EP0451798A2 - Ribbed concrete reinforcement with cold-rolled diagonal ribs - Google Patents

Ribbed concrete reinforcement with cold-rolled diagonal ribs Download PDF

Info

Publication number
EP0451798A2
EP0451798A2 EP91105623A EP91105623A EP0451798A2 EP 0451798 A2 EP0451798 A2 EP 0451798A2 EP 91105623 A EP91105623 A EP 91105623A EP 91105623 A EP91105623 A EP 91105623A EP 0451798 A2 EP0451798 A2 EP 0451798A2
Authority
EP
European Patent Office
Prior art keywords
rib
ribs
reinforced
steel according
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91105623A
Other languages
German (de)
French (fr)
Other versions
EP0451798A3 (en
EP0451798B1 (en
Inventor
Dieter Dr.-Ing. Inst. für Stahlbeton Russwurm
Horst Dr.-Ing. Inst. für Stahlbeton Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AICHER, MAX, DIPL.-ING.
Original Assignee
INSTITUT fur STAHLBETON BEWEHRUNG EV
Aicher Max Dipl-Ing
INST STAHLBETON BEWEHRUNG EV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT fur STAHLBETON BEWEHRUNG EV, Aicher Max Dipl-Ing, INST STAHLBETON BEWEHRUNG EV filed Critical INSTITUT fur STAHLBETON BEWEHRUNG EV
Publication of EP0451798A2 publication Critical patent/EP0451798A2/en
Publication of EP0451798A3 publication Critical patent/EP0451798A3/en
Application granted granted Critical
Publication of EP0451798B1 publication Critical patent/EP0451798B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/03Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete

Definitions

  • the invention relates to a reinforcing steel bar with a carbon content of 0.05 to 0.24% by weight and a manganese content of 0.2 to 1.2% by weight, which has cold-rolled helical ribs, without the formation of a longitudinal rib in the form of at least two , are arranged in the direction of the longitudinal axis of the rib rows.
  • the previously used ribbed reinforcing steels have as essential usage properties, in addition to the yield strength, the elongation at break A10 or A5 as well as a rib geometry which ensures a sufficient bond with the concrete.
  • the total twist corresponds to the curvatures in the broken state added up over the length of the beam and thus to the twists of the end cross-sections measured in tests on the single-span beam.
  • the beam is loaded up to the yield point and the curvatures are added up over the beam length.
  • the plastic twist includes the additional curvatures that occur after the yield point torque is exceeded until the beam breaks.
  • Fig. 1 the influence of the uniform expansion A g on the twistability is shown.
  • the length of a beam resting on the ends is plotted on the X axis and the curvature on the Y axis.
  • the dashed curve represents the conditions for a steel 1 with a uniform expansion A g of 2% and the solid line shows the conditions for a steel 2 with a uniform expansion A g of 5% is significantly increased.
  • the diagram also shows the rotation angles ⁇ of the joint rotation for the two cases.
  • Fig. 2 shows the influence of the steel characteristic on possible torque redistribution depending on the ratio of tensile strength / yield strength. It can also be seen here that if this ratio is increased, the sum of traffic and own load can be increased significantly.
  • Fig. 3 the elongation ⁇ of a rebar at a concrete crack is shown depending on the bond.
  • the solid line characterizes a hard bond, as is the case with high ribs, which run almost perpendicular to the rod axis and are at a large distance from one another, the elasticity of the reinforcing steel being limited to the area of the crack;
  • the dotted line characterizes a soft bond, in which the tensile strength and the deformation of the reinforcing steel are not limited to the area of the crack, since the concrete at the two cracks increases more easily from the steel. This creates a larger free expansion length.
  • the bond behavior of reinforcing steels is usually described by specifying a value for the related fin area f R. This value records the bond behavior only for the elastic range of the stress-strain line of the steel.
  • the influence of the height and spacing of the ribs on the explosive effect, ie on an early bond failure due to shifts between steel and concrete, is not taken into account.
  • the relative displacements between steel and concrete can no longer be ignored.
  • the rib geometry must be designed in such a way that the greatest possible relative displacements between steel and concrete can occur while avoiding an explosive effect.
  • the object of the invention is to make a ribbed steel available which is characterized by a higher uniform elongation, a greater ratio of tensile strength / yield strength and a softer bond than known cold-ribbed reinforcing steels.
  • the concrete should not be blown off.
  • the straightening ability of the rod by means of straightening rollers should be improved.
  • the concrete rib steel according to the invention is characterized by the features of claim 1. Advantageous configurations of this rebar are to be found in the subclaims.
  • the ribbed steel according to the invention is particularly suitable as a reinforcement element for reinforced concrete components which are dimensioned using local plastic deformations (joint rotation ⁇ ) of the reinforcement.
  • the rib spacings c and the angle of inclination ⁇ of the ribs with respect to the rod axis are reduced in comparison with known cold-rolled concrete rib steels.
  • the material flow during the application of the ribs is favored by cold deformation, so that the deformation effort for producing the final cross section can be reduced.
  • the result is an improvement in the elongation and the ratio of tensile strength / yield strength.
  • a softer bond is achieved due to this rib geometry and a maximum relative displacement between steel and concrete can be achieved without the concrete breaking off.
  • Reinforced ribs which are designed with 2.3 or more rows of ribs according to this rib geometry, have an almost circular envelope, which simplifies the straightening process customary for cold-rolled steels and also significantly reduces the noise level associated with straightening.
  • the reinforcing ribs according to the invention are preferably used as rods or wires of reinforcing steel mesh.
  • the cold-ribbed reinforcing steel 1 shown in FIGS. 4 to 6 has an approximately circular core cross-section 2 shown hatched in FIG. 5, as well as 3 rows of ribs 3, 4 and 5 distributed around the circumference, the parts of a thread for screwing on one with a counter thread provided anchoring or connecting body.
  • the rows of ribs run parallel to the bar axis 6.
  • the geometrical sizes of the ribs for rebars with a nominal diameter of 4 to 16 mm are:
  • the angle of inclination ⁇ of the rib flanks in old degrees is preferably in the range of 40 ° ⁇ ⁇ 60 °, the ratio of the base width b of the ribs to the rib height h should be in the range 1.5 ⁇ b / h ⁇ 3.3.
  • Fig. 7 the developments of a known and a concrete rib steel according to the invention for each row of ribs are shown schematically.
  • Rib steel on the left side is based on an inclination angle ⁇ of 50 ° and a rib spacing of c / d s based on the bar diameter of approximately 1.00.
  • the suitability for that Straightening of the rod is greater, the closer its outer contour approaches that of a cylindrical body.
  • the rib geometry of the steel according to the invention is optimally designed with regard to this requirement, namely by an angle of inclination of the inclined ribs to the rod axis in the range between 30 ° and 40 °. Also by reducing the fin height h and the fin spacing c compared to known cold rolled steels.
  • the steels have a yield strength ratio R m / R e of 1.06 to 1.08, the uniform elongation A g is between 2.8 and 3.6%.

