compte de l'épaisseur importante de l'entrefer NS. Les aimants permanents peuvent être amovibles pour permettre de supprimer les particules ferreuses retenues dans la cuvette inférieure 5b au début du passage annulaire 10. On peut éga­lement remplacer la bobine d'actionnement 6 par une spire de forte section en court-circuit, tel que la spire en court-circuit 27, en formant ainsi une spire de Frager. La bobine d'excitation 25 doit alors être alimentée par une tension alternative dont la fréquence est celle choisie pour provoquer sur la membrane des trains d'ondes concentriques.The lower bowl 5b in fact constitutes the annular air gap (shown by arrows NS on the right of FIG. 2) of a magnetic circuit 24 made up of two annular parts assembled with high magnetic permeability: an upper annular part 24a with radial section in angle iron and a lower annular part 24b with U-shaped radial section. The excitation of the magnetic circuit is here carried out by an excitation winding 25 supplied with direct current by the electric power supply unit 20 connected to the network by a socket 26, this which removes the magnetic retention of particles when the power supply stops. It is obvious that the excitation winding 25 can be replaced by one or more permanent magnets with high coercive force to take account of the large thickness of the air gap NS. The permanent magnets can be removable to make it possible to remove the ferrous particles retained in the lower bowl 5b at the start of the annular passage 10. It is also possible to replace the actuating coil 6 by a coil of large cross-section in short circuit, such as the turn in short circuit 27, thus forming a Frager turn. The excitation coil 25 must then be supplied by a alternating voltage whose frequency is that chosen to cause concentric wave trains on the membrane.

On va maintenant expliquer le fonctionnement du dispo­sitif de propulsion de fluide ou de pompe qui vient d'être décrit. Lorsque le bloc d'alimentation électrique 20 n'est pas sous tension, les composants du dispositif occupent la position représentée sur la demi coupe de droite de la figure 2.We will now explain the operation of the fluid propulsion device or pump which has just been described. When the power supply unit 20 is not energized, the components of the device occupy the position shown in the right half-section of FIG. 2.

Lorsque l'organe vibrant électrique est actionné, c'est­à-dire lorsque le bloc électrique 20 est sous-tension, un champ magnétique d'entrefer NS est créé dans la direction horizontale, selon la figure 2, dans l'entrefer constitué par la cuvette inférieure 5b, ce champ magnétique traversant les parois amagnétiques du flasque inférieur 3. Dans le même temps le bobinage 6 est alimenté par le câble souple 19 en courant alternatif, de préférence à basse tension entre 12 et 24 V pour tenir compte du fait que le bobinage 6 est immergé avec le câble 19 dans un liquide tel que de l'eau de chauffage central rendue ferrugineuse et qui présente donc une conduc­tibilité élevée. Le bobinage 6 est ainsi soumis à une force magnétique perpendiculaire au champ magnétique NS de l'entrefer et directement proportionnelle au courant qui parcourt ses spires, c'est-à-dire à une force sensiblement sinusoïdale qui excite l'oscillation en cercles concentriques de la membrane 4. On a représenté de façon simplifiée les oscillations de la membrane 4 sur la figure 2 en supposant que celle-ci vient dans sa zone 4c en contact avec les surfaces intérieures lisses 11 et 12 en trois points constitués ici de deux points 28a et 28b sur la surface supérieure 11 et d'un seul point 29 sur la surface inférieure 12, de manière à emprison­ner un anneau liquide 29a au contact du flasque 2 et à le propulser vers l'orifice central de refoulement 8. La même opération peut ensuite se réaliser avec le flasque infé­rieur 3, l'ensemble des opérations se répétant au rythme des battements de la membrane. Un tel mode de vibration de la membrane produit un écoulement pulsatoire du liquide pompé et pour obtenir un écoulement sensiblement régulier, doit être remplacé par le mode de vibration représenté schématiquement sur la figure 3.When the electric vibrating member is actuated, that is to say when the electric block 20 is under-voltage, a magnetic field of air gap NS is created in the horizontal direction, according to FIG. 2, in the air gap constituted by the lower cup 5b, this magnetic field passing through the non-magnetic walls of the lower flange 3. At the same time the winding 6 is supplied by the flexible cable 19 with alternating current, preferably at low voltage between 12 and 24 V to take account of the fact that the winding 6 is immersed with the cable 19 in a liquid such as central heating water made ferruginous and which therefore has a high conductivity. The winding 6 is thus subjected to a magnetic force perpendicular to the magnetic field NS of the air gap and directly proportional to the current which flows through its turns, that is to say a substantially sinusoidal force which excites the oscillation in concentric circles of the membrane 4. The oscillations of the membrane 4 in FIG. 2 are shown in a simplified manner, assuming that it comes into its zone 4c in contact with the smooth interior surfaces 11 and 12 at three points constituted here by two points 28a and 28b on the upper surface 11 and of a single point 29 on the lower surface 12, so as to trap a liquid ring 29a in contact with the flange 2 and to propel it towards the central delivery port 8. The same operation can then be carried out with the lower flange 3, all of the operations repeating at the rate of the beating of the membrane. Such a vibration mode of the membrane produces a pulsating flow of the pumped liquid and to obtain a substantially regular flow, must be replaced by the vibration mode shown schematically in FIG. 3.

En choisissant une fréquence du courant alternatif parcourant le bobinage 6 qui soit adaptée à la géométrie de la membrane, à sa raideur, à l'écartement séparant les surfaces 11 et 12 ainsi qu'à la densité et à la viscosité du liquide pompé, on peut obtenir constamment, comme représenté à la figure 3, au moins deux ondes sur la longueur du passage annulaire 10 mesurée entre les deux cercles concentriques qui le délimitent. On obtient ainsi quatre cercles de contact 30, 31, 32 et 33 entre la membrane 4 et les surfaces 11 et 12 des parois opposées 2 et 3 de l'espace annulaire 10: deux cercles de contact 30 et 32 sur la surface 11 et deux cercles de contact 31 et 33 sur la surface 12 interne.By choosing a frequency of the alternating current flowing through the winding 6 which is adapted to the geometry of the membrane, to its stiffness, to the spacing separating the surfaces 11 and 12 as well as to the density and the viscosity of the pumped liquid, we can constantly obtain, as shown in FIG. 3, at least two waves over the length of the annular passage 10 measured between the two concentric circles which delimit it. Four contact circles 30, 31, 32 and 33 are thus obtained between the membrane 4 and the surfaces 11 and 12 of the opposite walls 2 and 3 of the annular space 10: two contact circles 30 and 32 on the surface 11 and two contact circles 31 and 33 on the internal surface 12.