Abstract

In a ribbed concrete reinforcement which has a carbon content of 0.05 to 0.24% by weight and a manganese content of 0.2 to 1.2% by weight and which has cold-rolled diagonal ribs arranged in the form of at least two rows of ribs extending in the direction of the longitudinal axis of the rods without a longitudinal rib being formed, the uniform elongation, the yield point ratio and the composite are formed by the rib geometry in such a way that it can be used either in linear dimensioning or in nonlinear dimensioning methods.

Description

Die Erfindung betrifft einen Betonrippenstahl mit einem Kohlenstoffgehalt von 0,05 bis 0,24 Gewichts-% und einem Mangangehalt von 0,2 bis 1,2 Gewichts-%, der kaltgewalzte Schrägrippen aufweist, die ohne die Ausbildung einer Längsrippe in Form von wenigstens zwei, in Richtung der Stablängsachse verlaufenden Rippenreihen angeordnet sind.The invention relates to a reinforcing steel bar with a carbon content of 0.05 to 0.24% by weight and a manganese content of 0.2 to 1.2% by weight, which has cold-rolled helical ribs, without the formation of a longitudinal rib in the form of at least two , are arranged in the direction of the longitudinal axis of the rib rows.

Die bisher üblichen gerippten Betonstähle (Betonrippenstähle, DIN 488) haben als wesentliche Gebrauchseigenschaften neben der Streckgrenze die Bruchdehnung A₁₀ oder A₅ sowie eine Rippengeometrie die einen ausreichenden Verbund mit dem Beton sicherstellt.The previously used ribbed reinforcing steels (reinforced ribs, DIN 488) have as essential usage properties, in addition to the yield strength, the elongation at break A₁₀ or A₅ as well as a rib geometry which ensures a sufficient bond with the concrete.

In der Bundesrepublik Deutschland ist die Bemessung durch DIN 1045 festgelegt. Danach darf nur nach linearem Bemessungsverfahren gearbeitet werden. Lediglich in Sonderfällen ist eine sogenannte Momentenumlagerung bis zu maximal 15 % zulässig.In the Federal Republic of Germany, the dimensioning is defined by DIN 1045. After that, work may only be carried out according to the linear design method. A so-called torque redistribution of up to a maximum of 15% is only permitted in special cases.

Im Rahmen der europäischen Harmonisierungsbestrebungen werden nunmehr Regelwerke für die Bemessung von Stahlbeton (Eurocode 2), für seismische Beanspruchung (Eurocode 9) und für Betonstähle EN 10080 erarbeitet bzw. liegen im Vorentwurf vor.As part of the European harmonization efforts, regulations for the design of reinforced concrete (Eurocode 2), for seismic loads (Eurocode 9) and for reinforcing steels EN 10080 are now being developed or are available in the preliminary draft.

Bei den Bemessungsverfahren gestattet man neben den rein linearen Verfahren zusätzlich auch Verfahren, die mit erhöhter Momentenumlagerung oder gar weitgehender Plastizität arbeiten. Ein Maß für die Momentenumlagerung ist die "Gelenkrotation" plastischer Gelenke, die durch den Rotationswinkel Θ erfaßt wird (Literaturhinweis: Langer "Verdrehfähigkeit plastifizierter Tragwerksbereiche im Stahlbetonbau", Mitteilungen 1987/1, Institut für Werkstoffe im Bauwesen, Universität Stuttgart).In addition to the purely linear methods, the design methods also allow methods with increased torque redistribution or even extensive plasticity work. A measure of the moment redistribution is the "joint rotation" of plastic joints, which is determined by the rotation angle Θ (literature reference: Long "rotatability of plasticized structure areas in reinforced concrete construction", Mitteilungen 1987/1, Institute for Materials in Construction, University of Stuttgart).

Wird im Bereich eines großen Momentes, z. B. an der Momentenspitze unter einer Einzellast oder über der Zwischenstütze eines Durchlaufträgers, die Fließgrenze im Stahl der Zuggurtbewehrung erreicht, dann nimmt die Krümmung bei steigender Last dort örtlich über eine kurze Länge bei fast gleichbleibendem Moment rasch zu. Es bildet sich ein plastisches Gelenk. Die Durchbiegung infolge der Gelenkrotation wird durch den Rotationswinkel im Bereich des plastischen Gelenkes erfaßt. Dieser Rotationswinkel, das heißt die Verdrehung an dieser Stelle setzt sich zusammen aus einer elastischen Verdrehung und einer plastischen Verdrehung. In Anlehnung an den CEB-Vorschlag (Literaturhinweis: Eurocode No. 2 "Design of Concrete Structure" Part 1, Final Draft (December 1988)) werden die Verdrehungsanteile wie folgt definiert:Is in the area of a large moment, e.g. B. at the peak of the moment under a single load or over the intermediate support of a continuous beam, the yield point in the steel of the tension belt reinforcement is reached, then the curvature increases rapidly with increasing load locally over a short length with almost the same moment. A plastic joint is formed. The deflection due to the rotation of the joint is detected by the angle of rotation in the area of the plastic joint. This angle of rotation, that is to say the twist at this point, is composed of an elastic twist and a plastic twist. Based on the CEB proposal (literature reference: Eurocode No. 2 "Design of Concrete Structure" Part 1, Final Draft (December 1988)), the twist proportions are defined as follows:

Gesamtverdrehung ΘTotal twist Θ

Die Gesamtverdrehung entspricht den über die Trägerlänge aufsummierten Krümmungen im Bruchzustand und damit den in Versuchen am Einfeldträger gemessenen Verdrehungen der Endquerschnitte.The total twist corresponds to the curvatures in the broken state added up over the length of the beam and thus to the twists of the end cross-sections measured in tests on the single-span beam.

Elastische Verdrehung ΘElastic twist Θ elel

Der Träger wird bis zum Streckgrenzmoment belastet und die Krümmungen über die Trägerlänge aufsummiert.The beam is loaded up to the yield point and the curvatures are added up over the beam length.

Plastische Verdrehung ΘPlastic twist Θ plpl

Die plastische Verdrehung umfaßt die zusätzlichen Krümmungen, die nach Überschreiten des Streckgrenzenmomentes bis zum Bruch des Trägers auftreten.The plastic twist includes the additional curvatures that occur after the yield point torque is exceeded until the beam breaks.

Bemessungsverfahren bei denen örtlich plastische Verformungen der Bewehrung, das heißt eine Gelenkrotation ausgenutzt werden, benötigen Gebrauchseigenschaften des Betonstahls die von den bisherigen Konzepten für lineare Bemessungsverfahren abweichen. Die Gebrauchsfähigkeit von Betonstählen bei denen örtlich plastische Verformungen in die Bemessung einbezogen werden, ist im wesentlichen bestimmt durch

  • die Gleichmaßdehnung Ag
  • das Streckgrenzenverhältnis Rm/Re und
  • den Verbund.
Design methods in which locally plastic deformations of the reinforcement, i.e. a joint rotation, are used, require use properties of the reinforcing steel that deviate from the previous concepts for linear design methods. The serviceability of reinforcing steel in which locally plastic deformations are included in the design is essentially determined by
  • the uniform expansion A g
  • the yield strength ratio R m / R e and
  • the association.

In Fig. 1 ist der Einfluß der Gleichmaßdehnung Ag auf die Verdrehfähigkeit dargestellt. Auf der X-Achse ist die Länge eines an den Enden aufliegenden Trägers und auf der Y-Achse die Krümmung aufgetragen. Die gestrichelte Kurve stellt die Verhältnisse für einen Stahl 1 mit einer Gleichmaßdehnung Ag von 2 % und die ausgezogenen Linie die Verhältnisse für einen Stahl 2 mit einer Gleichmaßdehnung Ag von 5 % dar. Es ist ersichtlich, daß bei einer Vergrößerung der Gleichmaßdehnung die Verdrehfähigkeit wesentlich erhöht wird. In das Diagramm sind auch die Rotationswinkel Θ der Gelenkrotation für die beiden Fälle eingetragen.In Fig. 1, the influence of the uniform expansion A g on the twistability is shown. The length of a beam resting on the ends is plotted on the X axis and the curvature on the Y axis. The dashed curve represents the conditions for a steel 1 with a uniform expansion A g of 2% and the solid line shows the conditions for a steel 2 with a uniform expansion A g of 5% is significantly increased. The diagram also shows the rotation angles Θ of the joint rotation for the two cases.

Fig. 2 stellt den Einfluß der Stahlkennlinie auf mögliche Momentenumlagerungen in Abhängigkeit vom Verhältnis Zugfestigkeit/Streckgrenze dar. Auch hier ist ersichtlich, daß bei einer Vergrößerung dieses Verhältnisses die Summe aus Verkehrs- und Eigenlast wesentlich vergrößert werden kann.Fig. 2 shows the influence of the steel characteristic on possible torque redistribution depending on the ratio of tensile strength / yield strength. It can also be seen here that if this ratio is increased, the sum of traffic and own load can be increased significantly.

In Fig. 3 ist die Dehnung ε eines Betonrippenstahls an einem Betonriß in Abhängigkeit vom Verbund dargestellt. Die ausgezogenen Linie charakterisiert einen harten Verbund, wie er bei hohen Rippen, die nahezu senkrecht zur Stabachse verlaufen und einen großen Abstand voneinander aufweisen, vorliegt, wobei das Dehnvermögen des Betonrippenstahls auf den Bereich des Risses begrenzt ist; die punktierte Linie charakterisiert einen weichen Verbund, bei dem sich das Dehnvermögen und die Verformung des Betonstahls nicht auf den Bereich des Risses beschränkt, da sich bei Erhöhung der Spannung an den beiden Rißufern der Beton leichter vom Stahl löst. Hierdurch wird eine größere freie Dehnlänge geschaffen.In Fig. 3 the elongation ε of a rebar at a concrete crack is shown depending on the bond. The solid line characterizes a hard bond, as is the case with high ribs, which run almost perpendicular to the rod axis and are at a large distance from one another, the elasticity of the reinforcing steel being limited to the area of the crack; the dotted line characterizes a soft bond, in which the tensile strength and the deformation of the reinforcing steel are not limited to the area of the crack, since the concrete at the two cracks increases more easily from the steel. This creates a larger free expansion length.

Das Verbundverhalten von Betonstählen wird üblicherweise durch die Festlegung eines Wertes für die bezogene Rippenfläche fR beschrieben. Dieser Wert erfaßt das Verbundverhalten nur für den elastischen Bereich der Spannungs-Dehnungslinie des Stahles. Hierbei wird der Einfluß von Rippenhöhe und Rippenabstand auf die Sprengwirkung, d.h. auf ein frühzeitiges Verbundversagen aufgrund auftretender Verschiebungen zwischen Stahl und Beton nicht berücksichtigt.The bond behavior of reinforcing steels is usually described by specifying a value for the related fin area f R. This value records the bond behavior only for the elastic range of the stress-strain line of the steel. The influence of the height and spacing of the ribs on the explosive effect, ie on an early bond failure due to shifts between steel and concrete, is not taken into account.

Bei einer Bemessung des Bewehrungselementes unter Ausnutzung örtlicher plastischer Verformungen können die Relativverschiebungen zwischen Stahl und Beton nicht mehr unberücksichtigt bleiben. Die Rippengeometrie muß im Hinblick auf das Verbundverhalten im plastischen Bereich der Spannungs-Dehnungslinie des Stahles so ausgebildet werden, daß unter Vermeidung einer Sprengwirkung möglichst groBe Relativverschiebungen zwischen Stahl und Beton auftreten können.When designing the reinforcement element using local plastic deformations, the relative displacements between steel and concrete can no longer be ignored. With regard to the bond behavior in the plastic region of the stress-strain line of the steel, the rib geometry must be designed in such a way that the greatest possible relative displacements between steel and concrete can occur while avoiding an explosive effect.

Aufgabe der Erfindung ist es, einen Betonrippenstahl verfügbar zu machen, der sich gegenüber bekannten kaltgerippten Betonstählen durch eine höhere Gleichmaßdehnung, ein größeres Verhältnis Zugfestigkeit/Streckgrenze und einen weicheren Verbund auszeichnet. Es soll auch bei den größeren Relativverschiebungen die bei nicht linearen Bemessungsverfahren unter Ausnutzung plastischer Verformungen der Bewehrung zwischen Beton und Stahl auftreten können, ein Absprengen des Betons vermieden werden. Die Richtfähigkeit des Stabes mittels Richtrollen soll verbessert werden.The object of the invention is to make a ribbed steel available which is characterized by a higher uniform elongation, a greater ratio of tensile strength / yield strength and a softer bond than known cold-ribbed reinforcing steels. In the case of the larger relative displacements which can occur in non-linear design methods using plastic deformations of the reinforcement between concrete and steel, the concrete should not be blown off. The straightening ability of the rod by means of straightening rollers should be improved.

Der erfindungsgemäße Betonrippenstahl ist durch die Merkmale des Anspruches 1 gekennzeichnet. Vorteilhafte Ausgestaltungen dieses Betonrippenstahls sind den Unteransprüchen zu entnehmen.The concrete rib steel according to the invention is characterized by the features of claim 1. Advantageous configurations of this rebar are to be found in the subclaims.

Der erfindungsgemäße Rippenstahl ist insbesondere als Bewehrungselement für Stahlbetonbauteile geeignet, die unter Ausnutzung örtlicher plastischer Verformungen (Gelenkrotation Θ) der Bewehrung bemessen sind.The ribbed steel according to the invention is particularly suitable as a reinforcement element for reinforced concrete components which are dimensioned using local plastic deformations (joint rotation Θ) of the reinforcement.