Comme la membrane 4 baigne dans le fluide à pomper, la progression des ondes de l'espace périphérique annulaire 5 vers l'orifice central 8 a pour effet de transporter le fluide depuis la conduite d'amenée 7 jusqu'à la conduite de refoule­ment 8. La propulsion du fluide est sensiblement continue car une onde se forme à l'entrée de l'espace périphérique 5 au moment où une onde disparaît au bord de l'espace central 9 du corps 1.As the membrane 4 is immersed in the fluid to be pumped, the progression of the waves from the annular peripheral space 5 towards the central orifice 8 has the effect of transporting the fluid from the supply line 7 to the delivery line 8 The propulsion of the fluid is substantially continuous since a wave forms at the entrance to the peripheral space 5 at the moment when a wave disappears at the edge of the central space 9 of the body 1.

La déformation de la membrane 4 a pour effet de créer quatre chambres annulaires concentriques 34, 35, 36 et 37 à section radiale de forme générale triangulaire ou sinusoïdale et qui sont délimitées par la membrane 4 et l'une des surfa­ces 11 ou 12 des parois 2 ou 3. L'écartement des parois 2 et 3 constituant le passage annulaire 10 est choisi de telle sorte que, compte tenu de la flexibilité locale de la membrane 4, on obtienne aisément des cercles de contact entre la membrane 4 et les surfaces 11 et 12 au cours des vibrations de la mem­brane. Le débit dont la pompe selon l'invention est capable est déterminé par le volume des chambres annulaires concen­triques 34 à 37 et par la fréquence des battements de la membrane qui est fonction de la fréquence du courant parcou­rant la bobine 6 mais qui constitue en général une fréquence accordée sur la fréquence propre de la membrane sur son site de fonctionnement.The deformation of the membrane 4 has the effect of creating four concentric annular chambers 34, 35, 36 and 37 with radial section of general triangular or sinusoidal shape and which are delimited by the membrane 4 and one of the surfaces 11 or 12 of the walls 2 or 3. The spacing of the walls 2 and 3 constituting the annular passage 10 is chosen so that, taking into account the local flexibility of the membrane 4, it is easy to obtain contact circles between the membrane 4 and the surfaces 11 and 12 during vibrations of the membrane. The flow rate of which the pump according to the invention is capable is determined by the volume of the concentric annular chambers 34 to 37 and by the frequency of the beatings of the membrane which is a function of the frequency of the current flowing through the coil 6 but which generally constitutes a frequency tuned to the natural frequency of the membrane at its operating site.

La progression des ondes selon les flèches F1 résulte de la déformation de la membrane 4 et non de son déplacement par rapport aux surfaces 11 et 12 des parois de l'espace annu­laire 10 car sa périphérie est maintenue fixe par rapport à elle. En conséquence, le fluide emprisonné entre deux ondes successives se déplace avec elles et le contact entre la membrane 4 et les surfaces 11 et 12 des parois 2 et 3 de l'espace annulaire 10 s'effectue sans aucun frottement et donc sans usure de la membrane 4. Les cercles de contact 30 à 33 se déplacent par déroulement de la membrane 4 contre les parois et il ne se produit pratiquement pas de glissement entre l'élastomère de la membrane 4 et les surfaces 11 et 12. Ce contact roulant ne provoque, en outre, aucune réaction suscep­tible de contrarier l'écoulement du fluide ou d'abaisser le rendement du dispositif de propulsion de fluide.The wave progression according to the arrows F1 results from the deformation of the membrane 4 and not from its displacement by relative to the surfaces 11 and 12 of the walls of the annular space 10 because its periphery is kept fixed relative to it. Consequently, the fluid trapped between two successive waves moves with them and the contact between the membrane 4 and the surfaces 11 and 12 of the walls 2 and 3 of the annular space 10 takes place without any friction and therefore without wear of the membrane 4. The contact circles 30 to 33 move by unwinding of the membrane 4 against the walls and there is practically no sliding between the elastomer of the membrane 4 and the surfaces 11 and 12. This rolling contact does not cause , in addition, no reaction liable to impede the flow of the fluid or to lower the efficiency of the fluid propulsion device.

Pour que la progression radiale des ondes de la membra­ne 4 se produise régulièrement, il est nécessaire que la tension radiale intrinsèque de la matière qui la constitue évolue en fonction de la configuration géométrique et dimen­sionnelle du système. C'est pourquoi, dans les modes de réali­sation représentés, la section radiale de la membrane 4 est décroissante dans la zone 4c, c'est-à-dire que l'épaisseur de cette membrane 4 diminue régulièrement depuis une valeur maximale E dans la zone 4b au voisinage de sa périphérie et du centre de l'espace périphérique annulaire 5, jusqu'à une valeur minimum e au bord du passage central 13 (voir la fi­gure 4). De même, l'énergie de l'onde se conservant alors que le diamètre de la membrane 4 se réduit vers le centre, il est nécessaire de donner à la hauteur h du passage annulaire 10 une valeur croissante (h1 > h2) depuis un minimum à la jonction de cet espace 10 avec l'espace annulaire périphé­rique 5 jusqu'à un maximum au bord de l'orifice de refoule­ment 8 (figure 3).In order for the radial progression of the waves of the membrane 4 to occur regularly, it is necessary that the intrinsic radial tension of the material which constitutes it evolves as a function of the geometric and dimensional configuration of the system. This is why, in the embodiments shown, the radial section of the membrane 4 decreases in the area 4c, that is to say that the thickness of this membrane 4 decreases regularly from a maximum value E in the zone 4b in the vicinity of its periphery and the center of the annular peripheral space 5, up to a minimum value e at the edge of the central passage 13 (see FIG. 4). Similarly, the energy of the wave being conserved while the diameter of the membrane 4 is reduced towards the center, it is necessary to give the height h of the annular passage 10 an increasing value (h1> h2) from a minimum. at the junction of this space 10 with the peripheral annular space 5 up to a maximum at the edge of the discharge orifice 8 (Figure 3).