Bei dem erfindungsgemäßen Betonrippenstahl sind im Vergleich zu bekannten kaltgewalzten Betonrippenstählen die Rippenabstände c und der Neigungswinkel β der Rippen gegenüber der Stabachse verkleinert. Hierdurch wird der Materialfluß beim Aufbringen der Rippen durch Kaltverformung begünstigt, so daß der Verformungsaufwand für die Erzeugung des Endquerschnittes reduziert werden kann. Die Folge ist eine Verbesserung des Dehnvermögens und des Verhältnisses Zugfestigkeit/Streckgrenze. Außerdem wird aufgrund dieser Rippengeometrie ein weicherer Verbund erzielt und es läßt sich eine maximale Relativverschiebung zwischen Stahl und Beton ohne Absprengen des Betons erreichen.In the case of the concrete rib steel according to the invention, the rib spacings c and the angle of inclination β of the ribs with respect to the rod axis are reduced in comparison with known cold-rolled concrete rib steels. As a result, the material flow during the application of the ribs is favored by cold deformation, so that the deformation effort for producing the final cross section can be reduced. The result is an improvement in the elongation and the ratio of tensile strength / yield strength. In addition, a softer bond is achieved due to this rib geometry and a maximum relative displacement between steel and concrete can be achieved without the concrete breaking off.

Betonrippenstähle, die mit 2,3 oder mehr Rippenreihen gemäß dieser Rippengeometrie ausgebildet sind, weisen eine nahezu kreisförmige Einhüllende auf, wodurch sich der bei kaltgewalzten Stählen übliche Richtvorgang vereinfacht und auch der mit dem Richten verbundene Geräuschpegel erheblich herabgesetzt werden kann.Reinforced ribs, which are designed with 2.3 or more rows of ribs according to this rib geometry, have an almost circular envelope, which simplifies the straightening process customary for cold-rolled steels and also significantly reduces the noise level associated with straightening.

Bildet man die Rippenreihen schraubenförmig aus, so erhält man einen über Muffen stoßbaren Stahl.If you form the rows of ribs helically, you get a steel that can be pushed over sleeves.

Vorzugsweise werden die erfindungsgemäßen Betonrippenstähle als Stäbe oder Drähte von Betonstahlmatten eingesetzt.The reinforcing ribs according to the invention are preferably used as rods or wires of reinforcing steel mesh.

Die Erfindung wird durch Ausführungsbeispiele anhand von 8 Figuren näher erläutert. Es zeigen

Fig. 1
den Verlauf der Krümmungen infolge Biegung bei einem Balken mit einer Einzellast in Feldmitte für zwei unterschiedliche Werte der Gleichmaßdehnung,
Fig. 2
die Summe aus Verkehrs- und Eigenlast in Abhängigkeit vom Verhältnis Zugspannung/Streckgrenze,
Fig. 3
ein Schaubild zur Veranschaulichung des Einflusses des Verbunds,
Fig. 4
einen Abschnitt eines erfindungsgemäßen Betonrippenstahles in einer Draufsicht,
Fig. 5
den Schnitt V-V von Fig. 4,
Fig. 6
in einer vergrößerten Darstellung den Schnitt VI-VI von Fig. 4,
Fig. 7
in schematischer Darstellung die Abwicklungen eines bekannten und eines erfindungsgemäßen Betonrippenstahls,
Fig. 8
die Maximalwerte von ΔH/ΔFR in Abhängigkeit vom Neigungswinkel β für verschiedene Reibungswerte tang ρ.
The invention is explained in more detail by means of exemplary embodiments with reference to 8 figures. Show it
Fig. 1
the course of the curvatures as a result of bending in the case of a beam with a single load in the center of the field for two different values of the uniform expansion,
Fig. 2
the sum of traffic and own load depending on the ratio of tension / yield strength,
Fig. 3
a diagram to illustrate the influence of the association,
Fig. 4
a section of a concrete rib steel according to the invention in a plan view,
Fig. 5
the section VV of Fig. 4,
Fig. 6
in an enlarged view the section VI-VI of Fig. 4,
Fig. 7
a schematic representation of the developments of a known and a concrete rib steel according to the invention,
Fig. 8
the maximum values of ΔH / ΔF R as a function of the angle of inclination β for various friction values tang ρ.

Der in den Figuren 4 bis 6 dargestellte kaltgerippte Betonstahl 1 weist einen in Fig. 5 schraffiert dargestellten etwa kreisförmigen Kernquerschnitt 2, sowie 3 am Umfang verteilt angeordnete Reihen von Rippen 3, 4 und 5 auf, die Teile eines Gewindes zum Aufschrauben eines mit einem Gegengewinde versehenen Verankerungs- bzw. Verbindungskörper bilden. Die in gleicher Weise ausgebildeten Rippen 3, 4 und 5 erstrecken sich, wie Fig. 5 zeigt, in voller Höhe jeweils nahezu über ein Drittel des Stabumfangs.Die Rippenreihen verlaufen parallel zur Stabachse 6.The cold-ribbed reinforcing steel 1 shown in FIGS. 4 to 6 has an approximately circular core cross-section 2 shown hatched in FIG. 5, as well as 3 rows of ribs 3, 4 and 5 distributed around the circumference, the parts of a thread for screwing on one with a counter thread provided anchoring or connecting body. The ribs 3, 4 and 5 formed in the same way, as shown in FIG. 5, each extend almost over a third of the circumference of the bar at full height. The rows of ribs run parallel to the bar axis 6.

Zur Kennzeichnung der Rippenform und der Rippenanordnung dienen die folgenden in den Figuren 4 bis 6 eingetragenen Größen:

b
= Fußbreite der Rippe
ds
= Nenndurchmesser des Betonstahls
h
= Rippenhöhe
R
= Ausrundungsradius am Rippenfuß in Millimetern
α
= Neigungswinkel der Rippenflanke in Altgrad
β
= Neigungswinkel der Rippe gegenüber der Längsachse 6 des Betonrippenstahls in Altgrad
c
= Abstand der Rippen, gemessen in Längsrichtung des Betonrippenstahls.
The following sizes entered in FIGS. 4 to 6 serve to identify the shape of the rib and the arrangement of the ribs:
b
= Foot width of the rib
d p
= Nominal diameter of the reinforcing steel
H
= Rib height
R
= Fillet radius at the base of the rib in millimeters
α
= Angle of inclination of the rib flank in degrees
β
= Angle of inclination of the rib in relation to the longitudinal axis 6 of the reinforcing steel in degrees
c
= Spacing of the ribs, measured in the longitudinal direction of the concrete rib steel.

Für ein bevorzugtes Ausführungsbeispiel betragen die geometrischen Größen der Rippen für Betonrippenstähle eines Nenndurchmessers von 4 bis 16 mm:

Figure imgb0001

Der Neigungswinkel α der Rippenflanken in Altgrad liegt vorzugsweise im Bereich von 40°<α<60°, das Verhältnis Fußbreite b der Rippen zu Rippenhöhe h sollte im Bereich 1,5≦b/h≦3,3 liegen.For a preferred exemplary embodiment, the geometrical sizes of the ribs for rebars with a nominal diameter of 4 to 16 mm are:
Figure imgb0001

The angle of inclination α of the rib flanks in old degrees is preferably in the range of 40 ° <α <60 °, the ratio of the base width b of the ribs to the rib height h should be in the range 1.5 ≦ b / h ≦ 3.3.

In Fig. 7 sind schematisch jeweils die Abwicklungen eines bekannten und eines erfindungsgemäßen Betonrippenstahls für jeweils eine Rippenreihe dargestellt. Bei dem bekannten. Rippenstahl auf der linken Seite ist ein Neigungswinkel β von 50° und ein auf den Stabdurchmesser bezogener Rippenabstand von c/ds von etwa 1,00 zugrundegelegt. Bei dem anmeldungsgemäßen Stahl auf der rechten Seite von Fig. 7 betragen die Werte β = 35° und c/ds = 0,5. Die Eignung für das Richten des Stabes ist umso größer, je mehr sich dessen Außenkontur der eines zylindrischen Körpers nähert. Wird mit 1 die Rippenlänge bezogen auf die Längsrichtung des Stabes, d.h. bezogen auf die Richtung in der der Richtvorgang abläuft, bezeichnet, dann kann die Eignung für das Richten durch das Verhältnis
Rippenlänge 1 / Rippenabstand c
näherungsweise beschrieben werden. Je größer dieses Verhältnis ist, umso mehr wird als Anlagefläche für die Richtrollen die Form eines Rundstabes angenähert. Der Sachverhalt kann wie folgt erfaßt werden

Figure imgb0002

Diese Gleichung ist unmittelbar aus der Skizze nach Fig. 7 ableitbar. Das Verhältnis 1/c liegt für Stähle gemäß DIN 488 sowie Stähle gemäß vorliegender Erfindung innerhalb der folgenden Bereiche:
Figure imgb0003

Es ist ersichtlich, daß die Werte für 1/c bei dem erfindungsgemäßen Stahl im Mittel deutlich höher liegen als bei dem bekannten Stahl gemäß DIN 488.In Fig. 7, the developments of a known and a concrete rib steel according to the invention for each row of ribs are shown schematically. With the known. Rib steel on the left side is based on an inclination angle β of 50 ° and a rib spacing of c / d s based on the bar diameter of approximately 1.00. For the steel according to the application on the right-hand side of FIG. 7, the values are β = 35 ° and c / d s = 0.5. The suitability for that Straightening of the rod is greater, the closer its outer contour approaches that of a cylindrical body. If 1 denotes the rib length in relation to the longitudinal direction of the rod, ie in relation to the direction in which the straightening process takes place, suitability for straightening can be determined by the ratio
Rib length 1 / rib spacing c
be described approximately. The larger this ratio, the more the shape of a round bar is approximated as a contact surface for the straightening rollers. The facts can be summarized as follows
Figure imgb0002

This equation can be derived directly from the sketch in FIG. 7. The ratio 1 / c for steels according to DIN 488 and steels according to the present invention is within the following ranges:
Figure imgb0003

It can be seen that the values for 1 / c for the steel according to the invention are significantly higher on average than for the known steel according to DIN 488.

Es ist bereits daraufhingewiesen worden, daß bei einer Bemessung des Bewehrungselements unter Ausnutzung örtlicher plastischer Verformungen örtlich größere Relativverschiebungen zwischen Stahl und Beton auftreten können, als bei einer linearen Bemessung. Trotzdem muß die Gefahr einer Sprengwirkung, die zu einem Verbundversagen führt, vermieden werden. Die Rippengeometrie des erfindungsgemäßen Stahls ist im Hinblick auf diese Forderung optimal ausgebildet, und zwar durch einen Neigungswinkel der Schrägrippen zur Stabachse im Bereich zwischen 30° und 40°. Ferner auch durch Verringerung der Rippenhöhe h und des Rippenabstandes c gegenüber bekannten kaltgewalzten Stählen.It has already been pointed out that when the reinforcement element is dimensioned using local plastic deformations, larger relative displacements between steel and concrete can occur than with a linear dimension. Nevertheless, the danger of an explosive effect that leads to a composite failure must be avoided. The rib geometry of the steel according to the invention is optimally designed with regard to this requirement, namely by an angle of inclination of the inclined ribs to the rod axis in the range between 30 ° and 40 °. Also by reducing the fin height h and the fin spacing c compared to known cold rolled steels.

Der Einfluß des Neigungswinkel β läßt sich formelmäßig wie folgt darstellen:

Figure imgb0004

wobei

ΔH:
Umfangskraft, die für Relativverschiebungen maßgeblich ist
ΔFR:
Kraftanteil einer schrägen Rippe
tan ρ:
Werkstoffgröße, Reibungsbeiwert
β:
Neigungswinkel der Schrägripen gegenüber der Stabachse
The influence of the angle of inclination β can be represented as follows:
Figure imgb0004

in which
ΔH:
Circumferential force that is decisive for relative displacements
ΔF R :
Force component of an oblique rib
tan ρ:
Material size, coefficient of friction
β:
Angle of inclination of the diagonal ridges in relation to the rod axis

In Fig. 8 sind für verschiedene vorgegebene Reibungsbeiwerte die Maximalwerte von ΔH/ΔFR, die ein Maß für die zulässige Verschiebung darstellen, eingezeichnet. Es ist ersichtlich, daß bei üblichen Reibungswerten diese Maximalwerte, d.h. die maximal zulässigen Verschiebungen, im Bereich von 30° und 40° des Neigungswinkels β liegen.8 shows the maximum values of ΔH / ΔF R , which represent a measure of the permissible displacement, for various predetermined coefficients of friction. It can be seen that with normal friction values these maximum values, ie the maximum permissible displacements, are in the range of 30 ° and 40 ° of the angle of inclination β.

Im folgenden sind die chemische Analyse, Verfahrensparameter der Herstellung und die für die vorliegende Erfindung wesentlichen Festigkeitskennwerte dreier Ausführungsformen der Erfindung angegeben.The chemical analysis, process parameters of the production and the strength parameters of three embodiments of the invention which are essential for the present invention are given below.

1.)1.) Rippenstahl mit einem Nenndurchmesser von 5 mmFinned steel with a nominal diameter of 5 mm WalzdrahtWire rod

IstquerschnittActual cross section
= 24,98 mm²= 24.98 mm²
Zugfestigkeit  Rm Tensile strength R m
= 432 N/mm²= 432 N / mm²
Figure imgb0005
Figure imgb0005
Gerippter BetonstahlRibbed reinforcing steel

mechanisch entspannt
gerichtet
gealtert 100°, 60 min.

Endquerschnitt
= 19,75 mm²
Querschnittsabnahme
= 20,9 %
Streckgrenze  Re
= 576 N/mm²
Rm/Re
= 1,076
Gleichmaßdehnung Ag
= 3,62 %
c/ds
= 0,76
c/h
= 13,5
mechanically relaxed
directed
aged 100 °, 60 min.
Final cross section
= 19.75 mm²
Cross-sectional decrease
= 20.9%
Yield strength R e
= 576 N / mm²
R m / R e
= 1.076
Uniform expansion A g
= 3.62%
c / d s
= 0.76
c / h
= 13.5

Die angegebenen Zahlen sind Mittelwerte aus 5 Einzelmessungen.The figures given are mean values from 5 individual measurements.