Dans le mode de réalisation représenté sur la figure 5, où les parties remplissant les mêmes fonctions portent les mêmes repères de référence que dans les figures précédentes, le corps 1 est constitué de deux flasques 2 et 3 en acier inoxydable amagnétique, sensiblement symétriques par rapport au plan médian de la membrane 4, à l'exception des raccords d'admission de fluide 7 et de refoulement de fluide 8. La membrane 4 comporte dans sa zone renflée 4b, de chaque côté, une bague 40, 41 à section radiale en forme de triangle iso­cèle, les bagues 40 et 41 constituant chacune la section de liaison d'entrefer d'un circuit magnétique à deux entrefers. Pour la bague 40, les deux entrefers sont délimités entre, d'une part, les côtés respectifs 40a et 40b du triangle iso­cèle de la section de la bague et, d'autre part, des faces courbes 42 et 43 formant pôles, d'un circuit magnétique annu­laire haut constitué ici d'une partie annulaire à section radiale sensiblement rectangulaire 44 assemblée sur une partie annulaire 45 à section radiale en U pour entourer un bobinage d'excitation 46 alimenté ici en courant alternatif simple alternance via un redresseur 48. La bague inférieure 41 coo­père avec un circuit magnétique identique dont le bobinage d'excitation 49 est alimenté en courant alternatif de même fréquence que celui alimentant le bobinage 46 mais d'alter­nance opposée grâce à un redresseur 50. La membrane flexible 4 peut comporter une armature interne métallique souple 51 qui facilite l'assemblage des deux bagues 40 et 41 sur la zone renflée 4b à l'aide de rivets d'assemblage 52 semblables aux rivets 52 représentés à la figure 1 pour assurer l'assemblage du bobinage 6 à la bobine 4.In the embodiment shown in Figure 5, where the parts performing the same functions have the same reference marks as in the previous figures, the body 1 consists of two flanges 2 and 3 of non-magnetic stainless steel, substantially symmetrical with respect in the median plane of the membrane 4, with the exception of the fluid inlet 7 and fluid delivery fittings 8. The membrane 4 has in its swollen zone 4b, on each side, a ring 40, 41 with a radial section in the shape of an isosceles triangle, the rings 40 and 41 each constituting the air gap connection section of a magnetic circuit with two air gaps. For the ring 40, the two air gaps are delimited between, on the one hand, the respective sides 40a and 40b of the isosceles triangle of the section of the ring and, on the other hand, curved faces 42 and 43 forming poles, of a high annular magnetic circuit here consisting of an annular part with a substantially rectangular radial section 44 assembled on an annular part 45 with a U-shaped radial section to surround an excitation winding 46 supplied here with alternating single-alternating current via a rectifier 48. The lower ring 41 cooperates with an identical magnetic circuit, the excitation winding 49 of which is supplied with alternating current of the same frequency as that supplying the winding 46 but of alternating alternation by means of a rectifier 50. The flexible membrane 4 may include an internal reinforcement flexible metal 51 which facilitates the assembly of the two rings 40 and 41 on the bulged area 4b using assembly rivets 52 similar to the rivets 52 shown tees in Figure 1 to ensure the assembly of the coil 6 to the coil 4.

Dans le mode de réalisation représenté à la figure 5, lorsque le bobinage d'excitation supérieur 46 est parcouru par un courant, le circuit magnétique annulaire supérieur consti­tué des parties 44 et 45 et des deux entrefers tend à réduire l'épaisseur des entrefers par suite de l'apparition de pôles d'attraction sur les surfaces délimitant ces entrefers. La bague 40 est donc attirée vers le haut par les faces cour­bes 42 et 43 et entraîne la zone 4b de la membrane 4 vers le haut. Lorsque la tension électrique d'alimentation du bobi­nage 46 change de sens, le redresseur 48 interdit le passage du courant dans le bobinage 46 dans l'autre sens mais le redresseur 50 permet par contre au courant de l'autre alter­nance de s'établir dans le bobinage 49 et la bague inférieure 41 est attirée par les surfaces courbes formant pôles 42a et 43a du circuit magnétique du bobinage d'excitation 49. La membrane 4 est ainsi soumise à une excitation périodique sensiblement sinusoïdale par l'action des courants d'excitation alternés des bobinages 46 et 49 sur les bagues 40 et 41. Le dispositif représenté sur la figure 5 ne comporte pas de bobinage électrique immergé dans le liquide mais permet en général d'obtenir un rendement électrique moindre que celui représenté en coupe à la figure 2. Le mode de réalisation représenté à la figure 5 présente l'avantage de supprimer les risques de blocage par suite de la présence de particules ferreuses dans le liquide pompé. L'immersion de la bobine 6 dans le liquide pompé peut présenter des difficultés d'isolation électriques nécessitant une alimentation à basse tension mais permet parfois d'obtenir un refroidissement plus énergique des bobinages électriques.In the embodiment shown in Figure 5, when the upper excitation winding 46 is traversed by a current, the upper annular magnetic circuit consisting of parts 44 and 45 and the two air gaps tends to reduce the thickness of the air gaps as a result the appearance of poles of attraction on the surfaces delimiting these air gaps. The ring 40 is therefore attracted upwards by the curved faces 42 and 43 and drives the area 4b of the membrane 4 upwards. When the electrical supply voltage of the winding 46 changes direction, the rectifier 48 prohibits the passage of current through the winding 46 in the other direction but the rectifier 50 on the other hand allows the current of the other alternation to be established in the winding 49 and the lower ring 41 is attracted by the curved surfaces forming poles 42a and 43a of the magnetic circuit of the excitation winding 49. The membrane 4 is thus subjected to periodic excitation substantially sinusoidal by the action of the alternating excitation currents of the windings 46 and 49 on the rings 40 and 41. The device shown in FIG. 5 does not include an electric winding immersed in the liquid but generally makes it possible to obtain a yield electric less than that shown in section in Figure 2. The embodiment shown in Figure 5 has the advantage of eliminating the risk of blockage due to the presence of ferrous particles in the pumped liquid. The immersion of the coil 6 in the pumped liquid can present electrical insulation difficulties requiring a low voltage supply but sometimes allows more energetic cooling of the electrical windings to be obtained.

Le dispositif de propulsion de fluide selon l'invention paraît de préférence applicable au pompage des fluides peu compressibles tels que les liquides, notamment de l'eau pour les circulateurs de chauffage central fonctionnant à faible surpression. Il est évident que le dispositif selon l'invention peut être appliqué pour véhiculer des gaz à faible surpression sans que la compressibilité des gaz ne déforme les ondes de la membrane de façon importante. Dans le cas de l'application à des gaz, les déplacements de la membrane en roulement ne nécessitent par la présence d'un fluide lubrifiant tel qu'un liquide aux points de contact entre la membrane et les parois. Dans le cas où le fluide ne peut être refoulé, il ne produit pas d'échauffement intempestif car la membrane continue à se dérouler alternativement en roulant sans refouler de fluide. Pour les dispositifs de pompage de petite dimension tels que les circulateurs de chauffage central, l'énergie électrique reçue sur la membrane est transmise à 90% au fluide pompé, ce qui assure un rendement global de 70% au lieu des 20% couram­ment admis pour les pompes centrifuges à tube d'entrefer.The fluid propulsion device according to the invention preferably appears to be applicable for pumping poorly compressible fluids such as liquids, in particular water for central heating circulators operating at low overpressure. It is obvious that the device according to the invention can be applied to convey gases with low overpressure without the compressibility of the gases significantly deforming the waves of the membrane. In the case of application to gases, the displacements of the rolling membrane do not require the presence of a lubricating fluid such as a liquid at the points of contact between the membrane and the walls. In the case where the fluid cannot be discharged, it does not produce untimely heating because the membrane continues to unfold alternately while rolling without discharging fluid. For small pumping devices such as central heating circulators, the electrical energy received on the membrane is transmitted to 90% to the pumped fluid, which ensures an overall efficiency of 70% instead of the 20% commonly accepted for centrifugal air-gap pumps.

La membrane peut être réalisée en un élastomère insen­sible au fluide véhiculé s'il s'agit d'eau et qui résiste dans le temps au vieillissement et aux contraintes de distorsion qui lui sont appliquées par les vibrations.The membrane can be made of an elastomer insensitive to the fluid conveyed if it is water and which over time resists aging and the distortion stresses which are applied to it by vibrations.

L'organe vibrant tel que le bobinage 6 ou les bagues 40, 41 peut par exemple être fixé à la membrane 4 par des moyens compacts tel qu'un adhésif. La membrane 4 peut être actionnée par d'autres organes vibrants que ceux décrits, à action intérieure et/ou extérieure notamment par de simples électro­aimants dont la partie mobile constitue une armature mobile. La partie mobile et la membrane peuvent aussi être associées plus intimement, notamment en choisissant pour les réaliser ensemble un matériau composite qui offre simultanément les qualités de flexibilité nécessaires à la fonction motrice de la membrane et les qualités magnétiques nécessaires à sa commande.The vibrating member such as the coil 6 or the rings 40, 41 can for example be fixed to the membrane 4 by means compact such as an adhesive. The membrane 4 can be actuated by vibrating members other than those described, with internal and / or external action, in particular by simple electromagnets, the mobile part of which constitutes a mobile armature. The mobile part and the membrane can also be associated more intimately, in particular by choosing to make them together a composite material which simultaneously offers the qualities of flexibility necessary for the motor function of the membrane and the magnetic qualities necessary for its control.

Bien entendu, la présente invention n'est pas limitée aux modes de réalisation de l'invention décrits et représen­tés, mais elle est susceptible de nombreuses variantes acces­sibles à l'homme de l'art sans que l'on ne s'écarte de l'esprit de l'invention.Of course, the present invention is not limited to the embodiments of the invention described and shown, but it is capable of numerous variants accessible to those skilled in the art without departing from the spirit of the invention.

Claims (16)