2.2nd Rippenstahl mit einem Nenndurchmesser von 8 mmRib steel with a nominal diameter of 8 mm WalzdrahtWire rod

IstquerschnittActual cross section
= 63,62 mm²= 63.62 mm²
Zugfestigkeit  Rm Tensile strength R m
= 451 N/mm²= 451 N / mm²
Figure imgb0006
Figure imgb0006
Gerippter BetonstahlRibbed reinforcing steel

mechanisch entspannt
gerichtet
gealtert 110°, 30 min.

Endquerschnitt
= 50,14 mm²
Querschnittsabnahme
= 21,2 %
Streckgrenze  Re
= 575 N/mm²
Rm/Re
= 1,061
Gleichmaßdehnung Ag
= 2,8 %
c/ds
= 0,5
c/h
= 11
mechanically relaxed
directed
aged 110 °, 30 min.
Final cross section
= 50.14 mm²
Cross-sectional decrease
= 21.2%
Yield strength R e
= 575 N / mm²
R m / R e
= 1.061
Uniform expansion A g
= 2.8%
c / d s
= 0.5
c / h
= 11

Die angegebenen Zahlen sind Mittelwerte aus 5 Einzelmessungen.The figures given are mean values from 5 individual measurements.

3.3rd Rippenstahl mit einem Nenndurchmesser von 12 mmFinned steel with a nominal diameter of 12 mm WalzdrahtWire rod

IstquerschnittActual cross section
= 145,90 mm²= 145.90 mm²
Zugfestigkeit  Rm Tensile strength R m
= 431 N/mm²= 431 N / mm²
Figure imgb0007
Figure imgb0007
Gerippter BetonstahlRibbed reinforcing steel

mechanisch entspannt
gerichtet
gealtert 100°, 60 min.

Endquerschnitt
= 111,78 mm²
Querschnittsabnahme
= 23,4 %
Streckgrenze  Re
= 575N/mm²
Rm/Re
= 1,078
Gleichmaßdehnung Ag
= 3,25 %
c/ds
= 0,49
c/h
= 9,2
mechanically relaxed
directed
aged 100 °, 60 min.
Final cross section
= 111.78 mm²
Cross-sectional decrease
= 23.4%
Yield strength R e
= 575N / mm²
R m / R e
= 1.078
Uniform expansion A g
= 3.25%
c / d s
= 0.49
c / h
= 9.2

Die angegebenen Zahlen sind Mittelwerte aus 5 Einzelmessungen.The figures given are mean values from 5 individual measurements.

Die Stähle weisen ein Streckgrenzenverhältnis Rm/Re von 1,06 bis 1,08 auf, die Gleichmaßdehung Ag liegt zwischen 2,8 und 3,6 %.The steels have a yield strength ratio R m / R e of 1.06 to 1.08, the uniform elongation A g is between 2.8 and 3.6%.

Claims (10)

Betonrippenstahl mit einem Kohlenstoffgehalt von 0,05 bis 0,24 Gewichts-% und einem Mangangehalt von 0,2 bis 1,2 Gewichts-%, der kaltgewalzte Schrägrippen aufweist, die ohne die Ausbildung einer Längsrippe in Form von wenigstens zwei in Richtung der Stablängsachse verlaufenden Rippenreihen (3, 4, 5) angeordnet sind, und die folgende Geometrie aufweisen: a) Neigungswinkel β der Schrägrippen gegenüber der Stabachse (6)

30° ≦ β ≦ 40°
Figure imgb0008
b) auf den Stabnenndurchmesser ds bezogener Rippenabstand c benachbarter Schrägrippen einer Reihe

0,4 ≦ c/d s ≦ 1,0
Figure imgb0009
c) auf die Rippenhöhe h in Rippenmitte bezogener Rippenabstand c

9,0 ≦ c/h ≦ 16.
Figure imgb0010
Reinforced rib steel with a carbon content of 0.05 to 0.24% by weight and a manganese content of 0.2 to 1.2% by weight, which has cold-rolled helical ribs, without the formation of a longitudinal rib in the form of at least two in the direction of the longitudinal axis of the bar running rows of ribs (3, 4, 5) are arranged, and have the following geometry: a) angle of inclination β of the inclined ribs relative to the rod axis (6)

30 ° ≦ β ≦ 40 °
Figure imgb0008
b) rib spacing c of adjacent oblique ribs of a row based on the nominal rod diameter d s

0.4 ≦ c / d s ≦ 1.0
Figure imgb0009
c) rib spacing related to the rib height h in the center of the rib c

9.0 ≦ c / h ≦ 16.
Figure imgb0010
Betonrippenstahl nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis c/ds abhängig vom Stabnenndurchmesser ds in Millimetern, die folgende Werte aufweist:
Figure imgb0011
Reinforced ribbed steel according to claim 1, characterized in that the ratio c / ds, depending on the nominal rod diameter ds in millimeters, has the following values:
Figure imgb0011
Betonrippenstahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verhältnis c/h abhängig vom Stabnenndurchmesser da in Millimetern die folgenden Werte aufweist:
Figure imgb0012
Reinforced rib steel according to claim 1 or 2, characterized in that the ratio c / h, depending on the nominal rod diameter da, has the following values in millimeters:
Figure imgb0012
Betonrippenstahl nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Neigungswinkel α der Rippenflanken in Altgrad der Bedingung

40° < α < 60°
Figure imgb0013


genügt.
Reinforced rib steel according to one of claims 1 to 3, characterized in that the angle of inclination α of the rib flanks in old degrees of the condition

40 ° <α <60 °
Figure imgb0013


enough.
Betonrippenstahl nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Verhältnis Fußbreite b der Rippen zu Rippenhöhe h der Bedingung

1,5 ≦ b/h ≦ 3,3
Figure imgb0014


genügt.
Reinforced rib steel according to one of claims 1 to 4, characterized in that the ratio of the base width b of the ribs to the rib height h is the condition