1.- Dispositif de propulsion d'un fluide, formant pompe et comprenant une membrane flexible déplacée alternativement, caractérisé en ce qu'il comprend dans un corps circulaire (1) un espace périphérique annulaire (5) raccordé à un conduit d'amenée de fluide (7), et un orifice central (8) raccordé à un conduit de refoulement de fluide (8a) et relié audit espace périphérique annulaire (5) par un passage annulaire (10) compris entre les surfaces intérieures (10, 11), lisses, parallèles ou peu divergentes de deux parois (2, 3) et s'éten­dant radialement tout autour de l'orifice central (8) et en ce que la membrane flexible (4) s'étend librement dans le passage annulaire (10) et présente respectivement, en son centre un passage transversal (13) qui vient se placer en face de l'ori­fice central (8) et une zone périphérique (4b) située dans l'espace périphérique annulaire (5) et reliée à un organe vibrant (6; 40, 41) apte à faire osciller la périphérie de la membrane (4) de façon sensiblement perpendiculaire au plan médian local de la membrane, de telle manière que celle-ci soit soumise depuis sa périphérie à des trains d'oscillations concentriques dirigés vers son centre et qui, en coopération avec les parois du passage annulaire (10), emprisonnent des volumes annulaires de fluide (34, 35, 36, 37) en les propulsant de la périphérie de la membrane (4) vers le centre (13) de celle-ci pour les refouler par le conduit de refoulement (8a).1.- A device for propelling a fluid, forming a pump and comprising a flexible membrane moved alternately, characterized in that it comprises in a circular body (1) an annular peripheral space (5) connected to a supply duct of fluid (7), and a central orifice (8) connected to a fluid delivery conduit (8a) and connected to said annular peripheral space (5) by an annular passage (10) included between the interior surfaces (10, 11), smooth, parallel or slightly divergent from two walls (2, 3) and extending radially all around the central orifice (8) and in that the flexible membrane (4) extends freely in the annular passage (10) and has respectively, in its center a transverse passage (13) which is placed opposite the central orifice (8) and a peripheral zone (4b) located in the annular peripheral space (5) and connected to a vibrating member (6; 40, 41) able to oscillate the periphery of the mem brane (4) substantially perpendicular to the local median plane of the membrane, so that it is subjected from its periphery to trains of concentric oscillations directed towards its center and which, in cooperation with the walls of the annular passage (10), trap annular volumes of fluid (34, 35, 36, 37) by propelling them from the periphery of the membrane (4) towards the center (13) of the latter to discharge them through the discharge conduit ( 8a). 2.- Dispositif selon la revendication 1, caractérisé en ce que la fréquence d'excitation de l'organe vibrant (6; 40, 41) correspond sensiblement à la fréquence propre de la mem­brane (4) coopérant avec les parois lisses (11, 12) du passage annulaire (10) et avec le fluide à refouler, de manière à mettre la membrane en résonnance à sa fréquence propre.2.- Device according to claim 1, characterized in that the excitation frequency of the vibrating member (6; 40, 41) corresponds substantially to the natural frequency of the membrane (4) cooperating with the smooth walls (11, 12) of the annular passage (10) and with the fluid to be pumped, so as to bring the membrane into resonance at its natural frequency. 3.- Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que la périphérie de la membrane (4) est positionnée au repos sensiblement dans le plan moyen des oscillations qu'elle subit à l'aide d'un organe élastique (15) de maintien de la périphérie (4a) de la membrane (4).3.- Device according to one of claims 1 or 2, characterized in that the periphery of the membrane (4) is positioned at rest substantially in the mean plane of the oscillations which it undergoes using an elastic member (15) for holding the periphery (4a) of the membrane (4). 4.- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'écartement (h) entre les deux surfaces de parois (11, 12) du passage annulaire (10) est sensiblement constant.4.- Device according to one of claims 1 to 3, characterized in that the spacing (h) between the two surfaces walls (11, 12) of the annular passage (10) is substantially constant. 5.- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'écartement (h) entre les deux surfaces de parois (11, 12) du passage annulaire (10) est croissant depuis l'espace annulaire périphérique (5) jusqu'à l'orifice central (13), selon une loi permettant de maintenir une section de passage radial sensiblement constante.5.- Device according to one of claims 1 to 3, characterized in that the spacing (h) between the two wall surfaces (11, 12) of the annular passage (10) is increasing from the annular peripheral space ( 5) to the central orifice (13), according to a law making it possible to maintain a substantially constant radial passage section. 6.- Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que l'organe vibrant est constitué par un bobinage électrique (6) placé dans un champ magnétique d'entre­fer (NS) et rendu solidaire d'une zone périphérique de la membrane (4), ledit bobinage (6) étant alimenté par une tension électrique alternative dont la fréquence est celle choisie pour provoquer sur la membrane des trains d'ondes concentriques.6.- Device according to one of claims 1 to 5, characterized in that the vibrating member is constituted by an electric coil (6) placed in a magnetic field of air gap (NS) and made integral with a peripheral zone of the membrane (4), said coil (6) being supplied by an alternating electric voltage whose frequency is that chosen to cause on the membrane concentric wave trains. 7.- Dispositif selon la revendication 6, caractérisé en ce que le champ magnétique d'entrefer (NS) est réalisé par un électro-aimant (25) excitant un circuit magnétique à faible rémanence.7.- Device according to claim 6, characterized in that the magnetic field of air gap (NS) is formed by an electromagnet (25) exciting a magnetic circuit with low remanence. 8.- Dispositif selon la revendication 6, caractérisé en ce que le circuit magnétique provoquant le champ magnétique d'entrefer (NS) comporte des aimants permanents amovibles combinés à un circuit magnétique à faible rémanence apte à libérer des particules ferreuses après dépose des aimants permanents.8.- Device according to claim 6, characterized in that the magnetic circuit causing the magnetic field of air gap (NS) comprises removable permanent magnets combined with a magnetic circuit with low remanence capable of releasing ferrous particles after removal of the permanent magnets . 9.- Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que l'organe vibrant est constitué par un bobinage mobile en court-circuit (27) solidaire d'une zone périphérique de la membrane (4) et formant une spire de Frager alimentée par induction, ledit bobinage mobile étant placé dans un champ magnétique d'entrefer (NS) créé sur un circuit magnétique par un bobinage fixe (25) alimenté par une tension alternative dont la fréquence est celle choisie pour provoquer sur la menbrane des trains d'ondes concentriques pour permet­tre l'actionnement alternatif du bobinage mobile (6) par le champ magnétique alternatif d'entrefer.9.- Device according to one of claims 1 to 5, characterized in that the vibrating member is constituted by a mobile coil in short circuit (27) integral with a peripheral zone of the membrane (4) and forming a Frager turn powered by induction, said mobile coil being placed in a magnetic gap field (NS) created on a magnetic circuit by a fixed coil (25) supplied by an alternating voltage whose frequency is that chosen to cause on the menbrane concentric wave trains to allow the alternating actuation of the movable winding (6) by the alternating magnetic gap field. 10.- Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que l'organe vibrant est constitué par deux bagues (40, 41) à section radiale en forme générale de triangle isocèle, fixées chacune d'un côté différent de la membrane flexible (4) à la périphérie de cette dernière dans l'espace annulaire périphérique (5), en liaison d'un circuit magnétique dont les deux entrefers de part et d'autre des surfaces incli­nées des deux côtés égaux de la section en triangle isocèle se réduisent lorsque l'une (40) des bagues se déplace dans une direction sensiblement perpendiculaire au plan médian local de la membrane (4) tandis que les deux entrefers de l'autre bague (41) s'accroîssent et vice versa pour le circuit magné­tique de l'autre bague (41) et en ce que chacun des circuits magnétiques des bagues à section en triangle est alternative­ment alimenté (redresseurs 48, 50) par une alternance diffé­rente d'une tension électrique alternative dont la fréquence correspond à la fréquence de battement propre de la membrane.10.- Device according to one of claims 1 to 5, characterized in that the vibrating member consists of two rings (40, 41) with radial section in the general shape of an isosceles triangle, each fixed on a different side from the flexible membrane (4) at the periphery of the latter in the peripheral annular space (5), in connection with a magnetic circuit, the two air gaps on either side of the surfaces inclined on the two equal sides of the section in isosceles triangle are reduced when one (40) of the rings moves in a direction substantially perpendicular to the local median plane of the membrane (4) while the two air gaps of the other ring (41) increase and vice versa to the magnetic circuit of the other ring (41) and in that each of the magnetic circuits of the rings with a triangle section is alternately supplied (rectifiers 48, 50) by a different alternation of an alternating electric voltage, the frequency corresponds to the natural beat frequency of the membrane. 11.- Dispositif selon l'une quelconque des revendica­tions 1 à 10, caractérisé en ce que la périphérie de la mem­brane élastique (4) en un matériau élastomère est avantageu­sement munie de découpes (14) en dentelures dans chacune desquelles vient se loger et se refermer une patte (16) d'un support annulaire (17) d'un bobinage (6) et qui, en position de montage de la membrane dans le corps (1), libère un pas­sage (18) d'introduction du fluide de part et d'autre de la membrane (4).11.- Device according to any one of claims 1 to 10, characterized in that the periphery of the elastic membrane (4) of an elastomeric material is advantageously provided with cutouts (14) in serrations in each of which is housed and is close a tab (16) of an annular support (17) of a winding (6) and which, in the mounting position of the membrane in the body (1), frees a passage (18) for introducing the fluid of on either side of the membrane (4). 12.- Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que la membrane flexible (4) comporte, selon son plan médian, une armature centrale textile et/ou métal­lique (51).12.- Device according to one of claims 1 to 11, characterized in that the flexible membrane (4) comprises, according to its median plane, a central textile and / or metal frame (51). 13.- Dispositif selon l'une quelconque des revendica­tions 1 à 12, caractérisé en ce que la membrane flexible (4) présente à l'état libre une forme bombée vers son centre percé (13), à partir d'une couronne périphérique sensiblement plane.13.- Device according to any one of claims 1 to 12, characterized in that the flexible membrane (4) has in the free state a domed shape towards its pierced center (13), from a substantially peripheral ring plane. 14.- Dispositif selon l'une quelconque des revendica­tions 1 à 13, caractérisé en ce que la membrane flexible (4) présente une épaisseur décroissante (e) depuis la zone périphé­ rique (4b) où elle est reliée à un organe vibrant (6; 40, 41) jusqu'à son passage transversal central (13).14.- Device according to any one of claims 1 to 13, characterized in that the flexible membrane (4) has a decreasing thickness (e) from the periphery area risk (4b) where it is connected to a vibrating member (6; 40, 41) until its central transverse passage (13). 15.- Dispositif selon l'une quelconque des revendica­tions 1 à 14, caractérisé en ce que le passage central (13) de la membrane flexible (4) est traversé par une conduite ri­gide (8a) munie d'évents d'évacuation (8b) vers le refoulement et servant de guidage pour le centre de la membrane.15.- Device according to any one of claims 1 to 14, characterized in that the central passage (13) of the flexible membrane (4) is traversed by a rigid pipe (8a) provided with evacuation vents (8b ) towards the discharge and serving as a guide for the center of the membrane. 16.- Dispositif selon l'une quelconque des revendica­tions 1 à 15, caractérisé en ce que le corps circulaire (1) est réalisé en un matériau amagnétique, par exemple en acier inoxydable, laissant passer librement les sollicitations magnétiques de l'organe vibrant (6; 40, 41).16.- Device according to any one of claims 1 to 15, characterized in that the circular body (1) is made of a non-magnetic material, for example stainless steel, allowing the magnetic stresses of the vibrating member to pass freely ( 6; 40, 41).
EP90401297A 1989-08-11 1990-05-16 Device for the propulsion of a fluid Expired - Lifetime EP0412856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90401297T ATE100179T1 (en) 1989-08-11 1990-05-16 DEVICE FOR CONVEYING A LIQUID.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8910808A FR2650862B1 (en) 1989-08-11 1989-08-11 DEVICE FOR PROPELLING A FLUID
FR8910808 1989-08-11

Publications (2)

Publication Number Publication Date
EP0412856A1 true EP0412856A1 (en) 1991-02-13
EP0412856B1 EP0412856B1 (en) 1994-01-12

Family

ID=9384658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401297A Expired - Lifetime EP0412856B1 (en) 1989-08-11 1990-05-16 Device for the propulsion of a fluid

Country Status (6)

Country Link
EP (1) EP0412856B1 (en)
AT (1) ATE100179T1 (en)
DE (1) DE69005942T2 (en)
ES (1) ES2022059T3 (en)
FR (1) FR2650862B1 (en)
GR (1) GR910300066T1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744769A1 (en) * 1996-02-12 1997-08-14 Drevet Jean Baptiste FLUID CIRCULATOR WITH VIBRATING MEMBRANE
US6659740B2 (en) 1998-08-11 2003-12-09 Jean-Baptiste Drevet Vibrating membrane fluid circulator
EP1523038A2 (en) * 2003-10-07 2005-04-13 Samsung Electronics Co., Ltd. Valveless micro air delivery device
FR2870897A1 (en) * 2004-05-26 2005-12-02 Viacor Rigid membrane fluid circulator, e.g. for biomedical use, has at least one rigid excitable membrane with a central or eccentric orifice and biocompatible or anti-corrosive coating
WO2005119062A1 (en) * 2004-05-26 2005-12-15 Viacor Rigid membrane fluid circulator
FR2891322A1 (en) * 2005-09-26 2007-03-30 Inergy Automotive Systems Res Vibrating membrane pump for fluids that are viscous at low temperatures e.g. diesel fuel has heating filaments incorporated in membrane or pump stator
FR2891321A1 (en) * 2005-09-26 2007-03-30 Inergy Automotive Systems Res Vibrating membrane pump e.g. for vehicle fuel or additive has two circular membranes vibrated in opposite phases inside a stator
FR2893991A1 (en) * 2005-11-30 2007-06-01 Jean Baptiste Drevet Diaphragm circulator for e.g. domestic aquarium pump, has diaphragm-exciting member arranged on side of intake orifice of internal circuit to produce reciprocating motion on one of edges of diaphragm to generate ripple
WO2009000895A2 (en) * 2007-06-27 2008-12-31 Valeo Systemes Thermiques Fluid circulation pump with integrated short circuit
FR2927131A1 (en) * 2008-02-01 2009-08-07 Valeo Systemes Thermiques Diaphragm pump for e.g. supercharging oil engine in vehicle, has pump body formed by two rigid shrouds and deformable membrane that is placed between shrouds, where adjustment units adjust distance between shrouds to vary flow of pump
WO2010012889A1 (en) * 2008-08-01 2010-02-04 Ams R&D Sas Improved crinkle diaphragm pump
CN101275549B (en) * 2007-03-26 2011-01-12 北京航空航天大学 High-frequency valveless pump on the basis of intelligent material
US9080564B2 (en) 2005-11-30 2015-07-14 Ams R&D Sas Diaphragm circulator
WO2015173280A1 (en) * 2014-05-14 2015-11-19 Saint-Gobain Performance Plastics France Membrane pump
EP3279475A1 (en) * 2016-08-02 2018-02-07 Zodiac Aerotechnics Method for operating an undulating-membrane pump, and system for operating an undulating-membrane pump
US9968720B2 (en) 2016-04-11 2018-05-15 CorWave SA Implantable pump system having an undulating membrane
US10166319B2 (en) 2016-04-11 2019-01-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US10188779B1 (en) 2017-11-29 2019-01-29 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
FR3074620A1 (en) * 2017-12-05 2019-06-07 Ams R&D Sas ELECTRIC MOTOR
US10799625B2 (en) 2019-03-15 2020-10-13 CorWave SA Systems and methods for controlling an implantable blood pump
JP2021502513A (en) * 2017-11-10 2021-01-28 コルウェーブ エスアー Wave membrane fluid circulation device
US10933181B2 (en) 2017-03-31 2021-03-02 CorWave SA Implantable pump system having a rectangular membrane
US11191946B2 (en) 2020-03-06 2021-12-07 CorWave SA Implantable blood pumps comprising a linear bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889877B2 (en) 2003-06-30 2011-02-15 Nxp B.V. Device for generating a medium stream
DE102008062759B4 (en) * 2008-12-18 2010-09-30 Hanning Elektro-Werke Gmbh & Co. Kg pump
DE102012202098A1 (en) * 2012-02-13 2013-08-14 Ksb Aktiengesellschaft Hermetic pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR355700A (en) * 1905-06-28 1905-11-09 Leopold Selme Turbine with undulating membranes, reversible as a pump
FR972512A (en) * 1947-09-26 1951-01-31 Compressor or electromagnetic pump
US2888877A (en) * 1956-04-19 1959-06-02 Ohio Commw Eng Co Apparatus for pumping
GB2105819A (en) * 1981-07-23 1983-03-30 Selwood Ltd William R Diaphragm clamp
GB2197914A (en) * 1986-11-26 1988-06-02 Matsushita Electric Works Ltd Electromagnetic air pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR355700A (en) * 1905-06-28 1905-11-09 Leopold Selme Turbine with undulating membranes, reversible as a pump
FR972512A (en) * 1947-09-26 1951-01-31 Compressor or electromagnetic pump
US2888877A (en) * 1956-04-19 1959-06-02 Ohio Commw Eng Co Apparatus for pumping
GB2105819A (en) * 1981-07-23 1983-03-30 Selwood Ltd William R Diaphragm clamp
GB2197914A (en) * 1986-11-26 1988-06-02 Matsushita Electric Works Ltd Electromagnetic air pump