1.5 ≦ b / h ≦ 3.3
Figure imgb0014


enough.
Betonrippenstahl nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er drei Schrägrippenreihen (3, 4, 5) aufweist.Reinforced rib steel according to one of claims 1 to 5, characterized in that it has three rows of inclined ribs (3, 4, 5). Betonrippenstahl nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Stahl einen Gehalt von 0,05 ≦   C ≦ 0,12 0,35 ≦   Mn ≦ 0,65 0,05 ≦   Si ≦ 0,35
Cu ≦ 0,45
P ≦ 0,04
S ≦ 0,05
Rest Eisen aufweist.
Reinforced rib steel according to one of claims 1 to 6, characterized in that the steel has a content of 0.05 ≦ C ≦ 0.12 0.35 ≦ Mn ≦ 0.65 0.05 ≦ Si ≦ 0.35
Cu ≦ 0.45
P ≦ 0.04
S ≦ 0.05
Remainder iron.
Betonrippenstahl nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Rippen längs einer ein- oder mehrgängigen Schraubenlinie angeordnet sind.Reinforced rib steel according to one of claims 1 to 7, characterized in that the ribs are arranged along a single or multi-start screw line. Verwendung eines Betonrippenstahls nach einem der Ansprüche 1 bis 8 als Bewehrungselement für Stahlbetonbauteile, die unter Ausnutzung örtlicher plastischer Verformungen (Gelenkrotation Θ) der Bewehrung bemessen sind.Use of a concrete rib steel according to one of claims 1 to 8 as a reinforcement element for reinforced concrete components, which are dimensioned using local plastic deformations (joint rotation Θ) of the reinforcement. Stahlbetonbauteil mit einem Betonrippenstahl nach einem der Ansprüche 1 bis 8 als Bewehrungselement, dadurch gekennzeichnet, daß die Bewehrung unter Einbeziehung einer plastischen Verdrehung von Θpl>0,02 rad bemessen ist.Reinforced concrete component with a reinforcing steel bar according to one of claims 1 to 8 as a reinforcement element, characterized in that the reinforcement is dimensioned including a plastic twist of Θ pl > 0.02 rad.
EP91105623A 1990-04-09 1991-04-09 Ribbed concrete reinforcement with cold-rolled diagonal ribs Expired - Lifetime EP0451798B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4011486A DE4011486A1 (en) 1990-04-09 1990-04-09 CONCRETE RIBBON STEEL WITH COLD-ROLLED CRANKS AND USE THEREOF
DE4011486 1990-04-09

Publications (3)

Publication Number Publication Date
EP0451798A2 true EP0451798A2 (en) 1991-10-16
EP0451798A3 EP0451798A3 (en) 1992-12-02
EP0451798B1 EP0451798B1 (en) 1995-09-27

Family

ID=6404087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105623A Expired - Lifetime EP0451798B1 (en) 1990-04-09 1991-04-09 Ribbed concrete reinforcement with cold-rolled diagonal ribs

Country Status (4)

Country Link
EP (1) EP0451798B1 (en)
AT (1) ATE128507T1 (en)
DE (2) DE4011486A1 (en)
DK (1) DK0451798T3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889411A (en) * 1997-02-26 1999-03-30 Xilinx, Inc. FPGA having logic element carry chains capable of generating wide XOR functions
US5907248A (en) * 1997-02-26 1999-05-25 Xilinx, Inc. FPGA interconnect structure with high-speed high fanout capability
US5920202A (en) * 1997-02-26 1999-07-06 Xilinx, Inc. Configurable logic element with ability to evaluate five and six input functions
US6107827A (en) * 1997-02-26 2000-08-22 Xilinx, Inc. FPGA CLE with two independent carry chains
US6201410B1 (en) 1997-02-26 2001-03-13 Xilinx, Inc. Wide logic gate implemented in an FPGA configurable logic element
US6204689B1 (en) 1997-02-26 2001-03-20 Xilinx, Inc. Input/output interconnect circuit for FPGAs
EP1231331A2 (en) * 2001-02-08 2002-08-14 Badische Stahlwerke GmbH Reinforcing bar with ribs and reinforced concrete
FR2919639A1 (en) * 2007-07-30 2009-02-06 Ugitech CRANTED WIRE FOR REINFORCEMENT OF CONCRETE STRUCTURE, DUPLEX STAINLESS STEEL.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400974A1 (en) * 1994-01-14 1995-07-20 Inst Stahlbeton Bewehrung Ev Reinforcing steel
CN107803629B (en) * 2017-10-27 2021-04-13 阳春新钢铁有限责任公司 Method for improving mechanical property of deformed steel bar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1609638A1 (en) * 1966-01-04 1970-07-30 Filiton Ag Reinforcement bar for reinforced concrete construction
DE2231354A1 (en) * 1972-06-27 1974-01-10 Moossche Eisenwerke Ag REINFORCEMENT BAR FOR REINFORCED CONCRETE
FR2315589A1 (en) * 1975-06-23 1977-01-21 Kobe Steel Ltd STEEL BAR INTENDED FOR THE REINFORCEMENT OF CONCRETE AND NON-CIRCULAR CROSS-SECTION
DE2622524A1 (en) * 1976-05-20 1977-11-24 Janovic Kassian Anton Dipl Ing Ribbed concrete reinforcement and stressing steel rod - has lower sloping ribs between paired higher ribs with calculated surface ratio
DE2821902A1 (en) * 1978-05-19 1979-11-22 Dyckerhoff & Widmann Ag CONCRETE REINFORCEMENT BAR, IN PARTICULAR TENSION BAR
EP0306887A1 (en) * 1987-09-11 1989-03-15 Dyckerhoff & Widmann Aktiengesellschaft Hot rolled concrete reinforcing rod, particularly a concrete ribbed bar