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744769A1 (en) * 1996-02-12 1997-08-14 Drevet Jean Baptiste FLUID CIRCULATOR WITH VIBRATING MEMBRANE
WO1997029282A1 (en) * 1996-02-12 1997-08-14 Drevet Jean Baptiste Fluid circulator with a vibrating membrane
US6361284B2 (en) 1996-02-12 2002-03-26 Jean-Baptiste Drevet Vibrating membrane fluid circulator
US6659740B2 (en) 1998-08-11 2003-12-09 Jean-Baptiste Drevet Vibrating membrane fluid circulator
EP1523038A2 (en) * 2003-10-07 2005-04-13 Samsung Electronics Co., Ltd. Valveless micro air delivery device
EP1523038A3 (en) * 2003-10-07 2006-09-13 Samsung Electronics Co., Ltd. Valveless micro air delivery device
US7841843B2 (en) 2003-10-07 2010-11-30 Samsung Electronics Co., Ltd. Valveless micro air delivery device
FR2870897A1 (en) * 2004-05-26 2005-12-02 Viacor Rigid membrane fluid circulator, e.g. for biomedical use, has at least one rigid excitable membrane with a central or eccentric orifice and biocompatible or anti-corrosive coating
WO2005119062A1 (en) * 2004-05-26 2005-12-15 Viacor Rigid membrane fluid circulator
WO2007039510A1 (en) * 2005-09-26 2007-04-12 Inergy Automotive Systems Research (Société Anonyme) Fluid pump comprising a stator and a vibrating membrane
WO2007039501A1 (en) * 2005-09-26 2007-04-12 Inergy Automotive Systems Research (Société Anonyme) Vibrating membrane pump
FR2891321A1 (en) * 2005-09-26 2007-03-30 Inergy Automotive Systems Res Vibrating membrane pump e.g. for vehicle fuel or additive has two circular membranes vibrated in opposite phases inside a stator
FR2891322A1 (en) * 2005-09-26 2007-03-30 Inergy Automotive Systems Res Vibrating membrane pump for fluids that are viscous at low temperatures e.g. diesel fuel has heating filaments incorporated in membrane or pump stator
FR2893991A1 (en) * 2005-11-30 2007-06-01 Jean Baptiste Drevet Diaphragm circulator for e.g. domestic aquarium pump, has diaphragm-exciting member arranged on side of intake orifice of internal circuit to produce reciprocating motion on one of edges of diaphragm to generate ripple
WO2007063206A1 (en) * 2005-11-30 2007-06-07 Sam Amstar Diaphragm circulator
US9080564B2 (en) 2005-11-30 2015-07-14 Ams R&D Sas Diaphragm circulator
CN101275549B (en) * 2007-03-26 2011-01-12 北京航空航天大学 High-frequency valveless pump on the basis of intelligent material
WO2009000895A2 (en) * 2007-06-27 2008-12-31 Valeo Systemes Thermiques Fluid circulation pump with integrated short circuit
FR2918128A1 (en) * 2007-06-27 2009-01-02 Valeo Systemes Thermiques FLUID CIRCULATION PUMP WITH INTEGRATED SHORT CIRCUIT.
WO2009000895A3 (en) * 2007-06-27 2009-06-11 Valeo Systemes Thermiques Fluid circulation pump with integrated short circuit
FR2927131A1 (en) * 2008-02-01 2009-08-07 Valeo Systemes Thermiques Diaphragm pump for e.g. supercharging oil engine in vehicle, has pump body formed by two rigid shrouds and deformable membrane that is placed between shrouds, where adjustment units adjust distance between shrouds to vary flow of pump
US8834136B2 (en) 2008-08-01 2014-09-16 Ams R&D Sas Crinkle diaphragm pump
CN102112744A (en) * 2008-08-01 2011-06-29 Amsr&D联合股份有限公司 Improved crinkle diaphragm pump
JP2011529549A (en) * 2008-08-01 2011-12-08 アーエムエス エールエデー ソシエテ パ アクシオンス シンプリフィエ Improved diaphragm pump with rod
FR2934651A1 (en) * 2008-08-01 2010-02-05 Ams R & D Sas PERFECTED ONDULATING MEMBRANE PUMP.
CN102112744B (en) * 2008-08-01 2014-11-12 Amsr&D联合股份有限公司 Improved crinkle diaphragm pump
WO2010012889A1 (en) * 2008-08-01 2010-02-04 Ams R&D Sas Improved crinkle diaphragm pump
WO2015173280A1 (en) * 2014-05-14 2015-11-19 Saint-Gobain Performance Plastics France Membrane pump
FR3021074A1 (en) * 2014-05-14 2015-11-20 Saint Gobain Performance Plast MEMBRANE PUMP
CN106489026A (en) * 2014-05-14 2017-03-08 法国圣戈班性能塑料公司 Membrane pump
US11712554B2 (en) 2016-04-11 2023-08-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US9968720B2 (en) 2016-04-11 2018-05-15 CorWave SA Implantable pump system having an undulating membrane
US10166319B2 (en) 2016-04-11 2019-01-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US11298522B2 (en) 2016-04-11 2022-04-12 CorWave SA Implantable pump system having an undulating membrane
US11097091B2 (en) 2016-04-11 2021-08-24 CorWave SA Implantable pump system having a coaxial ventricular cannula
US10398821B2 (en) 2016-04-11 2019-09-03 CorWave SA Implantable pump system having an undulating membrane
FR3054861A1 (en) * 2016-08-02 2018-02-09 Zodiac Aerotechnics METHOD OF CONTROLLING AN ONDULATING MEMBRANE PUMP, AND PILOT SYSTEM OF AN INJUSTING MEMBRANE PUMP
EP3279475A1 (en) * 2016-08-02 2018-02-07 Zodiac Aerotechnics Method for operating an undulating-membrane pump, and system for operating an undulating-membrane pump
US10933181B2 (en) 2017-03-31 2021-03-02 CorWave SA Implantable pump system having a rectangular membrane
US11623077B2 (en) 2017-03-31 2023-04-11 CorWave SA Implantable pump system having a rectangular membrane
JP2021502513A (en) * 2017-11-10 2021-01-28 コルウェーブ エスアー Wave membrane fluid circulation device
US11512689B2 (en) 2017-11-10 2022-11-29 CorWave SA Undulating-membrane fluid circulator
US11446480B2 (en) 2017-11-29 2022-09-20 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
US10188779B1 (en) 2017-11-29 2019-01-29 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
WO2019110694A1 (en) * 2017-12-05 2019-06-13 Ams R&D Sas Electric motor
FR3074620A1 (en) * 2017-12-05 2019-06-07 Ams R&D Sas ELECTRIC MOTOR
US11791702B2 (en) 2017-12-05 2023-10-17 Ams R&D Sas Electric motor with stator and mobile armature with suspending leaf springs which prevent movement in transverse direction and is in airgap plane that is perpendicular to first loop plane
US10799625B2 (en) 2019-03-15 2020-10-13 CorWave SA Systems and methods for controlling an implantable blood pump
US11191946B2 (en) 2020-03-06 2021-12-07 CorWave SA Implantable blood pumps comprising a linear bearing

Also Published As

Publication number Publication date
ES2022059T3 (en) 1994-05-16
ATE100179T1 (en) 1994-01-15
DE69005942D1 (en) 1994-02-24
GR910300066T1 (en) 1991-11-15
ES2022059A4 (en) 1991-12-01
DE69005942T2 (en) 1994-06-01
FR2650862A1 (en) 1991-02-15
EP0412856B1 (en) 1994-01-12
FR2650862B1 (en) 1991-11-08

Similar Documents

Publication Publication Date Title
EP0412856B1 (en) Device for the propulsion of a fluid
EP1040274B1 (en) Pump with positive displacement
EP3116729B1 (en) Hydraulic anti-vibration device provided with an electricity generator device
EP1969232B1 (en) Diaphragm circulator
FR2984972A1 (en) ADAPTER FOR VACUUM PUMPS AND ASSOCIATED PUMPING DEVICE
EP3684441A1 (en) Cardiac pump having a turbine with internal blades
CH688105A5 (en) Together pump or turbine and axial flux electrical machine.
WO2000037804A1 (en) Power driven device with centrifugal fluid circulation, such as a motor pump or a motor compressor
EP0490773B1 (en) Multistage pump especially intended for pumping a multiphase fluid
EP3684440B1 (en) Turbine with internal blades
WO2011042646A1 (en) Double cylinder electric pump for pool maintenance
CA2962011A1 (en) Method and system for the circulation of fuel in an aircraft
WO2004040144A1 (en) Electric motor pump for swimming pool maintenance
EP0612135A1 (en) Rotating device for a canned motor
EP3097016B1 (en) Method and system for managing the grey water in an aircraft
FR2861909A1 (en) ENERGY STORAGE DEVICE WITH INERTIAL WHEEL.
WO2020229568A1 (en) Fluid circulation pump
CA3223716A1 (en) Electromagnetic linear motion machine comprising rods associated with magnetic elements
WO2004069395A1 (en) Device for the production of mini-bubbles in a liquid
FR2634520A1 (en) IMPROVEMENTS RELATING TO THE CONSTRUCTION OF FUEL PUMPS
FR2499167A1 (en) Gas powered anti-sparking liquids pump - has gas powered rotor and pump rotor coupled on common shaft
FR3065496A1 (en) NOYE ROTOR MOTOR PUMP
EP0595675A1 (en) Pump with axial outlet flow
FR2488346A1 (en) Single-stage centrifugal pump for liq - has outlet cross=section limiting specific speed to maximum of ten
LU83113A1 (en) GAS OPERATED LIQUID PUMPING MECHANISM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910411

TCAT At: translation of patent claims filed
ITCL It: translation for ep claims filed

Representative=s name: DOTT. TRUPIANO ROBERTO B.TTI EUROPA

TCNL Nl: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19920706

ITF It: translation for a ep patent filed

Owner name: BREVETTI EUROPA S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940112

REF Corresponds to:

Ref document number: 100179

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69005942

Country of ref document: DE

Date of ref document: 19940224

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940210

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010446

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940516

Ref country code: DK

Effective date: 19940516

Ref country code: AT

Effective date: 19940516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2022059

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940517

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

Ref country code: BE

Effective date: 19940531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: S.A. POMPES SALMSON

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940516

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 90401297.8

Effective date: 19941210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

EUG Se: european patent has lapsed

Ref document number: 90401297.8

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3010446

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050516