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT193914B (en) * 1954-06-02 1957-12-10 Oesterr Alpine Montan Steel for reinforcement in construction
DE2063451B2 (en) * 1970-12-23 1974-07-11 Stahlwerke Peine-Salzgitter Ag, 3150 Peine Use of a hot-rolled reinforced concrete steel for welded wire mesh
DE2123818B2 (en) * 1971-05-13 1979-08-16 Helmut 4224 Huenxe Dickmann Welded reinforcement for concrete structure - has rolled ribs subjected to cold rolling without impairing notch strength
DE2233788C3 (en) * 1972-07-10 1984-09-13 Badische Stahlwerke AG, 7640 Kehl WELDABLE NATURAL HARD CONCRETE STEEL WITH A MINIMUM STRENGTH OF 50KP / MM HIGH 2
DD221759B1 (en) * 1984-02-28 1989-05-03 Florin Stahl Walzwerk CONCRETE STEEL IS HOT ROLLED AND THERMALLY FIXED
DE3705722A1 (en) * 1986-12-19 1988-07-07 Hiendl Heribert Reinforcement connection
DE8717650U1 (en) * 1987-09-11 1989-08-31 Dyckerhoff & Widmann Ag, 8000 Muenchen, De
DD268258A1 (en) * 1988-01-08 1989-05-24 Florin Stahl Walzwerk HOEHERFESTER STAHL, ESPECIALLY CONCRETE STEEL BZW. DRAWERIVORMATERIAL, WITH IMPROVED MATERIAL PROPERTIES AND BETTER PROCESSABILITY
DE3816930A1 (en) * 1988-05-11 1989-11-23 Heribert Hiendl REVERSIBLE CONCRETE STEEL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1609638A1 (en) * 1966-01-04 1970-07-30 Filiton Ag Reinforcement bar for reinforced concrete construction
DE2231354A1 (en) * 1972-06-27 1974-01-10 Moossche Eisenwerke Ag REINFORCEMENT BAR FOR REINFORCED CONCRETE
FR2315589A1 (en) * 1975-06-23 1977-01-21 Kobe Steel Ltd STEEL BAR INTENDED FOR THE REINFORCEMENT OF CONCRETE AND NON-CIRCULAR CROSS-SECTION
DE2622524A1 (en) * 1976-05-20 1977-11-24 Janovic Kassian Anton Dipl Ing Ribbed concrete reinforcement and stressing steel rod - has lower sloping ribs between paired higher ribs with calculated surface ratio
DE2821902A1 (en) * 1978-05-19 1979-11-22 Dyckerhoff & Widmann Ag CONCRETE REINFORCEMENT BAR, IN PARTICULAR TENSION BAR
EP0306887A1 (en) * 1987-09-11 1989-03-15 Dyckerhoff & Widmann Aktiengesellschaft Hot rolled concrete reinforcing rod, particularly a concrete ribbed bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Beton-Kalender 1988, Ernst und Sohn, Seiten 180, 181, 198, 199 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204690B1 (en) 1997-02-26 2001-03-20 Xilinx, Inc. FPGA architecture with offset interconnect lines
US6124731A (en) * 1997-02-26 2000-09-26 Xilinx, Inc. Configurable logic element with ability to evaluate wide logic functions
US5914616A (en) * 1997-02-26 1999-06-22 Xilinx, Inc. FPGA repeatable interconnect structure with hierarchical interconnect lines
US5920202A (en) * 1997-02-26 1999-07-06 Xilinx, Inc. Configurable logic element with ability to evaluate five and six input functions
US5889411A (en) * 1997-02-26 1999-03-30 Xilinx, Inc. FPGA having logic element carry chains capable of generating wide XOR functions
US6107827A (en) * 1997-02-26 2000-08-22 Xilinx, Inc. FPGA CLE with two independent carry chains
US5907248A (en) * 1997-02-26 1999-05-25 Xilinx, Inc. FPGA interconnect structure with high-speed high fanout capability
US6201410B1 (en) 1997-02-26 2001-03-13 Xilinx, Inc. Wide logic gate implemented in an FPGA configurable logic element
US6051992A (en) * 1997-02-26 2000-04-18 Xilinx, Inc. Configurable logic element with ability to evaluate five and six input functions
US6204689B1 (en) 1997-02-26 2001-03-20 Xilinx, Inc. Input/output interconnect circuit for FPGAs
US6292022B2 (en) 1997-02-26 2001-09-18 Xilinx, Inc. Interconnect structure for a programmable logic device
US6448808B2 (en) 1997-02-26 2002-09-10 Xilinx, Inc. Interconnect structure for a programmable logic device
EP1231331A2 (en) * 2001-02-08 2002-08-14 Badische Stahlwerke GmbH Reinforcing bar with ribs and reinforced concrete
EP1231331A3 (en) * 2001-02-08 2002-12-04 Badische Stahlwerke GmbH Reinforcing bar with ribs and reinforced concrete
FR2919639A1 (en) * 2007-07-30 2009-02-06 Ugitech CRANTED WIRE FOR REINFORCEMENT OF CONCRETE STRUCTURE, DUPLEX STAINLESS STEEL.
EP2025826A1 (en) * 2007-07-30 2009-02-18 Ugitech Notched wire made of duplex stainless steel for the reinforcement of concrete structures

Also Published As

Publication number Publication date
EP0451798A3 (en) 1992-12-02
DE4011486A1 (en) 1991-10-10
EP0451798B1 (en) 1995-09-27
DE59106565D1 (en) 1995-11-02
ATE128507T1 (en) 1995-10-15
DK0451798T3 (en) 1996-01-15

Similar Documents

Publication Publication Date Title
DE4315270C2 (en) Steel fiber reinforced concrete with high bending strength
DE3730490A1 (en) HOT ROLLED CONCRETE REINFORCING BAR, PARTICULARLY CONCRETE RIB BAR
DE3131606A1 (en) RUBBER COMPOSITE MATERIAL WITH EMBEDDED METAL LORD AND ITS USE
EP0172544B1 (en) Process for heat treating hot rolled steel rod or wire for prestressing concrete
EP0451798B1 (en) Ribbed concrete reinforcement with cold-rolled diagonal ribs
EP1073809B1 (en) Fiber for reinforcing castable hardening material and corresponding production method and device
DE3131078C1 (en) Anchoring or connecting body for steel bars having surface profilings in the form of ribs
AT211767B (en) Process for the production of reinforcing steel grooved transversely on parts of its circumference
EP1231331B1 (en) Reinforcing bar with ribs and reinforced concrete
EP0006085B1 (en) Process for the fabrication of anchoring rods or anchoring wires and their use in earth or rock anchor devices
WO2000046460A1 (en) Reinforcing fiber for reinforcing steel fiber concrete
DE3045007A1 (en) Wedge device for anchoring a prestressed reinforcement
EP0738361B1 (en) Cold-rolled reinforcing steel and process for its manufacture
EP0777067B1 (en) Cable end connector
DE1921169A1 (en) Hardened tempered wire rod as reinforc- - ments
CH717912B1 (en) reinforcement wire.
DE2622524A1 (en) Ribbed concrete reinforcement and stressing steel rod - has lower sloping ribs between paired higher ribs with calculated surface ratio
DE2325611A1 (en) PROCESS FOR MANUFACTURING REINFORCEMENT RODS FROM STEEL
DE1508448C3 (en) Application of the process for the production of concrete reinforcing bars with surface profiles deviating from rotational symmetry
DD288418A5 (en) ROLLED ARMING BAR WITH HIGH ASSEMBLY CHARACTERISTICS
AT309756B (en) Wire or rod, in particular tension wire for prestressed concrete reinforcement, as well as method and device for its production
DE1184482B (en) Reinforcement mesh
DE1777052A1 (en) Process for the production of cold-formed reinforcing steel for concrete
DE4218450A1 (en) Reinforcing fibres of steel wire for mixing with concrete - have flat middle section profile, with largest width exceeding diameter of round end sections
AT215647B (en) Cold twisting process and then manufactured concrete reinforcement bar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19930521

17Q First examination report despatched

Effective date: 19931214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 128507

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59106565

Country of ref document: DE

Date of ref document: 19951102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: INSTITUT FUER STAHLBETON BEWEHRUNG E.V. TRANSFER-

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AICHER, MAX, DIPL.-ING.

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960103

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: AICHER, MAX, DIPL.-ING.

ET Fr: translation filed
NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT.BUL.02/96 PAGE 213:CORR.:AICHER, MAX, DIPL.-ING.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970516

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970522

Year of fee payment: 7

Ref country code: BE

Payment date: 19970522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970523

Year of fee payment: 7

Ref country code: CH

Payment date: 19970523

Year of fee payment: 7

Ref country code: AT

Payment date: 19970523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970923

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980409

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980409

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

BERE Be: lapsed

Owner name: AICHER MAX

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981101

EUG Se: european patent has lapsed

Ref document number: 91105623.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050409